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Variational hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy
Intermediate Scale Quantum devices. While past studies have developed powerful and expressive
ansatze, their near-term applications have been limited by the difficulty of optimizing in the vast
parameter space. In this work, we propose a heuristic optimization strategy for such ansatze used
in variational quantum algorithms, which we call “Parameter-Efficient Circuit Training” (PECT).
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational
algorithms, in which each iteration of the algorithm activates and optimizes a subset of the total
parameter set. To update the parameter subset between iterations, we adapt the dynamic sparse
reparameterization scheme by Mostafa et al. (arXiv:1902.05967). We demonstrate PECT for the
Variational Quantum Eigensolver, in which we benchmark unitary coupled-cluster ansatze including
UCCSD and k-UpCCGSD, as well as the low-depth circuit ansatz (LDCA), to estimate ground
state energies of molecular systems. We additionally use a layerwise variant of PECT to optimize a
hardware-efficient circuit for the Sycamore processor to estimate the ground state energy densities
of the one-dimensional Fermi-Hubbard model. From our numerical data, we find that PECT can
enable optimizations of certain ansatze that were previously difficult to converge and more generally
can improve the performance of variational algorithms by reducing the optimization runtime and/or
the depth of circuits that encode the solution candidate(s).

I. INTRODUCTION

Variational quantum algorithms (VQAs) were devel-
oped to maximize the capabilities of Noisy Intermediate-
Scale Quantum (NISQ) computers [1]. Two early ex-
amples of VQAs are the variational quantum eigensolver
[2] and the quantum approximate optimization algorithm
[3]. In addition to applications in quantum chemistry and
combinatorial optimization, variational algorithms have
more recently been applied to address a range of tasks
in machine learning, including data classification [4–6],
data compression [7], and generative modeling [8–13].

Within the VQA framework, a trial wavefunction is
prepared on a quantum device by executing a parame-
terized quantum circuit. This is followed by repeatedly
measuring the state to estimate the expectation value of
some Hermitian operator with respect to the current trial
wavefunction. These expectation values are then used to
evaluate an objective function which a classical optimizer
maximizes or minimizes by varying the parameter values
of the quantum circuit.

While VQAs are promising candidates for demonstrat-
ing advantage of early quantum computers, one of the
main challenges of realizing VQAs is effectively optimiz-
ing the parameters of the tunable ansatz. In recent years,
there have been significant efforts in various directions to
better understand and improve this circuit optimization
step. Such directions include analyzing the trainability of
parameterized quantum circuits (PQCs) [14–16], improv-
ing existing or proposing new optimizers [17–25], employ-
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ing high-level optimization strategies on top of optimiz-
ers (e.g. adiabatically-assisted VQAs, layerwise training)
[26–28], devising more intelligent parameter initialization
strategies [18, 29, 30], and running comprehensive opti-
mizer benchmarks [31]. Despite the rapid progress, op-
timization of PQCs remains a significant challenge es-
pecially in the NISQ era: we ideally want a low-depth
ansatz that is able to accurately describe some quantum
system-of-interest and is also relatively easy to optimize.

To approach this problem, in this work we propose
an optimization strategy that leverages past develop-
ments of powerful ansatze, which we call “Parameter-
Efficient Circuit Training” (PECT). That is, numerous
past studies have developed and analyzed ansatze that
have the potential to express or well-describe quantum
systems-of-interest, e.g. ground states of (strongly cor-
related) fermionic systems [32–38]. Examples include
unitary coupled-cluster with singles and doubles exci-
tations (UCCSD), k-layered generalized variant of UCC
wavefunction (k-UpCCGSD), and the low-depth circuit
ansatz (LDCA) [36, 37, 39]. However, applications of
these ansatze are often inhibited by the large numbers
of variational parameters to tune. We leverage the fact
that these parameterized ansatze often contain superflu-
ous parameters, i.e. parameters that are redundant and
thus are not strictly necessary for preparing a state that
achieves the objective(s). Our optimization strategy ex-
ploits this characteristic of PQCs, without prior knowl-
edge of the target state, by limiting the optimization task
to a subset of the total pool of ansatz parameters and
refining the parameter subset by updating both the cor-
responding gate composition and parameter values.

Using this strategy, we show that we can efficiently
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prepare ground states of various molecular systems us-
ing ansatze that have high parameter counts and are
redundant in parameterization. For instance, using 30
out of 60 parameters in the 2-UpCCGSD ansatz to esti-
mate ground states of lithium hydride, we observed a
28% reduction in circuit depth and 42% reduction in
two-qubit gate count on average when using PECT to
optimize the parameterized ansatz. We additionally es-
timate optimization runtimes using circuit depths and
numbers of function evaluations. We show that using
PECT with ansatze such as k-UpCCGSD and LDCA,
one can significantly reduce the optimization runtime es-
timates. For instance, averaged over bond lengths con-
sidered in VQE calculations, using PECT to optimize
LDCA circuits modeling ground states of lithium hydride
led to a 73% reduction in estimated optimization run-
time, which in this case was achieved by reducing both
the circuit depths and numbers of function calls.

The rest of the paper is organized as follows. We first
introduce our optimization strategy in detail in Section
II. Our proposed strategy, PECT, is adapted from the
“dynamic sparse reparameterization” (DSR) method that
has been applied to train deep convolutional neural net-
works [40]. We then describe the PECT method applied
in the context of the Variational Quantum Eigensolver
(VQE) as an example of a VQA. In Section III, we nu-
merically demonstrate the utility of PECT by optimiz-
ing VQE circuits for lithium hydride and the symmet-
ric stretching of O-H bonds in a water molecule using
UCCSD, k-UpCCGSD, and LDCA. While PECT can
provide advantages in energy accuracy, circuit depths,
and optimization runtimes, we show that certain ansatze
are better suited for PECT than others. In Section IV,
we further analyze our simulations and discuss our ob-
servations on the robustness of parameter initialization
for LDCA, prunability of the three ansatze, reductions
in circuit resources due to PECT, and estimation of op-
timization runtimes. We additionally propose a method
to combine PECT with a layerwise circuit optimization
strategy. Using the layerwise PECT approach, we show
that we can efficiently optimize an ansatz that has re-
cently been proposed to estimate the ground state energy
densities of the one-dimensional Fermi-Hubbard model
at various chain lengths [41]. Lastly, we comment on
the observed parameter dynamics in the optimization of
multi-layered PQCs, in which parameters of earlier lay-
ers appear to change less, on average, throughout the
optimization compared to parameters of later layers. We
conclude with a summary and outlook of future direc-
tions for this work.

II. PARAMETER-EFFICIENT CIRCUIT
TRAINING (PECT)

In the traditional implementation of a variational
quantum algorithm, there is typically a single optimiza-
tion, in which the classical optimization routine is tasked

with tuning every angle of the PQC to find parameter
values that correspond to a minimum (or maximum) of
an objective function. While this strategy is viable for a
limited number of parameters, as we scale the algorithm
to larger systems, larger circuits with more variational
parameters may be needed. As a direct result, the clas-
sical optimizers expend a substantially larger number of
function evaluations from the quantum computer and be-
come over-burdened when attempting to search over the
vast parameter space.

The strategy employed by PECT turns this large opti-
mization problem into a series of optimizations in which,
at each iteration, an optimization is performed only on
a subset of the whole parameter set. We show the over-
all flow diagram of PECT in Figure 1. In the following
description of PECT, we adopt notations used in Ref.
[40] to provide an analogous description of their training
method in the context and language of parameterized
quantum circuits.

To initialize PECT, we first define the variational
quantum algorithm and the hyperparameters for PECT.
The variational algorithm can be defined by choosing an
objective function and an L-layered parameterized quan-
tum circuit. Many variational quantum algorithms make
use of multi-layered parameterized quantum circuits, in
which layers of a circuit template are repeated with the
goal of increasing the expressiveness of circuits [42]. We
consider a case in which a PQC is described by the set
of its circuit parameters, grouped by their corresponding
layers: {θl}, where l ∈ [L] index the layers. We let N be
the total number of parameters in the PQC, with Nl de-
noting the number of parameters in each circuit layer l.
Before implementing PECT, there are two assumptions
for the PQC-at-hand:

1. The ansatz |ψ(θ)〉 is able to express the solution
space/state and the ansatz is “prunable,” i.e. con-
tains parameterized gate operations that are not
necessary to generate the solution space. This may
be due to redundant parameterization. We claim
such redundancy is a valid assumption for many
PQC designs with some commonly used patterns
of gates, e.g. single-qubit rotations on every qubit.
In this case, it was recently shown that not all
single-qubit rotations are necessary for a PQC to
be highly expressive [43].

2. Each gate operation of the PQC is constructed such
that setting its corresponding parameter value to
0 corresponds to implementing the trivial (iden-
tity) gate operation. This is a valid assumption
for a wide class of parameterized gates of the form
G(θ) = e−iaθP for some Hermitian operator P and
constant a.

