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Forced Variational Integrators for the Formation Control of

Multi-Agent Systems

Leonardo J. Colombo and Héctor Garcı́a de Marina

Abstract—Formation control of autonomous agents can be
seen as a physical system of individuals interacting with local
potentials, and whose evolution can be described by a Lagrangian
function. In this paper, we construct and implement forced
variational integrators for the formation control of autonomous
agents modeled by double integrators. In particular, we provide
an accurate numerical integrator with a lower computational
cost than traditional solutions. We find error estimations for
the rate of the energy dissipated along with the agents’ motion
to achieve desired formations. Consequently, this permits to
provide sufficient conditions on the simulation’s time step for
the convergence of discrete formation control systems such as
the consensus problem in discrete systems. We present practical
applications such as the rapid estimation of regions of attraction
to desired shapes in distance-based formation control.

Index Terms—Formation control, Distributed control algo-
rithms, Variational integrators, Geometric integration.

I. INTRODUCTION

Decentralized control strategies for multiple robotic systems

have gained increased attention in the last decades in the

control community. Distributed control algorithms for these

systems can offer higher robustness and need for fewer re-

sources per agent than centralized systems [1]. In particular,

formation control algorithms have emerged as powerful tools

for the usage of multi-agent systems as surveyed by [2].

Since the emergence of computational methods, funda-

mental properties such as accuracy, stability, convergence,

and computational efficiency have been considered crucial

for deciding the utility of a numerical algorithm. Geometric

numerical integrators are concerned with numerical algorithms

that preserve the system’s fundamental physics by keeping the

geometric properties of the dynamical system under study.

The key idea of the structure-preserving approach is to

treat the numerical method as a discrete dynamical system

which approximates the continuous-time flow of the governing

continuous-time differential equation, instead of focusing on

the numerical approximation of a single trajectory. Such an

approach allows a better understanding of the invariants and

qualitative properties of the numerical method.
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Using ideas from differential geometry, structure-preserving

integrators have produced a variety of numerical methods for

simulating systems described by ordinary differential equa-

tions preserving its qualitative features. In particular, from

the engineering perspective, numerical methods based on

discrete variational principles [3], [4] may exhibit superior

numerical stability and structure-preserving capabilities. These

methods can advance model-based design and analysis of net-

worked control systems by preserving fidelity to the physical,

continuous-time system, enabling, for instance, more accurate

predictions of the energy transfer between agents as it is the

case in formation control.

Variational integrators are numerical methods derived from

the discretization of variational principles [4], [5], [3]. These

integrators retain some of the main geometric properties of the

continuous systems, such as preservation of the manifold struc-

ture at each step of the algorithm, symplecticity, momentum

conservation (as long as the symmetry survives the discretiza-

tion procedure), and good (bounded) behavior of the energy

associated to the system. This class of numerical methods has

been applied to a wide range of problems in optimal control,

constrained systems, power systems, nonholonomic systems,

and systems on Lie groups. For more details we refer to [6],

[7], [8], [9].

Recently, the authors in [10] studied conservation and

associated decay laws in distance-based formation control

of second order agents seen as a classical physical system.

Following this approach inspired by classical systems, in

this paper, we consider a more general class of systems by

describing the dynamics of agents in the formation through

a Lagrangian function or its associated Hamiltonian function,

together with non-conservative (dissipative) forces. A similar

mathematical description was recently proposed in [11] and

[12] for the optimal control of multiple agents avoiding

collision and in [13] for multi-agent motion feasibility systems

with a Lagrangian dynamics. In this work, we study the

construction and implementation of numerical methods for

the formation control problem, where the desired formation is

achieved by considering external (non-conservative) forces that

dissipate the energy of the Lagrangian (conservative) system.

The implementation of variational integrators allows us to

extend the study of (non-linear) formation control systems

where it is not tractable to obtain non-conservative analytical

results. For example, we can exploit variational integrators to

study and characterize with accuracy the regions of attraction

of the desired equilibrium or shape.

As a first result, the variational integrators can give sufficient

conditions for the stability of formation control systems in

discrete form, e.g., in numerical simulations with a fixed time

step. We note that a particular case in formation control is
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the rendezvous of the agents, i.e., we have a (discrete-time)

consensus problem [14], [15]. We can further employ the

variational integrators for high accuracy numerical solutions

without compromising the computational cost. In fact, a multi-

agent system can consist of a significant number of agents and

links where the bigger the number of initial conditions, the

bigger the sensitivity for the agents’ trajectories. For example,

we have that desired shapes in the non-linear distance-based

control are locally stable, and their analytic region of attraction

is rather conservative, e.g., stability around a linearized system.

Hence, the identification of larger regions of attraction needs to

have accurate simulations of trajectories without dramatically

increasing the computational cost with the number of agents.

In this paper, we introduce a mathematical framework based

on tools of differential geometry to describe the formation

control of multiple Lagrangian and Hamiltonian systems, and

we construct a geometric integrator based on the discretization

of an extension of the Lagrange-d’Alembert principle for a

single agent, in the spirit of forced variational integrators

[4], [6]. This is because in formation control the interaction

between the agents can be described by conservative forces

coming from local potentials such as elastic ones. Such stored

energy between neighboring agents is then dissipated by non-

conservative forces in order to achieve the desired shape

in the formation. This class of variational integrators has

been recently studied in [16], [17], but not exploited for

distributed control purposes. In particular, we construct and

implement forced variational integrators for formation control

of autonomous agents based on local potentials, and further,

we provide an accurate numerical integrator with a lower

computational cost than traditional solutions such as the ones

obtained with a Runge Kutta method. We also find error

estimations for the rate of the energy dissipated along the

motion of the agents to achieve desired formations. This is

done by defining a modification of the Hamiltonian vector

field describing the dynamics of the continous-time system,

and by studying backward error analysis for forced variational

integrators. One of the original contributions of this paper

is the extension of the construction provided for unforced

geometric integrators in [18]. Such a non-trivial extension

allows us to find bounds on the step-size of the proposed

integration scheme for the rate of energy decay associated

with a Hamiltonian function for the modified Hamiltonian

vector field. Consequently, this permits to provide sufficient

conditions for the convergence of discrete formation control

systems. The remainder of the paper is organized as follows.

In Section II we introduce variational integrators and the pre-

liminaries definitions on the geometry and numerical aspects

of Hamiltonian systems. In Section III, we derive the dynamics

for the formation control of multiple Lagrangian systems

subject to external forces from Lagrange-d’Alembert principle.

In Section IV, we construct forced variational integrators for

the formation control of multi-agent systems derived by the

discretization of the variational principle presented in Section

III. In Section V, we introduce the Legendre transformation

in both, continuous-time and discrete-time situations, to next

construct the discrete Hamiltonian flow for formation control,

which is used in Section VI to study the rate of dissipation at

each step of the algorithm. We show how to derive the dis-

cretized equations of motion and system’s energy for generic

formation controllers in Section VII, and then we illustrate

and compare the effectiveness of the proposed variational

integration with numerical experiments. In the same section,

we exploit the congervence guarantees to investigate regions of

convergence beyond the conservative local values in distance-

based formation control. Finally, we wrap up the presented

work with some conclusions in Section VIII.

II. PRELIMINARIES

A. Discrete mechanics and variational integrators

Let Q be a n-dimensional differentiable manifold with

local coordinates (qA), 1 ≤ A ≤ n, the configuration

space of a mechanical system. Denote by TQ its tangent

bundle, that is, if TqQ denotes the tangent space of Q at the

point q, then TQ :=
⋃

q∈Q

TqQ, with induced local coordinates

(qA, q̇A). TqQ has a vector space structure, so we may

consider its dual space, T ∗
q Q and define the cotangent bundle

as T ∗Q :=
⋃

q∈Q

T ∗
q Q, with local coordinates (qA, pA).

