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Convergence Certificate for Stochastic Derivative-Free Trust-Region
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Abstract— In many machine learning applications, one wants
to learn the unknown objective and constraint functions of an
optimization problem from available data and then apply some
technique to attain a local optimizer of the learned model. This
work considers Gaussian Processes (GPs) as global surrogate
models and utilizes them in conjunction with derivative-free
trust-region methods. It is well known that derivative-free trust-
region methods converge globally—provided the surrogate model
is probabilistically fully linear. We prove that GPs are indeed
probabilistically fully linear, thus resulting in fast (compared to
linear or quadratic local surrogate models) and global conver-
gence. We draw upon the optimization of a chemical reactor to
demonstrate the efficiency of GP-based trust-region methods.

I. INTRODUCTION

Increased computational power, ubiquitous availability of

computational resources and improved algorithms have driven

steady research interest in real-time optimization. However, in

essentially all real-world applications, accurate plant models

are not available. Hence, the issues surrounding uncertain

models have been explored in different settings ranging from

robust and stochastic optimization [1] via real-time optimiza-

tion [2], data-driven control [3] to machine learning [4].

The set of Derivative-Free Optimization (DFO) trust-region

methods comprises established tools to optimize unknown—

or expensive to evaluate—objectives [5]. The pivotal idea is

the use of a local surrogate model, built at each iteration

by evaluating the objective at a number of sample points

within the trust region. Probabilistic derivative-free trust-

region methods rely on randomized surrogate models [6], [7].

The key advantage of using a probabilistic method is its ability

to capture uncertainties efficiently. This is indeed useful for

noisy objectives and/or inaccurate models. However, the key

bottleneck of deterministic and probabilistic derivative-free

trust-region methods alike is twofold: (i) ensuring the quality

of the surrogate model, and (ii) guaranteeing a sufficiently

large domain of validity. The former can be achieved via
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complicated procedures for sample-set maintenance [5], while

the latter calls for global surrogate models.

The convergence of trust-region methods relies on the accu-

racy of the surrogate model within the trust region. Intuitively

speaking, the convergence mechanism increases the sampling

of the unknown function and decreases the trust-region radius

until the local surrogate model is sufficiently accurate in

zeroth- and first-order compared to the unknown function.

This accuracy, which is defined as “full linearity”, helps move

in a decent direction. Global convergence of derivative-free

trust-region methods for deterministic and stochastic version

is described in [5] and [6], respectively. In this context, the

main challenge is the construction of a surrogate model by

performing as few plant evaluations as possible. Hence, if full-

linearity can be certified, a global surrogate model is usually

preferred over local ones.

At the same time, there is a recent and steadily growing

interest in machine learning techniques in computer science

as well as in systems and control. This spans {supervised,

reinforcement} learning and data-driven function approxima-

tions by deep neural networks [8] and GPs [9], [10]. There

exists a body of literature on using machine learning for

optimization, e.g., [10], [11]. In some cases, it is possible to

guarantee convergence to the global minimum of unknown

functions.

Since GPs are excellent candidates to be used as global

surrogate models, it is natural to combine them with derivative-

free trust-region methods. The idea, which dates back to

Conn’s book [5], was analyzed empirically in [12]. It is also

used in Real-Time Optimization (RTO), where the aim is

to solve a steady-state optimization problems or to optimize

repeated batch operation [13], [14]. However, to the best of

our knowledge, it is yet to be shown whether GPs can be

certified to be fully linear, which is key for guaranteeing global

convergence of derivative-free trust-region methods.

The main result of this paper is to prove that GPs can

satisfy the fully-linearity property. We present the necessary

procedure for this certification. Furthermore, using GP as a

global surrogate model leads to fewer trust-region iterations,

implying fewer plant evaluations. This has a clear advantage

over local surrogate models and other empirical local model

correction methods as illustrated in the numerical section.

The remainder is structured as follows: We formulate the

problem, discuss a probabilistic derivative-free trust-region

method, introduce GPs, and explain the need for improvement

in Section II. A certification proof for GPs to be fully-

linear surrogate model is provided in Section III. We illustrate

http://arxiv.org/abs/2010.01120v1


the effectiveness and advantage of the proposed work on a

numerical case study in Section IV, while Section V concludes

the paper.

