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Improving the Fidelity of Mixed-Monotone Reachable Set

Approximations via State Transformations

Matthew Abate and Samuel Coogan

Abstract— Mixed-monotone systems are separable via a de-
composition function into increasing and decreasing compo-
nents, and this decomposition function allows for embedding
the system dynamics in a higher-order monotone embedding
system. Embedding the system dynamics in this way facilitates
the efficient over-approximation of reachable sets with hyper-
rectangles, however, unlike the monotonicity property, which
can be applied to compute, e.g., the tightest hyperrectangle
containing a reachable set, the application of the mixed-
monotonicity property generally results in conservative reach-
able set approximations. In this work, explore conservatism

in the method and we consider, in particular, embedding
systems that are monotone with respect to an alternative partial
order. This alternate embedding system is constructed with a
decomposition function for a related system, formed via a linear
transformation of the initial state-space. We show how these
alternate embedding systems allow for computing reachable
sets with improved fidelity, i.e., reduced conservatism.

I. INTRODUCTION

A dynamical system is mixed-monotone if there exists a

related decomposition function that decomposes the system’s

vector field into increasing and decreasing components;

mixed-monotonicity applies to continuous-time systems [1]–

[4], discrete-time systems [5], as well as systems with distur-

bances [6]–[8], and it generalizes the monotonicity property

of dynamical systems for which trajectories maintain a partial

order over states [9], [10].

For an n-dimensional mixed-monotone system with a

disturbance input, it is possible to construct a 2n-dimensional

embedding system from the decomposition function. This

embedding system contains no disturbances and it is mono-

tone with respect to a particular partial order. Thus, tools

from monotone systems theory can be applied to the embed-

ding system to conclude properties of the original dynamics;

in particular, such approaches are useful to efficiently ap-

proximate reachable sets using hyperrectangles. For example,

it is shown in [6]–[8] how finite-time forward reachable sets

for the original system are efficiently approximated via a

single simulation of the embedding system, and this proce-

dure is extended in [11] for the approximation of backward-

time reachable sets. These works assume a hyperrectangular
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initial set of interest, and the approximations derived from

their procedures are also hyperrectangles.

Unlike the monotonicity property, which can be applied

to compute, e.g., the tightest hyperrectangle containing a

reachable set [9], the application of the mixed-monotonicity

property is known to generally result in conservative reach-

able set approximations [6]–[8], [11]. In this work, we

explore two main ways of reducing the conservatism in the

approximation of reachable sets: (i) using alternative and/or

multiple decomposition functions, and (ii) using alternative

and/or multiple partial orders.

The first topic was recently explored in continuous-time

[12] and it is now known that all systems are mixed-

monotone with a unique tight decomposition function that

computes reachable sets with less conservatism than any

other decomposition function. This tight construction is

defined as an optimization problem and may not always

be practically computable. Thus, in some instances, employ-

ing a different decomposition function construction may be

preferable; see [4], [6], [7], [13] for an algorithm to generate

decomposition functions for systems with uniformly bounded

Jacobian matrices, and see also [11] for an algorithm to

generate decomposition functions for systems defined by

polynomial vector fields. Our first result is to show how

two initial decomposition functions for a given system can

be combined in a piecewise fashion to create a new de-

composition function for the same system that approximates

reachable sets with accuracy at least as good as employ-

ing both initial decomposition functions independently and

forming a reachable set approximation as the intersection of

the approximation derived from each function. This method

for reducing conservatism is particularly useful when both

initial decomposition functions are derived using the Jaco-

bian bound approach from [4], [6], [7], [13]; this approach

can produce multiple distinct decomposition functions for

the same system and combining these functions allows for

added fidelity.

The main results of this paper, however, deal with the

second topic regarding alternative partial orders. In particular,

we consider the standard componentwise partial orders in

a linearly transformed state-space, and we observe that

inequality intervals in the transformed space correspond to

parallelotopes in the original state-space. Thus, it is possible

to compute parallelotope over-approximations of reachable

sets by applying the standard mixed-monotonicity tools with

the new order. We present two methods for reducing con-

servatism in this manner: (i) several different partial orders

can be used so that the reachable set of the system is known
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to lie in the intersection of the approximation derived from

each partial order, (ii) in certain cases, a linear transformation

can be found to transform the system to a monotone system.

Moreover, as a tight decomposition function is known to exist

for any given transformed system, there exists an analogous

notion of tightness with respect to any given parallelotope

shape.

The results and tools created in this work are demonstrated

through three examples and a case study1.

