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Abstract—As emerging massive constellations are intended to
provide seamless connectivity for remote areas using hundreds of
small low Earth orbit (LEO) satellites, new methodologies have
great importance to study the performance of these networks. In
this paper, we derive both downlink and uplink analytical expres-
sions for coverage probability and data rate of an inclined LEO
constellation under general fading, regardless of exact satellites’
positions. Our solution involves two phases as we, first, abstract
the network into a uniformly distributed network. Secondly, we
obtain a new parameter, effective number of satellites, for every
user’s latitude which compensates for the performance mismatch
between the actual and uniform constellations. In addition to
exact derivation of the network performance metrics, this study
provides insight into selecting the constellation parameters, e.g.,
the total number of satellites, altitude, and inclination angle.

I. INTRODUCTION

A constellation of low Earth orbit (LEO) satellites can

provide infrastructure for ubiquitous connectivity with low

round-trip delay—compared to geostationary satellites—when

terrestrial networks are not available or economically reason-

able to deploy [1], [2]. Technological advancements along with

the need for seamless connectivity have emerged the utilization

of massive satellite networks and, consequently, the research

around this topic.

The uplink outage probability in the presence of interfer-

ence was evaluated for two LEO constellations through time-

domain simulations in [3]. A performance study of Iridium

constellation was presented in [4] in terms of the distribution

of the number of handoffs involved in a single transaction

duration and the average call drop probability. The effect

of traffic non-uniformity was studied in [5] by assuming

hexagonal service areas for satellites.

A general expression for a single LEO satellite’s visibility

time was provided in [6], but it is incapable of concluding

the general distribution of visibility periods for any arbitrarily

positioned user. The deterministic model in [6] was then

developed by a statistical analysis of coverage time in mobile

LEO during a satellite visit [7]. In [8], the Doppler shift

magnitude of a LEO network is characterized for a single

spotbeam by using tools from stochastic geometry. Resource

control of a hybrid satellite–terrestrial network was performed

in [9] with two objectives of maximizing the delay-limited

capacity and minimizing the outage probability. A hybrid
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satellite–terrestrial network to assist 5G infrastructure has been

analyzed by considering only one spotbeam [10], [11].

In the current literature around communication satellites’

performance, the network analysis is limited to deterministic

simulation-based studies, simplifying the network by consider-

ing specific constellations with a limited number of satellites,

and assuming specific coverage footprints for satellites. There-

fore, a comprehensive method that fits any constellation with

arbitrary parameters is missing from the scientific literature.

In our recent study [12], downlink performance of a massive

LEO constellation was investigated by assuming uniform

distribution for satellites. However, the performance mismatch

between actual and uniform constellations was compensated

only through numerical mean absolute error minimization.

In this paper, we provide a mathematical framework for

downlink and uplink coverage probability and data rate anal-

ysis of an inclined LEO constellation under a general fading

model. For our derivations, first, we assume the satellites are

distributed uniformly on the orbital shell. Later, the mismatch

between the actual and uniform constellations is compensated

by deriving a new parameter as the effective number of

satellites. Finally, the mathematical expressions are verified

through simulations and the main findings of this paper are

demonstrated for different network parameters, e.g., the total

number of satellites, altitude and minimum elevation angle

required for a satellite to be visible to the user. The results

obtained in this paper are scalable for numerous problems in

massive satellite networks.

The organization of the remainder of this paper is as follows.

Section II describes the system model for an inclined LEO

constellation. As for the main results, in Sections III, we derive

analytical expressions for coverage probability and average

achievable data rate for a terrestrial user and introduce the

concept of effective number of satellites. Numerical results are

provided in Section IV for studying the effect of key system

parameters. Finally, we conclude the paper in Section V.

II. SYSTEM MODEL

Let us consider a LEO communication satellite constella-

tion, as shown in Fig. 1, that consists of Nact satellites, which

are placed on low circular orbits with the same inclination

angle and altitude denoted by ι and rmin, respectively. The

altitude parameter rmin has the subscript because it specifies

also the minimum possible distance between a satellite and a

user on Earth (that is realized when it is at the zenith).978-1-7281-4490-0/20/$31.00 © 2020 IEEE
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User terminals are located on the surface of Earth that is

approximated as a perfect sphere. We assume that wireless

transmissions propagate to/from a user from/to all and only

the satellites that are elevated above the horizon to an angle

of θs ≥ θmin. Correspondingly, rmax denotes the maximum

possible distance at which a satellite and a user may be able

to communicate (that is realized when θs = θmin), and

rmax

r⊕
=

√

rmin

r⊕

(

rmin

r⊕
+ 2

)