While there are several hyperparameters in PECT, we
introduce one particular hyperparameter, global sparsity,
here and reserve describing the others in the following
subsection, where they are more relevant. The global
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Figure 1. Flow diagram outlining main steps of the “parameter-efficient circuit training” (PECT) method. In addition to
inputs of a variational quantum algorithm, e.g. objective function and some (multi-layered) ansatz, several hyperparameters
for PECT are provided by the user, e.g. global sparsity s of the parameterized ansatz and the target number of parameters
to prune at each iteration Np. After initializing the parameter subset, corresponding to an ansatz substructure, parameters
within the subset are tuned using a classical optimizer, e.g. L-BFGS-B. We call this step a “local” optimization. Once the
parameter values of the subset have been tuned, the parameter subset is further updated in the parameter re-allocation step.
The re-allocation step consists of magnitude-based pruning of parameters/gates based on a threshold followed by updates of
the pruning threshold for the next iteration and of the parameter subset by growing or adding the same number of parameters
pruned. The local optimization and parameter re-allocation steps are repeated until some termination criteria are satisfied.

sparsity, denoted by s, is defined as s = 1− M
N , where M

is the size of the parameter subset to be optimized. Thus,
for example, a low value for s where s ∈ (0, 1) implies a
larger fraction of the total parameter set PECT optimizes
in each iteration. After choosing the global sparsity, we
define the parameter subset for the first iteration. Gates
with parameters that are not included in the subset are
replaced by the identity operation, for example by setting
angles to 0 in the case of Pauli rotations, resulting in
shorter circuits both in depth and number of operations

after compilation.

To define the parameter subsets, we utilize the sparse
parameter representation in Ref. [40], in which a sparse
parameter vector for layer l, or θl, can be described us-
ing two vectors ψl and φl. Elements of ψl are the in-
dices of θl that correspond to parameters with nonzero
values, and elements of φl correspond to those nonzero
values. We let Ml be the size of ψl and φl, or the num-
ber of nonzero parameters in θl. The total number of
nonzero parameters in the full parameter vector θ is thus
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M =
∑
lMl. This allows us to define the local sparsity

sl = 1− Ml

Nl
, the sparsity of parameters of each layer, in

addition to the global sparsity s. While s is kept constant
throughout iterations in PECT, compositions of φl, ψl,
and Ml (and thus sl) may change between iterations.

To initialize the parameter subset, we uniformly sam-
ple M (0)

l = (1− s)Nl parameter positions in each circuit
layer, which defines ψl at iteration t = 0 or ψ(0)

l . When
generating M

(0)
l for each layer, care must be taken in

rounding Ml’s for all l such that the global sparsity is
kept constant. The corresponding initial parameter val-
ues, φ(0)

l are either uniformly sampled, e.g. from the
range [0, 4π] for each rotation angle, or use informed
guesses such as MP2 amplitudes for the unitary coupled-
cluster ansatz [44]. Once initialized, the parameter sub-
set provides the description for an ansatz substructure,
and the corresponding parameter values φ (φl for all l)
are tuned to maximize or minimize the objective function
using some optimizer, e.g. L-BFGS-B [45] or SLSQP [46].
We refer to such optimization of an ansatz substructure
as a “local optimization” (as shown in Figure 1) and the
classical optimizer used as a “local optimizer.” One of
the design choices that is left to the user is the choice
of local optimizer and the corresponding hyperparame-
ters. Choice of the local optimizer may depend on factors
such as the maximum number of function evaluations or
measurements the user would like to allocate to each lo-
cal optimization step or the availability of high-precision
gradients.

Once the optimization is complete, both ψl, which
was defined before the local optimization step, and φl,
which was just optimized, are fed as inputs to the pa-
rameter reallocation algorithm to update the parameter
subset. While we describe the parameter reallocation al-
gorithm in greater detail in the following subsection, the
goal of reallocating parameters is to update the param-
eter subset by removing and adding parameters the al-
gorithm deems unimportant and important, respectively.
The sequence of local optimization of a parameter sub-
set followed by the parameter reallocation subroutine is
repeated until some termination criteria are met. Our
implementation utilizes a combination of termination cri-
teria including convergence in the value of the objective
function, limit on the overall maximum number of func-
tion calls (e.g. 5× 105 for optimizing LDCA circuits for
estimating ground states of LiH), and detection of oscil-
lating behavior in the final objective function values of
the four latest PECT iterations. By the end of the PECT
procedure, we obtain the optimized ansatz substructure
that is a solution candidate for the variational quantum
algorithm.

Overall, one can think of PECT as a procedure that
hops over and optimizes different sparse parameteriza-
tions of an ansatz, which correspond to different ansatz
substructures. In the following subsection, we describe
the parameter reallocation algorithm in greater detail.

A. Parameter reallocation for parameterized
quantum circuits

The parameter reallocation algorithm was proposed by
Ref. [40] to sparsely re-parameterize layers of deep con-
volutional neural networks every few hundred training
epochs. Similarly, PECT employs the algorithm to re-
parameterize or update the subset of PQC parameters.
In the previous section, the global sparsity s was intro-
duced as a hyperparameter for PECT. In addition to
s, other hyperparameters of the parameter reallocation
scheme include Np, H(0), and δ. The hyperparameter
Np is the target number of parameters to prune at each
iteration. One can think of Np as a way of quantifying
to what extent the user would like to “shuffle” the pa-
rameter subset per PECT iteration. One would assign
higher values to Np if the circuit at hand is highly re-
dundant and thus the contribution of each parameter is
not as significant. While Np was fixed in the original
formulation, one can in principle implement a schedule
to vary Np as the iterations progress. Next, H(0) corre-
sponds to the initial pruning threshold. In our numerical
experiments, values of H(0) were assigned based on the
range over which random parameter values were sam-
pled. That is, we chose a threshold value that was rela-
tively small, e.g. H(0) = 0.01 for range [0, 4π] to prevent
too many parameters being pruned in the first iteration.
For cases in which we employed informative parameter
guesses, e.g. using MP2 amplitudes to initialize UCCSD
operators [44], we chose values of H(0) that were slightly
less than the average of the parameter guess magnitudes.
Lastly, δ, which defines the tolerance or neighborhood
about Np (see Algorithm 1), was fixed to be 0.1 for all of
our numerical simulations after observing through pre-
liminary calculations that δ had no significant effect on
the performance of PECT.

Inputs to the parameter reallocation algorithm are
{ψl}, {φl},M (t), H(t), which correspond to (sparse) rep-
resentations of the current parameter vector, the size of
the parameter subset at the current iterate t, and the
current pruning threshold respectively. The re-definition
or reallocation of the parameter subset comprises three
main steps: (1) magnitude-based pruning, (2) adjust-
ment of the pruning threshold, and (3) redistribution of
free parameter slots. In step (1), for each layer of the
PQC at iterate t, parameters (and their corresponding
gates) are pruned or removed from the parameter sub-
set based on the current value of the pruning threshold,
H(t). That is, if the absolute value of each parameter
in φl is less than the value of H(t), the parameter is re-
moved from the parameter subset (from both ψl and φl),
and its corresponding gate operation is removed from
the ansatz substructure. Assuming convergence of the
local optimization before the pruning step, the gradi-
ent should be zero or near-zero, justifying the removal
of parameterized gates with near-zero parameter mag-
nitudes. At this step, the numbers of parameters that
are pruned and survived in each circuit layer are stored
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and denoted as K(t)
l and R(t)

l = M
(t)
l −K

(t)
l respectively.

In the following step of the parameter reallocation sub-
routine, we adjust the pruning threshold for the next
iteration, H(t+1), by comparing K =

∑
lKl, the total

number of parameters pruned, to the target number Np:

Algorithm 1: Pruning threshold update
Input: K, H(t), Np, δ
Output: H(t+1)

// Case 1: Too many parameters pruned
1 if K > (1 + δ)Np then
2 H(t+1) =

H(t)

2

// Case 2: Too few parameters pruned
3 else if K < (1− δ)Np then
4 H(t+1) = 2H(t)

5 else
6 H(t+1) = H(t)

If too many parameters are pruned compared to the tar-
get number Np, the pruning threshold for the next itera-
tion is lowered, and if too few parameters are pruned, the
pruning threshold is increased. The user can customize
the rate of increase or decrease for the pruning thresh-
old. In our implementation, we multiply or divide by 2
in respective cases. In the final step of parameter real-
location subroutine, we grow or add K parameter slots
in total (and their corresponding gate operations) to the
PQC and update ψl, φl, and Ml for the next iteration.
The growth rate for each circuit layer is determined by
how many parameters in the original subset “survived”
the pruning phase, which was quantified by Rl. That is,
the heuristic growth rate for each layer l at iterate t is
defined as:

G
(t)
l =

R
(t)
l∑
lR

(t)
l

∑
l

K
(t)
l . (1)

We note that care must be taken into rounding the
growth rates for all l such that the total number of grown
parameters is equal to the total number of pruned pa-
rameters which was determined from the first step of the
parameter reallocation scheme. This keeps the global
sparsity s constant.1 In practice, parameters are grown
by updating ψl, in which G

(t)
l parameter positions or

indices that have not been activated or selected in the
current ψl are randomly sampled for circuit layer l. We
then initialize the corresponding parameter values in φl
to 0. Lastly, we update the parameter subset size for
each layer: M (t+1)

l = M
(t)
l −K

(t)
l + G

(t)
l . As previously

discussed, according to Equation 1, more parameter slots
are to be allocated to PQC layers that have greater num-
bers of surviving parameters. The algorithm deems these

1 For the case in which the updated number of parameters at layer
l for iteration t+1 exceeds the total number of parameters in that
layer, i.e. M

(t+1)
l > Nl, we redistribute the excess parameters

randomly to different circuit layers, as was done in [40].

layers as being more important to the optimization than
circuit layers that had greater number of gates with pa-
rameters near 0 and thus were pruned or removed. While
further investigation is needed to determine if circuit lay-
ers with fewer pruned parameters are indeed more impor-
tant, e.g. correspond to parameters with larger gradient
magnitudes, this heuristic approach affords us a way of
adding free parameter slots to the parameter subset with-
out making calls to the quantum computer, which, espe-
cially in the NISQ era, are the main bottlenecks in the
performance of variational quantum algorithms.

