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Abstract— We extend Signal Temporal Logic (STL) to enable
the specification of importance and priorities. The exten-
sion, called Weighted STL (wSTL), has the same qualitative
(Boolean) semantics as STL, but additionally defines weights
associated with Boolean and temporal operators that modulate
its quantitative semantics (robustness). We show that the robust-
ness of wSTL can be defined as weighted generalizations of all
known compatible robustness functionals (i.e., robustness scores
that are recursively defined over formulae) that can take into
account the weights in wSTL formulae. We utilize this weighted
robustness to distinguish signals with respect to a desired wSTL
formula that has sub-formulae with different importance or
priorities and time preferences, and demonstrate its usefulness
in problems with conflicting tasks where satisfaction of all tasks
cannot be achieved. We also employ wSTL robustness in an
optimization framework to synthesize controllers that maximize
satisfaction of a specification with user specified preferences.

Index Terms— Autonomous Systems, Robotics, Hybrid Sys-
tems

I. INTRODUCTION

Temporal logics, such as Linear Temporal Logic (LTL)
and Computation Tree logic (CTL) [1] are formal specifica-
tion languages that enable expressing temporal and Boolean
properties of system executions. Recently, temporal logics
have been used to formalize specifications for complex
monitoring and control problems in cyber-physical systems.
A variety of tools has been developed for analysis and control
of many systems from such specifications [2], [3], [4].

Signal Temporal Logic (STL) [5] specifies signal char-
acteristics over time. Its quantitative semantics, known as
robustness, provides a measure of satisfaction or violation
of the desired temporal specification, with larger robustness
indicating more satisfaction. The quantitative semantics en-
ables formulating STL satisfaction as an optimization prob-
lem with robustness as the objective function. This problem
has been solved using heuristics, mixed-integer programming
or gradient methods [6], [7], [8], [9], [10].

Multiple functionals have been proposed to capture the
STL quantitative robustness. The traditional robustness intro-
duced in [11] uses min and max functions over temporal and
logical formulae, resulting in an extreme, sound, non-convex
and non-smooth robustness function. For linear systems with
linear costs and formulae, traditional robustness optimization
approaches commonly encoded Boolean and temporal oper-
ators as linear constraints over continuous and integer vari-
ables [7], [8]. However, the resulting Mixed Integer Linear
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Programs (MILPs) scaled poorly with the size and horizon of
the specifications (i.e., they require a large number of integer
variables). Later works employed smooth approximations for
max and min to achieve a differentiable robustness and use
scalable gradient-based optimization methods applicable to
general nonlinear systems. However, the soundness property
was lost due to the approximation errors [9].

Several works have tackled the issue of defining sound
robustness functionals with regularity properties (i.e., con-
tinuity and smoothness) [12], [13], [14], [15]. In [16], the
limitations of traditional robustness (induced by the min and
max functions) in optimization were categorized as locality
and masking. Locality means that robustness depends only
on the value of signal at a single time instant, while masking
indicates that the satisfaction of parts of the formulae differ-
ent from the most “extreme” part does not contribute to the
robustness. [16], [17] employed additive and multiplicative
smoothing and eliminated the locality and masking effects
to enhance optimization. Later works [14], [15] defined
parametric approximations for max and min that enabled
adjustment of the locality and masking to a desired level.
A similar issue was studied in LTL specifications, where a
counting method was used to distinguish between small and
large satisfactions (or violations) of a LTL formula [18].

All these works have focused on the run-time performance
of the planning or verification with temporal logic specifica-
tions. However, little attention has been devoted to the prob-
lem of capturing user preferences in satisfying temporal logic
properties with timing constraints. In LTL, specifying the
preferences of multiple temporal properties was addressed
in minimum-violation [19] or maximum realizability [20]
problems, i.e., if multiple specifications are not realizable
for a system, it is preferable to synthesize a minimally vio-
lating or maximally realizing system. These problems were
formulated by assigning priority-based positive numerical
weights (weight functions) to the LTL formulae [20] or
corresponding deterministic transition systems [19]. The idea
of using priority functions was also studied in [21] in order
to prioritize optimization of specific parameters in a mining
problem with parametric temporal logic properties. Time
Window Temporal Logic (TWTL) proposed in [22] enabled
specifying preferences on the deadlines through temporal
(deadline) relaxations and formulation of time delays.