II. NOTATION

Let (x, y) denote the vector concatenation of x, y ∈ R
n,

i.e., (x, y) := [xT yT ]T ∈ R
2n, and let � denote the

componentwise vector order, i.e., x � y if and only if xi ≤ yi
for all i ∈ {1, · · · , n} where vector components are indexed

via subscript. We say that x, y ∈ R
n are ordered when either

x � y or y � x.

Given x, y ∈ R
n with x � y,

[x, y] := {z ∈ R
n | x � z and z � y}

denotes the hyperrectangle defined by the endpoints x and y,

and given a nonsingular transformation matrix T ∈ R
n×n,

[x, y]T :=
{
z ∈ R

n | T−1z ∈ [x, y]
}

denotes the parallelotope defined by the endpoints x and y
and shape matrix T . Given a = (x, y) ∈ R

2n with x � y,

we denote by JaK the hyperrectangle formed by the first and

last n components of a, i.e., JaK := [x, y], and likewise

JaKT := [x, y]T .

Let �SE denote the southeast order on R
2n

defined by

(x, x′) �SE (y, y′) ⇔ x � y and y′ � x′

where x, y, x′, y′ ∈ R
n

. In the case that x � x′ and y � y′,
observe that

(x, x′) �SE (y, y′) ⇔ [ y, y′ ] ⊆ [x, x′ ]. (1)

III. PRELIMINARIES

We consider a dynamical system with disturbances

ẋ = F (x, w) (2)

with state x ∈ X ⊆ R
n and disturbance input w ∈ W ⊂ R

m,

where W = [w, w] for some w � w.

Let Φ(t; x, w) ∈ X denote the unique state of (2) reached

at time t when starting from state x at time 0 and evolving

subject to the piecewise continuous signal w : [0, t] → W .

We allow for finite-time escape so that Φ(t; x, w) need not

exist for all t, however, Φ(t; x, w) is understood to exist

only when Φ(τ ; x, w) ∈ X for all τ ∈ [0, t], and statements

involving Φ(t; x, w) are understood to apply only when

Φ(t; x, w) exists. For given X0 ⊆ X and t ≥ 0, we denote

1The code that accompanies these examples and generates the figures in
this work is publicly available through the GeorgiaTech FactsLab GitHub:
https://github.com/gtfactslab/Abate_ACC2021_2.

by R(t; X0) the time-t forward reachable set of (2) from X0,

that is,

R(t; X0) = {Φ(t; x, w) ∈ X | x ∈ X0,

w : [0, t] → W}. (3)

We begin by recalling fundamental results in mixed-

monotone systems theory.

Definition 1 (Mixed-Monotonicity). Given a locally Lips-

chitz continuous function d : X ×W × X ×W → R
n, the

system (2) is mixed-monotone with respect to d if

1) For all x ∈ X and all w ∈ W , d(x, w, x, w) =
F (x, w) holds.

2) For all i, j ∈ {1, · · · , n}, with i 6= j,
∂di

∂xj
(x, w, x̂, ŵ) ≥ 0 holds for all ordered

(x, w), (x̂, ŵ) ∈ X ×W such that ∂d
∂x

exists.

3) For all i, j ∈ {1, · · · , n}, ∂di

∂x̂j
(x, w, x̂, ŵ) ≤ 0 holds

for all ordered (x, w), (x̂, ŵ) ∈ X ×W such that ∂d
∂x̂

exists.

4) For all i ∈ {1, · · · , n} and all j ∈ {1, · · · , m},
∂di

∂wj
(x, w, x̂, ŵ) ≥ 0 ≥ ∂di

∂ŵj
(x, w, x̂, ŵ) holds for

all ordered (x, w), (x̂, ŵ) ∈ X ×W such that ∂d
∂w

and
∂d
∂ŵ

exist. �

When (2) is mixed-monotone with respect to d, d is said

to be a decomposition function for (2). Given d, the system
[
ẋ
˙̂x

]
= E(x, x̂) =

[
d(x, w, x̂, w)
d(x̂, w, x, w)

]
(4)

is the embedding system relative to d, and E is the embedding

function relative to d. We let ΦE(t; a) denote the unique

state of (4) reached at time t ≥ 0 when beginning from state

a ∈ X × X at time 0.

We show in the following Proposition how approximations

of reachable sets for (2) are efficiently computed via a single

simulation of the embedding system (4).

Proposition 1. Let (2) be mixed-monotone with respect to

d, and let X0 = [x, x] for some x, x ∈ X with x � x. Then

R(t; X0) ⊆ JΦE(t; (x, x))K. �

The proof of Proposition 1 appears in [6, Appendix B1]

and in an extended version of [11].

The application of Proposition 1 is known to provide

conservative estimates of reachable sets, and it is natural to

wonder whether fidelity can be improved. In the following

section, we discuss the three main ways that conservatism

enters the approach, and in the later sections we study

methods for reducing this approximation conservatism.