Given a Lagrangian function L : TQ → R, its Euler-

Lagrange equations are

d

dt

(
∂L

∂q̇A

)
−

∂L

∂qA
= 0, 1 ≤ A ≤ n. (1)

Equations (1) determine a system of n second-order differ-

ential equations. If we assume that the Lagrangian is regular,

i.e., the (n× n) matrix
(

∂2L
∂q̇A∂q̇B

)
, 1 ≤ A,B ≤ n, is non-

singular, the local existence and uniqueness of solutions is

guaranteed for any given initial condition by employing the

implicit function Theorem.

A Hamiltonian function H : T ∗Q → R is described by

the total energy of a mechanical system. H gives rise to a

dynamical system on T ∗Q, described by Hamilton equations.

These equations are the equations of motion generated by

the Hamiltonian vector field XH ∈ T (T ∗Q) associated with

H . Hamilton equations are locally described by XH(q, p) =(
∂H
∂p ,−

∂H
∂q

)
. that is,

q̇A =
∂H

∂pA
, ṗA = −

∂H

∂qA
, 1 ≤ A ≤ n. (2)

Equations (2) determine a set of 2n first order ordinary

differential equations (see [19], for instance, for more details).

A discrete Lagrangian is a differentiable function Ld : Q×
Q → R, which may be considered as an approximation of

the integral action defined by a continuous regular Lagrangian

L : TQ → R. That is, given a time step h > 0 small enough,

Ld(q0, q1) ≈

∫ h

0

L(q(t), q̇(t)) dt,

where q(t) is the unique solution to the Euler-Lagrange equa-

tions for L with boundary conditions q(0) = q0, q(h) = q1.

Construct the grid T = {tk = kh | k = 0, . . . , N}, with

Nh = T and define the discrete path space as Pd(Q) := {qd :
{tk}Nk=0 → Q}. We identify a discrete trajectory qd ∈ Pd(Q)



as qd = {qk}Nk=0, where qk := qd(tk). The discrete action Sd :
Pd(Q) → R for this sequence of discrete paths is calculated

by summing Ld on each adjacent pair, i.e.,

Sd(q0, ..., qN ) :=

N−1∑

k=0

Ld(qk, qk+1) ≈

∫ T

0

L(q(t), q̇(t)) dt.

The discrete path space is isomorphic to the product man-

ifold which consists of (N + 1) copies of Q. Sd inherits the

smoothness of the discrete Lagrangian, and the tangent space

TqdPd(Q) at qd is the set of maps vqd : {tk}Nk=0 → TQ, with

image vqd(tk) = {(qk, vk)}Nk=0, such that τQ ◦vqd = qd where

τQ : TQ → Q is the projection map given by τQ(q, vq) = q.

The discrete variational principle [4], states that the solu-

tions of the discrete system determined by Ld must extremize

the discrete action given fixed points q0 and qN . Extremizing

Sd over qk with 1 ≤ k ≤ N − 1, we obtain a system of

difference algebraic equations given by

D1Ld(qk, qk+1) +D2Ld(qk−1, qk) = 0, 1 ≤ k ≤ N − 1 (3)

where Dj stands for the partial derivative with respect to the

j-th component of Ld.

The system of algebraic difference equations (3) is known

as the discrete Euler-Lagrange equations [4], [5]. Given a

solution {q∗k}k∈N of eq.(3) and assuming the discrete La-

grangian is regular, that is, the matrix (D12Ld(qk, qk+1)) is

non-singular, it is possible to define implicitly a (local) discrete

flow, ΥLd
: Uk ⊂ Q × Q → Q × Q, by using the implicit

function theorem from (3), as ΥLd
(qk−1, qk) = (qk, qk+1),

where Uk is an open neighborhood of the point (q∗k−1, q
∗
k).

III. LAGRANGE-D’ALEMBERT PRINCIPLE FOR FORMATION

CONTROL

Consider a set V consisting of s free agents evolving on

a configuration manifold Q with dimension n. We denote by

qi ∈ Q the configurations (positions) of agent i ∈ V , with local

coordinates qAi = (q1i , . . . , q
n
i ), and by q = (q1, . . . , qs) ∈

Qs the stacked vector of positions, where Qs represents the

cartesian product of s copies of Q.

The neighbor relationships are described by an undirected

graph G = (V , E) where the set V denotes the set of nodes,

and the set E ⊂ V × V denotes the set of ordered edges for

G. The set of neighbors for agent i is defined by Ni = {j ∈
V : (i, j) ∈ E}. Since G is undirected, if i ∈ Nj , then j ∈ Ni

for the pair (i, j) ∈ E .

The dynamics of each agent is determined by a Lagrangian

system on TQ, that is, the motion of the agent i ∈ V is

described by the Lagrangian function Li : TQ → R and its

dynamics is given by the Euler-Lagrange equations for Li, i.e.,

d

dt

(
∂Li

∂q̇Ai

)
−

∂Li

∂qAi
= 0, with i ∈ V and 1 ≤ A ≤ n.

In addition, the agent i ∈ V may be influenced by a non-

conservative force (conservative forces maybe included into

the potential energy of each agent), which is a fibered map

Fi : TQ → T ∗Q. For instance, Fi can describe a virtual linear

damping between two agents. At a given position and velocity,

the force will act against variations of the position (i.e., virtual

displacements). Lagrange-d’Alembert principle (or principle

of virtual work) establishes that the natural motions of the

forced system are those paths q : [0, T ] → T ∗Q satisfying

δ

∫ T

0

Li(qi, q̇i) dt−

∫ T

0

Fi(qi, q̇i)δqi dt = 0 (4)

for variations vanishing at the boundary, that is, δqi(0) =
δqi(T ) = 0 for each i ∈ V . The first term in (4) is the

integral action, while the second term is known as virtual

work since Fi(qi, q̇i)δqi is the virtual work done by the force

field Fi with a virtual displacement δqi. Lagrange-d’Alembert

principle leads to the forced Euler-Lagrange equations

d

dt

(
∂Li

∂q̇Ai

)
−

∂Li

∂qAi
= Fi(q

A
i , q̇

A
i ).

If the Lagrangian Li : TQ → R is regular, it induces a well

defined flow map, the Lagrangian flow, Ft : TQ → TQ given

by Ft(q0i, q̇0i) := (qi(t), q̇i(t)) where qi ∈ C2([0, T ], Q) is

the unique solution of the Euler-Lagrange equation with initial

condition (q0i, q̇0i) ∈ TQ.

Now consider the Lagrangian L : (TQ)s → R defined by

L(q, q̇) =
s∑

i=1

Ki(πi(q), τi(q̇))− Vi(πi(q)) (5)

where Ki and Vi are the kinetic and potential energy, respec-

tively, of each agent, (TQ)s = Πs
i=1TQ, πi : Qs → Q the

projection from Qs over its ith-factor and τi : (TQ)s → TQ

the projection from (TQ)s over its ith-factor, i.e., πi(q) =
qi ∈ Q and τi(q, q̇) = (qi, q̇i), (q, q̇) ∈ (TQ)s.

To control the shape of the formation we introduce the local

artificial potential functions Vij : Q × Q → R. Examples

of local potentials between neighboring agents in formation

control are

Vij(qi, qj) =
1

4
(||qij ||

2 − d2ij)
2, (6)

coming from distance-based control, and

Vij(qi, qj) =
1

2
||qij − q∗ij ||

2, (7)

coming from displacement-based control. In these potentials,

we have that || · || is a norm on Q induced by the Riemannian

metric on Q (and therefore inducing a distance on Q), qij
denotes the relative position between agents i and j, dij
denotes the desired distance between agents i and j for

the edge Ek = (i, j), and q∗ij denotes the desired relative

position between the two neighboring agents. Note also that

the artificial potentials (6)-(7) are not unique, and both can be

given by other similar expressions as it was discussed by [20].