However, for STL specifications, the problem of capturing
user preferences, i.e., importance or priorities of different
specifications or the timing of satisfaction is not well un-
derstood. The contributions of this paper are: (1) we extend
STL to Weighted Signal Temporal Logic (wSTL) to formally
capture importance and priorities of tasks or timing of
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satisfaction via weights; (2) we show that the extended quan-
titative semantics can be defined as a weighted generalization
of a recursively defined STL robustness functional, (3) we
propose adapted evaluation and control frameworks that use
wSTL to reason about a system behavior with incompatible
(infeasible) tasks or with performance preferences.

II. PRELIMINARIES

Let f ∶ Rn → R be a real function. We define [f]+ =

{f f > 0

0 otherwise
and [f]− = −[−f]+, where f = [f]+ + [f]−.

The sign function is denoted by sign ∶ R→ {−1,0,1}.

A. Signal Temporal Logic (STL)

STL was introduced in [5] to monitor temporal properties
of real-valued signals. Consider a discrete- or continuous-
time domain τ ⊆ R+. A signal S is a function S ∶ τ → Rn
that maps each time point t ∈ τ to an n-dimensional vector of
real values S(t). We denote I = [a, b] ∶= {t ∈ τ ∣ a ≤ t ≤ b}
and t + I as the interval [t + a, t + b]. The STL syntax is
defined and interpreted over S as follows:

ϕ ∶= ⊺ ∣ µ ∣ ¬ϕ ∣ ϕ1 ∧ ϕ2 ∣ FIϕ ∣ GIϕ, (1)

where ϕ, ϕ1, ϕ2 are STL formulae, ⊺ is logical True, µ ∶=
(l(S(t)) ≥ 0) is a predicate where l ∶ Rn → R is a Lipschitz
continuous function defined over the values of S, and ¬ and
∧ are the Boolean negation and conjunction operators. The
Boolean constant � (False) and the other Boolean operators
(e.g., disjunction operator ∨) can be defined from ⊺, ¬, and
∧ in the usual way. Temporal operator eventually FIϕ is
satisfied if “ϕ is True at some time in I”; while always GIϕ
means “ϕ is True at all times in I”. For example, formula
ϕ =G[0,7]F[0,3](S > 0) specifies that for all times between
0 and 7, within the next 3 time units, signal S becomes
positive. STL qualitative semantics determines whether S
satisfies ϕ at time t (S ⊧t ϕ) or violates it (S ⊭t ϕ). Its
quantitative semantics, or robustness, measures how much a
signal satisfies or violates a specification.

Definition 1 (Traditional Robustness [11]): Given a spec-
ification ϕ and a signal S, the traditional robustness
ρ(ϕ,S, t) at time t is recursively defined as follows [11]:

ρ(µ,S, t) ∶= l(S(t)),
ρ (¬ϕ,S, t) ∶= −ρ(ϕ,S, t),

ρ (ϕ1 ∧ ϕ2, S, t) ∶= min (ρ(ϕ1, S, t), ρ(ϕ2, S, t)) ,
ρ (ϕ1 ∨ ϕ2, S, t) ∶= max (ρ(ϕ1, S, t), ρ(ϕ2, S, t)) ,
ρ (GIϕ,S, t) ∶= inf

t′∈t+I
ρ(ϕ,S, t′),

ρ (FIϕ,S, t) ∶= sup
t′∈t+I

ρ(ϕ,S, t′).

(2)

Theorem 1 (Soundness [11]): The traditional robustness
is sound, i.e., ρ (ϕ,S, t) > 0 implies S ⊧t ϕ, and ρ (ϕ,S, t) <
0 implies S ⊭t ϕ.
We call STL sub-formulae ϕi connected by a conjunction
operator obligatory, i.e., all ϕis must be satisfied for ϕ =
⋀i ϕi to be satisfied. We also call STL sub-formulae ϕi
connected by the a disjunction operator alternative, i.e.,
ϕ = ⋁i ϕi is satisfied if either one of ϕi is satisfied.

