
On the Advantage of Coherent LoRa Detection
in the Presence of Interference

Orion Afisiadis,∗ Sitian Li,∗ Andreas Burg∗, and Alexios Balatsoukas-Stimming,†
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Abstract—It has been shown that the coherent detection of
LoRa signals only provides marginal gains of around 0.7 dB on
the additive white Gaussian noise (AWGN) channel. However,
ALOHA-based massive Internet of Things systems, including
LoRa, often operate in the interference-limited regime. Therefore,
in this work, we examine the performance of the LoRa modu-
lation with coherent detection in the presence of interference
from another LoRa user with the same spreading factor. We
derive rigorous symbol- and frame error rate expressions as well
as bounds and approximations for evaluating the error rates.
The error rates predicted by these approximations are compared
against error rates found by Monte Carlo simulations and shown
to be very accurate. We also compare the performance of LoRa
with coherent and non-coherent receivers and we show that the
coherent detection of LoRa is significantly more beneficial in
interference scenarios than in the presence of only AWGN. For
example, we show that coherent detection leads to a 2.5 dB
gain over the standard non-coherent detection for a signal-to-
interference ratio (SIR) of 3 dB and up to a 10 dB gain for an
SIR of 0 dB.

I. INTRODUCTION

LoRaWAN is a proprietary standard, which is currently one
of the most popular non-cellular communications solutions
for the Internet of Things [1]–[3]. The physical layer of
LoRaWAN, which is simply called LoRa [4], uses symbols
which are frequency chirps that span the entire allocated
bandwidth [5]. The spreading gain of LoRa is determined by
the spreading factor (SF), which can be adjusted to trade off
data rate and transmission time for range and robustness. For
energy efficiency reasons, LoRa uses a non-slotted ALOHA-
based MAC protocol. Unfortunately, the long transmission
times of LoRa packets along with this ALOHA-based protocol
result in a large number of packet collisions [6]–[8]. This issue
is aggravated as the number of LoRa devices increases in the
future, putting the scalability of LoRa networks at risk as they
become interference-limited.

We call this type of LoRa packet collisions same-technology
interference. On the contrary, interference coming from other
technologies in the industrial, scientific and medical (ISM)
band is called cross-technology interference [9], [10]. Same-
technology interference can be divided in two main types: the
first type is interference from other LoRa nodes which use
different spreading factors, which is called inter-SF interfer-
ence. The second, and most severe type of same-technology
interference comes from LoRa nodes transmitting with the

same spreading factor, and is called same-SF interference.
The impact of same-technology interference of both types has
received significant attention in the literature [6], [7], [11]–
[25].

The scalability of LoRaWAN networks is evaluated either
through mathematical models or using system-level simula-
tions. In particular, in system-level simulators it is possible
to tune many important parameters of the network, such as
the number of nodes per SF, the total number of nodes
in the network, the amount of transmitted data, the duty
cycle of the nodes, the transmission power, etc. Such system-
level simulation environments are therefore essential tools to
provide performance results for different network configu-
rations, including large and heavily-loaded networks. Many
system-level LoRaWAN simulators have been proposed in the
literature during the last years [7], [15], [26]–[38]. All of these
simulators rely on models for the performance characteristics
(e.g., frame error rates) of the underlying PHY layer. Today,
most of these models are highly simplified, especially when
it comes to considering interference. To alleviate this issue, it
is essential to provide realistic and detailed PHY performance
models, especially when considering new types of modulations
or receivers. Detailed PHY performance models are essential
tools in a combined PHY/MAC layer approach to realistically
evaluate the scalability of LoRaWAN [39].

The number of works that provide rigorous probabilistic
models for the performance of LoRa PHY is still relatively
small, but growing. The performance of LoRa under additive
white Gaussian noise (AWGN) and various fading scenarios
has been studied in the literature, both theoretically [40]–[48]
and through experimental measurements [28], [49]. Moreover,
the error rate of a LoRa receiver under interference from
another LoRa user has been thoroughly examined in [20]
and [50]. However, to date the error rate of LoRa has mostly
been studied for non-coherent detection. Specifically, the per-
formance of coherent LoRa receivers has, to the best of our
knowledge, been examined in [41], [44], [51], [52] for the
AWGN scenario, and recently in [53] for Rayleigh fading.
Very recently, new error rate approximations have been given
both for coherent and non-coherent LoRa in [47]. For AWGN
channels, coherent LoRa receivers have been shown to yield
only a relatively insignificant performance improvement of
approximately 0.7 dB over the non-coherent receiver [51]. In
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the same work, the authors also investigated additional orthog-
onal dimensions for LoRa signaling to improve the throughput
of LoRa. Since interference scenarios in LoRa networks are
very common, and will become even more common in large-
scale LoRa deployments in the near future, the analysis of the
performance of coherent LoRa receivers under interference is
an important topic that is currently missing in the literature.

Contributions: In this work, we propose coherent detection
as a simple method for LoRa receivers to significantly improve
their resilience against same-SF interference. To demonstrate
the potential, we model the performance of coherent LoRa
receivers under same-SF interference from another LoRa user
and we derive an expression for the symbol error rate (SER).
Since this expression is computationally intensive to evaluate
in practice, we also derive a corresponding lower bound and
an approximation that are based on Q-functions. Furthermore,
we extend our analysis to the frame error rate (FER), which
is more useful for LoRa system-level simulators. We show
that, interestingly, the performance improvement provided by
coherent LoRa receivers can potentially be much larger in the
case of same-SF interference than the 0.7 dB improvement
shown in the literature for the AWGN case. For example, for
a signal-to-interference ratio (SIR) of 0 dB the improvement
of the coherent over the non-coherent detection is around
10 dB. We finally note that in this work we provide a
thorough interference model, which can be considered as an
extension of our interference model in [50]. The new extended
interference model avoids oversimplifications on the discrete-
time baseband equivalent representation of the interfering
signal. Furthermore, the interference model includes effects
such as the carrier frequency offset (CFO) of the interferer, and
provides a more realistic modeling not only for the proposed
coherent detection of LoRa, but also for the existing non-
coherent detection.