The mixed-monotonicity property generalises the mono-

tonicity of dynamical systems, for which trajectories main-

tain a partial order over states.

Definition 2. The system (2) is a monotone dynamical

system if

1) For all i, j ∈ {1, · · · , n}, with i 6= j,
∂Fi

∂xj

(x, w) ≥ 0

holds for all x ∈ X and all w ∈ W .
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2) For all i ∈ {1, · · · , n} and all j ∈ {1, · · · , m},
∂Fi

∂wj

(x, w) ≥ 0 holds for all x ∈ X and all w ∈

W . �

When (2) is monotone, (2) is mixed-monotone with respect

to d(x, w, x̂, ŵ) = F (x, w), and this decomposition func-

tion yields the tightest hyperrectangle containing R(t; X0)
when used with Proposition 1; that is, JΦE(t; (x, x))K con-

tains R(t; [x, x]) and no proper hyperrectangular subset of

JΦE(t; (x, x))K contains R(t; [x, x]).

IV. DISCUSSION ON CONSERVATISM IN THE METHOD

As discussed previously, the application of Proposition 1

is known to generally result in conservative reachable set

approximations, and conservatism enters the method in three

main ways: (a) when a non-tight decomposition function

is employed, (b) when the decomposition function d varies

quickly from the vector field F , and (c) when the initial set

X0 is poorly approximated by a hyperrectangle.

Generally, a mixed-monotone system, as in (2), will be

mixed-monotone with respect to many decomposition func-

tions, although certain decomposition functions will provide

tighter approximations of reachable sets than others when

used with Proposition 1. Thus, given a mixed-monotone

system, and perhaps several decomposition functions for

that system, it is natural to wonder which decomposition

function is preferable in application. We use the term type-

(a) conservatism to denote the approximation conservatism

added when a poor decomposition function is employed with

Proposition 1. Type-(a) conservatism was recently explored

in [12] and we provide additional analysis in Section V.

In particular, we recall that every mixed-monotone system

induces a unique tight decomposition function that provides

a tighter approximation of reachable sets than any other

decomposition function for (2) when used with Proposition

1. This decomposition function is defined as an optimization

problem and thus may not always be practically computable.

To that end, we show additionally how several, perhaps

non-tight, decomposition functions for (2) can be combined

to form a new decomposition function for (2) that, when

used with Proposition 1, provides tighter approximations

of reachable sets than are attainable by employing each

initial decomposition function separately with Proposition

1 and then forming a reachable set approximation as the

intersection of the approximations derived from each.

Even when a tight decomposition function is used with

Proposition 1, the derived reachable set approximation

may still be overly conservative. Specifically, employing a

tight decomposition function does not guarantee that no

proper hyperrectangular subset of JΦE(t; (x, x))K contains

R(t; [x, x]), in contrast to the case when the dynamics

are monotone. This form of conservatism occurs when the

decomposition function d varies quickly from the vector

field F , and we hereafter refer to this form of conservatism

as type-(b) conservatism. In Section VII, we address type-

(b) conservatism, and we show how it is mitigated by

considering alternate partial orders on X ; that is, we show

that (2) may be monotone with respect to a different partial

order than that considered in Definition 2 and, in this case, a

parallelotope approximation of R(t; X0) can be derived such

that no proper parallelotope subset of this approximation

contains R(t; X0).
Lastly, conservatism can enter the method when X0 is

poorly approximated by a hyperrectangle. While the hypothe-

sis of Proposition 1 assumes a hyperrectangular set of interest

X0, the basic procedure holds for different set geometries by

over-approximating the initial set with a hyperrectangle; in

particular, if X0 ⊂ [x, x] for some x � x, then R(t; X0) ⊆
JΦE(t; (x, x))K. However, if [x, x] poorly approximates X0,

then JΦE(t; (x, x))K will poorly approximate R(t; X0), and

this approximation conservatism is refereed to as type-(c)

conservatism. In Sections VII and VIII, we show how alter-

native partial orders on X , as in those discussed previously,

allow for ways of reducing type-(c) conservatism.

It is important to note that reachable set approximations

derived from Proposition 1 may be conservative, even when

types-(a), (b) and (c) conservatism are absent. That is, even

when a tight decomposition function is used, the system (2)

is monotone, and X0 is hyperrectangular, one will generally

find that R(t; X0) 6= JΦE(t; (x, x))K. This approximation

conservatism, referred to hereafter as type-(d) conservatism,

is inherent in Proposition 1 and cannot be mitigated using the

theory discussed thus far. We address type-(d) conservatism

in Section VII; we observe, in particular, that R(t; X0) is

constrained to the intersection of several independent approx-

imations derived from related systems to (4), and we show

through example how forming reachable set approximations

in this way mitigates type-(d) conservatism.