The Lagrangian function for the formation problem LF :
(TQ)s → R is given by

LF (q, q̇) = L(q, q̇) +
1

2

s∑

i=1

∑

j∈Ni

Vij(πi(q), πj(q)), (8)

where the factor 1
2 in (8) comes from the fact that Vij = Vji.

For example, for each virtual spring with elastic potential (6)

we have an agent at each of the tips of the spring.



If each agent i ∈ V is subject to external non-conservative

forces, the dynamics for the formation problem is determined

by an extension of Lagrange-d’Alembert principle for a sin-

gle agent to multiple agents by considering the Lagrangian

function LF . More precisely, consider the action functional

A(q) =

∫ T

0

LF (q, q̇) dt−

∫ T

0

F (q, q̇) dt, (9)

with F : (TQ)s → (T ∗Q)s the stacked vector of external

forces. Using the fact that the graph G is undirected and Vij =
Vji, critical points of the action functional (9) for variations of

q ∈ Qs with fixed endpoints and with a virtual displacement

δq for the force F corresponds with the forced Euler-Lagrange

equations for LF given by

d

dt

(
∂Li

∂q̇Ai

)
−

∂Li

∂qAi
+
∑

j∈Ni

∂Vij

∂qAi
= Fi, i ∈ V . (10)

IV. A VARIATIONAL INTEGRATOR FOR FORMATION

CONTROL OF AUTONOMOUS AGENTS

The key idea of variational integrators is that the variational

principle is discretized rather than the equations of motion.

As in Section II-A, we discretize the state space TQ as

Q ×Q and, for each agent i ∈ V , let Ld
i : Q ×Q → R be a

discrete Lagrangian and let F±
i,d : Q ×Q → T ∗Q be discrete

“external forces”, approximating the integral action and work

done by Fi, as
∫ tk+1

tk

Li(qi(t), q̇i(t)) dt ≃Ld
i (q

i
k, q

i
k+1), (11)

∫ tk+1

tk

Fi(qi(t), q̇i(t))δqi dt ≃F−
i,d(q

i
k, q

i
k+1)δq

i
k (12)

+ F+
i,d(q

i
k, q

i
k+1)δq

i
k+1.

Note that F±
i are not “external forces”, physically speaking.

They are in fact momentum, since F±
i,d are defined by a

discretization of the work done by the force Fi. The idea

behind the ± is that for a fixed i ∈ V , one needs to

combine the two discrete forces to give a single one-form

Fi,d : Q×Q → T ∗(Q×Q) defined by

Fi,d(q
i
0, q

i
1)(δq

i
0, δq

i
1) = F+

i,d(q
i
0, q

i
1)δq

i
1 + F−

i,d(q
i
0, q

i
1)δq

i
0

It is known that, for a single agent (see [4] Section 4.2.1), by

deriving the discrete variational principle using (11) and (12),

one obtains the forced discrete Euler-Lagrange equations

0 =D1L
d
i (q

i
k, q

i
k+1) +D2L

d
i (q

i
k−1, q

i
k) (13)

+ F−
i,d(q

i
k, q

i
k+1) + F+

i,d(q
i
k−1, q

i
k), k = 1, . . . , N − 1.

Equations (13) define the integration scheme (qik−1, q
i
k) 7→

(qik, q
i
k+1). By defining the discrete (post and pre) momenta

p+k,i :=D2L
d
i (q

i
k−1, q

i
k) + F+

i,d(q
i
k−1, q

i
k), k = 1, . . . , N (14)

p−k,i :=−D1L
d
i (q

i
k, q

i
k+1)− F−

i,d(q
i
k, q

i
k+1), k = 0, . . . , N − 1,

equations (13) lead to the integration scheme (qik, p
i
k) 7→

(qik+1, p
i
k+1), by writing (13) as p−k,i = p+k,i.

In formation control, the space (TQ)s can be discretized

as (Q × Q)s. For a constant time-step h ∈ R
+, a path q :

[t0, tN ] → Qs is replaced by a discrete path qd = {qk}Nk=0

where qk = (q1k, . . . , q
s
k) = qd(tk) = qd(t0 + kh).

Let Cd(Q
s) = {qd : {tk}Nk=0 → Qs} be the space

of discrete paths on Qs. Define the discrete action sum

Ad : Cd(Q
s) → R by

Ad(qd) =

s∑

i=1

(
N−1∑

k=0

Ld
i (q

i
k, q

i
k+1)− F−

i,d(q
i
k, q

i
k+1)δq

i
k

−F+
i,d(q

i
k, q

i
k+1)δq

i
k+1

)
(15)

where to define Ad we are using that

∫ tk+1

tk

LF (q(t), q̇(t)) dt ≃

(
s∑

i=1

Ld
i (q

i
k, q

i
k+1)

+
1

2

∑

j∈Ni

V d
ij(q

i
k, q

i
k+1, q

j
k, q

j
k+1)




=: Ld
F (qk, qk+1) (16)

with Ld
F : (Q×Q)s → R, V d

ij : (Q×Q)s → R a discretization

of (6) and where
∫ tk+1

tk

F (q(t), q̇(t))δq dt =

∫ tk+1

tk

s∑

i=1

Fi(qi(t), q̇i(t))δqi dt

≃
s∑

i=1

(
F−
i,d(q

i
k, q

i
k+1)δq

i
k + F+

i,d(q
i
k, q

i
k+1)δq

i
k+1

)
.

Proposition 4.1: Let Ld
F : (Q × Q)s → R be the discrete

Lagrangian defined in (16). A discrete path qd = {qk}Nk=0

extremizes the discrete action Ad if for each i ∈ V it is a

solution for the discrete forced Euler-Lagrange equations

D2L
d
i (q

i
k−1, q

i
k) + F+

i,d(q
i
k−1, q

i
k) =−D1L

d
i (q

i
k, q

i
k+1) (17)

− F−
i,d(q

i
k, q

i
k+1)

for k = 1, . . . , N − 1 and for variations δqk = (δq1k, . . . , δq
s
k)

satisfying δq0 = δqN = 0.

Proof: See Appendix A.

Under the regularity condition det(D12L
d
F (qk, qk+1)) 6=

0, equations (17) define implicitly a (local) discrete flow,

ΥLd
F
: (Q×Q)s → (Q×Q)s, as ΥLd

F
(qk−1, qk) = (qk, qk+1)

where qk = (q1k, . . . , q
s
k) ∈ Qs.

In Section VI we will show that the proposed integrator has

a bounded energy error, by finding error estimations for the

rate of the energy dissipated along the motion of the agents at

each step of the integration scheme. Another efficient discrete-

times estimates for the continuous-time dynamics described

by the Lagrangian LF could be determined by the so-called

lifting technique [21] (see also [22]).

V. HAMILTON EQUATIONS AND DISCRETE HAMILTONIAN

FLOW FOR FORMATION CONTROL

Consider LF : (TQ)s → R as given in (8). From LF we

can determine the Hamiltonian function HF : (T ∗Q)s → R

by defining the Legendre transform FLF : (TQ)s → (T ∗Q)s.

Definition 5.1: The Lagrangian system determined by LF

is said to be regular if det

(
∂2

LF

∂q̇i∂q̇j

)

ns×ns

6= 0.



