
HIGH QUALITY REMOTE SENSING IMAGE SUPER RESOLUTION
USING DEEP MEMORY CONNECTED NETWORK

Wen-Jia Xu, Guang-Luan Xu, Yang Wang, Dao-Yu Lin,Jiu-Niu Wang, Yi-Rong Wu

Key Laboratory of Technology in Geo-spatial Information Processing and Application System,
Institute of Electronics, Chinese Academy of Sciences, Beijing, China

School of Electronic, Electrical and Communication Engineering, University of Chinese Academy
of Sciences, Beijing, China

Email:gluanxu@mail.ie.ac.cn

ABSTRACT
The saptial resolution of remote sensing image is crucial for
many applications such as target detection and image classi-
fication. Single image super resolution is an effective way to
exceed the natural limitation of remote sensors. In this letter,
we propose a new algorithm named deep memory connected
network (DMCN) based on convolutional neural network to
resonstruct high quality super resolution images. Inspired by
memory mechanism of brain, we build local and global mem-
ory connections to combine image detail with environmental
information. To further reduce parameters and ease time con-
suming, downsampling units are utilized, which effectively
shrink the spatial size of feature maps. We test DMCN on
three remote sensing datasets with different spatial resolution.
Experimental results indicate that our method yeilds promis-
ing improvements of both accuracy and visual performance
over several state-of-the-arts.

Index Terms— remote sensing image, super resolution,
convolutional neural network, image fusion

1. INTRODUCTION

High-resolution (HR) images with more detail play an essen-
tial part in remote sensing applications such as image classifi-
cation and target detection. However, due to hardware limita-
tion and large detection distance, remote sensing images are
more complex and blurry than ordinary images. For example,
an image from the ImageNet dataset measuring 256 × 256
pixels may only depict a cat. While an equally sized image
in GaoFen-1 satellite dataset we use in this paper may cover
a small town with many buildings, streets and trees (shown in
Fig. 1). Besides, remote sensing images have high intra-class
variance and low inter-class variance, making it much harder
for detection and classification.

In addition to enhancing physical imaging technology,
many researchers aim to recover high resolution (HR) images
from low-resolution (LR) ones, which is called image super-
resolution (SR). Deep neural networks are natural candidates

×3 bicubic DMCN

Fig. 1. The ×3 super-resolution results of our method
(DMCN) compared with ×3 bicubic results.

to tackle the challenges of SR in remote sensing. Liebel
et al.[1] utilize a three layer convolutional neural network
SRCNN [2] for multispectral satellite image super resolu-
tion. Lei et al. proposed a local-global combined network
(LGCNet) to enhance remote sensing images [3].

However, networks such as SCRNN and LGCNet are very
shallow (less than 10 layers), thus their receptive fields are
small. When reconstructing HR images from remote sensing
images with copious environmental information, the network
capability are not satisfactory. Besides, these methods can-
not reconstruct image details correctly under some circum-
stances, which may causes error for object detection.

In this paper, we propose a deep memory connected net-
work (DMCN) with large receptive field and better recon-
struction ability to tackle those problems in remote sensing
image super resolution. The contributions of this work are as
follows:

1. We build a deep network with a large receptive field,
which achieves better reconstruction quality.

2. To combine local detail as well as global information
learned in different neural layers, DMCN is elaborately de-
signed with local and global memory connections.

3. We utilize downsampling and upsampling units to build
a hourglass structure, significantly reducing the memory foot-
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Fig. 2. The architecture of DMCN is symmetrical as a whole. The structure of Block1 and Block2 are shown in Fig. 3
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(a) Block1
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(b) Block2

Fig. 3. The structure of two blocks in DMCN. The convolu-
tional layer in Block1 and Block2 are both Conv(64,3,64).

print and time consuming.
For training, three datasets with different spatial resolu-

tions are used to test the robustness of our method. Experi-
ment results show that DMCN outperforms the-state-of-arts.