We summarise the proceeding discussion in the following

remark.

Remark 1. Four main forms of conservatism arise in the

application of Proposition 1:

(a) Type-(a) conservatism occurs when a non-tight decom-

position function is used.

(b) Type-(b) conservatism occurs when the decomposition

function d varies quickly from the vector field F .

(c) Type-(c) conservatism occurs when the initial set X0 is

poorly approximated by a hyperrectangle.

(d) Type-(d) conservatism is inherent to Proposition 1, and

cannot be mitigated using the theory discussed thus far.

Depending on the structure of one’s specific system, decom-

position function, and initial set, these forms of conservatism

can each occur independently of one another. In the following

Sections we study each form of conservatism, and show how

approximations of reachable sets for nonlinear systems can

be improved using the theory of mixed-monotonicity. �

V. REDUCING CONSERVATISM VIA DECOMPOSITION

FUNCTION ANALYSIS

Addressing type-(a) conservatism caused by a poor choice

of decomposition function for (2) requires constructing an

alternative decomposition function for the same system. This

issue was recently explored in [12] where it is shown that all



systems of the form (2) are mixed-monotone with respect to

a decomposition function d defined element-wise by

di(x, w, x̂, ŵ) =



min
y∈[x, x̂]
yi=xi

z∈[w, ŵ]

Fi(y, z) if (x, w) � (x̂, ŵ)

max
y∈[x̂, x]
yi=xi

z∈[ŵ, w]

Fi(y, z) if (x̂, ŵ) � (x, w).
(5)

We refer to d constructed in (5) as the tight decomposition

function for (2) and, importantly, d provides a tighter ap-

proximation of reachable sets than any other decomposition

function for (2) when used with Propositions 1 [12]. Thus,

applying Proposition 1 with (5) ensures that the procedure

does not suffer from type-(a) conservatism. See also [14] for

a discrete time analogue of (5).

The paper [12] shows how, in certain instances, a tight

decomposition function for (2) is attainable in closed form.

However, generally, the application of (5) is prevented by

its construction as an optimization problem. For this reason,

computing alternative decomposition functions for (2) via

other means can be useful; see [4], [6], [7], [13] for an

algorithm to generate decomposition functions for systems

with uniformly bounded Jacobian matrices, and see also

[11] for an algorithm to generate decomposition functions

for systems defined by polynomial vector fields. These

algorithms, however, have no tightness guarantees when (2)

is not monotone.

Our first result is to show how two initial, perhaps non-

tight, decomposition functions for a given system can be

combined in a piecewise fashion to create a new decompo-

sition function for the same system that approximates reach-

able sets with greater accuracy than either of its components.

Proposition 2. Let (2) be mixed-monotone with respect to

both d1 and d2. Then (2) is mixed-monotone with respect to

d defined element-wise by

di(x, w, x̂, ŵ) =



max{d1i (x, w, x̂, ŵ), d
2
i (x, w, x̂, ŵ)}

if (x, w) � (x̂, ŵ),

min{d1i (x, w, x̂, ŵ), d
2
i (x, w, x̂, ŵ)}

if (x̂, ŵ) � (x, w).

(6)

Moreover, denoting by E, E1, E2 the embedding functions

relative to d, d1, d2, respectively, we have that

JΦE(t; (x, x))K ⊆ JΦE1

(t; (x, x))K∩JΦE2

(t; (x, x))K (7)

for all t ≥ 0 and all x � x. �

Proof. We first show that d from (6) is a decomposition

function for (2). Since d1 and d2 are decomposition functions

for (2), d1i (x, w, x, w) = d2i (x, w, x, w) = Fi(x, w) for all

i ∈ {1, · · · , n}, all x ∈ X , and all w ∈ W , and therefore d
satisfies the first condition in Definition 1. Note also that d1

and d2 are both increasing in their first two arguments and

decreasing in their second two arguments; thus d satisfies

the conditions 2, 3 and 4 from Definition 1. Therefore, the

system (2) is mixed-monotone with respect to d.