B. Prior work

PECT combines and leverages two ideas that have
been explored in past studies: dynamic construction
of the parameterized ansatz and ansatz reduction by
pruning. The idea of adaptively constructing an ansatz
for variational quantum algorithms was proposed in
ADAPT-VQE [19], in which the method was shown to be
effective for preparing ground states of various molecular
systems. While ADAPT-VQE iteratively adds or grows a
parameterized ansatz from an unordered pool of quantum
operations based on the corresponding gradients one op-
eration at a time, the core objective in PECT is to find a
compact representation of the solution state using a sub-
set of gates from a pre-defined ansatz structure (i.e. an
ordered pool of quantum operations) and then pruning
and growing multiple gates in a single iteration to refine
the ansatz substructure. Second, the idea of pruning an
ansatz was explored in a previous work that developed
the “Ansatz Architecture Search” (AAS) to solve QAOA
problem instances using fewer two-qubit gates [47]. In
each iteration, the AAS method reduces the current cir-
cuit architecture by generating all the unique architec-
tures after removing one two-qubit operation. These
pruned architectures are then ranked according to some
defined scoring function, and circuit architectures with
the best scores are chosen to be candidates for pruning
for the following iteration. PECT also involves pruning
or removal of gates, but in each iteration, multiple gates
can be removed based on their optimized parameter val-
ues and the current pruning threshold. In addition to
pruning, PECT also involves an ansatz growth phase to
reallocate a number of parameters/gates to update the
ansatz substructure.

III. NUMERICAL EXPERIMENTS

In this work, we use the Variational Quantum Eigen-
solver (VQE) as the VQA-of-choice to demonstrate op-
timization of parameterized ansatze using PECT. While
running a sequence of VQEs may seem like a costly task,
each VQE instance likely has a shorter optimization run-
time due to fewer circuit parameters to explore and up-
date. In addition, activating a fraction of the parameters
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likely corresponds to executing circuits with fewer gate
operations and lower circuit depth on the quantum com-
puter. Although we did not apply this idea in our simu-
lations, one might also consider establishing a maximum
number of measurements to use in each local optimiza-
tion, and applying techniques such as the one presented
in Ref. [23] to optimize the use of measurements through-
out the PECT execution. This way, one can guarantee
the multiple VQE runs do not exceed a certain measure-
ment budget. For our numerical experiments, we inves-
tigate optimizations of three different VQE ansatze: the
standard UCCSD ansatz [32], its low-depth and gener-
alized variant k-UpCCGSD ansatz [37], and the LDCA
[36].

A. Ansatze

The UCC method, a unitary variant of the traditional
coupled-cluster method, has been widely studied in the
context of simulating quantum chemistry using quantum
computers [32, 39, 44]. However, the UCC wavefunction
considering singles and doubles excitations (UCCSD) suf-
fers from circuit depths that grow as O(N5) with sys-
tem size. More recently, this depth was reduced by
approximately a linear factor using low-rank decompo-
sition and the fermionic swap network while assuming
linear connectivity [48]. The number of parameters for
UCCSD grows as O(N2

oN
2
v ), where No and Nv are num-

bers of occupied and virtual spin orbitals respectively, or
in the worst case, as O(N4). Moreover, UCCSD has been
shown to be insufficient for describing particular molec-
ular systems [49]. Since then, a recent work developed a
shallower and more flexible variant of the UCC method,
called k-UpCCGSD [37].

The k-UpCCGSD ansatz comprises k layers of a cir-
cuit that prepares a wavefunction considering general-
ized singles and paired doubles excitations. Compared
to UCCSD, the k-UpCCGSD ansatz has a significantly
shorter circuit depth i.e. linear in the system size or
O(kN), making k-UpCCGSD better suited for NISQ ap-
plications. While the ansatz was able to well describe
the ground and the first excited states of various strongly
correlated molecular systems in Ref. [37], initialization
and optimization of the circuit parameters appeared to
be challenging tasks with increasing k.

Lastly, LDCA is another ansatz with depth scaling
linearly with system size introduced by Dallaire-Demers
et al. [36]. The LDCA uses nearest-neighbor parame-
terized two-qubit gates that are native to devices with
tunable couplers. These templates of nearest-neighbor
two-qubit gates are repeated several times, producing a
highly compact and nested circuit structure and thus ac-
cruing significant numbers of parameters.2 For instance,

2 We further explain and provide an example of the LDCA circuit
structure in Appendix A.

using the original formulation of LDCA, given a 12-qubit
VQE problem using 5 superlayers or “cycles” of LDCA,
this circuit already has 1662 parameters. By contrast,
for an instance of a 12-qubit VQE problem solving for
ground state energies of LiH, UCCSD uses 56 parame-
ters, and 2-UpCCGSD uses 60 parameters. While LDCA
demonstrated potential to well describe strongly corre-
lated fermionic systems, its application to larger systems
has so far been limited by the difficulty in optimization.
In our implementation of LDCA, in order to reduce cir-
cuit depth, we apply the unitary UVarMG defined in Ref.
[36] to the Hartree-Fock state but do not apply U†Bog af-
terwards. To generate wavefunctions that preserve par-
ticle number and reduce parameter count, we employed
parameter sharing (also known as correlating parameters
[16]), in which the XX and Y Y entanglers share the
same parameter and the XY and Y X entanglers share
the same parameter with opposite signs, such that each
two-qubit LDCA block has three free parameters, instead
of five.

To summarize, in terms of circuit depth, k-UpCCGSD
and LDCA have comparable depths (up to some k) while
UCCSD has a larger circuit depth for given system size.
In parameter count, UCCSD has the largest asymptotic
scaling though for small systems such as ones considered
in this study, it may correspond to the fewest number of
parameters out of the three ansatze. Even in cases where
the number of parameters for UCCSD may be larger than
those for k-UpCCGSD and LDCA, advantages of using
UCCSD include well-motivated techniques for initializing
the ansatz parameters and relative ease of optimization.
In terms of defining what constitutes a layer for each
ansatz to implement PECT, we define UCCSD as having
a single layer, k-UpCCGSD having k layers (each layer
being a repetition of the UpCCGSD circuit), and LDCA
having L ∗ N2 ∗ (N − 1) layers, where L is the number of
LDCA superlayers and N is the number of qubits. For
LDCA, this means that we define each layer for PECT as
a two-qubit LDCA block which has three free parameters,
as shown in Figure 10 in Appendix A.

In the following subsections, we describe the computa-
tional details for VQE wavefunction simulations of LiH
(STO-3G) and H2O (STO-3G) and show our results com-
paring VQE optimizations with and without PECT.

B. Computational details

For testing PECT, we consider two molecular systems:
(1) lithium hydride (4 electrons, 12 spin-orbitals/qubits)
and (2) symmetric stretching of O-H bonds in a water
molecule with a fixed H-O-H angle of 104.5 degrees (8
electrons, 12 spin-orbitals/qubits after freezing core or-
bitals), both in the STO-3G basis. We run VQE cal-
culations to estimate the ground state energies of both
systems using two optimization methods: the traditional
method of optimizing the entire ansatz, which we refer
to as “non-PECT” calculations, and optimization using
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System Ansatz Global
sparsity, s

Parameter count
(PECT/non-PECT)

Initial pruning
threshold, H0

Target number of
parameters to prune, Np

LiH UCCSD 0.2 45/56 0.0001 8
2-UpCCGSD 0.5 30/60 0.001 6

LDCA (L-BFGS-B)
0.73 (rest)

0.6 (0.9, 1.1 Å)
291/1002 (rest)

499/1200 (0.9, 1.1 Å)
0.1

15 (rest)
30 (0.9, 1.1 Å)

LDCA (SLSQP) 0.6 420/1002 0.1 30

H2O UCCSD
0.15 (rest),
0.1 (2.6 Å)

39/46 (rest),
49/54 (2.6 Å)

0.001 5

4-UpCCGSD 0.3 84/120 0.01 10
5-UpCCGSD 0.3 105/150 0.01 10

LDCA
0.6 (rest)

0.65 (2.2 Å)
0.5 (2.4 Å)

420/1002 (rest)
440/1200 (2.2 Å)
618/1200 (2.4 Å)

0.05 (rest)
0.1 (2.2, 2.4 Å)

50 (rest)
40 (2.2, 2.4 Å)

Table I: Hyperparameters and parameter counts for PECT calculations reported in this study.