B. Weighted Arithmetic and Geometric Means

Weighted arithmetic and geometric means of a finite
set x = {x1, x2, ..., xm} with corresponding non-negative

weights w = {w1,w2, ...,wm} with
m

∑
i=1
wi = 1 are given by:

x̄Arithmetic =
m

∑

i=1
wixi, x̄Geometric =

m

∏

i=1
xwii = exp(

m

∑

i=1
wi lnxi)

C. Smooth Approximations

The max and min functions can be approximated by:

m̃in{x1, . . . , xm} ∶= − 1
β

ln(∑mi=1 e−βxi),
m̃ax{x1, . . . , xm} ∶= ∑

m
i=1 xie

βxi

∑mi=1 eβxi
,

(3)

where β > 0 is an adjustable parameter determining an under-
approximation of the true minimum and maximum [15].

III. PROBLEM STATEMENT

Consider a dynamical system given by:

q+(t) = f(q(t), u(t)),
q(0) = q0,

(4)

where q+(t) stands for q̇(t) in continuous time and for
q(t + 1) in discrete time, q(t) ∈ Q ⊆ Rn is the state of
the system and u(t) ∈ U ⊆ Rm is the control input at
time t, q0 ∈ Q is the initial state and f ∶ Q × U → Q
is a Lipschitz continuous function. We denote the system
trajectory generated by applying control input u for a finite
time T starting from the initial state q0 by q(q0,u), where u
is a function of time or a discrete ordered sequence. Consider
a cost function J(u(t), q(t)) and assume a desired temporal
specification is given by a STL formula ϕ over the system’s
trajectories. The control synthesis problem is formulated as:

Problem 1: Find an optimal control policy u∗ that mini-
mizes the cost function, and its corresponding system trajec-
tory q(q0,u∗) satisfies ϕ at time 0:

u∗ = argminu(t)∈U J(u(t), q(t))
s.t. dynamics (4) are satisfied,

q(q0,u) ⊧0 ϕ.
(5)

The authors of [7] showed that the optimization in (5) can
be mapped to a MILP if the cost and formula ϕ are linear.
In order to achieve robust satisfaction of ϕ for systems
with disturbances, by exploiting the soundness property
and considering the traditional robustness, later works re-
formulated the control synthesis problem as [8], [10]:

u∗ = argmaxu(t)∈U ρ(ϕ,q(q0,u),0) − λ J(u(t), q(t))
s.t. dynamics (4) are satisfied,

ρ(ϕ,q(q0,u),0) > 0,
(6)

where λ captures the trade-off between maximizing the ro-
bustness and minimizing the cost. The optimization problem
(6) was solved using MILPs [8] or gradient-based methods
based on smooth approximations of ρ which was applied
to general nonlinear systems [9]. However, the traditional
robustness only considered satisfaction of a formula at the
most extreme sub-formula and time, hindering the optimiza-
tion to find a more robust solution. Later works refined STL
robustness by accumulating/averaging the robustness of all
the sub-formulae over time [12], [13], [14], [15], [16].
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Fig. 1: Trajectories c1 and c2 from Example 1: the dots
represent the positions at discrete times t = 0,1, . . . ,7 (the
continuous interpolation is shown for visualization).

In many applications, a high-level temporal logic spec-
ification may consist of obligatory or alternative sub-
specifications or timings with different importance or pri-
orities. The expressivity of traditional STL does not allow
for specifying these preferences. Let ϕ = F[0,5](S > 0),
which is satisfied if S becomes greater than 0 within 5 time
steps, and assume that satisfaction at earlier times within this
deadline is more desirable. The traditional or average-based
robustness have the same score for discrete-time signals
S1 = {0,1,0,0,0,0} and S2 = {0,0,0,0,0,1}, while it
would be natural to assign a higher robustness to S1 due to
satisfaction of ϕ at an earlier time. Imposing importance and
priorities of satisfaction especially becomes important when
a STL formula has conflicting obligatory specifications.