II. PRELIMINARIES

A. Problem statement

We consider the Nonlinear Program (NLP)

min
x∈Rnx

f(x), (1)

with the unknown objective f : Rnx → R and the decision

variables x ∈ R
nx . A solution to (1) can be computed using

DFO by sampling the unknown function f and building a

surrogate model. The samples are subject to additive noise

and therefore their distribution can be written as:

z = f(x) + ν where ν ∼ N
(

0, σ2
)

. (2)

Surrogate models usually depend (implicitly or explicitly) on

a—yet to be specified—number of past data points,

Dk = {(xk−l−1, zk−l−1), . . . , (xk, zk)}, (3)

where z(k) is a realization of the random variable z at time

instant k. Hence, by building the surrogate model m : Rnx ×
R

(nx+1)×l → R, the solution to problem (1) becomes

xk+1 = argmin
x∈Rnx

mk(x), (4)

where the shorthand mk(x) := m(x,Dk) is used.

Remark 1 (Applicability of the considered setting):

At first glance, the problem setting outline above might look

restrictive as it focuses on unconstrained optimization in real

vector spaces. Although problem (4) does not explicitly incor-

porate constraints, one may convert constrained optimization

problems into unconstrained ones using penalty functions;

see [15].

Moreover, whenever one aims at optimizing the perfor-

mance of a repeated (batch) process or of a periodic process,

ẋ = fp(x, v), x(0) = x0, one will typically start with

an optimal control problem, which—after applying direct

discretization techniques in conjunction with ideas from se-

quential algorithms for numerical optimal control—can be

cast in a mathematically equivalent form to (1) and (4), see

e.g. [16]. �

B. Surrogate modeling with GPs

Unlike parametric identification techniques, where data are

discarded after constructing the model, GPs are kernel-based

methods that use all available data (or subset thereof) to learn

a map between input and output data. We will briefly introduce

GPs and refer to [10], [17] for further details.

Let x ∈ L2(D,P;Rnx) denote random variables and x :=
x(ω) ∈ R

nx their realizations, where L2(D,P;Rnx) is the

underlying Hilbert space of random variables with finite

variance.

Considering l available samples, the input-output data gen-

erated by f is D from (3) (dropping the iteration index k).

Let X be the projection of D onto R
nx and let z̄ ∈ R

l be

the projection of D in direction of z. We use GP regression

to establish a relationship between X and z̄ and obtain a

corresponding conditional distribution of z for a new query

input point x, that is,

z|x,X, z̄ ∼ N
(

µz, σ
2
z

)

, (5)

where the mean and the variance of z are

µz := E[z] = c̄⊤
(

C̄ + σ2Ip
)−1

z̄, (6a)

σ2
z
:= V[z] = κ(x) − c̄⊤

(

C̄ + σ2Ip
)−1

c̄. (6b)

Here, C̄ ∈ R
l×l is a covariance matrix with elements C̄ij =

c(xi, xj), c̄ = [c(x, x1), c(x, x2), . . . , c(x, xl)]
⊤ ∈ R

l×1,

κ(x) = c(x, x), where c(·, ·) is a covariance function denoted

as kernel. For example, the squared exponential covariance

function with automatic relevance determination is defined as

c(xi, xj) = σ2
f exp

(

− (xi−xj)
⊤Λ(xi−xj)
2

)

, (7)

where Λ = diag(λ1, λ2, . . . , λnx
). The hyperparameters θ =

[σf , λ1:nx
] ∈ R

nx+1 need to be learned/estimated from the

data D during the training phase. Since the covariance matrix

C̄ and the covariance vector c̄ depend on the hyperparameters

θ and the input data X, one can also write C̄ as C̄(θ,X). To

this end, consider Q(θ,X) := C̄(θ,X) + σ2Il and the log-

marginal likelihood

L(θ,X, z̄) = −
1

2
z̄⊤Q(θ,X)−1z̄ −

1

2
log|Q(θ,X)| −

n

2
log2π.

Given X and z̄, the parameters are learned by maximizing the

log-marginal likelihood,

θ∗ = argmax
θ

L(θ,X, z̄). (8)

The above nonconvex maximization problem can be solved

using deterministic as well as stochastic methods. We refer

to [10, Chap. 7] and [18, Chap. 2] for further details and for

insights into the convergence properties.

In summary, the optimal hyperparameters θ∗ are found

by training a GP. Then, for the query point x, the GP

provides the output z with a normal distribution. The mean

and covariance of the normal distribution is computed using

the hyperparameters θ∗ and finding how close x is compared to

the data set. This way, the GP computes the output distribution

of z with more weight on the nearest inputs.