PECT. To fairly compare VQE optimizations with and
without PECT, we use the same classical optimizers, L-
BFGS-B [45] and SLSQP [46], as well as initial parame-
ters for a given ansatz. In addition, we use the same op-
timizer arguments and options for PECT and non-PECT
calculations, e.g. step size used for numerical gradients
in L-BFGS-B or the maximum number of function eval-
uations.

For each ansatz, we employed different parameter ini-
tialization strategies. For the UCCSD ansatz, we pre-
computed MP2 amplitudes for parameter initialization
[44]. With k-UpCCGSD ansatze for various k values,
we used MP2 amplitudes as initial parameter values for
the first layer (k = 1) then randomly initialized param-
eters of subsequent layers by uniformly sampling from
the range [-0.1, 0.1]. We employed this parameter initial-
ization technique due to advantages in using informed
guesses such as MP2 amplitudes to initialize UCC-like
wavefunctions [44], and we assumed that parameter set-
tings of the first circuit layer or k = 1 would be more
influential than those of subsequent layers. For LDCA,
initial parameters were randomly generated by uniformly
sampling from the range [0, 4π].

We report the PECT hyperparameters for each system
and ansatz type in Table I. The fractional tolerance for
Np, or δ, is fixed to 0.1 for all simulations. We chose the
global sparsities based on the number of parameters for
each ansatz/problem and H0 based on the initial guesses.
For example, for UCCSD, the pre-computed MP2 ampli-
tudes for LiH were small in magnitude. To prevent too
many parameters being pruned in the first few local opti-
mizations, we set H0 for those simulations to be slightly
less than the average of the magnitudes of the MP2 am-
plitudes. Lastly, we chose the values of Np based on the
number of parameters and our assumptions on the rela-
tive parameter redundancy of each ansatz.

C. LiH

We show the results for estimating ground state ener-
gies of LiH over various bond lengths using the three
types of ansatz in Figure 2. All of the calculations,
both PECT and non-PECT optimizations, shown in this
Figure employ the L-BFGS-B as the (local) optimizer.
We observe that the UCCSD ansatz optimized without
PECT achieves the highest energy accuracy but corre-
sponds to the deepest circuits across all bond lengths.
With PECT, it is possible to reduce the total depth by
up to approximately 20% in some cases, although at the
cost of losing some accuracy in the final energy. With 2-
UpCCGSD, we achieve energy values with errors that fall
below the chemical accuracy threshold (i.e. ≤ 1 kcal/mol
or 1.6 × 10−3 Ha) while maintaining substantially lower
circuit depths. With PECT, 2-UpCCGSD further re-
duces circuit depths but also at the cost of higher ground
state energy estimates. Still, for both UCCSD and 2-
UpCCGSD, errors using PECT are below the chemical
accuracy threshold. Lastly, LDCA optimized with PECT
is shown to have comparable depths to 2-UpCCGSD em-
ploying PECT. Naively, this ansatz with 5-6 superlayers
has 1002-1200 parameters respectively. A direct opti-
mization of this number of parameters using the L-BFGS-
B optimizer did not achieve convergence despite multiple
attempts with randomly initialized parameters. In con-
trast, using PECT, we were able to reduce the number
of parameters to 291 at most bond lengths (and 499 at
two bond lengths), as shown in Table I. Although for a
few bond lengths we were not able to achieve chemical
accuracy with PECT, we note that without PECT, op-
timization of the LDCA ansatz was not possible at any
bond length. We also note that the number of function
evaluations using this optimizer were often around the
maximum number allocated, or 5× 105.

To improve the performance of optimizing LDCA, we
explored an alternative local optimizer and global sparsi-
ties. Using the SLSQP optimizer and lowering the global



8

sparsity from 0.73 to 0.6 for all bond lengths (i.e. in-
creasing parameter count from around 291 to 420 pa-
rameters), we were able to improve the energies at most
bond lengths with all the energy errors along the poten-
tial energy surface falling below chemical accuracy, as
shown in Figure 3. In addition, using these PECT set-
tings, we reduced the number of function calls on average
by approximately half, compared to the LDCA calcula-
tions using L-BFGS-B with PECT. In Figure 3, we also
tried optimizing LDCA with SLSQP but without PECT
to demonstrate that optimization of LDCA at this sys-
tem size and number of layers needs a strategy like PECT
to achieve reasonable energies.

D. Symmetric stretching of O-H bonds in H2O

Symmetric dissociation of water is a common bench-
mark for the classical multi-reference methods [50–53]
and has been recently studied in the context of k-
UpCCGSD by Lee et al. [37] and by Sokolov et al. [54] as
a test for the orbital optimized UCC methods. Similarly
structured as the previous subsection, we show the VQE
optimization results for the symmetric stretching of O-H
bonds in a water molecule in Figure 4. For optimizing
LDCA ansatze, SLSQP was employed as the local opti-
mizer based on the relative performance of SLSQP com-
pared to L-BFGS-B in VQE results of LiH (Figure 3).
On the other hand, for UCCSD and k-UpCCGSD where
k = 4, 5, we employed L-BFGS-B as the local optimizer
after preliminary results showed lower final energies ob-
tained using L-BFGS-B over SLSQP. Plots in row (a) in
Figure 4 show that in the case of UCCSD, the ground
state energy estimates become worse as the O-H bonds
are stretched, which is consistent with results from a past
study investigating the performance of UCCSD in the
same system [49]. In addition, some of the energy error
may also come from an unfavorable ordering of cluster
operators when the UCCSD unitary is Trotterized in our
implementation [55, 56].

Regarding the performance of PECT, it was interest-
ing to note that, unlike in optimizations of LiH ansatze in
which using PECT consistently produced higher ground
state energy estimates, using PECT to optimize the
UCCSD wavefunction yielded significantly lower energy
than optimization without PECT when RO-H = 2.4Å.
Additionally, at this bond length, PECT found a subset
of gates with the same circuit depth as the un-pruned
version of the ansatz.

Regarding the k-UpCCGSD ansatz, while k = 2 was
sufficient to reproduce the LiH ground state energy, we
observed that up to k = 4 and k = 5 layers were needed
in the case of water. As noted in the original paper [37],
optimizing k-UpCCGSD ansatz for higher k proved to be
challenging as the quality of the ansatz becomes highly
sensitive to the initial values of the ansatz parameters.
In Figure 4, plots in rows (b) and (c) show the energy
errors, circuit depths, and number of function call for

the k = 4 and k = 5 instances of the ansatz, respectively.
These results show that PECT improves the accuracy for
some bond lengths but not others. In all cases, however,
it achieves reductions in the circuit depths.

For those geometries in which the optimizer was unable
to produce final energies with errors below the chemical
accuracy threshold, this may be due to unfavorable initial
points, versus the limited expressiveness of the ansatz.
To support this claim, we ran multiple trials of a 4-
UpCCGSD PECT-based optimization from ten different
initial points, in which one of the trials achieved chemi-
cal accuracy, proving the sufficient expressiveness of the
ansatz. We describe this numerical experiment in further
detail in Section IVB. Final energies using instances of
the k-UpCCGSD ansatz were generally lower than en-
ergies using the UCCSD ansatz in plots (a), especially
in regions of the potential energy surface where UCCSD
had high errors. However, at k = 4 and k = 5, the
resulting circuit depths of the k-UpCCGSD ansatz are
comparable to or higher than the depths of the UCCSD
ansatz. Comparing optimizations of k-UpCCGSD with
and without PECT, we observe that PECT converges to
comparable or lower energies in the region where O-H
bond is stretched (e.g. R = 2.4Å for k = 5 in Figure
4(c)) using a fraction of the total circuit depth and com-
parable number of function calls. To improve the per-
formance of optimizing k-UpCCGSD using PECT, fur-
ther investigation is needed to find better strategies for
initializing parameters of the ansatz. In this study, we
observe that initializing the parameters of the first layer
(k = 1) with corresponding MP2 amplitudes performed
better than when the entire parameter vector was ran-
domly initialized. Nevertheless, even with this initializa-
tion scheme, we do not observe reliable convergence to
low energies or energies within chemical accuracy.