Outline: The remainder of this paper is organized as fol-
lows. In Section II, we provide a description of the LoRa mod-
ulation and the standard non-coherent detection. Moreover, we
discuss coherent LoRa detection for interference scenarios and
we summarize the analysis in the existing literature regarding
the error rate of coherent LoRa detection under AWGN. In
Section III, we extend the analysis to derive the coherent LoRa
symbol error rate expression in the presence of interference.
In Section IV, we derive lower bounds and an approximation
for the coherent LoRa symbol error rate in the presence of
interference based on easy-to-evaluate Q-functions. In Sec-
tion V, we derive the frame error rate expression which is
of great practical interest for system-level simulators. Finally,
Section VI contains numerical symbol and frame error rate
results and Section VII concludes this paper.

II. COHERENT LORA DETECTION

LoRa is a spread-spectrum modulation with typical val-
ues for bandwidth B ∈ {125, 250, 500} kHz. Each LoRa
symbol consists of N = 2SF chips and carries SF bits of
information, where SF ∈ {7, . . . , 12}. In the discrete-time
baseband-equivalent representation, the bandwidth B is split

into N frequency steps. The first chip of a symbol s ∈ S ,
where S = {0, . . . , N−1}, begins at a baseband frequency of
( sBN −

B
2 ). At every chip of the symbol, the frequency increases

by B
N , until the Nyquist frequency B

2 is reached. When this
happens, i.e., at chip nfold = N − s, there is a frequency fold
to −B2 .

As explained in [51], the general discrete-time baseband-
equivalent description of a LoRa symbol s can be written in
two forms: in the first form [54], the phase of the first chip of
a LoRa symbol is symbol-dependent. This form is therefore
not directly suited for coherent demodulation. In the second
form, as shown in [50], [51], [55], [56], all LoRa symbols
start with the same phase. Therefore, only the second form
has inter-symbol phase continuity, which has been described
in the LoRa patent [4] as a desirable property.

We follow our notation from [50], [55] and write the
discrete-time baseband-equivalent description of a LoRa sym-
bol with inter-symbol phase continuity, as

xs[n] =

e
j2π

(
1

2N ( Bfs )
2
n2+( sN−

1
2 )( Bfs )n

)
, n ∈ S1,

e
j2π

(
1

2N ( Bfs )
2
n2+( sN−

3
2 )( Bfs )n

)
, n ∈ S2,

(1)

where S1 = {0, ..., nfold − 1} and S2 = {nfold, ..., N − 1}.
In the case where the sampling frequency fs is equal to B,
the discrete-time baseband-equivalent description of a LoRa
symbol s can be simplified to1

xs[n] = e
j2π

(
n2

2N +( sN−
1
2 )n

)
, n ∈ S. (2)

When the transmission takes place over an AWGN channel
with a given complex-valued channel gain h ∈ C, the received
LoRa symbol is given by

y[n] = hxs[n] + z[n], n ∈ S, (3)

where z[n] ∼ CN (0, σ2) is complex AWGN with variance
σ2 = N0

2N and N0 is the single-sided noise power spectral
density. The channel has a magnitude and a phase, i.e., h =
|h|ejφ, where we assume |h| = 1 without loss of generality,
so that the signal-to-noise ratio (SNR) is 1

N0
.

On the receiver side, the first task is called the dechirping,
which multiplies the received signal by the complex conjugate
of a reference signal xref. A common choice for the reference
signal is the LoRa symbol for s = 0

xref[n] = e
j2π

(
n2

2N−
n
2

)
, n ∈ S. (4)

After dechirping, the discrete Fourier transform (DFT) of the
signal is computed to obtain Y = DFT (y � x∗ref), where �
denotes the Hadamard product, y =

[
y[0] . . . y[N − 1]

]
,

and xref =
[
xref[0] . . . xref[N − 1]

]
. Non-coherent LoRa

1As explained in [56], the continuous-time LoRa chirp occupies a slightly
larger bandwidth than B. As such, using a sampling rate fs = B in a
real transmission introduces some distortion effects due to aliasing. However,
as explained in [56], since N is large in LoRa, most of the signal power
lies inside B, and therefore, (2) is a good discrete-time baseband-equivalent
description of the LoRa signal.



detection is performed by simply selecting the bin index with
the largest magnitude

ŝ = arg max
k∈S

(|Yk|) , (5)

where Yk denotes the k-th element of Y.

A. Coherent LoRa Detection: How and Why?

Coherent LoRa detection necessitates a phase rotation of the
received signal to compensate for the channel phase rotation.
The phase shift φ introduced by the transmission channel can
be estimated after initial synchronization using the preamble
LoRa symbols, according to

φ̂ = arg

Npr∑
i=1

Y
(i)
0

 , (6)

where Npr is the number of preamble symbols in the LoRa
packet, and Y (i)

0 is the first frequency bin of the i-th preamble
symbol.

After the compensation of the phase rotation according to
U = Ye−jφ̂, coherent detection is performed by selecting the
bin index with the maximum projection onto the real axis [44],
[51], [52]

ŝ = arg max
k∈S

(<(Uk)) . (7)

Fig. 1 illustrates the impact of coherent detection for AWGN
and with interference, by showing the elements of U super-
imposed as vectors in the complex plane. While the desired
signal is aligned with the real axis, signal bins containing
noise or interference are circularly symmetric. Unfortunately,
for AWGN (see Fig. 1a), the large number of noise signal
components renders it likely that at least one is aligned well
with the signal, a fact that limits the gain from coherent detec-
tion. However, in the interference-limited scenario (Fig. 1b),
there is only a small number of interference bins that have a
significant magnitude and the risk of one of these few aligning
with the real axis (which increases the likelihood of an error
event) is low.

B. Coherent LoRa Symbol Error Rate Under AWGN

Before proceeding to analyze the SER of coherent detection
with interference, it useful to first recapitulate the performance
of coherent detection under AWGN.

In an ideal noiseless receiver and under the assumption
of perfect sample synchronization, the DFT of the dechirped
signal Y results in a single frequency bin which contains all
the signal energy (i.e., a bin that has magnitude N ) and all
remaining N −1 bins have zero energy. With AWGN present,
the distribution of the frequency bin values Yk for k ∈ S is

Yk ∼

{
CN

(
0, 2σ2

)
, k ∈ S/s,

CN
(
N cosφ+ jN sinφ, 2σ2

)
, k = s.