We show that (7) holds, by showing that

JΦE(t; (x, x))K ⊆ JΦE1

(t; (x, x))K for all t ≥ 0, and

JΦE(t; (x, x))K ⊆ JΦE2

(t; (x, x))K follows from a

reflexive argument. The construction (6) implies

d(x, w, x̂, ŵ) � d1(x, w, x̂, ŵ) (8)

when (x, w) � (x̂, ŵ), and

d(x, w, x̂, ŵ) � d1(x, w, x̂, ŵ) (9)

when (x̂, ŵ) � (x, w). Thus, for all x � x,

E1(x, x) �SE E(x, x), (10)

and therefore

ΦE1

(t; (x, x)) �SE ΦE(t; (x, x)) (11)

holds for all t ≥ 0. For any embedding function, as in E1, E,

the space {(x, x̂) ∈ R
n × Rn |x � x̂} is forward invariant

for (4) [11], and therefore we have JΦE(t; (x, x))K ⊆
JΦE1

(t; (x, x))K. Therefore, E1, E2, E satisfy (7). This

completes the proof.

Proposition 2 shows how multiple decomposition func-

tions for (2) are combined to construct a new decomposition

function for (2); this new decomposition function, when

used with Proposition 1, provides tighter approximations of

reachable sets than are attainable by, in particular, employing

both initial decomposition functions and forming a reachable

set approximation as the intersection of the approximation

derived from each function. Thus, employing d from (6)

reduces type-(a) conservatism in the method. Note that when

either d1 or d2 is a tight decomposition function for (2),

d from (6) will always resolve to the tight decomposi-

tion function (5). Thus the application of Proposition 2 is

beneficial only when non-tight decomposition functions for

(2) are known, and this fact is intuitive as only non-tight

decomposition functions are subject to type-(a) conservatism.

Moreover, this method for reducing conservatism is particu-

larly useful, when, say, d1 and d2 are both derived using the

Jacobian bound approach appearing in [6], [11]; applying

this approach can produce multiple distinct decomposition

functions for the same system and these decomposition

functions can be combined using Proposition 2 to allow for

added fidelity.

While employing d from (6) reduces type-(a) conservatism

in the method, this approach is still susceptible to types-(b),

(c) and (d) conservatism. In Section VII, we take a different

approach, and show how types-(b), (c) and (d) conservatism

can be reduced when multiple partial orders are considered

on X .

VI. APPLYING THE TOOLS OF MIXED-MONOTONICITY

WITH ALTERNATE PARTIAL ORDERS

In this section, we show how the tools of mixed-

monotonicity, which are traditionally employed with the



standard order �, extend to alternate partial orders in a

similar way.

Consider the state transformation of (2) formed by taking

a linear transformation on the state-space

y = T−1x (12)

where x ∈ X is the state of (2) and where T ∈ R
n×n is a

nonsingular transformation matrix. Under the transformation

(12), the transformed dynamics of y become

ẏ = T−1F (Ty, w) := FT (y, w) (13)

with state y ∈ Y = {T−1x | x ∈ X} and disturbance

input w ∈ W . Further, the systems (2) and (13) are

related in the following way: for all x ∈ X , all t ≥ 0
and all piecewise continuous w : [0, t] → W , we have

Φ(t; x, w) = TΨ(t; T−1x, w), where Ψ denotes the state

transition function for (13).

We show next how a decomposition function for (13)

enables the approximation of forward reachable sets for (2).

Theorem 1. For some nonsingular T ∈ R
n×n, let (13) be

mixed-monotone with respect to d and let X0 = [y, y]T ⊆
X for some y � y. Then R(t; X0) ⊆ JΦE(t; (y, y))KT ,

where R(t; X0) denotes the reachable set of the original

dynamics (2) as defined in (3) and ΦE denotes the flow of the

embedding system constructed from d as defined in (4). �

Proof. Choose x ∈ X0, then T−1x ∈ [y, y]. For all w,

Proposition 1 implies that Ψ(t; y, w) ∈ JΦE(t; (y, y))K
for all y ∈ [y, y] and all t ≥ 0, and there-

fore Ψ(t; T−1x, w) ∈ JΦE(t; (y, y))K holds. Moreover,

Φ(t; x, w) = TΨ(t; T−1x, w) ∈ JΦE(t; (y, y))KT .

Theorem 1 extends the applicability Proposition 1 to the

case of parallelotope initial sets X0, and the approximations

derived from the application of Theorem 1 will also be

parallelotopes. As such, the results of Theorem 1 subsume

those of Proposition 1 as a special case by taking T = In
where In is the n × n identity matrix. We demonstrate the

application of Theorem 1 in the following example.

Example 1. Consider the system
[
ẋ1

ẋ2

]
= F (x, w) =

[
x1x2 + w
x1 + 1

]
(14)

with state-space X = R
2 and disturbance-space W =

[0, 1/4]. We assume a parallelotope set of initial conditions

X0 = [y, y]T for

y =

[
0

−1/4

]
, y =

[
1/4
0

]
, T =

[
1 −2
1 1

]
(15)

and we aim to approximate R(1; X0) using Theorem 1.