If the kinetic energy of each agent is given by Ki(qi, q̇i) =
1
2 q̇

T
i Miq̇i with Mi positive definite, then LF is regular since

det

(
∂2

LF

∂q̇i∂q̇j

)

ns×ns

= det(M) with M a positive definite

block diagonal matrix with s submatrices of dimensions

(n× n) given by the matrices Mi.

Therefore, one may define the Legendre transformation

FLF : (TQ)s → (T ∗Q)s as FLF (q, q̇) = (q,Mq̇) := (q, p),
where q ∈ Qs and p = (p1, . . . , ps) ∈ (T ∗Q)s are the stacked

vector of positions and momenta, respectively. For each i ∈ V ,

pi = Miq̇i =
∂Li

∂q̇i
, and denoting by τ̄i : (T

∗Q)s → T ∗Q the

projection to the ith-factor of (T ∗Q)s and by Ji the matrix

M−1
i , we may induce the Hamiltonian HF : (T ∗Q)s → R as

HF (q, p) =
s∑

i=1

〈τi(q̇), τ̄i(p)〉 − LF (πi(q), τi(q̇(q, p)))

=

s∑

i=1

Ji(p
i)2

2
+ Vi(πi(q))−

1

2

∑

j∈Ni

Vij(πi(q), πj(q)). (18)

Remark 5.2: Note that here we are restricting our analysis

to Hamiltonians where the kinetic energy for each agent i ∈ V
is given by Ki(qi, q̇i) = 1

2 q̇
T
i Miq̇i. Nevertheless, the results

can be given by an abstract Hamiltonian with a general kinetic

energy. In this paper, we focus on the “standard” kinetic energy

since commonly the double integrator agents with this kinetic

energy represent mobile robots in formation control [2].

For each i ∈ V , the Hamiltonian vector field can be locally

written as XHF
= ∂HF

∂pi
∂
∂qi

− ∂HF

∂qi
∂

∂pi =
(

∂HF

∂pi ,−
∂HF

∂qi

)
, and

it’s integral curves are determined by Hamilton’s equations

q̇Ai =
∂HF

∂piA
, ṗiA = −

∂HF

∂qAi
, i ∈ V , 1 ≤ A ≤ n. (19)

Given the external force F : (TQ)s → (T ∗Q)s, the

Legendre transformation also induces the Hamiltonian force

FHF : (T ∗Q)s → (T ∗Q)s given by FHF = F ◦ (FLF )
−1.

It is possible to modify the Hamiltonian vector field XHF
to

obtain the forced Hamilton’s equations, by studying the inte-

gral curves of the vector field ZHF (q, p) := (XHF
+Y )(q, p)

where the vector field Y is defined by

Y (pq) =
d

dt

∣∣∣
t=0

(pq + tFHF (pq)) ∈ (T ∗Q)s, (20)

and where for each i ∈ V , it is locally given by

Yi = FHF

i

(
qi,

∂HF

∂pi
(qi, p

i)

)
∂

∂pi
= FHF (qi, p

i)
∂

∂pi
.

Denoting by Zi
HF the ith-component of ZHF ,

Zi
HF (qi, p

i) =

(
∂HF

∂pi
,−

∂HF

∂qi
+ FHF

i

)
,

and therefore forced Hamilton’s equations are given by

q̇Ai =
∂HF

∂piA
, ṗiA = −

∂HF

∂qAi
+ FHF

i , i ∈ V , 1 ≤ A ≤ n. (21)

Using that
∂HF

∂pi
= Jip

i and
∂HF

∂qi
=

∂Vi

∂qi
−
∑

j∈Ni

∂Vij

∂qi
,

forced Hamilton equations for the formation problem are

q̇i = Jip
i, ṗi = −

∂Vi

∂qi
+
∑

j∈Ni

∂Vij

∂qi
+ FHF

i , i ∈ V . (22)

Since the Hamiltonian system determined by (18) is influ-

enced by a linear damping external forces FHF , the energy of

the system is not preserved. The evolution of the Hamiltonian

along solution curves is

d

dt
HF (q(t), p(t)) =

s∑

i=1

Jip
iFHF

i (qi, p
i) ≤ 0, (23)

where the equality is given by using the solutions arising

from forced Hamilton’s equations (22), and the inequality

is determined by using that FHF

i = −κJip
i with κ > 0.

Therefore the rate of change of energy decay along solutions

in (T ∗Q)s is determined by (23).
Given a discrete Lagrangian Ld

F : (Q × Q)s → R, the

discrete Legendre transformations FF±

Ld
F

: (Q×Q)s → (T ∗Q)s

are defined through the momentum equations (14) as

F
F+

Ld
F
(q0, q1) =(q1, D2L

d
F (q0, q1) + F

+

d (q0, q1)) = (q1, p1) (24)

F
F−

Ld
F
(q0, q1) =(q0,−D1L

d
F (q0, q1)− F

+

d (q0, q1)) = (q0, p0) (25)

where qi = (q1i , . . . , q
s
i ) and pi = (p1i , . . . , p

s
i ).

If both discrete Legendre transformations are locally dif-

feomorphisms for nearby q0 and q1, then we say that Ld
F is

regular. Using F
F±

Ld
F

, the forced discrete Euler–Lagrange equa-

tions (17) can be written as F
F−

Ld
F

(qk, qk+1) = F
F+

Ld
F

(qk−1, qk).

Consider ΥLd
F
: (Q × Q)s → (Q × Q)s defined by Propo-

sition 4.1. It will be useful to note that

F
F+

Ld
F
= F

F−

Ld
F
◦ΥLd

F
. (26)

Definition 5.3: We define the discrete forced Hamiltonian

flow Υ̃F
d : (T ∗Q)s → (T ∗Q)s as

Υ̃F
d = F

F−

Ld
F

◦ΥLd
F
◦
(
F
F−

Ld
F

)−1

, Υ̃F
d (q0, p0) = (q1, p1). (27)

Alternatively, it can also be defined as

Υ̃F
d = F

F+

Ld
F
◦ΥLd

F
◦
(
F
F+

Ld
F

)−1

, Υ̃F
d (q0, p0) = (q1, p1). (28)

In analogy with [4] and [6] we have the following results:

Proposition 5.1: The diagram in Figure 1 is commutative.

(q0, q1) (q1, q2)

(q0, p0) (q1, p1) (q2, p2)

ΥLd
F

F
F−

Ld
F

F
F+

Ld
F

F
F−

Ld
F

F
F+

Ld
F

Υ̃F
d Υ̃F

d

Fig. 1. Correspondence between the discrete Lagrangian and the discrete
Hamiltonian maps.

Proof: See Appendix A

Corollary 5.4: The following definitions of the discrete

Hamiltonian map are equivalent: Υ̃F
d = F

F+

Ld
F

◦ΥLd
F
◦(FF+

Ld
F

)−1,

Υ̃F
d = F

F−

Ld
F

◦ΥLd
F
◦ (FF−

Ld
F

)−1, Υ̃F
d = F

F+

Ld
F

◦ (FF−

Ld
F

)−1.



VI. DISCRETE ENERGY ERROR

The discrete energy function associated with the formation

control problem is just the discretization of the Hamiltonian

HF . From this observation, we propose to study the rate

of energy dissipated along the motion of the agents from

a Hamiltonian perspective. In particular, we will show the

discrete force Hamiltonian flow Υ̃d defined in (27) has an

asymptotically correct dissipation behavior by studying the

rate of decay of a truncated modified Hamiltonian function fol-

lowing the approach of Backward Error Analysis [5] (Chapter

IX), [18] (Sec. 4). See also [4], [16], [23], [6].