(9)

where s is the transmitted symbol [50]. The channel phase shift
φ is fixed for each transmission, but is generally uniformly
distributed in [0, 2π).

Max
AWGN

projection

Bin
s

(a) AWGN

Max

Bin

interference
projection

s

(b) Same-SF interference

Fig. 1. Illustration of the complex plane representation of the received
dechirped signal in frequency domain.

After the compensation for the channel phase by the coher-
ent receiver, the corresponding demodulation metric follows a
normal distribution with zero mean for k ∈ S/s and a normal
distribution with mean N for k = s

<(Uk) ∼

{
N
(
0, σ2

)
, k ∈ S/s,

N
(
N, σ2

)
, k = s.

(10)

A symbol error occurs if and only if any of the <(Uk)
values for k ∈ S/s exceeds the value of <(Us), or, equiva-
lently, if and only if <(Umax) > <(Us), where <(Umax) =
maxk∈S/s <(Uk). The probability density function (PDF) of
bin s is f<(Us)(y) = N

(
N, σ2

)
and the cumulative dis-

tribution function (CDF) of the maximum projection of the
remaining bins on the real axis, <(Umax), is

F<(Umax)(y) =
(

1−Q
( y
σ

))N−1

, (11)

where Q(·) denotes the Q-function. Therefore, the probability
of symbol error for a given transmitted symbol s is

P (ŝ 6= s|s)= 1

σ
√
2π

∫ +∞

y=0

(
1−
(
1−Q

( y
σ

))N−1
)
e
− (y−N)2

2σ2 dy.

(12)

The SER for all symbols s is identical, therefore (12) is also
equal to the expected SER P (ŝ 6= s).



P (ŝ6=s) =
1

σ
√

2π

N−1∑
q=1

(−1)q+1

(
N−1

q

)∫ +∞

y=0

(
Q
( y
σ

))q
e−

(y−N)2

2σ2 dy (8)

User

Interfering

User

Gateway

τ

sI1 sI2

Fig. 2. Illustration of LoRa uplink transmission with one interfering user
having an arbitrary τ [50].

The SER in (12) is equivalent to [44, Eq. (17)], where
the authors explain how to evaluate it numerically without
suffering from numerical problems. The authors of [51] give
a low-complexity approximation for the coherent LoRa SER
under AWGN. The approximation from [51], which we write
below using our notation, was derived using curve fitting

P (ŝ 6= s) ≈ Q

(
1−
√
σ2 (1.161 + 0.2074 · SF)√

σ2 + σ2 (0.2775− 0.0153 · SF)

)
. (13)

The approximation in (13) can be evaluated with very low
complexity and is very accurate.

As an alternative to the empirical fit in (13), we note here
that using Newton’s binomial identity, we have

1−
(

1−Q
( y
σ

))N−1

=

N−1∑
q=1

(−1)q+1

(
N−1

q

)(
Q
( y
σ

))q
,

(14)

and thus we can write (12) as (8). The SER written in the
form of (8) contains integer powers of the Q-function, and thus
it can be evaluated using the simple and tight approximation
for the integer powers of the Q-function of [57].

III. COHERENT LORA SYMBOL ERROR RATE
UNDER SAME-SF INTERFERENCE

In this section, we extend the signal model of Section II
for the same-SF LoRa interference scenario. We then derive
the SER expression of LoRa with coherent detection under
same-SF interference.

A. Interference Signal Model

Let us consider a LoRa gateway which is perfectly syn-
chronized to the signal of a desired user on which the
signal of an interfering user is superimposed. Although the
impact of inter-SF interference has been shown to be non-
negligible [24], it is quite different than the impact of same-
SF interference, due to spreading gain. As a result, the two

types of interference need to be analyzed separately. Due to
the approximate orthogonality of different spreading factors,
inter-SF interference results in a wide-band spectrum with low
spectral density in the frequency domain after dechirping [24].
Therefore, inter-SF interference can be approximately treated
as white noise and can be included in our model by properly
adjusting the SNR. In this Section we only consider the case
where the interfering packet has the same SF as the desired
user, which is the most severe type of interference. To simplify
the analysis, we consider only one interfering user. If multiple
interfering users collide at the same time, the strongest user
typically dominates the impact on the error rate.

Since LoRa uses the non-slotted ALOHA protocol for
medium access control, the interfering signal yI [n] = hIxI [n]
is neither synchronized to the desired user nor to the gateway.
However, we assume that the gateway is perfectly synchro-
nized to the desired user, using one of the known synchro-
nization methods [58], [59], as shown in [60]. Moreover,
we assume that any carrier frequency offset of the desired
user has been perfectly estimated and compensated. However,
the gateway can perform CFO estimation and compensation
only for one user, therefore, there is no CFO estimation and
compensation for the interfering user. Thus, we need to include
the CFO of the interferer in order to obtain an accurate model.

As shown in Fig. 2, due to the lack of any time synchro-
nization with the interferer, the interfering signal xI [n] will
generally consist of parts of two distinct LoRa symbols, which
we denote by sI1 and sI2 . Following the notation of [50],
let τ be the relative time offset between the first chip of
the transmitted symbol of interest s and the first chip of
the interfering symbol sI2 (i.e., the first chip of the second
interfering symbol sI2 starts τ chip durations after the first
chip of the desired symbol s). We note that the offset τ can
be split into an integer part L = bτc, and a non-integer part
λ = τ − bτc. We consider that τ has a uniform distribution
in [0, N), due to the complete lack of synchronization. The
discrete-time baseband equivalent equation2 of xI [n] can be
found using (1) for sI1 and sI2 , appropriately adjusted to

2We note that the exact expression for xI [n], as given by (15), requires
the use of (1) for representing each one of the two interfering symbols sI1
and sI2 . In our expression for xI [n] in [50, Eq. (21)], we instead use (2) for
representing sI1 and sI2 . Therefore, [50, Eq. (21)] can only be considered
as an approximation of the actual expression for xI [n] in the presence of
non-integer time offsets τ . In [50] we use the aforementioned simplification,
but in the current work we present the exact expression for a more realistic
analysis.