A first advantage of using GPs compared to fixed-structure

parameteric models is that GP models are able to capture

complex nonlinear input-output relationships through the use

of only a few parameters. This happens because the predicted

output is influenced more by the nearby input-output pairs

obtained from the training data set. A second advantage is

that, generally, they offer an interesting trade-off between ex-

ploration and exploitation [10]. A third advantage, particularly

in DFO setting, is the fact GPs constitute global surrogate

models. The main drawback of GPs is the computational

complexity growing as a cubic function of the number of data

points N , that is, the complexity is O(N3). However, this can

be addressed using sparse GPs [10].

In what follows, at each iteration k, we use the GP mean

as a surrogate model, that is,

mk(x) := µz (x,Dk) , (9)



where the notation µz (x,Dk) highlights that, for fixed hyper-

parameters, µz from (6a) takes x as argument—via c̄—and

depends on the data set Dk–via c̄ and C̄ .

If the considered function samples obtained via (2) are

indeed subject to additive noise, the data Dk will contain l
samples that correspond to realizations of random variables.

Hence, the uncertainty surrounding the data Dk induces the

probabilistic nature of the surrogate model and, consequently,

the model available at iteration k can be regarded as mk :
R

nx → L2(D,P;R). Conceptually, its realization can be

denoted as mk := mk (ω). This point of view leads naturally

to probabilistic DFO methods.

C. Derivative-free probabilistic trust-region methods

A standard version of probabilistic derivative-free trust-

region method is summarized in Algorithm 1, cf. [6], [7].

The main idea is to approximate the unknown function via

mk(x) within a certain neighborhood of xk (a.k.a. the trust

region). Whenever the surrogate model fails approximating

the original problem, then the trust region is shrunk and

the process repeated. Next, we recall the main points of the

convergence analysis given in [7].

Assumption 1 (Differentiability of f [7]): The unknown

function f has bounded level sets and the gradient ∇f is

Lipschitz continuous with constant Lg. �

Assumption 2 (Noise with finite variance [7]): The addi-

tive noise ν observed while measuring f is drawn from a

normal distribution with zero mean and finite variance. �

For the remainder, we define B(x; ∆) as the ball of radius

∆ centered at x ∈ R
n. Furthermore, Ck denotes the set

of functions on R
n with k continuous derivatives and LCk

denotes the set of functions in Ck such that the kth derivative

is Lipschitz continuous.

Definition 1 (κ fully-linear model [7]): Consider f satis-

fying Assumption 1. Let κ = (κef , κeg, ν
m
1 ) be a given vector

of constants and let ∆ > 0 be given. A model m ∈ LC1

with Lipschitz constant νm1 is a κ fully-linear model of f on

B(x; ∆) if for all s ∈ B(0;∆),

|f(x+ s)−m(x+ s)| ≤ κef∆
2, and (10a)

‖∇f(x+ s)−∇m(x+ s)‖ ≤ κeg∆. (10b)

�

The above definition is key in the convergence analysis

for the case of probabilistic surrogate models. The main

idea is to show that these models have good accuracy with

sufficiently high probability [6]. Since derivative-free trust-

region algorithms sample and collect data at each iteration, let

FM
k−1 denote the realization of events during the first k − 1

iterations of the algorithm. Now, we are ready to define a

probabilistic κ fully-linear surrogate model.

Definition 2 (κ fully-linear model with probability α [7]):

A sequence of random models {mk} is κ fully linear with

probability α on {B (xk,∆k)} if the events

Sk = {mk is a κ fully-linear model of f on B (xk,∆k)}

satisfy the condition P
(

Sk|FM
k−1

)

≥ α for all k sufficiently

large. �

Algorithm 1 Derivative-Free Trust-Region Method [7]

Data: Initial model m0, initial point x0, and constants 0 <
γdec < 1 < γinc, 0 < η < β < 1, 0 < ∆0

and α ∈ (0, 1) satisfying (11). Set k =0.

1) Model building: Build mk, a κ fully-linear model with

probability αk on B(xk; ∆k), for some αk ∈ (0, 1) such

that αk ≥ α for sufficiently large k.

2) Step calculation:

sk := argmin
s:‖s‖≤∆k

mk(xk + s) (12)

3) Compute model decrement:

a) If mk(xk) − mk(xk + sk) < β min
{

∆k,∆
2
k

}

then

xk+1 = xk; ∆k+1 = γdec∆k and go to Step 6.

b) Else go to Step 4).