Consider the forced Hamiltonian equation

ẋ = XHF
(x) + Y (x) (29)

with Y (x) = F
(
q, ∂HF

∂q

)
∂
∂p a vector field on (T ∗Q)s as in

(20), and x = (q, p) ∈ (T ∗Q)s. We aim to study Backward

Error Analysis for forced variational integrators. The problem

consists on finding a modified vector field ZHF := XHF
(x)+

Y (x) such that exp(hZHF ) = Υ̃F
d , with Υ̃F

d : (T ∗Q)s →
(T ∗Q)s being the integrator defined in (27) for the forced

Hamiltonian system introduced in Definition 5.3.

Since we can not invert exp(hZHF ) to find ZHF because

the exponential map is not surjective, we must assume that

T ∗Q (and hence (T ∗Q)s) carries a real analytic structure.

Therefore, the modified vector field ZHF can be written as

an asymptotic expansion in terms of the step-size h > 0 as

ZHF =

∞∑

k=0

hkXk, (30)

where each Xk is a real analytic vector field on (T ∗Q)s and

it may be determined by the integrator Υ̃F
d for ZHF as

Xk(q, p) = lim
h→0

Υ̃F
d (q, p)− exp(hXHF

h,k−1)(q, p)

hk
(31)

with X0 = ZHF and XHF

h,k :=

k∑

j=0

hjXj .

Remark 6.1: Note that in the construction given in (31),

by using Taylor’s theorem, it follows that Υ̃F
d (q, p) −

exp(hXHF

h,k )(q, p) = O(hk+1) and, if the integrator has an

order r then the first r vector fields Xk are zero. ⋄.

Lemma 6.2: [[5], Section IX.8] There exists a global h-

independent Lipschitz constant for the truncated Hamiltonian

HF (x) = HF (x) +
τ∑

k=r

hkHk(x), τ ∈ Z, x ∈ (T ∗Q)s.

The asymptotic expansion (30) does not converge in general,

so, we want to find the optimal truncation index τ ∈ Z such

that Υ̃F
d −exp(hXHF

h,τ ) converges to zero asymptotically. More

formally, we want to find an order of truncation τ for (30)

depending on h, such that d
(
Υ̃F

d , exp(hX
HF

h,τ )
)
≤ f(h) with

f : R → R continuous and lim
h→0

f(h) = 0 for some h ≤ α

with α > 0. The function d : (T ∗Q)s× (T ∗Q)s → R is given

in [18] Theorem 4.1, and it is determined by the Whitney em-

bedding theorem as the restriction of the Riemannian distance

to an embedded submanifold of (Rn)s. Note that one can only

choose the optimal truncation index τ in (30) if the problem

has been solved, so, it is needed to implement an appropriated

optimization algorithm. By also choosing an appropriated

function f , one can, for instance, transform the problem into

a convex optimization problem and optimize the truncation

index τ for (30). In the application for double integrator agents

on Euclidean spaces given in this paper, one might employ a

classical convex optimization algorithm [24]. Nevertheless, in

general, depending on the manifold structure one could employ

specific structure-preserving convex algorithms rather than a

classical one in an Euclidean space at a local level.

Remark 6.3: Note that a local Lipschitz condition is enough

for mechanical systems, especially for strongly nonlinear ones,

and sometimes, it is not easy to verify the global Lipschitz

growth despite it always exists (see, for instance, Theorem 7.5
in [5]). Moreover, for the formation, local Lipscitz seems more

appropriate. Nevertheless we maintain the original statement

given in [5] for Lemma 6.2.

Next, with Theorem 6.1 we show that the discrete force

Hamiltonian flow Υ̃d has an asymptotically correct dissipation

behavior, depending on the step size h, by studying the

behavior of the discrete forced Hamiltonian flow Υ̃F
d for ZHF .

In particular, we will show that HF evolves with a rate of the

order O(hr) nearly to the exact rate of energy dissipation.

Theorem 6.1: Consider P := (T ∗Q)s equipped with a real

analytic manifold structure, C a compact set of P and ZHF ∈
X(P) defined in (29), real and analytic on C. Given the discrete

forced Hamiltonian flow Υ̃F
d for ZHF satisfying

(1) Υ̃F
d is symplectic of order r when Y = 0,

(2) Υ̃F
d (x) is real and analytic for x = (q, p) ∈ C ⊂ P ,

(3) there exists a sequence of real analytic vector fields

{Xk}k∈N on P with each Xk as in (31),

then, there exists τ ∈ Z depending smoothly on h and positive

constants C, λ, γ, α, such that
∣∣∣HF (Υ̃

F
d (x)) −HF (x) + Σ(h, x, τ)

∣∣∣ ≤ λhCe−γ/h (32)

with h ≤ α,

Σ(h, x, τ) := −

∫ h

0

L
Z

HF
h,τ

HF (q(s), p(s)) ds, (33)

with (q(s), p(s)) = exp(sZHF )(q, p), and where HF (q, p)
is the truncation up to order τ of the modified Hamiltonian

associated with HF , that is HF (x) = HF (x) +

τ∑

k=r

hkHk(x).

Proof: See Appendix A.

Remark 6.4: Note that as long as the integrator evolves on

the compact set C, the Hamiltonian HF will decreases at each

step for a fixed chosen step size h ≤ α. Therefore, the rate of

dissipation in energy for the discrete forced Hamiltonian flow

is sufficiently close up to an order O(hr) to (23) for all values

x ∈ C satisfying

sup
x∈C

|L
Z

HF
h,τ

HF (x)− (−JpFHF (x))| << −JpFHF (x),

where the symbol << represents the magnitude order.

The value α is crucial to get accurate simulations results

and to study the convergence to the desired shape in formation

control (in case there is more than one equilibrium shape). It



also provides a bound on the step-size h for long-time correct

energy behaviors for the motion of the agents. Note also that

a time-step h bigger than α does not guarantee the dissipation

of energy of the system . We remind that the desired shape

corresponds to the minimum of energy, which (in formation

control) is the sum of all the energies stored by neighboring

agents. In the next section we will study in an application

that when we work on an Euclidean space, we may use the

corresponding α given in Theorem 8.1 (Section IX.8) in [5].

Such value α permits to get accurate results for long-time

correct energy behaviors. It must satisfy kh ≤ eα/2h with k

being the number of steps in the iteration of the discrete forced

Hamiltonian flow and h > 0, the time step.

VII. APPLICATION OF THE VARIATIONAL INTEGRATION IN

FORMATION CONTROL

A. Derivation of the discretized equations of motion

We first show how to derive the discretized equations to

simulate the control of formations based on generic potentials

with our proposed variational integrators. Consider s agents

evolving on Q = R
n, with local coordinates qAi , 1 ≤ A ≤

n, each one with unit mass. We set external forces with the

linear damping Fi(qi, q̇i) = −κq̇i, κ ∈ R
+. Using (10), the

dynamics for the formation problem of the agents is given by

the following set of second-order nonlinear equations

q̈i = −κq̇i −
∑

j∈Ni

∇qiVij(qi, qj) 1 ≤ i ≤ s, (34)

where the potential Vij depends on chosen framework such as

distance-based or displacement-based formation control.

To construct the numerical method, the velocities are dis-

cretized by finite-differences, i.e., q̇i =
qik+1 − qik

h
for t ∈

[tk, tk+1]. The discrete Lagrangian Ld : Rsn → R is given

by setting the trapezoidal discretization for each Lagrangian

Li : R
n × R

n → R in the Lagrangian (8). That is,

Ld
i (q

i
k, q

i
k+1) =

(qik+1 − qik)
2

2h

+
h

4

∑

j∈Ni

(V d
ij(q

i
k, q

j
k) + V d

ij(q
i
k+1, q

j
k+1)),

where, h > 0 is the fixed time step.