+ sin2(θmin)− sin(θmin), (1)

where r⊕ ≈ 6371 km denotes Earth’s radius. Conversely, the

latitudes, where a terrestrial user may be able to establish

connection with any satellite at all, are limited by

|φu| ≤ ι+ cos−1

(

r2⊕ + r⊕rmin +
(

r2min − r2max

)

/2

r⊕(r⊕ + rmin)

)

. (2)

For instance, with satellite altitudes of rmin = 500 km and

rmin = 2000 km, global coverage up to poles for θmin = 0◦

is possible only if ι > 68◦ and ι > 49◦, respectively. Using

(2), the minimum altitude which provides global coverage is

given as

rmin ≥ r⊕ cos (θmin)

sin (ι− θmin)
− r⊕. (3)

Each user is associated with the nearest satellite that is

referred to as the serving satellite in what follows. We as-

sume that co-channel interference mitigation has been imple-

mented properly so that the network performance becomes

noise-limited. The distances from the user to the serving

satellite and the other satellites are denoted by r0 and rn,

n = 1, 2, . . . , Nact − 1, respectively, while G0 and Gn repre-

sent the corresponding channel gains. Obviously, Gn = 0 if

rn > rmax for some n = 0, 1, . . . , Nact − 1.

Based on the above modeling, the signal-to-noise ratio

(SNR) at the receiver can be expressed as

SNR =







psG0r
−α
0

σ2
, r0 ≤ rmax,

0, otherwise,
(4)

where we assume that the user’s receiver is subject to addi-

tive white Gaussian noise with constant power σ2, and the

parameter α is a path loss exponent.

III. PERFORMANCE ANALYSIS

In order to contribute expressions for coverage probabil-

ity and average achievable rate of the satellite constellation

described in Section II, first, we assume that N satellites

are distributed uniformly on a sphere with radius r⊕ + rmin.

We will shortly compensate for the performance mismatch

generated by the distribution difference between the uniform

model and the practical constellations.

First, we need to characterize some basic distance distribu-

tions that stem from the geometry of the considered system.

In particular, we express the necessary cumulative distribution

function (CDF) and probability density functions (PDFs) in

the following lemmas.

User

Serving (nearest) satellite

Non-visible satellites
Other visible satellites

rmin

r0 rmax

r⊕

θmin

Fig. 1. A sketch of the considered system model, where satellites are
distributed uniformly over the inclined orbits.

Lemma 1. The PDF of the serving distance R0 is given by

fR0
(r0) = N

(

1− r20 − r2min

4r⊕(r⊕ + rmin)

)N−1
r0

2r⊕(r⊕ + rmin)
(5)

for r0 ∈ [rmin, 2r⊕ + rmin] while fR0
(r0) = 0 otherwise.

Proof. We first need to derive the CDF of the distance R from

any specific one of the satellites in the constellation to the

user. From basic geometry, the CDF of the surface area of the

shaded spherical cap Acap, formed by any satellite at distance

R from the user, in Fig. 1 is FAcap
(acap) =

acap

4π(r⊕+rmin)2
. Find-

ing a relationship between Acap and R, gives the distribution

as

FR (r) =











0, r < rmin,
r2−r2min

4r⊕(r⊕+rmin)
, rmin ≤ r ≤ 2r⊕ + rmin,

1, r > 2r⊕ + rmin,

(6)

and the corresponding PDF is given by

fR (r) =
r

2r⊕(r⊕ + rmin)
(7)

for r0 ∈ [rmin, 2r⊕ + rmin] while fR (r) = 0 otherwise. Due

to the channel assignment by which the serving satellite is

the nearest one among all the N i.i.d. satellites, the CDF

of R0 can be expressed as FR0
(r0) , P (R0 ≤ r0) = 1 −

(1− FR (r0))
N

and, by differentiation, its PDF is fR0
(r0) =

N (1− FR (r0))
N−1

fr(r) which will result in Lemma 1 by

substitution from (6) and (7).

A. Coverage Probability

In this subsection, we derive the coverage probability of

the LEO satellite network for a user in an arbitrary location

on Earth. The performance measure of coverage probability is

defined as the probability of having at least minimum SNR

required for successful data transmission. In other words,

whenever the SNR of the considered user from its nearest

satellite is above the threshold level T > 0, it is considered to

be within the coverage of the satellite communication network.