A decomposition function for (13) is formed using the

tight construction (5), and its embedding system is simulated

forward in time in order to approximate R(1, X0). We solve

(5) at each timestep of the simulation using FMINBND.M, a

MATLAB optimization tool. We show X0 graphically in Fig-

ure 1, along with R(1; X0) and its respective approximation

as derived in Theorem 1.

−1 0 1 2 3
−3

−1.5

0

1.5

3

x1

x
2

Fig. 1: Example 1. X0 is shown in red. R(1; X0) is shown

in green, with a parallelogram over-approximation shown

in light green. S(1; X0) is shown in blue, with a parallel-

ogram over-approximation shown in light blue. Note that

R(1; X0) 6= JΦE(1; [y, y])KT and this is due to types-(b)

and (d) conservatism in the method.

Note that the approximations derived thus far do not

suffer from types-(a) and (c) conservatism; this is due to

the fact that X0 is parallelotopic and we employ a tight

decomposition function in the procedure. However, we find

that R(1; X0) 6= JΦE(1; [y, y])KT and this is due to types-

(b) and (d) conservatism.

Additionally, note that the aforementioned procedure for

computing parallelotope approximations of forward reach-

able sets can be extended to approximate backward reachable

sets in a similar way. In particular, in [11], it is shown how

a decomposition function for ẋ = −F (x, w) is used to

compute a hyperrectangular over-approximation of

S(t; X0) = {x ∈ X | Φ(t; x, w) ∈ X0

for some w : [0, t] → W}, (16)

and we observe the same technique can be employed with

ẏ = −FT (y, w). An example is shown in Figure 1 where we

compute a parallelogram approximation of S(1; X0) using a

tight decomposition function for ẏ = −FT (y, w). �

Note that Theorem 1 induces an analogous notion of

conservatism to that of Proposition 1. That is, one may not

have access to a tight decomposition function for (13), and

in this case the application of Theorem 1 is subject to type-

(a) conservatism. In addition, when T is chosen poorly, the

system (13) may only induce decomposition functions which

vary quickly from Fy , and in this case the application of

Theorem 1 is subject to type-(b) conservatism. Last, the set

of interest X0 may be poorly approximated by a parallelotope

[y, y]T , and in this case the application of Theorem 1 is

subject to type-(c) conservatism. Note however, that type-(c)

conservatism is always mitigated when X0 is a singleton set.

Remark 2. When the set of interest X0 is a singleton set,

i.e. X0 = [x, x], then any nonsingular T ∈ R
n×n can be

used with Theorem 1 without type-(c) conservatism. This is

due to the fact that X0 = [T−1x, T−1x]T as well. �
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Fig. 2: Example 2: Approximating R(1; X0) by applying Proposition 1 and Theorem 1. (a) Comparing Proposition 1 to

Theorem 1: X0 is shown in red. R(1; X0) is shown in green, with a parallelogram over-approximation shown in light green.

X1 is shown in pink, and a rectangular over-approximation of R(1; X1) shown in blue. (b) Increasing fidelity with multiple

transformations: X0 is shown in red. R(1; X0) is shown in green. An approximation of R(1; X0) is formed by computing

the interaction of 10 approximations derived via Theorem 1. This approximation is shown in light green. (c) The red line

depicts the surface area of the reachable set approximation as a function of the number of transformation used. After all 10

applications of Theorem 1, the surface area of the resulting approximation is 1.71. The blue line depicts the surface area of

the true reachable set R(1; X0), which is equal to 0.67.

VII. REDUCING CONSERVATISM VIA THE USE OF

MULTIPLE PARTIAL ORDERS

The main focus of this paper is to discover means of

improving fidelity in the approximations of reachable sets for

nonlinear systems using the theory of mixed-monotonicity,

and we have shown previously how type-(a) conservatism

can be mitigated using an approach based on analyzing

decomposition functions. In this section, we take a different

approach, and show how multiple partial orders, as in those

discussed in Section VI, can be employed to reduce types-

(b), (c) and (d) conservatism.

We first turn our attention to type-(d) conservatism. As

suggested in the previous discussion, a naive approach

for deriving tighter approximations of reachable sets is to

construct several decomposition functions for (2) and then

form an approximation of the reachable set of (2) as the

intersection of the approximations derived from each de-

composition function and Proposition 1. This approach is,

however, unnecessarily complicated since, by Proposition 2,

multiple decomposition functions for (2) can be combined to

form a decomposition function that achieves approximations

of reachable sets at least as tight as that computed via this

intersection-based approach. Moreover, the application of (6)

is still subject to type-(d) conservatism, as this approximation

conservatism is inherent in Proposition 1.