Example 1: Consider a car driving on the two-lane road
shown in Fig. 1 [19]. The car starts from an initial point at
t = 0 and has to reach Green within 7 steps. Meanwhile, it
has to always stay in its lane, and avoid the Blocked area
on the road. Assuming the duration of the overall task is
bounded by 7, we formally define this specification as: ϕ =
ϕ1 ∧ϕ2 ∧ϕ3 where ϕ1 = F[0,7]Green, ϕ2 =G[0,7]¬Blocked,
ϕ3 = G[0,7]Lane. As illustrated in Fig. 1, in order to reach
Green, the car must either pass through the blocked area
(c1 ⊧ ϕ1,ϕ3 but c1 ⊭ ϕ2) or violate the lane requirement
(c2 ⊧ ϕ1, ϕ2, but c2 ⊭ ϕ3). In this example, a trajectory
that can satisfy ϕ does not exist. The minimally violating
trajectory is dependent on the satisfaction importance of the
obligatory tasks ϕ2 and ϕ3.

In this paper, we extend the STL syntax and quantitative
semantics to capture the importance and priorities of different
sub-formulae and times. We show that the quantitative se-
mantics of this extension is derived from the STL robustness.
Hence, the optimization approaches described above, includ-
ing MILPs and gradient-based methods, can be adapted to
solve the synthesis problem for the proposed extended logic.

IV. WEIGHTED SIGNAL TEMPORAL LOGIC

In this section, we introduce wSTL that enables the
definition of user preferences (priorities and importance).

Definition 2 (wSTL Syntax): The syntax of wSTL is an
extension of the STL syntax, and is defined as:

ϕ ∶= ⊺ ∣ µ ∣ ¬ϕ ∣ ⋀
i=1∶N

p
ϕi ∣ F$I ϕ ∣ G$

I ϕ, (7)

where the logical True (and False) value, the predicate µ,
and all the Boolean and temporal operators have the same
interpretation as in STL. The function p ∶ {1, . . . ,N} →
R>0 assigns to each of the N terms of the conjunction or

disjunction (can be formed using conjunction and negation)
a positive weight p; and $ ∶ I → R>0 is a positive weight
function for temporal properties.
The weights p capture the importance of obligatory specifi-
cations or priorities of alternatives, respectively. The weights
$ capture satisfaction importance and priorities associated
with always and eventually operators over the interval I ,
respectively. Higher values of p and $ correspond to higher
importance and priorities. Importance will allow to weigh
specifications that are all required to be satisfied (conjunc-
tions for logical and always for temporal statements), while
priorities will weigh specifications that accept alternative
satisfactions (disjunctions for logical and eventually for
temporal statements) (see Examples 2, 3, 4). Throughout
the paper, if the weight function associated with an operator
(Boolean or temporal) in a wSTL formula is constant 1, we
drop it from the notation. Thus, STL formulae are wSTL
formulae with all weights equal to 1.

The Boolean (qualitative) semantics of a wSTL formula is
the same as the associated STL formula without the weight
functions, i.e., S ⊧t ϕ⇔ S ⊧t ϕ̂, where ϕ̂ is the unweighted
version of a wSTL formula ϕ.

Definition 3 (wSTL Robustness): Given a wSTL specifi-
cation ϕ and a signal S, the weighted robustness score
rw(ϕ,S, t) at time t is recursively defined as:

rw(µ,S, t) ∶= l(S(t)),
rw(¬ϕ,S, t) ∶= −rw(ϕ,S, t),

rw (⋀
i

p
ϕi, S, t) ∶= ⊗∧(p, [rw(ϕ1, S, t), . . . , rw(ϕN , S, t)]),

rw (⋁
i

p
ϕi, S, t) ∶= ⊕∨(p, [rw(ϕ1, S, t), . . . , rw(ϕN , S, t)]),

rw (G$
I ϕ,S, t) ∶= ⊗G($,rw(ϕ,S, t + ⋅), I),

rw (F$I ϕ,S, t) ∶= ⊕F($,rw(ϕ,S, t + ⋅), I),
(8)