Proposition 1. The probability of network coverage for an

arbitrarily located user under general fading is

Pc (T ) , P (SNR > T )

=
N

2r⊕(r⊕ + rmin)

∫ rmax

rmin

(

1− FG0

(

Trα0 σ
2

ps

))

×
(

1− r20 − r2min

4r⊕(r⊕ + rmin)

)N−1

r0 dr0, (8)

where FG0
(·) is the CDF of the channel gain G0.

Proof. To obtain (8), we start with the definition of coverage

probability:

Pc (T ) = ER0
[P (SNR > T |R0)]

=

∫ rmax

rmin

P (SNR > T |R0 = r0) fR0
(r0) dr0

=
N

2r⊕(r⊕ + rmin)

∫ rmax

rmin

P

(

G0 >
Trα0 σ

2

ps

)

×
(

1− r20 − r2min

4r⊕(r⊕ + rmin)

)N−1

r0 dr0.

(9)

The upper limit for the integral is due to the fact that the

satellites with smaller than θmin elevation angle have no

visibility to the user.

The channel characteristics have no effect on the maximum

achievable coverage as it is affected only by the geometry of

the system model. The following corollary provides the upper

bound for coverage probability using Proposition 1.

Corollary 1. Setting T = 0, Proposition 1 leads to an upper

bound for coverage probability as

Pc (T ) ≤ FR0
(rmax)− FR0

(rmin) = 1− (1− PV)
N , (10)

where PV is the visibility probability of satellites to the user

and is expressed as

PV =
rmin − rmax sin(θmin)

2(r⊕ + rmin)
. (11)

The expression in (11) can be directly obtained as the surface

area of the spherical cap, where visible satellites can reside,

to the total surface area of the satellites’ sphere since the

satellites are uniformly distributed.

Since the number of visible satellites is a binomial random

variable with success probability PV, the coverage probability

is upper bounded by the probability of observing at least one

satellite by the user.

B. Average Data Rate

In this subsection, we focus on the average achievable

data rate. The average achievable rate (in bit/s/Hz) states the

ergodic capacity from the Shannon–Hartley theorem over a

fading communication link normalized to the bandwidth of

1 Hz. We can calculate the expression for the average rate of

an arbitrary user over generalized fading channels as follows.

It is worth noting that the average is taken over both serving

distance and fading distributions.

Proposition 2. The average rate (in bits/s/Hz) of an arbitrarily

located user and its serving satellite under general fading

assumption is

C̄ , E [log2 (1 + SNR)] =
N

2 ln(2)r⊕(r⊕ + rmin)

×
∫ rmax

rmin

∫ ∞

0

ln

(

1 +
psg0r

−α
0

σ2

)

fG0
(g0)

×
(

1− r20 − r2min

4r⊕(r⊕ + rmin)

)N−1

r0 dg0 dr0,

(12)

where fG0
(g0) represents the PDF of channel gain G0.

Proof. Taking the expectation over serving distance and chan-

nel gain, we have

C̄ = EG0,R0
[log2 (1 + SNR)]

= c0

∫ rmax

rmin

E

[

ln

(

1 +
psG0r

−α
0

σ2

)]

×
(

1− r20 − r2min

4r⊕(r⊕ + rmin)

)N−1

r0 dr0, (13)

where c0 = N
2 ln(2)r⊕(r⊕+rmin)

.

C. Effective Number of Satellites

Due to the fact that satellites in practical constellations are

distributed unevenly along different latitudes, i.e., the number

of satellites is effectively larger on the inclination limit of

the constellation than on equatorial regions, the density of

practical deterministic constellations is typically not uniform.

Thus, we define and calculate a new parameter, the effective

number of satellites, Neff , for every satellite latitude in order

to compensate for the uneven density w.r.t. practical inclined

constellations and create a tight match between the results

generated by uniform modeling and those from practical

constellation simulations.

Proposition 3. Let the effective number of satellites (Neff)

be the constellation size that corresponds to a satellite den-

sity observed by a user on a specific latitude assuming the

same density continues everywhere. The effective number of

satellites can then be determined as

Neff ,
2 fΦs

(φs)

cos(φs)
·Nact, (14)

where random variable Φs denotes the latitude of a satellite

and fΦs
(φs) corresponds to its PDF.

Proof. The satellite density observed effectively by a user at

any latitude assuming that there are Neff uniformly distributed

satellites in total is

δeff =
Neff

4π(rmin + r⊕)2
, (15)



where the denominator represents the surface area of the

satellites’ orbital shell. On the other hand, the actual density

of the satellites on a ring surface element at latitude φs can

be written as

δact =
NactfΦs

(φs) dφs

2π(rmin + r⊕)2 cos(φs) dφs
, (16)

where the nominator and denominator represent the number

of satellites resided in the surface element and the element’s

surface area, respectively. Setting δeff = δact and applying

some simplifications completes the proof.