2. METHOD

2.1. Neural Network structure

The overall structure of DMCN is illustrated in Fig. 2..
DMCN can be decomposed into four parts: input layer,
downsampling unit, upsampling unit and output layer. We
take an interpolated low resolution (ILR) image as input X ,
and learn an end-to-end mapping f between X and recon-
structed HR image Ŷ . A network withN convolutional layers
can be denoted as follows,

fN (X;WN , bN ) = σ(WN ∗ fN−1(X) + bN ) (1)

where Wi, bi, and σ represents the filters, biases and the non-
linear function respectively. Wi is of size ci × fi × fi ×
ni, where ci is the number of input channels of the ith con-
volutional layer, fi is the spatial size of a filter, and ni is
the number of filters. A convolutional layer is denoted as
Conv(ci, fi, ni).

Compared to SRCNN (3 layers) and LGCNet (7 layers),
DMCN consists of 56 neural layers, which contributes to a

large receptive field, providing more context to predict image
detail.

2.2. Memory connection

In convolutional neural networks (CNN), the neurons of
lower layers have small receptive field and focus more on
local and detail information. Inspired by neural science study
that human brain will protect previously acquired knowledge
in neurons, we novelly propose different memory connec-
tions to combine network output with residual information:
local memory connection in basic blocks, which is shown in
Fig. 3 (the blue line), and global memory connection on the
pipeline, shown in Fig. 2 (the green line). The function of
memory connection fc can be formulated as

fc(Hin) = Hin + fconv(Hin) (2)

Where Hin is the residual information, and fconv denotes the
convolutional layers between the connection.

Network with memory connections back-propagates gra-
dients to former layers and accelerate the training process. We
perform experiments in section 3 to verify these effects.

2.3. Downsampling unit and Upsampling unit

Before introducing the downsampling and upsamling units,
we first investigate the time complexity of a convolutional
network with N layers:

Otime =

N∑
i=1

ci · f2i · ni ·mi (3)

where mi is the spatial size of the output feature map.
In DMCN, we propose a hourglass structure to shrink the

spatial size of feature map. Our structure contains two down-
sampling units and two upsampling units (shown in Fig. 2).
Every downsampling unit contains a convolutional layer with
stride = 2, minishing the feature map by factor = 2. To re-
build feature map, we utilize upsampling unit with upscale
factor = 2. With this hourglass structure, we significantly re-
duce time complexity while maintaining good performance.



Dataset Scale
Bicubic SRCNN [2] VDSR [4] LGCNet [3] DMCN (ours)

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

NWPU-RESISC45
×2 30.77/0.8172 29.37/0.7598 32.77/0.8778 32.86/0.8788 33.07/0.8842
×3 27.86/0.6405 27.94/0.6545 29.28/0.7165 29.21/0.7163 29.44/0.7251
×4 26.30/0.4970 26.52/0.5252 27.30/0.5549 27.35/0.5633 27.52/0.5858

UC Merced
×2 31.08/0.8316 31.06/0.8428 33.79/0.8909 33.80/0.8917 34.19/0.8941
×3 27.59/0.6557 28.24/0.6998 29.63/0.7359 29.62/0.7350 29.86/0.7454
×4 25.72/0.58 26.07/0.5439 27.31/0.5850 27.40/0.5963 27.57/0.6150

GaoFen1
×2 26.88/0.8585 26.98/0.8727 29.23/0.9155 29.14/0.9084 29.26/0.9150
×3 23.30/0.7659 23.83/0.7264 24.65/0.7631 24.63/0.7640 24.76/0.7658
×4 21.48/0.6032 21.78/0.5474 22.31/0.5879 22.23/0.5874 22.38/0.6031

Table 1. Evaluation of state-of-the-art SR methods on remote sensing datasets NWPU-RESISC45, UC Merced, and GaoFen1.
We evaluated the average PSNR/SSIM for scale factor ×2, ×3 and ×4. The bold number denotes the best performance.