where ⊗∧, ⊕∨, ⊗G, and ⊕F are aggregation functions
associated with the ∧, ∨, G and F operators, respectively,
which must satisfy min{x} ⋅ ⊗∧(p, x) > 0 and max{x} ⋅
⊕∨(p, x) > 0 for all x ∈ RN , x ≠ 0, and p ∈ RN>0; and
inft∈I R(t) ⋅ ⊗G($,R) > 0 and supt∈I R(t) ⋅ ⊕F($,R) > 0
for all R ∶ I → R≠0 and $ ∶ I → R>0.

Theorem 2 (wSTL Soundness): The weighted robustness
score rw given by Def. 3 is sound:

rw(ϕ,S, t) > 0⇔ ρ(ϕ̂, S, t) > 0→ S ⊧t ϕ,
rw(ϕ,S, t) < 0⇔ ρ(ϕ̂, S, t) < 0→ S ⊭t ϕ (9)

proof:[Sketch] A formal proof is omitted due to space
constraints. Informally, soundness can be viewed as a sign
consistency between the weighted robustness rw and the
(unweighted) traditional robustness ρ. The proof follows by
structural induction and holds trivially for the base case
corresponding to predicate formulae. The induction step
also follows easily from the induction hypothesis and the
constraints placed on the aggregation functions in Def. 3.
Thus, the sign of the aggregation result correctly captures the
satisfaction and violation of composite formulae connected
via Boolean and temporal operators.
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Fig. 2: wSTL performance for different specifications

The wSTL robustness must be defined such that ∣rw ∣ is
a measure of how much a wSTL specification is satisfied
or violated, considering the importance or priorities of its
sub-formulae and time. In the following, we define weighted
generalizations of the traditional [11] and AGM [16] robust-
ness. The wSTL robustness for other compatible recursive
STL robustness measures [9], [12], [13], [14], [15] can be
defined similarly (See Sec. VI).

A. Weighted Traditional Robustness

The aggregation functions in a weighted generalization of
the traditional robustness in (2) can be defined as follows:

⊗∧ (p, x) = min
i=1∶N

{((1

2
− p̄i) sign(xi) +

1

2
) ⋅ xi}

⊕∨ (p, x) = − ⊗∧ (p,−x)

⊗G ($,R, I) = inf
t∈I

{((1

2
− $̄(t)) sign(R(t)) + 1

2
) ⋅R(t)}

⊕F ($,R, I) = − ⊗G ($,−R, I)
(10)

where definitions for ∨ and F follow DeMorgan’s law.
p̄i = pi

∑nj=1 pj
and $̄(t) = $(t)

∫I $(τ)dτ are normalized weights
for the Boolean and temporal operators, respectively. (1−p̄i)
is interpreted as the total importance of all other subformulae
except ϕi. Therefore, in the case of satisfaction for conjunc-
tion, (1 − p̄i)ri means that ri with p̄i must be more important
than the hold-out importance of all other subformulae. In the
case of violation for conjunction, p̄iri suggests that violation
of ϕi has an importance of p̄i. The same interpretation is
given to $̄(t) along the time interval I .

In the following, we discuss some examples to illustrate
the expressivity of wSTL and weighted robustness. For
brevity, we denote rw(ϕ,S,0) by rw(ϕ,S).

Example 2 (Importance of obligatory tasks): Consider
the wSTL specification ϕ = ϕA ∧p ϕB = G[1,6](S ≥
1) ∧pG[2,5](S ≤ 3) with pA = 4 and pB = 2. In Fig. 2a, ss
satisfies ϕ and sv violates it. The weights associated with
the sub-formulae of the conjunction operator specify how
important the satisfaction of each obligatory task is, i.e., it
is twice as important to stay above 1 between time t = 1
to t = 6 than to stay below 3 from time t = 2 to t = 5.
If rw is defined as the weighted traditional robustness,
we have rw(ϕ, ss) = min ( 1

3
× 0.25, 2

3
× 0.25) = 0.083

and rw(ϕ, sv) = min( 2
3
× −0.25, 1

3
× −0.25) = −0.166,

highlighting the importance of ϕA (it is more important for

ss to satisfy ϕA, and violation of ϕA by sv is considered
worse).