4) Estimate improvement after plant evaluation: Evalu-

ate

ρk =
F 0
k − F sk

k

mk(xk)−mk(xk + sk)
. (13)

5) Trust region and step update:

• If ρk ≥ η, then xk+1 = xk+sk and ∆k+1 = γinc∆k.

• If ρk < η, then xk+1 = xk and ∆k+1 = γdec∆k.

6) Setting index: k = k+1 and go to Step 1.

Next, we introduce Algorithm 1. The main idea is to

build a surrogate model within the trust-region radius and

use it to compute a minimizer. As long as the objective

decreases sufficiently, accept the step and increase the trust-

region radius, otherwise decrease the radius and reject the

step. The challenge stems from the probabilistic nature of the

surrogate model, in particular from the fact that the confidence

in the model is probabilistic. This hinders increasing the trust-

region radius significantly. Hence, it is important to have

a relationship between the probability α (confidence in the

surrogate model) and γinc/γdec (increment/decrement of the

radius). This relationship reads [7]:

α ≥







1

2
, 1−

γinc−1
γinc

4
[

γinc−1
2γinc

+ 1−γdec

γdec

] , 1−
1− γdec

2 (γ2
inc − γdec)







.

(11)

Remark 2: A careful look at Step 1 of Algorithm 1 re-

veals that we need to build a κ fully-linear model only for

sufficiently large k. This allows having a relatively inaccurate

model at the beginning, thereby avoiding unnecessary sam-

pling as long as there is sufficient improvement.

Theorem 1 (Global convergence [7]): If Assumptions 1-2

are satisfied, and α is chosen to satisfy (11), then {‖∇f(xk)‖}
converges in probability to zero. That is, for all ǫ > 0,

limk→∞ P [‖∇f(xk)‖ > ǫ] = 0. �

At this point a pivotal question arises: how to build a

κ fully-linear surrogate model with probability α? Details

of building and certifying a probabilistic local surrogate



model at each iteration—mainly via linear and nonlinear

interpolation/regression—are given in [6], [7]. Here, we aim

at reducing the number of expensive plant evaluations by

constructing a global instead of a local surrogate model. For

that, we will use a GP as the surrogate model. We will also

show how to certify a GP as a probabilistic fully-linear model.

To the best of the authors’ knowledge, this is still an open

question, although GPs have been used in a derivative-free

trust-region framework [12], [14].

III. CERTIFICATION PROOF

We certify that GPs are probabilistic fully-linear models.

We remind the reader that we use the GP mean as the surrogate

model, that is, m(x) := µz (x,Dk).

Definition 3 (Reproducing kernel Hilbert Space [10]):

Let H be the Hilbert space of real functions f defined on

the index set X . Then, H is called a reproducing kernel

Hilbert space (RKHS) endowed with an inner product 〈·, ·〉
(and norm ‖f‖H =

√

〈f, f〉H) if there exists a function

c : X ×X → R with the following properties:

1) for every x, c(x, x′) as a function of x′ belongs to H,

and

2) k has the reproducing property 〈f(·), c(·, x)〉H = f(x).

�

The aim is to show that (10a) and (10b) hold with prob-

ability at least α when the GP mean is used as a surrogate

model. For this, the following two properties are assumed.

Assumption 3 (Bounded RKHS norm [19]):

The unknown function f(x) has a known bounded RKHS

norm ζ under a known kernel c, that is, ‖f(x)‖c ≤ ζ < ∞.

�

Assumption 4 (Lipschitzness of the mismatch function):

The mismatch function h(x) := f(x) − m(x) has Lipschitz

continuous gradient with constant γlh. Furthermore, the

sequence xk generated by applying Algorithm 1 satisfies

‖∇2h(xk)‖ ≤ κbhh < ∞, that is, the mismatch function has

a bounded Hessian. �

Assumption 4 is not very strong and is a consequence

of Assumption 1: the unknown function f(·) has Lipschitz

continuous gradient with bounded Hessian. Note that most of

the practically used kernels (e.g. Matern, squared exponential)

have Lipschitz continuous gradients [10]. Before deriving the

main result, we first state that the distance between an un-

known function and the mean is bounded by the GP variance

with some probability 1− δ.

Lemma 1 (Bound on mismatch function [19]):

Let Assumption 3 holds and let δ ∈ (0, 1). It follows that

P

{

|m(x) − f(x)| ≤
√

β(N, δ) σz(x,N)
}

≥ 1− δ. �

Here,
√

β(N, δ) depends on the number of samples, the

probability δ and the RKHS norm ‖f‖c, see [19] for details.