include the time offset τ

xI [n] =



e
j2π

(
(n+N−τ)2

2N +(n+N−τ)
( sI1
N −

1
2

))
, n ∈ NL1

,

e
j2π

(
(n+N−τ)2

2N +(n+N−τ)
( sI1
N −

3
2

))
, n ∈ NL2 ,

e
j2π

(
(n−τ)2

2N +(n−τ)
( sI2
N −

1
2

))
, n ∈ NL3

,

e
j2π

(
(n−τ)2

2N +(n−τ)
( sI2
N −

3
2

))
, n ∈ NL4

,

(15)

where

NL1 = {0, . . . , dτe−sI1−1}, (16)
NL2 = {max (dτe−sI1 , 0) , . . . , dτe−1}, (17)
NL3 = {dτe, . . . ,min (N−sI2+dτe−1, N−1)}, (18)
NL4 = {N−sI2+dτe, . . . , N−1}, (19)

and where we define {a, . . . , b} = ∅ if b < a.
Furthermore, let fcI be the carrier frequency used during

up-conversion at the transmitter of the interfering user and
fc be the carrier frequency used during down-conversion at
the gateway after alignment with the carrier frequency of the
desired user. The carrier frequency offset of the interfering user
is the difference ∆fc = fcI−fc, while any frequency offset
of the desired user is perfectly compensated. As a result, the
corresponding signal model is

y[n] = hx[n] + hIcI [n]xI [n] + z[n], n ∈ S, (20)

where h is the channel gain between the user and the LoRa
gateway, x[n] is the transmitted signal, hI is the channel gain
between the interferer and the gateway, xI [n] is the transmitted
interfering signal, cI [n] = ej2π(n+(m−1)N) ∆fc

fs is the CFO
term affecting the m-th symbol in the interfering packet, and
z[n] ∼ N (0, σ2) is AWGN. We note that, after despreading,
the CFO translates into a time offset τcfo = ∆fcN

fs
[46], and

similarly to τ , the offset τcfo can be split into an integer part
Lcfo = bτcfoc, and a non-integer part λcfo = τcfo−bτcfoc. Since
|h| = 1, the signal-to-interference ratio (SIR) can be defined
as SIR = 1

PI
, where PI = |hI |2 is the received power of the

interfering user at the gateway. The demodulation of y[n] at
the receiver yields

Y = DFT (hx� x∗ref) + DFT (hIcI � xI � x∗ref)

+ DFT (z� x∗ref) . (21)

We call DFT (hIcI � xI � x∗ref) = DFT(yI � x∗ref) the re-
ceived interference pattern. The received interference pattern
depends on the time-domain interference signal yI , which is in
turn a function of the interfering symbols sI1 , sI2 , the channel
hI , the interferer time offset τ , and the CFO between the
interferer and the gateway.

We note that, in the presence of a fractional CFO, the
received interference pattern is not just a scaled version of
the pattern without CFO, but it has a different shape. A LoRa
signal model in the presence of both time and frequency offsets
has first been discussed in [59] for the LoRa preamble. An

example of a received interference pattern with CFO is shown
in Fig. 3. In Fig. 3a, we show the magnitude of the interference
pattern across different bins after the DFT, while Fig. 3b shows
also the phase in the complex plane. In coherent detection of
LoRa, the received interference pattern has to be examined
on the complex plane, since the symbol decision is performed
after projection on the real axis instead of based only on the
magnitude as in [50].

B. Symbol Error Rate Under Same-SF Interference

With the above described signal and interference model, we
can now derive the SER expression following an approach that
is similar to [50].

1) Distribution of the Decision Metric: Let Rk be the value
of the received interference pattern at frequency bin k. For a
specific combination of a symbol s and an interference pattern
yI , the distribution of Yk is

Yk∼


CN

(
|Rk| cos θk+j|Rk| sin θk, 2σ2

)
, k ∈ S/s

CN (N cosφ+|Rk| cos θk+

+ j (N sinφ+|Rk| sin θk) , 2σ2
)
, k = s,

where θk = θ + θIk is the phase shift for bin k introduced
by the interference channel and by the CFO. We note that
θ is fixed for all symbols in a given packet, but changes
for different packet transmissions, and is generally uniformly
distributed in [0, 2π). However, the phase offset induced by
the CFO of the interferer, θIk , is deterministic, but different
for each bin k, and changes for each symbol in a packet. Since
the received signal U is rotated by −φ due to the coherent
detection, we define the phase shift between the interferer
and the user as ωk = ω + θIk , where ω = θ − φ, which
corresponds to relative phase shift of the interferer, after the
rotation introduced by the coherent receiver. We note that
since φ is fixed for each transmission, but generally uniformly
distributed in [0, 2π), it holds that ω, is also fixed for each
transmission, but generally uniformly distributed in [0, 2π).

The demodulation metric <(Uk) in the presence of interfer-
ence, is therefore distributed as

<(Uk)∼

{
N
(
|Rk| cosωk, σ

2
)
, k ∈ S/s

N
(
N+|Rk| cosωk, σ

2
)
, k = s.

(23)

2) Symbol Error Rate Expression: For a given realization of
a transmission, conditioning on both the phase φ of the channel
of the desired user and the phase θ of the channel of the
interfering user, can be replaced by conditioning on ω = θ−φ.
For notation simplicity, we denote the SER for a given symbol
s, conditioned on sI1 , sI2 , the relative offset τ , the equivalent
offset due to the CFO τcfo, and the phase difference ω, as
P (ŝ 6= s|s, sI1 , sI2 , τ, τcfo, ω) = P (ŝ6=s|s,yI , ω). This error
probability can be written as

P (ŝ6=s|s,yI , ω) = 1− 1

σ
√

2π

∫ +∞

y=0

e−
(y−µs)2

2σ2 F<(Umax)(y)dy,

(24)



P (ŝ6=s|τcfo) = 1− 1

σ(2π)
3
2

N−1∑
s=0

N−1∑
sI1=0

N−1∑
sI2=0

∫ N

τ=0

∫ 2π

ω=0

∫ +∞

y=0

e−
(y−µs)2

2σ2

N∏
k=1
k 6=s

FN (y;µk, σ
2)dydωdτ (22)
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(b) The complex plane representation of the received interference pattern

Fig. 3. The received interference pattern for SF = 7, sI1 = 83, sI2 = 4,
τ = 88.4, |hI | = 1, and λcfo = 0.4.

where µs = N+|Rs| cosωs, and F<(Umax)(y) =∏N
k=1
k 6=s

FN (y;µk, σ
2), where FN (y;µk, σ

2) denotes the CDF

of a Gaussian distribution, and where µk = |Rk| cosωk.
Following a similar reasoning as in [50] for the non-coherent
receiver, the full expression for P (ŝ6=s|τcfo) in the case of a
coherent receiver, conditioned only on the CFO value, is given
in (22).