Lastly, we considered the LDCA ansatz to estimate
the ground state energies of water. From the LDCA op-
timization results for LiH in Figure 3 and initial numer-
ical experiments, we observed high energy errors when
optimizing LDCA without PECT.3 This implies that to
estimate the ground state potential energy curve of wa-
ter, which is more difficult to describe than that of LiH, it
is infeasible to optimize the corresponding LDCA circuit
without PECT. Thus, we limited our VQE optimizations
of LDCA for water to ones employing PECT, as shown
in Figure 4(c). For all the bond lengths considered, we
were able to generate VQE-optimized circuits that corre-
sponded to energy errors falling below the chemical ac-
curacy threshold. With the exception of ground states
at two O-H bond lengths, all PECT-based optimizations
were executed on 5 superlayers of LDCA, which originally
has depth 1382 and two-qubit gate count of 3300. Using
PECT, the effective circuit depth and gate count are re-

3 The average VQE energy error across bond lengths of LiH using
the LDCA wavefunction without PECT was approximately 0.04
Hartrees.
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Figure 2. VQE performance metrics computed for estimating ground state energies of LiH at various bond lengths. (a) Energy
errors are shown for different ansatze that were optimized without or with the PECT strategy. The optimizer used is L-BFGS-
B. The green shaded region indicates energies below chemical accuracy. (b) Depths of corresponding circuits. For circuits
optimized using PECT, we report the depth averaged over PECT iterations. (c) Number of total function calls for each ansatz.

Figure 3. Comparing VQE performance metrics computed for estimating ground state energies of LiH by optimizing LDCA
with PECT but employing two different local optimizers: L-BFGS-B (green) and SLSQP (orange). We additionally plotted the
VQE performance metrics for LDCA optimized without PECT (blue) using the SLSQP optimizer to highlight the advantages
of using PECT for optimizing LDCA circuits. (a) Energy errors for different PECT optimizers and global sparsities (s = 0.73
and 0.6 for L-BFGS-B and s = 0.6 for SLSQP optimizers). The green shaded region indicates energy errors below chemical
accuracy. (b) Average depths of corresponding circuits. (c) Number of function calls for each PECT calculation.

duced, as discussed in more detail in Section IVC. For the
two O-H bond lengths, indicated on Figure 3(d) in red
boxes, 6 superlayers of LDCA were needed to prepare the
ground state, which corresponded to simulating circuits
with depths of around 1658 and two-qubit gate counts of
around 3960. Compared to the other two types of ansatz,
LDCA circuits had at least half the circuit depths though
they required significantly more function evaluations to
optimize. This is due to the greater number of param-
eters LDCA has compared to the other ansatze for the
instances we studied. Computing gradients, analytical or
numerical, requires two function evaluations per param-
eter. Based on our observations and results, it appears
that while LDCA circuits take longer to optimize, they
are less sensitive to parameter initialization compared to
k-UpCCGSD when optimized with PECT. For each bond
length, fewer than 5 random parameter initializations for
LDCA were used to generate the plots in Figure 4(d)

which report the best results.4 We explore this further
in Subsections IVA and IVB.

IV. DISCUSSION

From the previous section, we gained insight on each
ansatz’ ability to reproduce the potential energy surfaces
of LiH and H2O using PECT. Here, we provide further
analyses on PECT, including its advantages in robustness
of parameter initialization for LDCA as well as general
reductions in circuit resources (i.e. depth and two-qubit

4 We set the PECT hyperparameters for optimizing LDCA for
water based on corresponding values used for optimizing LDCA
for LiH. Likewise, when optimizing e.g. two circuits of similar
widths and depths using PECT, it may be possible to infer the
hyperparameters for one run based on the other.
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Figure 4. VQE performance metrics computed for estimating ground state energies of H2O using various ansatze: (a) UCCSD,
(b) 4-UpCCGSD, (c) 5-UpCCGSD, and (d) LDCA. For two of the bond lengths as shown in the red boxes in (d), 6 superlayers
of LDCA were used with PECT as using 5 superlayers led to poor final energies. For each ansatz, the same initial parameters
are used for PECT and non-PECT methods. We show the resulting potential energy surface for each ansatz in Appendix D.

gate count) and in optimization runtimes. Our PECT
calculations also reveal the relative “prunability” of each
of the three ansatze and provided numerical evidence of
how parameters of early layers of multi-layered PQCs
converge to their final values before parameters of later
layers do. We then propose a way for extending PECT to
circuits with more parameters by combining the method
with the layerwise circuit training strategy [28, 41, 57].
We test this combined strategy by optimizing VQE cir-
cuits to estimate the ground state densities of the one-

dimensional Fermi-Hubbard model across various chain
lengths.

A. Robustness to random parameter initialization
in LDCA

In this section, we investigate the robustness to param-
eter initialization by applying PECT to optimize LDCA
circuits. While depth-efficient, LDCA accrues a large
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Figure 5. Energy convergence for finding the ground state of LiH using the LDCA circuit. Twenty-five random parameter
initializations were executed for each of three bond lengths to ensure PECT can provide high-quality solutions with high
probability. The green square at the end of each optimization curve indicates a “successful” run, in which the final energy error
fell below chemical accuracy. Yellow shaded region indicates energy errors below chemical accuracy threshold. The x-axis refers
to the iteration index of PECT. For these simulations, we fixed the maximum number of function evaluations to 5× 105.

number of parameters. Using PECT, however, we numer-
ically show that optimization runs are robust to random
initialization. In Fig. 5, we consider three different bond
lengths of LiH: R = 1.5, 2.5, and 3.3Å. For each bond
length, we execute 25 randomly initialized optimizations
of the 12-qubit, 5-superlayered LDCA which naively has
1002 parameters. Using PECT with the L-BFGS-B op-
timizer, we fixed the global sparsity s to 0.73 such that
we were optimizing around 291 parameters during each
local optimization. At bond length of 1.5 Å, 20 out of 25
runs achieved final energies with errors that fell below the
chemical accuracy threshold. For 2.5 Å, 23 out of 25 runs
succeeded, and for 3.3 Å, 16 out of 25 runs. The smaller
success ratio for R = 3.3Å is expected due to the increas-
ing difficulty of describing the ground state as the Li-H
bond is stretched. That is, as the interatomic distance in-
creases, the ground state wave function acquires a multi-

reference character. This may have implications for the
quality of the ansatz and likely changes the “roughness”
of the objective function landscape, e.g. addition of local
minima. For a parameter-heavy ansatz such as LDCA,
we noted relatively high success probabilities at the three
bond lengths. This not only highlights the advantage of
employing PECT for optimization but also sheds light
on the amount of redundancy in the parameterization of
LDCA, which we discuss in the following subsection.

B. Prunability of ansatz

From our optimizations of UCCSD, k-UpCCGSD, and
LDCA using PECT, we were able to identify which
ansatz is more “prunable,” that is, well-suited for op-
timization strategies such as PECT that utilizes prun-
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ing or removal of gates. Specifically, PECT seemed the
most effective strategy for LDCA out of the three types
of ansatze investigated. For instance, in the case of es-
timating the ground state energy of the water molecule,
for all the bond lengths considered, PECT was able to es-
timate energies with errors below the chemical accuracy
threshold with fewer than 5 trials of random initial pa-
rameters, with several runs converging on the first trial.
For k-UpCCGSD with PECT, the optimization remained
sensitive to initial parameter values as well as the sets of
gates selected during the PECT procedure. To test the
sensitivity, in the case of 4-UpCCGSD for RO-H = 2.2Å,
where in Figure 4(b) we observed a high energy error,
ten independent PECT optimizations were run with ran-
dom parameter initializations. These optimizations were
originally designed to test whether the high energy error
observed was due to the deficiency of the ansatz or the
sensitivity to parameter initialization. Out of the ten tri-
als, only one run achieved a final energy with error below
chemical accuracy, while the average energy error across
the ten trials was approximately 0.01 Hartrees with stan-
dard deviation of 0.005 Hartrees. With most trials pro-
ducing energy errors that are close to the mean, this con-
firmed the sensitivity to initial parameters. One open
question to investigate would be whether using PECT
makes k-UpCCGSD less sensitive to parameter initial-
ization than optimizing the ansatz without PECT.

From our results, we determined the UCCSD ansatz is
the least prunable ansatz of the three. For the sizes of
problems investigated in this work, UCCSD, though high
in depth, is the most compact in terms of its parameter-
ization. That is, the numbers of parameters are already
low enough such that optimizing subsets of parameters
is unnecessary. In addition, the bigger challenge in using
UCCSD is not in its optimization but in its expressibility
or capability of describing ground states of (strongly cor-
related) molecular systems. As noted earlier, effective-
ness of UCCSD also highly depends on the ordering of
Trotterized cluster operators [55, 56]. Therefore, because
PECT assumes a fixed ordering of operations (i.e. oper-
ates based on a pre-defined ansatz structure), a method
such as ADAPT-VQE, which chooses operations from an
unordered pool, may be better suited for optimizing an
ansatz comprising cluster operators.