If the unknown function f is sampled from a GP, one can

compute β in closed form [20]. We note that for highlighting

the dependence of β and σz on the number of samples and the

probability δ, we simply write them as β(N, δ) and σz(x,N).

Theorem 2 (GP is κ fully linear with probability α):

Let Assumptions 3 and 4 hold. If 0 < ∆ <
6

γlh
(κeg − 2κef − κbhm), then there exists a positive

integer N < ∞ such that, after N sampling steps, a GP can

be certified κ fully linear with probability α. �

Proof: Following Definition 2, the goal is to prove that

equations (10a) and (10b) hold with probability at least α.

Let us start with equation (10a) and consider any point

within the trust region, that is, x ∈ B(xk,∆k). Increased

sampling will validate the probability bound in Lemma 1.

Upon performing N plant evaluations and applying Algorithm

1 in [19] with α ≤ 1− δ, the following holds with probability

α for a given κef and ∆:

|h(x)| = |m(x) − f(x)| ≤
√

β(N, δ) σz(x,N) ≤ κef∆
2,
(14)

which certifies equation (10a) with probability α.

Next we turn to equation (10b) and take any x, xs ∈
B(xk,∆k) such that xs = x+ s. Taylor’s expansions give:

h(x+ s) =h(x) + s⊤∇h(x) + s⊤∇2h(x)s+O(s3)

|s⊤∇h(x)| =|h(x+ s)− h(x)− s⊤∇2h(x)s−O(s3)|

≤|h(x+ s)|+ |h(x)|+ |s⊤∇2h(x)s| + |O(s3)|

≤|h(x+ s)|+ |h(x)|+ |s⊤∇2h(x)s| +
γlh
6

‖s‖3 ,

where the first inequality comes from norm properties and the

second using Lemma 4.1.14 in [21]. Substituting s := ∇h(x)∆
‖∇h(x)‖

by following Lemma 4.7 in [22] gives,

∆‖∇h(x)‖ ≤|h(x+ s)|+ |h(x)|+∆2‖∇2h(x)‖ +
γlh
6

∆3

∆‖∇h(x)‖ ≤|h(x+ s)|+ |h(x)|+ κbhh∆
2 +

γlh
6

∆3.

Here, the last inequality arises because of Assumption 4. As

shown in the first part of this proof, one can guarantee that

|h(x + s)|, |h(x)| ≤ κef∆
2 with at least probability 1 − δ.

Hence, the following holds with with probability at least (1−
δ)2:

∆‖∇h(x)‖ ≤2κef∆
2 +∆2κbhh +

γlh
6

∆3

‖∇h(x)‖ ≤2κef∆+∆κbhh +
γlh
6

∆2.

Choosing δ such that α ≤ (1− δ)2 and combining the above

with Definition 2 and (10b), it remains to show that, for a

given κeg , the following criterion can be satisfied:

2κef∆+∆κbhh +
γlh
6

∆2 ≤ κeg∆.

Since 0 < ∆ < 6
γlh

(κeg − 2κef − κbhm), the above inequal-

ity is satisfied. Hence, equation (10b) holds with probability

at least α, which concludes the proof.

Remark 3 (Computing β and finding maximum σz(x)):
√

β(N, δ) is not a function of x. However, we need to

determine the maximum of σz(x,N) over x within the trust



region. This problem has been tackled rigorously in the

machine learning community, see [19] for details. However,

for our application, one need not explicitly compute these

quantities. Another way to look at it is that one can always

choose arbitrarily large κef and κeg such that (10a) and (10b)

are satisfied with probability at least α. �

Remark 4 (Condition on ∆ in Theorem 2):

The condition on the trust-region radius ∆ in Theorem 2 does

not limit/restrict the algorithm significantly. The reason is that

one can choose arbitrarily large values of κ. Moreover, the

trust-region radius almost surely goes to zero [Lemma 4 [7]].

Hence, for any positive κ, the condition on the trust region is

almost surely satisfied. �

Using GP in the framework of Algorithm 1 yields almost

surely convergence. Moreover, it has two main advantages:

(i) since GPs approximate unknown functions globally, one

does not need to sample after each trust-region iterations

as opposed to standard trust-region approaches, where n

and
(n+1)2

2 data points are required for linear interpolation

and nonlinear polynomial-based regression, respectively. This

saves a significant amount of plant evaluations; (ii) from an

implementation point of view, there is no need to build a

model at each trust-region iteration. This is due to the fact

that the GP mean converges to the exact function in the limit,

as per Lemma 1 and for αk > α for sufficiently large k. In

fact, to implement the algorithm after a failed iteration, one

simply needs to sample (not necessarily in the trust-region

radius) a few points. Hence, the computation of β(N, δ) and

of the maximal variance σz(x,N) mentioned in the proof

of Theorem 2 can be avoided. This obviously reduces the

computational burden.