Example 3 (Priorities of alternative tasks): Consider the
wSTL specification ϕ = ϕA ∨p ϕB = F[4,6](S ≤ 1) ∨p
F[3,6](S ≥ 2) with pA = 10 and pB = 1 and signals in Fig. 2b.
If rw is defined as the weighted traditional robustness, we
have rw(ϕ, sA) = max( 10

11
× 0.5, 10

11
× −0.8) = 0.45, while

rw(ϕ, sB) = max( 1
11
× −1.3, 1

11
× 0.5) = 0.045. Therefore,

although both signals satisfy ϕ, sA is preferred to sB , i.e.,
has a higher robustness, because it visits the higher priority
region (defined by ϕA within [4,6]) while sB visits the lower
priority region (induced by ϕB within [3,6]). Similarly, in
the case of violation, weighted traditional robustness for
the signal s′ is determined by the time t = 5 (rather than
t = 3 which has the same distance from the lower priority
region) since it is closer to (satisfy) the higher priority region.
This leads to moving the signal towards satisfying ϕA when
maximizing robustness in the synthesis problem.

Example 4 (Preferences over time): Consider the formu-
lae ϕF = F$[1,6]ϕ and ϕG =G$

[1,6]ϕ. Fig. 2c and 2d show two
example weight functions. For eventually, ϕF with weight $
from Fig. 2c specifies that the task ϕ should be done within
[1,6] with higher priorities at one of the times {t1, t2, t3, t4};
while the weight $ in Fig. 2d gives priorities to satisfaction
at the endpoints especially at the start. For always, ϕG with
weight $ from Fig. 2c specifies that ϕ must hold at all times
within [1,6], more importantly at times {t1, t2, t3, t4}; while
the $ in Fig. 2d specifies a higher importance at the end of
the interval and the highest importance at the start.

B. Weighted AGM Robustness

Consider a discrete-time system with time domain given
by an ordered sequence τ ∶= {k ∣ k ∈ Z≥0}. We adapt the
Arithmetic-Geometric Mean (AGM) robustness to a wSTL
weighted AGM robustness. The weighted AGM robustness
captures the satisfaction of all sub-formulae and time, as
well as their importance and priorities. For example, for
ϕ = F$[0,5](S > 0), if satisfaction at earlier times is preferred,
the weighted AGM robustness for S1 = {0,1,0,0,0,0} is
higher than S2 = {0,0,0,0,0,1}, but lower than S3 =
{0,1,1,1,0,0} since S3 satisfies ϕ as early as S1 but also at
more time points. Notice that weighted traditional robustness
cannot distinguish between S1 and S3. Aggregation functions
in weighted AGM robustness denoted by ηw can be de-
fined using weighted arithmetic- and geometric- means from



ηw (⋀

i

p
ϕi, S, t) ∶= ⊗

∧
(p, [ηw(ϕ1, S, t), . . . , η

w
(ϕN , S, t)]) =

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

exp(∑

i
p̄i ln(ηw(ϕi, S, t))) if ∀i ∶ ηw(ϕi, S, t) > 0,

∑

i
p̄i[η

w
(ϕi, S, t)]− otherwise

ηw (G$
I ϕ,S, t) ∶=

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

exp( ∑

t′∈t+I
$̄(t′ − t) ln(ηw(ϕ,S, t′))) if ∀t′ ∈ t + I ∶ ηw(ϕ,S, t′) > 0,

∑

t′∈t+I
$̄(t′ − t)[ηw(ϕ,S, t′)]− otherwise

(11)

−1 0 1
−1

0

1

ηw(ϕ1, S)

η
w
(
ϕ

1
∧
p
⊺
,S

)

max(ηw(ϕ1, S),1)
p = [ 0.1

1.1 ,
1

1.1 ]
p = [ 0.5

1.5 ,
1

1.5 ]
p = [ 1

2 ,
1
2 ]

p = [ 1
1.1 ,

0.1
1.1 ]

min(ηw(ϕ1, S),1)

Fig. 3: Effect of p in ηw(ϕ1 ∧p ⊺, S), legends correspond to
the signals from top to bottom.