IV. SYMBOL ERROR RATE BOUND AND APPROXIMATION

Unfortunately, the computational complexity for evaluating
the expression in (22) is prohibitive and numerical problems
may also arise. Therefore, in this section, we derive a lower

bound as well as an approximation based on this bound for
efficiently evaluating (22) in the practically relevant SNR
operating regime of LoRa.

A. Interference Patterns

Let Vk be the value of the received interference pattern at
frequency bin k after the rotation due to the coherent receiver,
i.e., Vk = e−jφRk, assuming perfect knowledge of φ. We first
derive an explicit form for the real-axis projection of Vk, i.e.,
<(Vk), k ∈ S. Using the definition of the DFT and after some
simple algebraic transformations, we obtain

<(Vk) = |hI |
4∑
j=1

Ak,j cos θk,j , (25)

where Ak,j and θk,j are given in the Appendix.

B. Symbol Error Rate Bound

We now wish to derive a bound for P (ŝ6=s|τcfo), with
the use of Q-functions, that can be evaluated more efficiently
than (22). First, we assume that the maximum of <(Vk), as
depicted in Fig. 1b, dominates the interference-induced SER.
In particular, taking into consideration only the interfering bin
with the maximum projection results in a lower bound for the
probability of error. We need to search over all N−1 possible
erroneous bins in order to evaluate the maximum projection

Vkmax
= max
k∈S/s

(<(Vk)) . (28)

The decision metric for the bin of the maximum projection
is Gaussian distributed with mean Vkmax

and variance σ2,
while the decision metric for the desired bin s is Gaussian
distributed with mean N +<(Vs) and variance σ2. Therefore,
their difference also follows a Gaussian distribution with
mean Vkmax − N − <(Vs) and variance 2σ2, and a symbol
error happens if this difference is positive. Thus, for a given
transmitted symbol s, a particular realization of the user
channel, and a particular realization of the interference pattern,
i.e., for given s, sI1 , sI2 , τ , τcfo, and ω, the probability that the
interfering bin has higher energy than bin s can be bounded
from below by

P (ŝ 6= s|s,yI , ω) ≥ Q
(
N + <(Vs)− Vkmax√

2σ2

)
, (29)

where <(Vs) is the projection of the interference which lies on
top of our desired symbol on bin s. Since symbol s can take
any of the N possible values, the error rate after removing the
conditioning on s can be written as

P (ŝ6=s|yI , ω) ≥ 1

N

N−1∑
s=0

Q

(
N + <(Vs)− Vkmax√

2σ2

)
. (30)



D1 =

{[
N − bτ−τcfoe+ sI1 −

K − 1

2

]
N

, . . . ,

[
N − bτ−τcfoe+ sI1 +

K − 1

2

]
N

}
(26)

D2 =

{[
N − bτ−τcfoe+ sI2 −

K − 1

2

]
N

, . . . ,

[
N − bτ−τcfoe+ sI2 +

K − 1

2

]
N

}
(27)

Using (30), we can finally bound from below the
interference-induced SER as

P (ŝ6=s|τcfo) =
2π

N3

N−1∑
sI1=0

N−1∑
sI2=0

∫ 2π

0

∫ N

0

P (ŝ6=s|yI , ω)dτdω.

(31)

We can further reduce the complexity for evaluating the
interference-induced SER in (31) by reducing the complexity
of evaluating P (ŝ6=s|yI , ω) using a less tight lower bound.
Looking at (39)–(42) in the Appendix, we observe that the
DFT bins adjacent to bins N − bτ−τcfoe + sI1 and N −
bτ−τcfoe+ sI2 have considerably higher energy, compared to
the rest of the bins, due to the combination of the fractional
part of the misalignment and the fractional part of the CFO.
An example of this can be observed in Fig. 3a.

Let K define the number of most relevant bins in each
cluster of high-power DFT bins, as depicted in Fig. 3a. Let
D = D1 ∪ D2, with D1 and D2 given by (26)–(27), where
|D| = 2K. D1 and D2 are the sets of K most relevant bins in
the cluster around N−bτ−τcfoe+sI1 and of K most relevant
bins in the cluster around N−bτ−τcfoe+sI2 , respectively,
where we denote [x]y = x mod y. We note here that the two
sets D1 and D2 of the most relevant bins can have overlapping
bins. We are interested in treating the set of most relevant bins
D = D1 ∪D2 separately from the rest of the bins. As can be
seen in Fig. 3b and Fig. 1b, there is a high probability that the
maximum projection Vkmax

will occur due to one of these most
relevant bins that belong to D. Increasing K (i.e., increasing
also the cardinality of the set D) increases the number of cases
in which the bin with the maximum projection will be included
in the set D. We reduce the set of bins we consider from S
with cardinality |S| = N , to D with much smaller cardinality
|D| << N which does not explicitly scale with SF. This way
the search in equation (28) is only conducted over D, instead
of S as

Vkmax = max
k∈D/s

(<(Vk)) . (32)

By using (32) instead of (28) in (30), we obtain a lower bound
which can be evaluated with lower complexity.

C. Symbol Error Rate Approximation

We now wish to derive an approximation for P (ŝ6=s|τcfo)
that can be evaluated with even less computational complexity
than (30)–(31).