Comparing the performance of PECT for LDCA and
k-UpCCGSD circuits in terms of energy error, the differ-
ence is likely due to the higher degree of redundancy in
the LDCA circuit, compared to the k-UpCCGSD circuit.
That is, even if we remove some parameter θ in the LDCA
circuit optimization, there are likely several other param-
eters that can replace θ, i.e. that can be tuned with the
same effect as tuning θ. In addition, this may help ex-
plain the robustness in parameter initialization for LDCA
observed in Figure 5. In conclusion, our analysis of the
three ansatze indicates that PECT is not an optimiza-
tion strategy that will work well for any parameterized
quantum circuit. For optimal performance, the circuit
should be parameter-heavy and contain some amount of

redundancy in its parameterization. Fortunately, several
PQC designs, especially ones that are efficient to partic-
ular hardware architectures and connectivities [41, 58],
satisfy these conditions.

C. Ansatz cost reduction

During the local optimization phase of PECT, a sub-
set of parameters of the PQC is optimized while values of
other parameters are set to 0 corresponding to identity
operations. This likely results in an ansatz substructure
that has reduced circuit depth and lower (two-qubit) gate
count compared to the original ansatz with full parame-
ter count. For instance, for optimization of the UCCSD
wavefunction estimating LiH ground states, using 45 out
of 56 parameters for PECT allowed for a 20% reduction in
circuit depth and 20% reduction in two-qubit gate count,
averaged over optimizations at different bond lengths.
For optimization of 2-UpCCGSD, using 30 out of 60 pa-
rameters produced a reduced ansatz with 28% reduction
in depth and 42% fewer two-qubit gates. Lastly, with
LDCA, using 420 out of 1002 parameters led to a 42%
reduction in circuit depth and 58% reduction in two-qubit
gate count.

For optimizations of ground states of the water
molecule, it is difficult to make equally meaningful
statements on the reductions in circuit resources us-
ing UCCSD and k-UpCCGSD as we have done for
LiH due to energy errors. With the UCCSD ansatz,
there were regions in the potential energy surface in
which both SLSQP and SLSQP-with-PECT were not
able to converge to chemically accurate energies. With
k-UpCCGSD where k = 4 and 5, PECT improved accu-
racies with respect to regular optimization only for cer-
tain geometries. Nevertheless, we computed the percent
reductions in circuit depths and two-qubit gate counts
for UCCSD, 4-UpCCGSD, and 5-UpCCGSD averaged
over all considered bond lengths. Optimizing the UCCSD
ansatz with PECT led to an average of 12% reduction in
depth and 12% reduction in two-qubit gate count. With
4-UpCCGSD, using PECT corresponded to an average of
17% reduction in depth and 31% reduction in two-qubit
gate count. Using PECT with the 5-UpCCGSD ansatz,
we observed an average of 17% reduction in depth and
32% reduction in two-qubit gate count. To provide a
fair analysis of the reductions in circuit resources, in Ap-
pendix B we report reductions in circuit depth and gate
count for bond lengths at which both non-PECT and
PECT based optimizations achieved final energies that
are chemically accurate. With LDCA, because we did not
optimize the ansatz without PECT, we report the depths
of the full 5- and 6-superlayered circuit and show that us-
ing PECT, the circuit depths were significantly reduced.
For bond lengths at which 5 superlayers of LDCA were
used, there was an average of 42% reduction in depth
compared to the depth of the full 5-superlayered LDCA,
and for 6 superlayers of LDCA, there was an average of
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39% reduction in depth. The reader may wonder why
for certain bond lengths, e.g. RO-H = 2.2 and 2.4Å, we
used 6 superlayers instead of 5 superlayers with PECT if
the resulting circuit depths at those bond lengths are still
lower than those of a fully-dense 5-superlayered LDCA
circuit. We point out that the PECT optimization acting
on 5 superlayers of LDCA did not achieve chemical accu-
racy for these geometries, while the PECT optimization
on 6 superlayers did. The final circuit of the latter opti-
mization contains gates from the sixth LDCA superlayer.

We showed in various instances that PECT is able to
produce more depth-efficient circuits compared to the
original ansatz. In theory, such depth reductions make
circuits generated using PECT more resilient to noise in
the quantum device. We leave analysis of PECT under
noise to future work.

D. Optimization cost estimation

In this section, we discuss estimating the cost associ-
ated with optimizing a parameterized quantum circuit
in terms of the number of objective function evaluations
with the goal of comparing optimization runtimes of dif-
ferent ansatze as opposed to providing accurate estimates
of the actual runtimes. The total time associated with
the VQE optimization step can roughly be estimated as:

topt, est = N ∗ tcircuit ∗ feval, (2)

where N is the number of circuit repetitions or shots
per function evaluation, tcircuit is the time required to
execute the circuit, and feval is the number of function
evaluations. While small in magnitude, circuit execu-
tion time is a significant component in estimating the
overall optimization runtime due to its relation to the
circuit depth. Deeper circuits, especially in the NISQ
era, will execute with lower circuit fidelities, correspond-
ing to lower-quality estimates of the objective function
values. We expect optimizations using noisier estimates
to be more difficult and expensive, e.g. requiring more
function evaluations. To reflect this, we can further ap-
proximate the total optimization time by replacing tcircuit
with the circuit depth, which indirectly accounts for the
expected increase in cost associated with optimizing nois-
ier circuits:

tproxy ≈ N ∗D ∗ feval, (3)

whereD is the circuit depth. The PECT scheme provides
a way to potentially reduce this time by reducing the
circuit depth required at each function evaluation though
this may come at the cost of a greater number of function
evaluations to search for an effective parameter subset.
For PECT, the time proxy can be defined as:

tproxy, PECT ≈
∑
i

Ni ∗Di ∗ feval, i, (4)

where i runs over the number of local optimizations. As-
suming the required precision for the cost function is the
same for all local optimizations, we simplify N or Ni,
the number of circuit repetitions or measurements, as
being constant for each VQE sub-module and set it to
1. In practice, the number of circuit measurements for a
VQE experiment is expected to be very high (and thus
time-intensive) for variational quantum algorithms and
will likely be a large multiplicative factor. For an in-
depth runtime analysis especially in a cloud-based quan-
tum computation setting, it may be necessary to use a
more sophisticated runtime model that considers sam-
pling, circuit batching, and network latency [25].

We compute the following runtime proxies (Equations
3 and 4) for non-PECT and PECT optimizations respec-
tively for the three ansatze solving for the ground states
of LiH. These runtime estimates are shown in Figure 6.
This plot indicates that using PECT can help speed up
optimizations of 2-UpCCGSD and LDCA for most or all
bond lengths, but for an ansatz like UCCSD, it is better,
in terms of runtime, to execute non-PECT optimization
using the entire circuit. However, as noted earlier, in the
NISQ era, reducing circuit depth may be a priority over
reducing the overall optimization runtime due to noise in
the device, which increases with the number of gate op-
erations and circuit depth. Because PECT reduces the
effective circuit depth and gate counts during the opti-
mization, it increases the fidelity of the ansatz circuit
and therefore could improve the optimization results and
their accuracy.

For the water molecule, the UCCSD and k-UpCCGSD
ansatze did not achieve chemically accurate energies for
several bond lengths. We report the estimated runtimes
of UCCSD over different bond lengths in the top plot of
Figure 7. For all the bond lengths at which both non-
PECT and PECT calculations reached chemically accu-
rate energies, indicated using bars with hash patterns,
we observe that using PECT increased the optimization
times. This is expected due to the compact parameteri-
zation of UCCSD for the systems considered in this work.
Like UCCSD, both 4-UpCCGSD and 5-UpCCGSD were
not able to produce chemically accurate energies for all
considered bond lengths, with or without PECT. How-
ever, while we believe the reason for the lack of conver-
gence to accurate energies in UCCSD, especially as the
O-H bond is stretched, is due to the inherent limitations
in the expressiveness of the ansatz, 4-UpCCGSD and 5-
UpCCGSD were unable to reproduce accurate energies
likely due to the sensitivity in parameter initialization.
With more trials testing different random parameter ini-
tializations, as we tried in Section IVB, k-UpCCGSD can
converge to energies with errors below chemical accuracy,
as was shown in Ref. [37]. The middle and bottom plots
of Figure 7 show runtime estimates for 4-UpCCGSD and
5-UpCCGSD, respectively. These results suggest that
the benefit of PECT in reducing runtime is more appar-
ent for larger k in the k-UpCCGSD ansatz. Lastly, while
we did not run optimizations for LDCA without PECT
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Figure 6. Runtime estimates (depth × number of function calls) of LiH VQE calculations for the three ansatze, with and
without PECT, shown in orange and blue colored bars respectively. Definitions for runtime estimates are shown in Equations
3 and 4 for non-PECT and PECT optimizations respectively.

based on results for LiH, we expect significant reductions
in the runtime, in addition to producing accurate ener-
gies, as was observed for LiH in the bottom plot of Figure
6.