(a) dataset: NWPU-RESISC45 image:meadow683 upscale factor = 4

Ground-truth HR HR (PSNR, SSIM) Bicubic (26.30, 0.4970) SRCNN (26.52, 0.5252) vdsr (27.29, 0.5549) MBSR (27.52,0.5858)
(b) dataset: NWPU-RESISC45 image:airplane327 upscale factor = 3

Ground-truth HR HR (PSNR, SSIM) Bicubic (27.82, 0.6405) SRCNN (27.93, 0.6406) vdsr (29.28, 0.7165) MBSR (29.44, 0.7251)
(c) dataset: GaoFen1 image:26956-11819 upscale factor = 2

Ground-truth HR HR (PSNR, SSIM) Bicubic (26.88, 0.8585) SRCNN (26.98, 0.8727) vdsr (29.23, 0.9154) MBSR (29.26, 0.9150)

Fig. 4. Super resolution results of three datasets with upscale factor ranging from 2 to 4. In (a), the outline of the car is distinct
in our result, while in other works it is blurry. In (b), the airplane in our result has clear edges. In (c), the stripe in ground truth
is also observed in our result, while it is not clear in other results. In (d), our results has sharper and straight edges.

3. EXPERIMENTS AND RESULTS

3.1. Data

To verify the robustness of our method, we choose three
datasets with different spatial resolutions for both training
and testing.

The UC Merced land-use dataset [5] is composed of 2100
land-use scene images measuring 256 × 256 pixels with
high spatial resolution (0.3m/pixel). NWPU-RESISC45
dataset [6] is a public benchmark created by Northwestern
Polytechnical University, with spatial resolution varing from
30m to 0.2m per pixel. Further more, we also use 200 mul-

tispectral images from GaoFen-1 satellite. The three visible
bands of the multispectral image (2m/pixel) are extracted
and stacked into pseudo-RGB image. We randomly select
80% of the dataset for training and the others for testing,
to verify the robustness of our model for different spatial
resolution.

Given an input LR imageX , we optimize parameters Θ =
{Wi, bi} by minimizing the loss function between the ground
truth HR image Y and reconstructed image Ŷ = f(X). The
loss function of DMCN is:

L(Θ) =
1

n

n∑
i=1

|f(Xi; Θ)− Yi| (4)



Fig. 5. The comparition of networks with or without memory
connection

3.2. Training

In the training phase, the ground truth images {Xi} are split
into 48 × 48 sub-images with no overlap. Training uses a
mini-batch size of 128. Our learning rate is initially set to
5×10−4 and dicreased every ten epochs by factor 10. We train
the model with ADAM optimizer by setting β1 = 0.9, β2 =
0.999, ε = 108, weight decay = 10−4.

3.3. Comparion with the State-of-the-arts

We evaluate the performance of DMCN on three datasets
with upscale factor ×2, ×3 and ×4. Our method is com-
pared with other methods including bicubic interpolation, the
classic CNN-based SRCNN [2], LGCNet [3], and VDSR [4]
(state-of-the-arts). In this paper, we use peak signal-to-noise
ratio (PSNR) [dB] and sturctural similarity index measure
(SSIM) as criteria to evaluate the performance of our net-
work. The results are shown in Tab. 1. DMCN outperforms
these methods with the highest PSNR and SSIM. Fig. 4 gives
the reconstruction results. Compared with other methods,
DMCN reconstructs detailed texture that are similar to the
ground truth images, providing noticable improvements.

3.4. The Effect of Memory Connection

To evaluate the effect of memory connections, we disable
them in turn and show the results in Fig. 5. Network with
all the memory connections converges fast and gets the best
performance. When we remove global and local memory con-
nections in turn, the results decay. Network without memory
connections cannot even converge.

3.5. Evaluation of Downsampling Unit and Upsampling
Unit

We perform experiments to evaluate the effect of network
with or without downsampling unit and upsampling unit. The
result is shown in Tab. 2. Without diminishing accuracy,

downsampling unit reduces memory footprint by 53.4%, and
reduces testing time by 67.6%.

Table 2. Evaluate the effect of downsampling unit. Dis D U
represents network without downsampling unit.

Model Memory(MB) Time(Sec) PSNR

Dis D U 8265 0.037 34.17
DMCN(ours) 3849 0.012 34.19

4. CONCLUSIONS AND FUTURE WORK

In this letter, we proposes a novel network named DMCN
for remote sensing image super resolution. DMCN focuses
on the residuals produced at different stage and use memory
connection to combine image detail with environmental in-
formation. To further reduce time complexity and memory
footprint, we use downsampling unit to shrink the spatial size
of feature map. Experiments shows that DMCN outperforms
state-of-the-arts by a large margin in terms of visual quality
and accuracy.
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