The impact of the interference at bin s is significant only
when s ∈ D. For all cases where s /∈ D the impact of the
interference at bin s is negligible even if it aligns with the
real axis. By distinguishing the N bins in two sets, namely

set D where we account for the interference impact at bin s,
and set S/D where we do not account for the interference
impact at bin s, (30) can be approximated as

P (ŝ6=s|yI , ω) ≈ 1

N

(∑
s∈D

Q

(
N + <(Vs)− Vkmax√

2σ2

)
+ (N − |D|)Q

(
N − Vkmax√

2σ2

))
. (33)

Using (33), P (ŝ6=s|yI , ω) only requires the evaluation of
|D|+1 Q-functions, instead of N Q-functions needed for (30),
which again is specifically advantageous for large SFs (corre-
sponding to large N ). We show in the results, that choosing a
very small K, e.g., K = 5, i.e., |D| = 10, is sufficient for ac-
curate results, for all examined SFs. Finally, the approximation
in (33) can be replaced directly in (31).

The integral over the offset τ in (31) can be evaluated
numerically by discretizing the interval [0, N) with a step
size ε. Moreover, the integral over ω can be evaluated by
discretizing the interval [0, 2π) with a step size ρ. In the
results, we show that a discretization step size choice of ε = 1

5
and ρ = π

2 provides a low-complexity, yet accurate, evaluation
of (31).

In the AWGN-limited regime (i.e., at low SNR), the above
approximation eventually becomes inaccurate, since all bins
have similar values and no single bin projection dominates
the error rate. To fix this issue, let P (N)(ŝ6=s) denote the SER
under AWGN given in (12), which can be efficiently evaluated
using the approximation in (13), and let P (I)(ŝ6=s|τcfo) be the
interference-driven SER from (31). Then, a final estimate of
the average SER that is accurate also in the low-SNR regime
can be approximated by

P (ŝ6=s|τcfo) ≈ P (N)(ŝ6=s)+
(

1−P (N)(ŝ6=s)
)
P (I) (ŝ6=s|τcfo) .

(34)

V. COHERENT LORA FRAME ERROR RATE
UNDER SAME-SF INTERFERENCE

In system-level simulator environments the FER is generally
of greater practical interest than the SER, because system-level
simulators, typically take decisions on a frame-by-frame basis.
Therefore, in this section we derive expressions to calculate the
FER of a coherent uncoded LoRa system. These expression
can be used for the LoRa modes that use channel codes of
rates 4/5, and 4/6, which have error-detection, but no error-
correction capabilities, as well as for the uncoded mode. The
extension of the analysis to a coded LoRa system can be done
following the methodology of [46].



P (ŝ 6= s|FI , τcfo) =
1

N

∫ N

0

(
1− (1− P (ŝ 6= s|τ, τcfo))

FI
(

1− P (N)(ŝ 6= s)
)F−FI)

dτ (35)

1) FER for the overlapping portion of the packets: We
assume perfect frame synchronization for the desired user,
even under the impact of interference. Generally, due to the
time offset between the desired and the interfering frame,
only part of the desired frame is affected by interference. In
the following, we consider only the part of the frame that
is affected by interference. This way, our derived expres-
sion is a straightforward basis for computing FERs for any
partial collision of two frames by splitting the frame under
consideration into a collision interval which is affected by
interference and a second part that is affected only by AWGN.
The averaging over all possible relative positions of the packets
through Monte Carlo simulations is then inherently done by
the network simulator itself.

A collision interval of F LoRa symbols is denoted by
the vector s and the corresponding estimated symbols at the
receiver are denoted by the vector ŝ. The FER is therefore
P (ŝ 6= s). We note that the expression for the SER derived
in Section III can not be used as is for the evaluation of
the FER because it includes an expectation over the random
variables τ and ω, while all symbols in a frame experience
the same τ and the same ω over the course of the frame.
However, the CFO of the interferer results in a continuous
rotation of the samples in the interfering packet. Therefore,
for sufficiently long frames, we consider the phase of each
symbol (as determined by the CFO) as random and allow the
expectation over ω to be included on a symbol level. The frame
error rate P (ŝ 6= s) can thus be expressed as

P (ŝ 6= s|τcfo) =
1

N

∫ N

0

(
1− (1− P (ŝ 6= s|τ, τcfo))F

)
dτ.

(36)

where P (ŝ 6= s|τ, τcfo) is

P (ŝ 6= s|τ, τcfo) =
2π

N2

N−1∑
sI1=0

N−1∑
sI2=0

∫ 2π

0

P (ŝ6=s|yI , ω) dω.

(37)

The frame error rate in (36) can be considered as an exact
expression if we evaluate (37) using (24) (after taking the
expectation over s), or as a lower bound if we evaluate (37)
using (30), or as an approximation if we evaluate (37) us-
ing (33).

2) Average FER over different overlapping portions of the
packets: In the following, we also present an expression for
the average FER over all possible relative positions of the
colliding packets. This expression is useful in cases where the
averaging over all possible relative positions of the packets
is not inherently done by a network simulator. To this end,
we consider that the interfering frame has the same length as
the desired frame. This assumption is taken only for clarity of

the presentation and does not prevent the generalization of the
results to any interfering frame length. The difference to (36)
is that, due to the time offset between the frames, only part of
the frame of interest is affected by interference, and an average
of all collision intervals is considered.

As in [50], let FI ∈ {1, . . . , F}, denote the number of
symbols in the frame that are affected by the interfering frame.
The value of FI depends on the relative position of the two
frames. For the average FER, we consider the expectation over
all the possible relative positions of the two frames. We note
that, except in the case of perfect alignment between the frame
of interest and the interference, there always exists one symbol
that is only partially affected by interference. Similarly to [50],
we consider the partially-affected symbol as fully-affected by
interference, thus including it in FI . The frame error rate is
now given by (35) where P (ŝ 6= s|τ, τcfo) is given by (37), and
P (N)(ŝ 6= s) is the SER under AWGN given in (12) (which
can be evaluated efficiently using the approximation in (13)).