Sec. II-B. We define ηw for conjunction and always operators
recursively in (11). Weighted AGM ηw for other operators
(⊕∨ and ⊕F) can be defined accordingly by DeMorgan’s law.

Example 5: We demonstrate how the conjunction function
changes for different normalized vectors p for ηw(ϕ1 ∧p
⊺, S), where ηw(⊺, S) = 1 is fixed, and ηw(ϕ1, S) ∈ [−1,1].
As illustrated in Fig. 3, by assigning a higher importance to
⊺, ηw(ϕ1∧p⊺, S) is closer to 1, and for a higher importance
to ϕ1, robustness is closer to ηw(ϕ1, S). Similar to the
AGM robustness, the weighted AGM robustness ηw(ϕ,S, t)
is sound and monotone, and for ηw(ϕ1, S) = 1, we have
ηw(ϕ1 ∧p ⊺, S) = 1 independent of p.

Example 6: Consider the discrete-time signals S4, S5, S6

shown in Fig. 4 and ϕ = F$[0,3](S ≥ 0). We can choose
the weights (priorities) as $(t) = γ(t−1) with the discount
factor γ to reward the satisfaction of the formula at earlier
time steps within the deadline. For larger γ (closer to 1),
satisfaction at different time points is considered to have
similar priorities, and by decreasing γ, satisfaction at earlier
times within the deadline results in a higher weighted AGM
robustness, as seen in Table I. Note that the unweighted
robustness definitions cannot distinguish these signals.

Fig. 4: Discrete-time signals in Example 6.

Example 7: Consider Example 1 with trajectories c1 and
c2. Assuming $ = 1, from (11) we have ηw(ϕ2, c1) =
ηw(ϕ3, c2) = − 2

8
. Similarly, for the overall specification ϕ,

we have ηw(ϕ, c1) = ∑3
i=1 p̄i[ηw(ϕi, c1)]− = p̄2 ηw(ϕ2, c1)

TABLE I: Traditional and weighted AGM robustness for
different values of γ in $(t) = γ(t−1) for ϕ = F$[0,3](S ≥ 0)

Signal ρ η ηw, γ = 0.9 ηw, γ = 0.5 ηw, γ = 0.1

S4 1 0.375 0.330 0.133 0.005
S5 1 0.375 0.420 0.666 0.945
S6 1 0.375 0.367 0.300 0.090

and ηw(ϕ, c2) = p̄3 ηw(ϕ3, c2). If p2 = p3, satisfaction of
both ϕ1 and ϕ2 will have the same importance. Thus, c1
and c2 have the same robustness. Assume avoiding Blocked is
more important than staying in the lane. By choosing p2 > p3,
we can emphasize the importance of ϕ2. As a result, p̄2 > p̄3
and ηw(ϕ, c1) < ηw(ϕ, c2) < 0. Since the satisfaction of all
the sub-formulae is not feasible, c2 is the minimally violating
trajectory (compared to c1).

V. SYNTHESIS USING WEIGHTED ROBUSTNESS

The soundness property of the weighted robustness rw

allows us to reformulate the synthesis problem (6) as:

u∗ = argmaxu(t)∈U r
w
(ϕ,q(q0,u)) − λ J(u(t), q(t))

s.t. dynamics (4) are satisfied,
rw(ϕ,q(q0,u)) > ε,

(12)

where ε ≥ 0 is the lower bound of the satisfaction margin
(soundness threshold) as captured by the weighted gener-
alization of the recursive STL robustness [9]. Since the
weighted robustness of wSTL is defined as a generalization
of an unweighted recursive STL robustness, previous robust-
ness optimization frameworks can be adapted to solve (12).