E. Scaling up: layerwise PECT

As we approach VQE problems using ansatze with
larger parameter counts, PECT will also suffer from in-
ability to sufficiently explore and optimize in the param-
eter space. In such cases, it may be useful to combine the
“layerwise” training [28, 57] strategy with PECT. To em-
ploy a simplified version of the layerwise training scheme,
we first divide up the parameterized ansatz into k lay-
ers and employ PECT to optimize each layer. Once the
PECT procedure is complete for the j-th layer (j ∈ [k]),
the final parameter values of the layer are “frozen,” and
the j + 1-st layer is optimized with PECT. While fix-
ing parameters of the previous layers may lead to local
minima, we observe that relaxing these parameters in
the optimization of subsequent layers can also lead to
preparing a state corresponding to a higher energy. It

may then take many function calls to go back to the pre-
vious state, which can increase the overall cost of opti-
mization. We initialize the j + 1-st layer with parameter
values sampled uniformly from the range [0, 0.02] such
that it constructs a near-identity operation to avoid po-
tentially expending many function evaluations to return
to the energy achieved with j layers.

We demonstrate the utility of layerwise PECT by run-
ning VQE optimizations for estimating the energy densi-
ties of the one-dimensional Fermi-Hubbard systems stud-
ied in Ref. [41]. In this work, the one-dimensional Fermi-
Hubbard model (FHM) at half-filling was proposed as a
well-defined benchmark system to test the capabilities
of NISQ devices [41]. That is, VQEs on various chain
lengths can be executed on a processor to determine the
largest chain length for which the quantum computer can
reliably approximate the ground state energy. For the
variational ansatz, the authors suggested a parameterized
quantum circuit assuming a two-dimensional grid layout
of qubits using qubit connectivity and gate operations
that are native to the Sycamore processor, which has re-
cently demonstrated the ability to outperform classical
computers at certain tasks [59]. While we refer the read-
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Figure 7. Runtime estimates (depth × number of function calls) of H2O VQE calculations for UCCSD, 4-UpCCGSD, and
5-UpCCGSD. For each type of ansatz, we report runtimes with and without PECT, shown using orange and blue colored
bars respectively. Definitions for runtime estimates are shown in Equations 3 and 4 for non-PECT and PECT optimizations
respectively. Unlike LiH calculations, optimizations at certain bond lengths did not converge at chemically accurate energies.
We distinguish optimizations that have reached chemically accurate final energies with hash patterns on bars.

ers to Ref. [41] for further details on the system as well
as the ansatz, in this work, we present VQE optimization
results that show substantial improvement in the circuit
depths while producing comparable energy density er-
rors.

In Figure 8, we show the energy density error as a
function of the number of circuit layers, where each cir-
cuit layer is defined in [41]. The original results from Ref.
[41], shown in blue markers, employed layerwise training
(without PECT) with the SLSQP optimizer. We addi-
tionally note that their layerwise training method did not
freeze parameters of previous layers. Each “layer” in lay-
erwise training comprised four sub-layers of the proposed
ansatz. Using the layerwise PECT approach, where each
“layer” comprises two sub-layers of the ansatz, the op-
timization can converge to comparable energy densities
for different chain lengths using significantly fewer circuit
layers, or equivalently, lower circuit depths. Despite the
reduction in circuit depth, as noted in previous results,
PECT required greater numbers of function evaluations
before convergence. These numerical experiments exem-

plify the potential trade-off that exists between reducing
the circuit depth and increasing the cost of evaluating
cost function and gradient values (here represented by
the number of function calls) when using PECT as the
optimization strategy. That is, if reducing circuit depth
is an important objective in a VQE experiment and the
large numbers of function calls is affordable, then PECT
may be a promising optimization technique. However, if
reducing the number of function calls is more important,
then PECT may not be as effective as an optimization
strategy. In the near term, due to the rapid accrual of
noise in NISQ devices, we expect circuit depth reduction
to be more critical in the application of variational algo-
rithms. Furthermore, while potentially expensive in the
number of function calls, the overall measurement cost
of PECT could be mitigated using measurement-aware
optimization strategies, such as the one proposed in Ref.
[23].
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Figure 8. PECT results for optimizing VQE calculations for the one-dimensional Fermi-Hubbard model. Energy density errors
(in units of kinetic energy, t over L sites) with respect to the infinite chain energy density are plotted against number of circuit
layers of the ansatz proposed in Ref. [41]. Blue markers indicate addition of new circuit layers that are layerwise-optimized
using the SLSQP optimizer (data points are obtained from Figure 9 of Ref. [41]). Orange points indicate addition of new
circuit layers that are layerwise-optimized using PECT employing SLSQP as the local optimizer. The red dashed line indicates
the exact energy density at a given chain length.

F. Parameter dynamics of multi-layered PQCs

While we expect earlier PQC layers to influence the
optimization of later layers, we provide numerical evi-
dence of this phenomenon by investigating how parame-
ters of each layer of a PQC are optimized to their final
values. In Figure 9, we show the averaged convergence of
parameters in each layer for two optimization instances,
one using PECT and the other without.5 We plot the ab-
solute difference of parameter values at t-th optimization
iteration from their corresponding final values, which are
then averaged over parameters in circuit layer l. That is,
the averaged absolute difference of parameter values for
the l-th circuit layer at the t-th iteration is defined as:

|∆θ|(t)l =
1

Nl

Nl∑
i=0

|θ(t)i − θ
(tfinal)
i | (5)

where index i enumerates parameters of layer l, and Nl
is the total number of parameters in layer l. Thus, θ(t)i
is the i-th parameter value in layer l at iteration t, and
θ
(tfinal)
i is the final/optimized i-th parameter value in layer
l. This quantity represents the average movement of pa-
rameter values per circuit layer. From Figure 9, we ob-
serve for both PECT and non-PECT optimizations that
parameter values of earlier layers start closer and stray
less from their final values, on average, compared to the
movements of parameters of later layers. This appears
to suggest the importance of strategically initializing the
first few layers such that parameters of later layers, which
change values by greater magnitudes throughout the op-
timization, can more efficiently refine or improve upon
circuit parameter settings of previous layers. We clarify

5 These optimization results are from estimating the ground state
energy of LiH at R = 2.5Å using the LDCA ansatz.

that the optimizations we consider in Figure 9 do not
employ layerwise training. We performed this analysis
for other PECT and non-PECT optimization runs, with
several results shown in Appendix C, and observed simi-
lar behavior. The relative lack of change in earlier layers
appears intuitive as we expect parameter settings of ear-
lier layers to influence how parameters of later layers are
tuned. This observation also appears to justify layerwise
training strategies for parameterized quantum circuits as
well as suggest more carefully setting or initializing val-
ues of parameters of earlier layers.

V. FUTURE DIRECTIONS

PECT is a high-level optimization strategy for de-
termining optimal parameter values for parameterized
quantum circuits. Because PECT employs many sub-
routines, it remains suitable to leverage existing devel-
opments such as using the individual Coupled Adaptive
Number of Shots (iCANs) optimizer [23] or the quantum
natural gradient descent method [21] for local optimiza-
tion. Several advancements made to the optimization of
PQCs are bottle-necked by the number of parameters in
the circuit, e.g. quantum natural gradient’s dependency
on the computation and inversion of the Fubini-Study
metric tensor which scales with the number of param-
eters. Because PECT actively reduces the number of
parameters in the PQC that are being optimized in each
iteration, it also reduces the costs associated with these
subroutines, thereby making the overall process more effi-
cient. Another improvement may be to employ the more
sophisticated layerwise training schemes (e.g. in [28]) for
layerwise PECT.

As with many heuristic methods, PECT’s performance
is sensitive to the choice of hyperparameters, especially
global sparsity of the PQC s and the target number of
parameters to prune, Np. For instance, from our simu-
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Figure 9. Plots tracking averaged parameter convergence to
final values for each circuit layer. Plot in (a) shows the av-
eraged parameter convergence per circuit layer (superlayer)
for a PECT-based optimization of the LDCA modeling the
LiH ground state. The averaged parameter convergence per
layer is defined as in Equation 5. Plot in (b) shows the aver-
aged parameter convergence per circuit layer for a non-PECT
optimization of the LDCA modeling the LiH ground state.
We generally observe that parameters of earlier layers start
closer and change less with respect to their final values than
parameters of later layers do.

lations, we observed that if the value of s was assigned
too high, i.e. the parameter subset at each iteration was
too small, this often resulted in the PECT simulation
terminating due to oscillating energies. In such a case,
by simply decreasing s, the performance often improved.
On the other hand, if s was too low, PECT simulations
would converge but expend more function calls due to the
larger parameter space in each local optimization. Thus,
a closer investigation into properly tuning these hyperpa-
rameters may be necessary to more effectively use PECT
for variational algorithms.

Our current implementation of PECT, using local opti-
mizers such as L-BFGS-B and SLSQP, does not make ef-
fective use of circuit batching, which may result in a high
overall experimental runtime due to network latency [25].
One potential way to make PECT a better candidate for
optimizing PQCs via the cloud is to employ local opti-

mizers that support evaluations of circuit batches, e.g.
particle swarm optimization [60].

Lastly, significant effort has been dedicated to pruning
or training sparse networks in classical machine learn-
ing since the 1990’s [61]. Just as PECT adapted the
dynamic sparse reparameterization method, we expect
several neural network pruning methods to be applica-
ble and beneficial for optimizing and generating more
compact quantum circuits for variational quantum algo-
rithms.