Lemma 2. When the satellites’ argument of latitude U is a

uniform random variable [13], i.e., U ∼ U(−π
2 ,

π
2 ), the PDF

of satellites’ latitude with inclination ι is given by

fΦs
(φs) =

√
2

π
· cos(φs)
√

cos(2φs)− cos(2ι)
(17)

for φs ∈ [−ι, ι] while fΦs
(φs) = 0 otherwise.

Proof. Since the distribution of the argument of latitude is

known, we need to find the satellite’s latitude as a function of

the argument of latitude and inclination angle. The satellite’s

coordinates can be obtained by multiplication of ι-degree

rotation matrix and satellites’ orbital plane:




xs

ys
zs



 =





cos (ι) 0 sin (ι)
0 1 0

− sin (ι) 0 cos (ι)









(rmin + r⊕) cos (U)
(rmin + r⊕) sin (U)

0





=





(rmin + r⊕) cos (U) cos (ι)
(rmin + r⊕) sin (U)

− (rmin + r⊕) cos (U) sin (ι)



 . (18)

Therefore, the latitude of the satellite is given as

Φs = g(U) = tan−1

(

zs
√

x2
s + y2s

)

(19)

= tan−1



− cos (U) sin (ι)
√

cos2 (U) cos2 (ι) + sin2 (U)



 .

The PDF of Φs can be written as

fΦs
(φs) = fU (g

−1(φs))
d

dφs

(

g−1(φs)
)

(20)

by the transform of random variables.

Thus, when the satellites’ argument of latitude is uniform

and their inclination is ι, the effective number of satellites can

be obtained by using Lemma 2 in Proposition 3 as follows:

Neff =
2
√
2

π
· 1
√

cos(2φs)− cos(2ι)
·Nact. (21)

With high orbit inclination, the effective number of satellites

matches to the true number of satellites at some latitudes,

decreasing monotonically toward the equator and increasing

TABLE I
SIMULATION PARAMETERS

Parameters Values

Path loss exponent, α 2
Rician factor, K 100

CDF of channel gains, FGn
(gn) 1−Q1

(√
2K,

√
gn

)

PDF of channel gains, fGn
(gn)

1

2
e−

gn+2K
2 I0

(√
2Kgn

)

Transmission power, ps (W) 10

Noise power, σ2 (dBm) -93
User’s latitude, φu (degree) 0

monotonically toward the poles. By setting Nact = Neff , we

can solve these special latitudes (one for each hemisphere) as

φs = ±1

2
cos−1

(

8

π2
+ cos(2ι)

)

, (22)

if ι ≥ 1
2 cos

−1
(

1− 8
π2

)

≈ 39.5◦ and otherwise Neff > Nact

for all φs ≤ ι.
In the special case of having polar orbits (i.e., ι = 90◦),

the PDF of latitude would be the same as the argument of

latitude, i.e., φs = U ∼ U(−π
2 ,

π
2 ) for all φs values. Thus,

Neff = 2/π
cos(φs)

· Nact. For instance, at equator, (φs = 0◦),

Neff ≈ 0.64Nact and by increasing the latitude up to φs ≈
50.5◦, we will have Neff ≈ Nact. Finally Neff will approach

to infinity at poles where all satellite orbits cross. The authors

up north (φu = 61.5◦) at Tampere, Finland observe effectively

30% more satellites than there are in reality.

IV. NUMERICAL RESULTS

The propagation model takes into account the large-scale

attenuation with path loss exponent α = 2, as well as the

small-scale fading. To take into account a wider range of

fading environments, the channels are assumed to follow

Rician fading with parameter K = 100, where K is the ratio

between the direct path received power and other, scattered,

paths. The parameter K can be determined according to the

type of constellation, i.e., higher K values is suitable when the

serving satellite is likely high above the user. As a result, the

corresponding channel gains, Gn, (being the square of the Rice

random variable) have a noncentral chi-squared distribution,

X 2, with two degrees of freedom and non-centrality parameter

2K . Therefore, the CDF and PDF in Propositions 1 and 2 are

FG0
(g0) = 1−Q1

(√
2K,

√
g0

)

, (23)

fG0
(g0) =

1

2
e−

g0+2K

2 I0

(

√

2Kg0

)

, (24)

respectively, where Q1(·, ·) denotes the Marcum Q-function

and I0(·) is the modified Bessel function of the first kind.