We consider a discrete-time system with a finite time
T and assume the control policy to be synthesized is a
discrete ordered sequence u = u(0)u(1)⋯u(T − 1). We
use a gradient-based optimization to solve (12). Note that
the weights do not increase the computation time com-
pared to the unweighted robustness optimization. rw is
iteratively maximized by updating the input variable u(t)
at each time t proportional to the gradient of rw such that
u(t)l+1 ← u(t)l + αl ∇rw, where l is optimization iteration,
αl is step size and ∇rw = ∂rw(ϕ,q(q0,u))

∂u(t) [23]. Therefore,
depending on the aggregation functions in rw, the weights p
and $ associated with ϕ affect the gradient and optimization.
A similar synthesis framework can be applied to continuous-
time systems with a Zeroth-Order Hold (ZOH) input [17].

VI. CASE STUDY

Consider a discrete-time nonlinear dynamical system as:
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Fig. 5: Trajectories from the synthesized control u∗ satisfy
ϕ and minimize the cost. pA > pB (left), pA < pB (right).

x(t + 1) = x(t) + cos θ(t)v(t),
y(t + 1) = y(t) + sin θ(t)v(t),
θ(t + 1) = θ(t) + v(t)w(t),

(13)

and a task “Eventually visit A or B within [1,10] and
eventually visit C within [11,20] and Always avoid Unsafe
and Always stay inside Boundary” given by wSTL formula:
ϕ = (F[1,10] (A ∨p B)) ∧ (F[11,20] C)

∧ (G[1,20] ¬Unsafe) ∧ (G[1,20] Boundary), (14)

where A = [7,9]× [1,3] or B = [1,3]× [7,9] and C = [7,9]2
are regions to be sequentially visited within the associated
deadlines, Unsafe = [3,6]2 and Boundary = [0,10]2. q =
[x, y, θ] is state vector with initial state q0 = [1,1, π/4], u =
[v,w] is the input vector with U = [−2,2]2, and cost function
is J = 1

2 ∑
T−1
t=0 ∥u(t)∥2 with T = 20, λ = 0.05 in (12).

By defining ⊗∧(p, x) = m̃ini=1∶N{(( 1
2
− p̄i) sign(xi)+ 1

2
) ⋅

xi}, ⊕∨(p, x) = m̃axi=1∶N{( − ( 1
2
− p̄i) sign(xi) + 1

2
) ⋅ xi}

from (3) (similarly for ⊕G and ⊕F), and approximating
sign by sign(x) ≃ tanh(βx), we obtain the weighted sound
smooth robustness of [15], which is adjustable to a desired
locality and masking level. Fig. 5 shows trajectories obtained
from optimizing (12) considering the weighted robustness
of [15] with β = 10, achieved up to the same termination
criteria with different priorities for visiting A or B as pA = 2,
pB = 1 (left), and pA = 1, pB = 2 (right). The optimization is
implemented in Matlab using the SQP optimizer and takes
about 1.2 seconds on a Mac with 2.5 GHz Core i7 CPU
16GB RAM. For the given symmetrical configuration and
initial state, optimizing the weighted robustness ensures that
the optimal trajectory visits the higher priority region A or
B as chosen by the disjunction aggregator priorities p.

VII. CONCLUSION AND FUTURE WORK

We presented an extension of STL to improve its ex-
pressivity by encoding the importance or priorities of sub-
formulae and time in a formula. The new formalism, called
wSTL, is advantageous especially in the problems where
satisfaction of a formula is not feasible, and as a result, the
less important sub-formulae or time are preferred to be vio-
lated to guarantee that more important ones are satisfied. The
weighted robustness associated with wSTL also improved the
optimal behavior in a control synthesis framework solved
using gradient techniques where prioritized tasks were crit-
ical. Future work will investigate computationally efficient
implementations of the wSTL robustness optimization, and
learning frameworks for systematic design of weights to
capture hierarchies of wSTL formulae consistently.
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