The external forces Fi(qi, q̇i) = −κq̇i are discretized by

using the trapezoidal discretization,

F±
i,d(q

i
k, q

i
k+1) =

h

2
Fi

(
qik,

qik+1 − qik

h

)

+
h

2
Fi

(
qik+1,

qik+1 − qik

h

)
,

that is F+
i,d(q

i
k−1, q

i
k) = −κ(qik − qik−1) and F−

i,d(q
i
k, q

i
k+1) =

−κ(qik+1 − qik). Note that in the first term of the trapezoidal

rule, the discretization chosen corresponds to a forward finite-

difference and in the second term to a backward finite-

difference. Using that

D1L
d
i (q

i
k, q

i
k+1) =

qik − qik+1

h
+

h

4

∑

j∈Ni

∂V d
ij

∂qik
(qik, q

j
k), (35)

D2L
d
i (q

i
k−1, q

i
k) =

qik − qik−1

h
+

h

4

∑

j∈Ni

∂V d
ij

∂qik
(qik, q

j
k), (36)

the forced discrete Euler Lagrange equations are given by

qik+1 = κhq
i
k−1 +

2

1 + kh
qik − κ̄h

∑

j∈Ni

∇qi
k
V d
ij(q

i
k, q

j
k) (37)

with κh = κh−1
1+κh , κ̄h = h2

2(1+κh) , for k = 1, . . . , N − 1.

For example, in distance-based formation control, the equa-

tions (37) are given by

qik+1 = κhq
i
k−1 +

2

1 + kh
qik − κ̄h

∑

j∈Ni

Γk
ij(q

i
k − q

j
k), (38)

where Γk
ij = (qik − q

j
k)

2 − d2ij . For displacement-based

formation control, equations (37) are given by

qik+1 = κhq
i
k−1 +

2

1 + kh
qik − κ̄h

∑

j∈Ni

(qik − q
j
k − q∗ij). (39)

Note that the previous equations are a set of ns(N − 1)
for the ns(N + 1) unknowns {qik}

N
k=0, with 1 ≤ i ≤ s.

Nevertheless the boundary conditions on initial positions and

velocities of the agents qi0 = qi(0), v
i
q0 = q̇i(0) contribute to

2ns extra equations that convert eqs. (37) in a nonlinear root

finding problem of ns(N−1) equations and the same amount

of unknowns. To start the algorithm we use the boundary

conditions for the first two steps, that is, qi0 = qi(0) and

qi1 = hviq0 + qi0 = hq̇i(0) + qi(0).

B. Discretized equation of the system’s energy

We now show how to derive the discretized iteration of the

system’s energy. Later, we will show an example of how to find

a theoretical maximum step size such that the system’s energy

converges to zero in the case of a distance-based formation.

Equations (37) define the integration scheme by means

of the discrete flow ΥLd
F

: R
sn × R

sn → R
sn × R

sn

by ΥLd
F
(qk−1, qk) = (qk, qk+1), qk = (q1k, . . . , q

s
k), or, by

using the momentum equations (14) for each i, the integration

scheme can be written as (qk, pk) 7→ (qk+1, pk+1).
The total energy of each agent Ei : TQ → R is given by

Ei(qi, q̇i) =
1

2
||q̇i||

2 +
1

2

∑

j∈Ni

Vij(qi, qj).

Using the trapezoidal rule for Ei, the discrete energy function

for each agent Ed
i : Rn × R

n → R is given by

Ed
i (q

i
k, q

i
k+1) =

1

2h
(qik+1 − qik)

2

+
h

4

∑

j∈Ni

(V d
ij(q

i
k, q

j
k) + V d

ij(q
i
k+1, q

j
k+1)).



Note that since det

(
∂2

LF

∂q̇i∂q̇j

)
= det(Idns×ns) = 1 6= 0,

the Lagrangian LF is regular, and therefore the Legendre

transformation is a global diffeomorphism and it is given by

FLF (qi, q̇i) = (qi, p
i) where pi = ∂L

∂q̇i
= q̇i. By using FLF we

may induce the Hamiltonian function for the formation prob-

lem given by (18). The external force F : (TQ)s → (T ∗Q)s

given by F (q, q̇) = (q,−κq̇) is also transformed into the

Hamiltonian force FHF : (T ∗Q)s → (T ∗Q)s by using the

Legendre transform, and given by FHF (q, p) = −κp, since

q̇ = p (note that FHF (q, p) = F ((FL)−1(q, p))).
Forced Hamilton equations for (18) are given by

q̇i = pi, ṗi = −κpi +
∑

j∈Ni

∇qiVij(qi, qj). (40)

Equations (35)-(36) define the Legendre transformations as

F
F+

Ld
F

(qi0, q
i
1) =



qi1,
1

h
(qi1 − qi0)−

h

4

∑

j∈Ni

∇qi
1
V d
ij(q

i
1, q

j
1
)− κ(qi1 − qi0)





F
F−

Ld
F

(qi0, q
i
1) =



qi0,
1

h
(qi1 − qi0) +

h

4

∑

j∈Ni

∇qi
1
V d
ij(q

i
1, q

j
1
) + κ(qi1 − qi0)



 .

Using the last two expressions and ΥLd
F

, it follows the

construction of the Hamiltonian flow Υ̃F
d by Corollary (5.4).

Remark 7.1: In this work we focus on the application to

formation control of double integrator agents, nevertheless the

result developed here apply to a general unconstrained multi-

agent mechanical control systems. Given Li, Vij and Fi, one

may construct LF and discretize it, together with Fi, and the

same discretization performance for the Lagrangian and the

external forces. Next, it is possible to compute the discrete

forced Euler-Lagrange equations, and under the regularity

condition det(D12L
d
F (qk, qk+1)) 6= 0, by solving for the step

(k + 1) it can be defined the integration scheme.

For applications to constrained systems (holonomic and

non-holonomic), the variational integrator presented in this

work for formation control can be extended in a non-trivial

way. These applications to constrained systems will be studied

in a further work by taking into account the results for a single

agent provided in [8] and [7].

C. Variational Integrator vs Euler method

Let us briefly review some concepts in distance-based con-

trol to grasp later the application of the variational integrators

in our proposed numerical experiments. We define a desired

configuration q∗ as a particular collection of fixed q∗i whose

SE(2)-transformations define the desired shape.

Convergence results in distance-based control cover the

local stabilization of the desired shape, and besides some

analytical expressions for some particular cases of single-

integrators [25], for double-integrator dynamics the neighbor-

hoods or regions of attraction around q∗ (up to translations

and rotations) are estimated numerically [26], [27], [28], [29].

We say that two configurations q1∗ and q2∗ are congruent

if ||q1i − q1j || = ||q2i − q2j ||, i, j ∈ V with i 6= j. Note that

two configurations q1∗ and q2∗ can satisfy ||q1i − q1j || =
||q2i − q2j ||, (i, j) ∈ E but might fail to be congruent, and

therefore they do not describe the same shape. We refer to

the reader to the concept of rigidity in formation-control [30]

on how to construct desired shapes from a set of desired

distances between agents. Therefore we can have multiple

shapes corresponding to a minimum of potential functions (6)

in distance-based control. Obviously, the more edges in E , the

more constrains and fewer possible shapes given a collection

of desired distances dij with (i, j) ∈ E . However, in practical

scenarios we are interested in keeping a small number of

edges, so the system is far from an all-to-all scheme.

It is of crucial importance in robotic multi-agent systems

to choose those initial conditions, or initial deployment, for

the robots such that the eventual shape is congruent with the

desired one. As we will illustrate, for agents that start at rest,

i.e., with q̇i(0) = 0, some desired shapes have narrow or even

disconnected regions of attractions. We find such regions after

intensive campaigns of numerical simulations where we are

assisted by the variational integrators proposed in this paper.