Finally, we take the expectation over all possible values of
FI and we obtain the final expression for the average FER
over different collision intervals

Pav(ŝ 6= s|τcfo) ≈ 1

F

F∑
FI=1

P (ŝ 6= s|FI , τcfo). (38)

VI. RESULTS

In this section, we provide numerical results for the SER
and the FER of a coherent LoRa receiver with same-SF inter-
ference. We compare the performance against the non-coherent
receiver under the same interference conditions. Moreover,
we compare the derived approximations against Monte Carlo
simulations to show their accuracy. We note that for the Monte
Carlo simulations, the interferer time offset τ is simulated
by oversampling (1) to create an accurate interference signal,
concatenating the oversampled symbols, applying the appro-
priate offset, and downsampling the received signal to obtain
N = 2SF samples for xI .

A. Error Rates

In Fig. 4, we show the results for the FER of a LoRa receiver
for SF = 7, for a packet of length F = 20 LoRa symbols,
under the effect of same-SF interference with an SIR of 0 dB,
for λcfo ∈ {0, 0.5}, and for both a coherent and a non-coherent
receiver. Results of both our model of (36) (black dotted lines),
where we evaluate (37) using the approximation in (33), and of
the Monte Carlo simulation (colored lines) are shown. We can
see that the curves derived in our analysis match the Monte
Carlo simulation curves very well, showing the accuracy of the
corresponding approximations. We observe that both for the
coherent and the standard non-coherent receiver, the fractional
CFO of the interferer has a significant impact on the error
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Fig. 4. Frame error rate of the coherent and non-coherent receiver for two
different values of CFO, and a packet of length F = 20 LoRa symbols
under AWGN and same-SF interference for SF = 7 and PI = 0 dB.
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Fig. 5. Frame error rate of the coherent and non-coherent receiver for two
different values of CFO, and a packet of length F = 20 LoRa symbols
under AWGN and same-SF interference for SF = 7 and PI = −3 dB.

rate. It is interesting to see that for lower values of SNR the
fractional CFO of the interferer is beneficial for the error rate,
but at high SNRs an interferer with a higher fractional CFO
value results in a higher error floor. We note that the same
behavior appears also for the non-coherent receiver, but at
higher SNRs.

In Fig. 5, we show the same results as in Fig. 4, but for an
SIR of 3 dB. We note that the general trend of the curves is
similar to the trend in Fig. 4. However, we note that the results
for SIR = 3 dB show a slightly smaller (but still significant)
impact of the CFO of the interferer on the error rate compared
to the SIR = 0 dB case depicted in Fig. 4. We conclude that,
since the CFO of the interferer is always present, it needs to
be included in the model in order to examine its impact, which
is not negligible. The inclusion of the CFO of the interferer in
the model, and the discussion on its impact on the error rate
of both coherent and non-coherent receivers, is more realistic
than the model in [50] for non-coherent receivers, where the
CFO of the interferer was not included.

In Fig. 6, we show the results of a Monte Carlo simulation
for the SER of a LoRa user for SF ∈ {7, 9, 11} and for an SIR
of 3 dB, using the coherent receiver described in this work,
as well as the non-coherent receiver described in [50]. The
corresponding analytical approximations for the coherent and
non-coherent receivers are shown as well. We observe that
the coherent receiver has a significant performance gain of
up to 2.5 dB for some SNR values compared to the non-
coherent receiver. In [44], [51], [52], for the AWGN-only
case, a difference of around 0.7 dB was shown between the
coherent and the non-coherent receiver. It is, therefore, very
interesting to see that using a coherent receiver seems to be
much more beneficial under same-SF interference than in the
AWGN-only case. Finally, we observe that the low-complexity
SER expression in (31), using the approximation in (33), with
|D| = 10 and discretization steps ρ = π

2 and ε = 1
5 is already

very accurate.
In Fig. 7, we show the results of a Monte Carlo simulation
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Fig. 6. Symbol error rate of the coherent and non-coherent LoRa receiver
under AWGN and same-SF interference for SF ∈ {7, 9, 11} and PI = −3
dB. The approximations for the coherent and the non-coherent case are shown
with black dotted lines.

for the FER of both a coherent and a non-coherent LoRa
receiver with SF ∈ {7, 9, 11}, as well as the corresponding
approximation described in Section V. The frame length is
F = 20 LoRa symbols and the SIR is 3 dB. We observe
the same performance difference between the coherent and
non-coherent receivers as in the SER curves. Furthermore,
we see that the low-complexity approximation for the FER
under same-SF interference, described in Section V, is also
very accurate.

In Fig. 8, we show the required SNR for SF = 7 with
a target FER performance of 10−1, for different SIR levels.
We show results for both the coherent and the non-coherent
receiver for frames of 20 LoRa symbols. As expected, for both
receivers, there is an increase in the required SNR to obtain
the same FER, as the interference power increases. For the
chosen target FER of 10−1 we can observe that the coherent
receiver requires a much lower increase in the required SNR
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Fig. 7. Frame error rate of the coherent and non-coherent receiver for a packet
of length F = 20 LoRa symbols under AWGN and same-SF interference for
SF ∈ {7, 9, 11} and PI = −3 dB. The approximations for the coherent and
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Fig. 8. Required SNR for a target frame error rate of 10−1 as a function
of the SIR for a packet length of F = 20 LoRa symbols for SF = 7 for
coherent and non-coherent receiver.

compared to the non-coherent receiver. We can also clearly
observe that the 0.7 dB performance difference between the
coherent and non-coherent receiver reported in [44], [51], [52]
for the AWGN case (i.e., for large SIR) is only the smallest
possible performance difference. In fact, the coherent receiver
is of increasingly greater importance for increasing levels of
interference.

B. Phase estimation errors

For coherent detection, a receiver needs to estimate the
phase of the received symbols. Although the initial estimation
of the phase is easy to do in a LoRa packet, thanks to the
preamble, the continuous phase tracking, needed due to the
phase drift, cannot be perfect. The phase estimation error due
to the imperfect tracking can be modeled as a Gaussian process
with variance σ2

tr, which depends on the phase-drift levels and
the quality of the tracking algorithm.
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Fig. 9. Frame error rate of the coherent receiver under AWGN and same-
SF interference with perfect estimation, and for estimation error σ2 ∈
{0.2, 0.3, 0.4}. The packet length is F = 20 LoRa symbols, SF=7 and
PI = −3 dB. The performance of the non-coherent receiver is shown in
thick transparent line.