VI. CONCLUSION

Through random circuit sampling, quantum comput-
ers have recently been demonstrated to accomplish par-
ticular computational tasks exponentially faster than any
classical computer can [59]. A natural next step is design-
ing and demonstrating practical applications of quantum
computers; variational quantum algorithms are believed
to be promising candidates for such experiments. At
this scale, optimization of parameterized quantum cir-
cuits will likely be a significant bottleneck among oth-
ers, prompting a need for optimization strategies tailored
to large circuits with many parameters. Fortunately,
there have been significant efforts in designing power-
ful parameterized ansatze for modeling ground states of
strongly correlated systems. Here, we contribute to the
set of ansatz optimization techniques by introducing the
“Parameter Efficient Circuit Training” (PECT) method.
By optimizing only a subset of gates of a parameterized
ansatz and iteratively removing and adding gates to the
subset to refine the circuit composition, PECT can con-
struct an optimized circuit that additionally saves on re-
sources such as circuit depth, two-qubit gate count and,
in some cases, the optimization runtime.

Through noiseless simulations of VQE calculations on
small molecular systems, we show that PECT is a promis-
ing approach for optimizing parameterized quantum cir-
cuits that have so far been limited by their difficulty in
parameter exploration and optimization. For instance,
considering existing optimization strategies, PECT ap-
pears to be necessary for reliably converging calculations
of molecular systems using LDCA and similar ansatze
with high parameter counts and parameter redundancy.
As noted earlier, in addition to facilitating convergence
to lower energies, using PECT may significantly reduce
circuit depths, two-qubit gate counts, and optimization
runtimes. Some of these features are particularly critical
for realizing useful application of variational algorithms
in NISQ devices, where noise imposes stringent limits to
the size of the circuits we can execute. PECT is com-
patible with other optimization strategies such as layer-
wise optimization, and could be used in conjunction with
measurement-aware optimizers in order to minimize the
number of circuit repetitions used during the local opti-
mizations. We expect that, used jointly with several of
these approaches, PECT would become an effective opti-
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mization strategy for refining and training parameterized
quantum circuits across multiple quantum computing ap-
plications.
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APPENDIX

Appendix A: LDCA Details

In this work, we consider three types of ansatze: (a) the unitary coupled-cluster ansatz including singles and
doubles excitations (UCCSD), (b) a variant of UCC ansatz using chained generalized singles and paired doubles
excitations called k-UpCCGSD [37], and (c) a simplified version of the low-depth circuit ansatz (LDCA) [36]. While
gate compositions for (a) and (b) can be found in Refs. [44] and [37] respectively, we provide the gate composition
for the particle number conserving construction of LDCA in Figure 10. LDCA has a compact nested structure with
several levels of layers. Its outermost layer, or what we call “superlayer,” comprises dn2 e “sublayers,” where n is the
number of qubits, and each “sublayer” comprises two layers of nearest neighbor two-qubit blocks. The first layer
of two-qubit blocks starts with the first qubit, and the second layer starts with the second qubit. Each two-qubit
block is composed of five two-qubit gate operations with three free parameters, as shown in Figure 10(b). While the
original formulation of LDCA allowed five free parameters, one for each two-qubit gate, and included particle number
constraints, our preliminary calculations (unreported) showed that using the particle number conserving version of
LDCA led to significantly better convergence behaviors. For each two-qubit gate operation labeled P (θ), the gate is
defined as exp(−i θ2P ).

Appendix B: Ansatz cost reductions for H2O

In Section IVC, we provide average percent reductions in circuit resources, namely circuit depth and two-qubit gate
counts, from using PECT as an optimization strategy. For simulations estimating ground state energies of water, these
quantities may not be as meaningful because optimizations of several bond lengths did not converge to chemically
accurate energies. To provide a more meaningful report of reductions in circuit resources, we provide tables with
reduction numbers at bond lengths at which both non-PECT and PECT calculations produced final energies with
errors below the chemical accuracy threshold. We show resulting percent reductions in depths and two-qubit gate
counts arriving from using PECT for UCCSD in Table II, 4-UpCCGSD in Table III, and 5-UpCCGSD in Table IV.

Appendix C: Parameter dynamics of k-UpCCGSD and LDCA optimizations

In Section IVF, we discussed how parameters of a multi-layered PQC evolve throughout an optimization. For
example, in the case of LDCA describing ground states of LiH, parameters of earlier layers started and generally
remained closer to their final values compared to parameters of later layers. In Figure 11, we provide further numerical
evidence for the k-UpCCGSD and LDCA ansatze describing the ground state of LiH at R = 2.5Å and ground state
of H2O at RO-H = 2.4Å. In each plot, similar behavior in the average parameter movement is observed. For certain

http://dx.doi.org/10.5281/zenodo.2562110
http://dx.doi.org/10.5281/zenodo.2562110
http://dx.doi.org/10.1088/2058-9565/ab8505
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Figure 10. Gate composition of a simplified version of the low-depth circuit ansatz (LDCA) from Ref. [36]. Circuit in (a)
is an instance of LDCA for 8 qubits. Each entangling operation in LDCA is composed of five two-qubit gate operations with
three free parameters, as shown in (b). The Y X and XY operations sharing a parameter (with opposite signs) and XX and
Y Y operations sharing another parameter leads to an ansatz that preserves particle number, assuming the initial state is e.g.
the Hartree-Fock state.

Bond
length [Å]

% reduced
depth

% reduced two-qubit
gate count

0.8 10% 10%
1.0 10% 10%
1.2 15% 15%
1.4 9% 9%
1.6 21% 20%
1.8 9% 8%
2.6 24% 24%

Table II: Percent reductions in the circuit depths and two-qubit gate counts from utilizing PECT to optimize VQE
calculations with the UCCSD ansatz at various O-H bond lengths of a water molecule. At these bond lengths, both

non-PECT and PECT calculations achieved energy errors below the chemical accuracy threshold.

optimization instances such as optimizing LDCA for H2O using PECT in Figure 11(c), we observed parameters of
layer 6 changing less than parameters of layers 3, 4, and 5. This appears to suggest that after some number of circuit
layers, the order in the degree of movement becomes less structured. Nevertheless, plots in Figure 11 support the idea
that parameters of especially the first few layers should be carefully initialized to facilitate the tuning of later circuit
layers.

Appendix D: Estimating the potential energy surface for H2O

We plot the VQE-optimized energies for water in Figure 12. Since potential energy surfaces are often used as an
input for small scale quantum dynamics simulations, the uniformity of the energy errors across different bond lengths
(i.e. smoothness) is an important comparison metric for electronic structure methods. We observe that using UCCSD
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Bond
length [Å]

% reduced
depth

% reduced two-qubit
gate count

0.8 15% 32%
1.2 17% 29%
1.4 21% 33%
1.6 18% 37%
2.0 13% 25%

Table III: Percent reductions in the circuit depths and two-qubit gate counts from utilizing PECT to optimize VQE
calculations with the 4-UpCCGSD ansatz at various O-H bond lengths of a water molecule. At these bond lengths,

both non-PECT and PECT calculations achieved energy errors below the chemical accuracy threshold.

Bond
length [Å]

% reduced
depth

% reduced two-qubit
gate count

0.8 17% 30%
1.2 16% 36%
1.4 18% 30%
1.6 15% 27%
2.0 19% 35%

Table IV: Percent reductions in the circuit depths and two-qubit gate counts from utilizing PECT to optimize VQE
calculations with the 5-UpCCGSD ansatz at various O-H bond lengths of a water molecule. At these bond lengths,

both non-PECT and PECT calculations achieved energy errors below the chemical accuracy threshold.

with PECT, the resulting potential energy surface appears smoother than the one generated using UCCSD without
PECT, which has a bump in the surface due to the high energy error at RO-H = 2.4Å. With k-UpCCGSD ansatze,
the potential energy surfaces are less smooth due to inconsistent improvements in energies at particular bond lengths.
For smoother surfaces, we may need alternative methods for initializing k-UpCCGSD parameters. With LDCA, we
note that its PECT calculation yielded a smooth and accurate potential energy surface compared to resulting surfaces
of other methods.
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Figure 11. Absolute difference of parameter values with respect to their final values averaged over each circuit layer at each
optimization iteration for k-UpCCGSD and LDCA circuits. We compute the averaged parameter distance for: (a) 2-UpCCGSD
circuits describing ground state of LiH without PECT (left) and with PECT (right), (b) 4-UpCCGSD circuits describing ground
state of H2O without PECT (left) and with PECT (right), and (c) LDCA circuit for describing ground state of H2O with PECT.



24

Figure 12. Potential energy surfaces of H2O constructed using optimized (a) UCCSD, (b) 4-UpCCGSD, (c) 5-UpCCGSD, and
(d) LDCA circuits. We show the energies from optimizations without PECT in orange markers and ones from optimizations
with PECT in green markers. Inset in each plot zooms in on the same region from RO-H = 1.9 to 2.65Å and energies from
-74.77 to -74.71 Hartrees.
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