In particular, we will be able to run accurate simulations with

significant large time steps with the same computational cost

of a simple Euler integrator. The guarantees on the decreasing

of the total energy of the system over time, together with a

well behavior of such energy evolution, is of vital importance

due to the high sensitivity of the gradient of the potentials (6)

to the positions of the agents, specially when they are far from

the desired shape.

We compare the performance of the variational integrator

(37) and the Euler discretization of (34) since both methods are

similar in terms of computational cost per time step. Indeed,

other methods like Runge-Kutta can give excellent results in

terms of accuracy. However, one needs to evaluate the differen-

tial equation (34) several times per discrete step depending on

the desired accuracy, hence increasing the computational cost.

We consider four agents whose desired shape is defined from a

regular square q∗. We set κ = 5 for the dissipating forces and

arbitrarily choose initial position but with the initial velocities

of the agents equal to zero.

While the Euler method starts to be stable, i.e., the solution

does not diverge to infinity, at h = 0.005, it presents a

smooth behavior once the time step is lower than h = 0.0001.

However, as it can be checked in Figures 2 and 3, the transitory

and final shapes are notably different. In fact, we only have a

consistent transitory (and final desired square) when we choose

h = 0.00005 or lower. For all the simulations we have set the

number of steps to be simulated to 200.

D. Estimation of regions of attraction in distance-based for-

mation control

The following numerical experiment will estimate regions of

attraction for some desired shapes by exploiting the variational

integration. In particular, we study the set of initial conditions

for agent i while the rest of agents are in the desired shape

such that the eventual shape is congruent to the desired one.

This case is common in practice for growing formations, and

give us information on from which areas are safe to deploy

a new robot. In order to identify the region of attraction to

the desired shape for one agent, we run 100k simulations with

hr = 4, where r is the number of steps and h is the time
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Fig. 2. Comparison between the discrete energy functions of the agents, the
total energy (in black color), and the agents’ trajectories by employing the
variational integrator (V.I.) and Euler with both having a fixed step size of
h = 0.005. The crosses denote the initial positions.
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Fig. 3. While Euler method is stable for h = 0.05, it is for h = 0.00005
or lower than the transitory of the agents’ trajectories, and therefore the final
desired squared shape, are consistent with the results from the variational
integrator. The crosses denote the initial positions.

step of the variational integrator, we are also looking for those

positions where the convergence time is lower than a threshold.

In order to speed up the process for identifying the regions of

attraction, we are interested in setting h as big as possible

for each simulation while having guarantees on the numerical

stability, i.e., we are looking for α in Theorem 6.1. As noted

in Remark 6.4, we can give the following expression for α

α =
R

eM
, ||f(q, p)|| ≤ M, ||(q, p)− (q0, p0)|| < 2R,

where (q0, p0) ∈ K := {(q, p) ∈ R
2n s.t. ||p|| < c}, so for a

fixed c, R ∈ R
+ we can give a (very) conservative M from
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Fig. 4. In these plots, all the agents except one keep all the desired distances in
between at the beginning of the simulation. The Variational Integrator allows
us to estimate the regions of attraction of the agent that has not been collocated
correctly. This estimation is (at least four times) faster than employing Runge-
Kutta 4 without losing accuracy thanks to the guaranteed well behavior of
the energy of the system. Surprisingly, we identify that beyond the small
perturbations of the desired position of the non-collocated agent, other areas
form circular ”halos” around the desired shape.

(40) as follows

||f(q, p)||2 = ||c||2 +

|V|∑

i=1

∑

j∈Ni

|| − κpi −∇Vij(qij)||
2

≤ ||c||2 + 2|V|κ2||c||2 + 4
∑

(i,j)∈E

||∇Vij(qij)||
2

≤ (1 + 2|V|κ2)||c||2 (41)

+ 4|E|
(
max(i,j)∈E

{
||q||(| ||qij ||

2 − d2ij |)
})2

≤

{
(1 + 2|V|κ2)||c||2 + 64|E|R6, if ||qij ||2 > d2ij ,

(1 + 2|V|κ2)||c||2 + 64|E|R2max{d4ij}, if d2ij > ||qij ||2,

for qij ∈ K, (i, j) ∈ E .

For example, in our experiment with κ = 0.5, |E| = 11 and

|V| = 7, then for initial conditions set by c = R = 1 where

all the agents start with ṗi(0) = 0 we have that α = 0.014.

Then, we have chosen h = 0.014, and with the required initial

conditions, we have observed that with 200 steps, the agents

have enough time to converge to an equilibrium.

To determine whether an eventual shape in a simulation

is congruent to the desired one we check if the discrepancy

of distances between agents in their final positions is lower

than 1% with respect to the desired shape in q∗. Indeed,

we also check that the eventual velocities for the agents are

also close enough to zero, e.g., ||ṗi(T )|| < 0.1, being T

the final time of the simulation. The plots in Figure 4 show

the results on regions of attraction for an arbitrary desired

(rigid) shape when all the agents excepting one start at the

desired shape. After testing several shapes, we estimate that

for agents close to the centroid of the desired shape it is

safe to start from a ball close to their desired inter-agent

distances. Unexpectedly, we have identified thin halos around

the centroid, but far from it, as regions of attraction, for all the

tested desired shapes. More importantly, as it has been shown

in the previous subsection, changing to a smaller step size

does not modify the behavior of the system in the simulation

as it happens with the Euler method. Therefore, one can be

confident about the computed areas of attraction. Of course,

the Runge-Kutta method can also give guarantees about the

committed error, however, computationally is more expensive

than the Variational Integrator method.

We would like to highlight that the simulation campaign

with the variational integrator takes around two hours per 100k



simulations in an Intel i7-2600K CPU @ 3.40GHz.

In this simulation campaign, the integration of the equations

is the most expensive operation per iteration. Therefore, the

proposed variational integrator assisted us in speeding up the

time-consuming process than if we were employing other

methods such as Runge-Kutta 4.

VIII. CONCLUSIONS AND FUTURE WORK

We have presented fixed-time step variational integrators for

decentralized formation control algorithms of Lagrangian sys-

tems with forcing, given that a formation problem can be seen

as a Lagrangian system subject to external dissipative forces.

The paper first presented the Lagrange-d’Alembert principle

for multi-agent systems in a Lagrangian mechanics frame-

work and then we derived the forced discrete Euler-Lagrange

equations from the discretization of such a variational princi-

ple. We demonstrated a general method to construct forced

variational integrators for multi-agent Lagrangian, and also

Hamiltonian systems. This Hamiltonian formalism allowed to

formally show the rate of energy error dissipated, showing

the advantage of numerical integrate the equations of motion

for shape control with variational integrators compared with

classical integration schemes. Consequently, we gave sufficient

conditions on the step size of the numerical scheme for the

stability of discrete distance-based formation control of double

integrators. Finally, we have shown an application of the

variational integrators assisting in a time consuming simulation

campaign to identify regions of attractions of desired rigid

shapes in distance-based formation control.

The methods and results given in this paper will help

to numerically study and validate more complex formation

control algorithms. In particular, when in practical applications

we need to deal with the motion control of the formation

and inconsistent measurements as it is shown in [27], or

cases where a formation leader is specified, as in [31]. In

practice real-life applications, control systems are subject to

perturbations and noises. In a future work, by combining the

results of [31] together with ideas of stochastic variational

integrators [32], the proposed approach in discrete-time La-

grangian formulations and the discrete-time formation systems

also extend to systems with perturbations and noises as well

as flocking behavior.
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APPENDIX A

The aim of this Appendix is to prove Theorem 6.1 and

Propositions 4.1 and 5.1.