Nonetheless, we show in Example 2 how type-(d) con-

servatism is mitigated by applying the results of Section

VI. In particular, we show how a decomposition for (2)

and a decomposition function for (13) are used together to

approximate reachable sets with added fidelity.

Example 2. We consider the system (14), previously studied

in Example 1. We take T and X0 = [y, y]T from (15) and

we aim to approximate R(1, X0) by applying Theorem 1.

As in Example 1, we assume access to the tight decom-

position function for (13) and X0 is parallelotopic; thus,

Theorem 1 can be employed without types-(a) and (c) con-

servatism in the approximation. Additionally, types-(b) and

(d) conservatism cannot be mitigated by, e.g., computing an

alternative decomposition function for (13) and then forming

an approximation of R(1, X0) as the intersection of the

approximations derived from each decomposition function.

Nonetheless, it is possible to reduce overall conservatism by

applying Theorem 1 several times with different transforma-

tions, so that R(1, X0) is constrained to the intersection of

each approximation derived.

To demonstrate this assertion, we take X1 = [0, 3/4] ×
[−1/4, 1/4], so that X0 ⊂ X1, and we compute a rectangular

over-approximation of R(1; X0) by applying Proposition 1

with a decomposition function for (14). We show X1 and a

rectangular approximation of R(1; X0) graphically in Figure

2a. Note that applying Proposition 1, in this case, is subject

to type-(b) conservatism as X0 is not hyperrectangular and

we find that the initial application of Theorem 1 leads

to a significantly tighter approximation of R(1; X0) than

is attainable using Proposition 1. Nonetheless, fidelity is

best improved when both Proposition 1 and Theorem 1

are employed, so that R(1, X0) is constrained to lie in the

intersection of the approximations derived from each.

To illustrate this point further, we next form an approxi-

mation of R(1; X0) by applying Theorem 1 with 10 different

transformations matrices; an approximation of R(1; X0) is

then formed as as the intersection of the approximation

derived from each transformation (See Figures 2b–2c), this

approach yields a significantly tighter approximation of

R(1; X0) than the initial application of Theorem 1. �

As demonstrated in Example 2, overall conservatism can

be reduced when multiple approximations are derived from

the application of Theorem 1 with different partial orders.

Each approximation, on its own, contains types-(a), (b), (c)

and (d) conservatism, however ultimately fidelity is improved

in the approach.



It is important to note that, in certain instances, a transfor-

mation T can be chosen so that (13) is a monotone system as

defined in Definition 2 and, in this instance, the application of

Theorem 1 is devoid of type-(b) conservatism. In this case a

parallelotope approximation of R(t; X0) can be derived such

that no proper parallelotope subset of this approximation

contains R(t; X0). A demonstration is shown in Example

3.

Example 3. Consider the system
[
ẋ1

ẋ2

]
= F (x, w) =

[
x1 − x2 + x3

2 + w
x1 − x2

]
(17)

with state-space X = R
2 and disturbance-space W =

[−1, 1]. Under the transformation

T1 =

[
1 1
0 1

]
(18)

the dynamics of y from (13) become
[
ẏ1
ẏ2

]
= FT1

(y, w) =

[
y32 + w
y1

]
, (19)

and (19) is a monotone system as defined in Definition 2.

Thus, the application of Theorem 1 with T1 will not be

subject to type-(b) conservatism. An example is shown in

Figure 3, where we compute an over-approximationR(1; x0)
with x0 = (1, 1) by applying Theorem 1 with a tight

decomposition function for (13) with T1. Note that, in this

case, the approximation is not subject to types-(a), (b) and

(c) conservatism as a tight decomposition function is em-

ployed, x0 is trivially a parallelotope, and (13) is monotone.

Nonetheless, the approximation derived from the application

of Theorem 1 still contains some conservatism, and this is a

result of type-(d) conservatism in the method.

Even though (17) is transformable to a monotone system

via T1, fidelity in the approximation can still be improved

by applying Theorem 1 again with a different shape matrix.

An example is shown in Figure 3, where we compare the

approximation derived with T1 to a second approximation

derived using

T2 =

[
1 4
−1 1

]
. (20)

While the approximation derived from T2 hugs the boundary

of R(1; x0) less tightly than the approximation derived

from T1—this is a result of type-(b) conservatism—we find

that employing Theorem 1 with both T1 and T2 yields a

the tighter approximation of R(1; x0) than was attainable

previously. Moreover, this approach mitigates type-(d) con-

servatism in the method. �

Examples 2 and 3 demonstrate a new approach for in-

creasing fidelity in the approximations of reachable sets for

nonlinear systems using the theory of mixed-monotonicity.