In Fig. 9, we show the performance degradation of a
coherent LoRa receiver for three different estimation error
variances, σ2 ∈ {0.2, 0.3, 0.4}, as well as for perfect phase
estimation. The frame length is F = 20 LoRa symbols, the
spreading factor is SF = 7, and SIR = 3 dB. The results
are compared to the non-coherent receiver, shown in a thick
gray line. We observe that the tracking phase-estimation error
plays a significant role in the performance of a coherent
receiver. With small estimation errors, the coherent receiver
can still be competitive to the non-coherent receiver. However,
for a coherent receiver to be worth applying compared to a
non-coherent receiver, a careful design of the phase-tracking
algorithm is needed.

VII. CONCLUSION

In this work we model and investigate the performance
of coherent LoRa receivers under same-SF interference. We
derive very accurate error rate expressions for the symbol error
rate and the frame error rate and we show that the performance
improvement of 0.7 dB reported previously for the coherent
receiver compared to the non-coherent receiver in the AWGN
scenario, is only the smallest possible benefit. The benefit
of employing a coherent LoRa receiver increases for higher
levels of interference and can reach values close to 10 dB
for an SIR of 0 dB. This observation renders coherent LoRa
receivers particularly attractive for congested LoRa networks
with a high probability of same-SF packet collisions.
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APPENDIX

The terms Ak,j and θk,j , for j ∈ {1, . . . , 4}, in (25) are

Ak,1=
sin
(
π
N
(sI1−k−τ+τcfo)max (dτe−sI1 , 0)

)
sin
(
π
N
(sI1−k−τ + τcfo)

) , (39)

Ak,2=
sin
(
π
N
(sI1−k−τ+τcfo) (dτe−max (dτe−sI1 , 0))

)
sin
(
π
N
(sI1−k−τ + τcfo)

) , (40)

Ak,3 =
sin
(
π
N
(sI2−k−τ+τcfo) (min (N−sI2+dτe, N)−dτe)

)
sin
(
π
N
(sI2−k−τ+τcfo)

) ,

(41)

Ak,4 =
sin
(
π
N
(sI2−k−τ+τcfo)max (sI2−dτe, 0)

)
sin
(
π
N
(sI2−k−τ+τcfo)

) , (42)

and

θk,1 =
π

N

(
−τ2+τN+sI1(2τ−dτe+sI1+1)+

+ (k+τ−τcfo) (dτe−sI1−1)−2N (m−1) τcfo−ω
N

π

)
, (43)

θk,2 =
π

N

(
−τ2−τN+sI1(2τ−dτe+max (dτe−sI1 , 0)+1)+

+ (k+τ−τcfo) (dτe+max (dτe−sI1 , 0)−1)+

−2N (m−1) τcfo−ω
N

π

)
, (44)

θk,3 =
π

N

(
−τ2−τN+sI2(2τ−min (N−sI2+dτe, N)+dτe+1)+

+ (k+τ−τcfo) (min (N−sI2+dτe, N)−dτe−1)+

−2N (m−1) τcfo−ω
N

π

)
, (45)

θk,4 =
π

N

(
−τ2−3τN+sI2(2τ−2N+sI2−dτe+1)+

+ (k+τ−τcfo) (2N−sI2+dτe−1)−2N (m−1) τcfo−ω
N

π

)
.

(46)
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and L. Fuché, “An enhanced receiver to decode superposed LoRa-like
signals,” IEEE Internet of Things Journal, vol. 7, no. 8, pp. 7419–7431,
Aug. 2020.

[9] C. Orfanidis, L. M. Feeney, M. Jacobsson, and P. Gunningberg, “In-
vestigating interference between LoRa and IEEE 802.15.4g networks,”
in IEEE International Conference on Wireless and Mobile Computing,
Networking and Communications (WiMob), Oct. 2017, pp. 1–8.

[10] L. E. Marquez, A. Osorio, M. Calle, J. C. Velez, A. Serrano, and J. E.
Candelo-Becerra, “On the use of LoRaWAN in smart cities: A study
with blocking interference,” IEEE Internet of Things Journal, vol. 7,
no. 4, pp. 2806–2815, Apr. 2020.

[11] T. Voigt, M. Bor, U. Roedig, and J. Alonso, “Mitigating inter-network
interference in LoRa networks,” in Proceedings of the 2017 International
Conference on Embedded Wireless Systems and Networks (EWSN), Feb.
2017.

[12] J. Haxhibeqiri, F. Van den Abeele, I. Moerman, and J. Hoebeke, “LoRa
scalability: A simulation model based on interference measurements,”
Sensors, vol. 17, no. 6, Jun. 2017.

[13] P. Ferrari, A. Flammini, M. Rizzi, E. Sisinni, and M. Gidlund, “On
the evaluation of LoRaWAN virtual channels orthogonality for dense
distributed systems,” in IEEE International Workshop on Measurement
and Networking (M&N), Sep. 2017, pp. 1–6.

[14] R. Fernandes, R. Oliveira, M. Luı́s, and S. Sargento, “On the real capac-
ity of LoRa networks: the impact of non-destructive communications,”
IEEE Communications Letters, vol. 23, no. 12, pp. 2437–2441, Dec.
2019.

[15] D. Croce, M. Gucciardo, I. Tinnirello, D. Garlisi, and S. Mangione,
“Impact of spreading factor imperfect orthogonality in LoRa communi-
cations,” in Digital Communication. Towards a Smart and Secure Future
Internet, A. Piva, I. Tinnirello, and S. Morosi, Eds. Cham: Springer
International Publishing, 2017, pp. 165–179.

[16] D. Croce, M. Gucciardo, S. Mangione, G. Santaromita, and I. Tinnirello,
“Impact of LoRa imperfect orthogonality: Analysis of link-level perfor-
mance,” IEEE Communications Letters, vol. 22, no. 4, pp. 796–799,
Apr. 2018.

[17] C. Goursaud and J.-M. Gorce, “Dedicated networks for IoT : PHY /
MAC state of the art and challenges,” EAI endorsed trans. on Internet
of Things, Oct. 2015.
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