Proof Proposition 4.1: Variations of the action sum (15),

after a shift in the index for the discrete external force F+
i,d,

reads

δAd(qd) =δ

N−1∑

k=0

Ld
F (qk, qk+1) = D1L

d
F (q0, q1)δq0

+D2L
d
F (qN−1, qN )δqN

+

N−1∑

k=1

(D1L
d
F (qk, qk+1) +D2L

d
F (qk−1, qk))δqk

+

N−1∑

k=1

((F−
d (qk, qk+1) + F+

d (qk−1, qk))δqk

where we are denoting by F+
d (qk, qk+1) =

s∑

i=1

F+
i,d(q

i
k, q

i
k+1)

and F−
d (qk, qk+1) =

s∑

i=1

F−
i,d(q

i
k, q

i
k+1). Requiring its station-

arity for all {δqk}
N−1
k=1 and δq0 = δqN = 0, yields the forced

discrete Euler Lagrange equations

D2L
d
i (q

i
k−1, q

i
k) + F+

i,d(q
i
k−1, q

i
k) =−D1L

d
i (q

i
k, q

i
k+1)

− F−
i,d(q

i
k, q

i
k+1)

for k = 1, . . . , N − 1 and for each i ∈ V . ⋄

Proof Proposition 5.1: The central triangle is (26). The

parallelogram on the left-hand side is commutative by (27),

so the triangle on the left is commutative. The triangle on the

right is the same as the triangle on the left, with shifted indices.

Then parallelogram on the right-hand side is commutative and

therefore the triangle on the right-hand side. ⋄

Proof of Theorem 6.1: Consider the forced Hamiltonian

vector field ZHF (x) = XHF
(x) + Y (x), x ∈ P given by

equation (29). From equation (23) it follows that

∫ t

0

−p(s)JFHF (q(s), p(s)) ds =HF (exp(tZ
HF )(x))

−HF (x).

Consider an asymptotic expansion for ZHF , that is,

ZHF

h = ZHF +

∞∑

k=r

hk(Xk + Yk)

where, by Lemma 8.3, each Xk are Hamiltonian vector fields

associated with a Hamiltonian Hk, since Υ̃F
d is symplectic

when Y = 0. Note that by Remark 6.1, the first r vector fields

Xk vanishes since Υ̃F
d is of order r (i.e., from k = 0 to k =

r− 1). We also consider a truncation order τ for HF , that is,

there exists HF given by HF (x) = HF (x) +

τ∑

k=r

hkHk with

Hk globally defined Hamiltonian functions associated with the

vector fields Xk.

Denote by ZHF

h,τ the truncation of ZHF

h up to an order τ ,

that is, ZHF

h,τ = ZHF +
τ∑

k=r

hk(Xk + Yk), then it follows that

L
Z

HF
h,τ

HF (x) =〈dHF (x), Z
HF

h,τ 〉

=〈dHF (x), XHF
(x) + Y (x) +

τ∑

k=r

hk(Xk + Yk)〉

=〈dHF (x), Y (x)〉 +
τ∑

k=r

hk〈dHF (x), Yk〉

where we have used that 〈dHF (x), XHF
(x)〉 = 0 and

τ∑

k=r

〈dHF (x), Xk(x)〉 = 0 since XHF
and X ′

ks are Hamil-

tonian vector fields. Hence, given that 〈dHF (x), Y (x)〉 =
−JpFHF (x) it follows that

L
Z

HF
h,τ

HF (x) = −JpFHF (x) +

τ∑

k=r

hk〈dHF (x), Yk〉

and therefore

∫ t

0

L
Z

HF
h,τ

HF (x)(q(s), p(s)) ds =HF (exp(tZ
HF

h,τ )(x)) (42)

−HF (x)

where (q(s), p(s)) = exp(sZHF

h,τ )(q, p).
Note that

HF (Υ̃
F
d (x)) −HF (x) =HF (Υ̃

F
d (x)) +HF (exp(tZ

HF

h,τ )(x))

−HF (exp(tZ
HF

h,τ )(x)) −HF (x),

then using (42), it follows that

∣∣∣HF (Υ̃
F
d (x))−HF (x) −

∫ t

0

L
Z

HF
h,τ

HF

(
exp(sZHF

h,τ )(x)
)
ds
∣∣∣

=
∣∣∣HF (Υ̃

F
d (x)) −HF

(
exp(tZHF

h,τ )(x)
) ∣∣∣. (43)

Finally, by using Lemma 6.2, there exists λ > 0
such that (43) at time t = nh is upper bounded by

λd(Υ̃F
d (x), exp(hZ

HF

h,τ )(x)) with d the distance function given

in Theorem 8.1. Therefore, by applying again Theorem 8.1 to

the last expression we have that
∣∣∣HF (Υ̃

F
d (x)) −HF

(
exp(tZHF

h,τ )(x)
) ∣∣∣

≤ λd(Υ̃F
d (x), exp(hZ

HF

h,τ )(x)) ≤ λChe−γ/h

for some h ≤ α with α > 0 small enough. ⋄

APPENDIX B

The aim of this Appendix is to provide the basic definitions

about geometric integration we used to prove Theorem 6.1.

Consider the ordinary differential equation

d

dt
y(t) = X(y(t)), (44)

with X a vector field on a manifold Q and y(t) ∈ Q. The

flow map for X is denoted by R : R × Q → Q. We use



the notation RX(t, q) to specify the associated vector field

or simply RX,t(q). The flow RX,t may be given by the

exponential map as RX,t(q) = exp(tX)(q), where t is a

parameter and exp : X(Q) → Diff(Q), with Diff(Q) denoting

the set of diffeomorphisms on Q and X(Q) the set of vector

field on Q. In the following, we assume that the flow exp(tX)
is explicitly integrable, and therefore one may use a classical

integrator as an Euler’s method to compute the flow.

Under this assumption, a numerical approximation to the

solution of (44) can by given by constructing a family of

diffeomorphisms {Φh}h≥0 and then, for each h fixed, it

may be possible to obtain the sequence {qh,n}n∈N satisfying

Φh(qh,n) = qh,n+1, called numerical integrator.

Definition 8.1: An integrator for X is a family of one-

parameter diffeomorphisms Φh : Q → Q (smooth in h)

satisfying Φ0(x) = x with x ∈ Q, and Φh(x)−exp(hX)(x) =
O(hr+1) with r ≥ 1 being the order of the integrator.

Definition 8.2: An integrator Φh is called symplectic if it

is a symplectic diffeomorphism with respect to the symplectic

canonical structure Ωc on T ∗Q for each h > 0 (see [19] for

instance).

Lemma 8.3: [[5], Section IX.3] If Φh is a symplectic integra-

tor, then each vector field Xk on (30) is a Hamiltonian vector

field and therefore each of these vector fields is associated to

a Hamiltonian function Hk.

Along the proof of Theorem 6.1, we will use the following

result where Φh must be considered as Φh := ϕ ◦ Φh ◦ ϕ−1

for a given local chart (U,ϕ) on Q.

Theorem 8.1: [A. C. Hansen (2011) Theorem 4.1 [18]] Let

M be a real and analytic smooth manifold, d a metric on M,

X a real analytic vector field on M and Φh be an integrator for

X of order r such that h 7→ Φh(q) is analytic for q ∈ K ⊂ M
with K compact. There exists τ ∈ Z depending on h and

positive constants C,α, γ such that for Xh,τ =
τ∑

j=1

hj−1Xj

it follows that d
(
Φh(q), exp(hX

HF

h,τ )(q)
)
≤ Che−γ/h for all

q ∈ K and h ≤ α.
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