This approach involves computing a polytope approximation

of R(t; X0) as the intersection of several parallelotope ap-

proximations derived via Theorem 1, and we address types-

(a), (b), (c) and (d) conservatism individually in discussion.

In the next section, we present a numerical example and
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2

Fig. 3: Example 3. x0 is shown in red and R(1; x0) is shown

in green. Two parallelogram approximation of R(1; x0)
are computed using Theorem 1 with T1 and T2 and these

approximations are shown in pink and blue, respectively.

Note that while T1 induces a monotone system, and achieves

the tightest parallelogram containing R(1; x0), conservatism

is still reduced when repeating the procedure with T2.

demonstrate a novel method for reducing type-(c) conser-

vatism when the initial set X0 is polytopic, and this method

forms an approximation of R(t; X0) union of several ap-

proximations derived via Theorem 1.

VIII. NUMERICAL EXAMPLE

Consider the system
[
ẋ1

ẋ2

]
= F (x, w) =

[
x2 + sin (x2) + w
x1 + cos (x1) + 1

]
(21)

with state-space X = R
2 and disturbance space W =

[0, 1/2], and consider a hexagonal set of initial conditions

X0 = Conv({x ∈ R
2 |x1 = 1 + cos (

iπ

3
),

x2 = 1+ sin (
iπ

3
), i ∈ {1, · · · , 6}}) (22)

where Conv denotes the convex hull function. We aim to

overapproximate R(1; X0).
One approach for approximating R(1; X0) is to apply

Theorem 1 with a parallelogram over-approximation of X0;

but this approach—which is taken in Example 2—is subject

to type-(c) conservatism. In this study, we instead take an

approach whereby X0 is described exactly as the union of

three parallelotopes. An approximation of R(1; X0) is then

computed as the union of three approximations derived via

Theorem 1.

We first describe X0 as the union of three disjoint paral-

lelograms, X i
0 = [y

i
, yi]Ti

, for i ∈ {1, 2, 3}, and

y
i
= (−1, 0) + T−1

i (1, 1), yi = (0, 1) + T−1
i (1, 1)

Ti =



− cos (

2π(i− 1)

3
) cos (

2πi

3
)

− sin (
2π(i − 1)

3
) sin (

2πi

3
)


 . (23)

Thus, X0 = ∪3
i=1X

i
0 , and these parallelograms are disjoint

in the sense that X 1
0 , X 2

0 and X 3
0 share no common interior
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(a) The initial set X0 is the union of three disjoint parallelograms
X

1

0 , X 2

0 and X
3

0 , shown red, green and blue. The reachable set of
each is approximated using theorem 1 and is shown in respective
colors. The true reachable set R(1; X0) is shown in green.

−1 1 3 5 7
−1

1

3

5

7

x1

x
2

(b) The initial set X0 is the union of three overlapping parallel-
ograms, shown red, green and blue. The reachable set of each is
approximated using theorem 1 and is shown in respective colors.
The true reachable set R(1; X0) is shown in green.

Fig. 4: Numerical Example. Approximating R(1; X0) where

X0 is the union of parallelograms.

points. For each shape matrix Ti, a tight decomposition func-

tion is formed for (13) and the time-1 reachable set of (13)

is approximated using Theorem 1. Then, an approximation

R(1; X0) is formed as the union of the three approximations

derived for R(1; X i
0) with i ∈ 1, 2, 3. We show X 1

0 , X 2
0

and X 3
0 graphically in Figure 4a along with their respective

reachable set approximations derived in this study. Note that

the three approximations derived do not share many common

points, and this is a result of the fact that X 1
0 , X 2

0 and X 3
0

are chosen to be disjoint.

We next repeat the procedure, and describe X0 as the

union of three overlapping parallelograms, as shown in

Figure 4b. As was the case previously, a tight decomposition

function is formed for each transformed system (13) that

arises from the shape matrices of these initial parallelograms.

For each, the time-1 reachable set of (13) is approximated

using Theorem 1, and then R(1; X0) is approximated as the

union of the three approximations derived. Note that the three

approximations derived here overlap significantly, and this is

a result of the fact that the chosen initial sets overlap.

In summary, in this study, we show how reachable sets

for initial sets that are not hyperrectangles are approximated

using Theorem 1, and this procedure avoids type-(c) conser-

vatism in the approach. Note that this procedure is applicable

to all systems (2) and all polytope initial sets X0 with

hyperrectangular faces.

IX. CONCLUSION

This work studies means of improving fidelity in the

approximations of reachable sets for nonlinear systems us-

ing the theory of mixed-monotonicity. Four main forms of

conservatism are considered, and we show how applying the

tools of mixed-monotonicity to a related system, formed via

a linear transformation of the initial state-space, is used to

reduce this conservatism.
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