For producing the numerical results, the transmitted and noise

power are set to ps = 10 W and σ2 = −93 dBm, respectively.

The simulation parameters are summarized in Table I.

For numerical verification, we compute the coverage prob-

ability and data rate of an actual LEO constellation through

Monte Carlo simulations in Matlab to compare them with

analytical results presented in this paper. Figure 2 verifies

the coverage expression given in Proposition 1, considering
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Fig. 2. Verification of Proposition 1 with simulations when K = 100, φu =
0◦, ι = 70◦ , rmin ∈ {500, 1000, 1500} km, and θmin = 10◦.

different altitudes for Nact = 648 and 120. As shown in

this figure, there is a slight deviation between the actual

constellation described in Section II and uniform constellation

performance due to the non-uniform distribution of satellites

along different latitudes in the real constellation. Substituting

N = Neff = 439 and 81 in Proposition 1 which corresponds

to Nact = 648 and 120, respectively, we can eliminate the

mismatch in the coverage.

For a fewer number of satellites, e.g., Nact = 120, it can be

well observed from Fig. 2 that the upper bound for coverage

probability, given in Corollary 1, is limited by the probability

of observing at least one satellite above the sky. As a result,

the upper bound is enhanced with rising the altitude due to

the increase in the visibility probability given in (11). On the

other hand, for larger number of satellites, e.g., Nact = 648,

the performance is affected only by the path loss since the

visibility probability approaches one. Verification of data rate

in Proposition 2 is shown in Fig. 3 for different minimum

elevation angles. The same as for Fig. 2, the mismatch between

uniform and actual constellation is omitted by setting N =
Neff = 439.

Coverage probability versus the total number of satellites for

different inclination and minimum required elevation angles

is depicted in Fig. 4. For plotting this figure, we applied

N = Neff in Proposition 1 in order to compensate for the

uneven distribution of satellites along different latitudes. The

coverage probability declines with θmin as the visibility to the

user decreases. However, this effect becomes less dominant as

the number of satellites increases since the serving satellite,

most probably, will be located above the user. Moreover,

within the depicted range, the smaller inclination angles result

in superior performance due to the larger density of satellites

and, consequently, the existence of a stronger serving channel.

There is an optimum altitude for every constellation, as

shown in Fig. 5, which results in maximum coverage prob-

ability. The optimum point increases with rising the minimum

0 10 20 30 40 50 60 70 80 90
0

1

2

3

4

5

6

Fig. 3. Verification of Proposition 2 with simulations when K = 100, φu =
0◦, ι = 70◦ , and rmin ∈ {500, 1000, 1500} km.
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Fig. 4. Coverage probability for different constellation sizes when K = 100,
φu = 0◦, T = 10 dB, and rmin = 500 km.

elevation angle while the maximum achieved coverage de-

creases accordingly. The initial increase in the plot is due to

the enhancement in the line-of-sight probability of the serving

satellite while it is followed by a decline caused by more

severe path loss in higher altitudes.

Above results are repeated in terms of data rate in Figs. 6

and 7 w.r.t. the total number of satellites and satellite altitude,

respectively, using Proposition 2 with N = Neff . The same as

for Fig. 4, lower inclination will result in higher data rates in

Fig. 6. However, the impact of both inclination and minimum

elevation angle on data rate reduces with increasing the total

number of satellites. The same observations as for Fig. 5 can

be also seen in Fig. 7, except for the optimum altitude differs

for maximum coverage probability and data rate.
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Fig. 5. Coverage probability for different altitudes when K = 100, φu = 0◦ ,
T = 10 dB, and Nact = 648.
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Fig. 6. Data rate for different constellation sizes when K = 100, φu = 0◦ ,
and rmin = 500 km.

V. CONCLUSIONS

In this paper, we presented a tractable approach for uplink

and downlink coverage and rate analysis of low Earth orbit

satellite networks. The satellite network is, first, modeled

with a uniform distribution which was then applied to obtain

exact expressions for coverage probability and data rate of

an arbitrary user in terms of network parameters. The slight

deviation between the performance metrics of the uniform

and actual constellations was compensated by derivation of

a new parameter—effective number of satellites—to take into

account the effect of uneven satellite distribution along dif-

ferent latitudes. The proposed framework in this paper paves

the way for accurate analysis, optimization and design of the

future dense satellite networks.
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Fig. 7. Data rate for different altitudes when K = 100, φu = 0◦ , and
Nact = 648.
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