IV. NUMERCIAL CASE STUDY

We apply the proposed method to the acetoacetlytation of

pyrrole with diketene [23]. It is a batch-to-batch optimization

of a semi-batch reactor process with 4 reactions: A + B
k1−→

C, 2B
k2−→ D, B

k3−→ E, and B + C
k4−→ F. The involved

species are A: pyrrole; B: diketene; C: 2-acetoacetyl pyyrole;

D: dehyroacetic acid; E: oligomers; F: undesired by-product.

The material balance equations for the plant read [23]:

ċA = −k1cAcB −
F

V
cA,

ċB = −k1cAcB − 2k2c
2
B − k3cB − k4cBcc +

F

V

(

cinB − cB
)

,

ċC = k1cAcB − k4cBcC −
F

V
cC ,

ċD = k2c
2
B −

F

V
cD, V̇ = F.

(15)

It is assumed that the last two reactions are unknown (struc-

tural mismatch), thereby leading to the following plant model:

A + B
k1−→ C, 2B

k2−→ D.

We are interested in finding the feed profile of species B

such that it maximizes the amount of C at final time, while

maintaining the concentration of B and D below specified

threshold values at terminal time. The resulting problem is:

max
F (t)

J := cC(tf )V (tf )

subject to: model equations (15), (16)

cB(tf ) ≤ cmax
B , cD(tf ) ≤ cmax

D , 0 ≤ F (t) ≤ Fmax .

The optimal input profile is assumed to have three parts:

a first arc with F = Fmax, a second arc where the feeding

is between 0 and Fmax, and a third arc with zero feeding,

see [23] for details. Accordingly, we can define three decision

variables, namely, π := (tm, ts, F ), where tm represents

the switching time between the first and second arcs, ts
the switching time between the second and third arcs, and

F the assumed constant feeding rate during the second arc.

We consider two different scenarios as listed in Table I. We

compare the three-arc solution with 100 piecewise-constant

control parametrization in Figure 1. Since the two control

parameterizations offer similar performance, we use the three-

arc parametrization in this work. We reformulate Problem (16)

in unconstrained optimization by incorporating the constraints

as a penalty term in the cost function. The GP learns the

mismatch between the plant and model costs. The plant

measurements are corrupted with 5% zero-mean Gaussian

additive noise.

The GP is trained using 20 random points around the model

optimum for Scenario I. The GP is assumed to be unaware

of the change from Scenario I to Scenario II at batch/iteration

8. After each step of the trust-region algorithm, a new data

point is incorporated in the GP if it is sufficiently far from the

previous data to avoid overfitting. Parameters of Algorithm 1

are: η = 0.5, γdec = 0.9, γinc = 3, and ∆0 = 3.5.

Plant efficiency deteriorates significantly for Scenario II

when the model-based optimized input is applied as shown

in Figure 2. Furthermore, although the GP model is unaware

of the change in scenarios, it quickly learns the new plant

operating condition (Figure 2), and significantly outperforms

the model-based approach (Figure 3).

Scenario k3 k4 Batch

Scenario I 0.01 0.009 1-7
Scenario II 0.28 0.001 8-22

TABLE I: Uncertain reaction constants and batch numbers for

the two scenarios.

V. CONCLUSIONS

This paper has investigated convergence a certificate for

stochastic derivative-free trust-region methods based on Gaus-

sian Processes. To the best of our knowledge, this work is

the first to show that GPs are indeed probabilistic fully-

linear models. This in turn allows inferring global convergence

of trust-region methods in an almost surely sense. We have

demonstrated the efficacy of GPs as surrogate models, drawing

upon repeated open-loop optimal control of a chemical batch

reaction process.
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REFERENCES

[1] N. V. Sahinidis, “Optimization under uncertainty: State-of-the-art and
opportunities,” Comput. Chem. Eng., vol. 28, no. 6, pp. 971 – 983,
2004.

[2] D. Bonvin, “Special issue on real-time optimization,” Processes, vol. 5,
p. 27, 2017.

[3] M. Ellis, H. Durand, and P. D. Christofides, “A tutorial review of
economic model predictive control methods,” J. Process Control, vol. 24,
pp. 1156–1178, 2014.

[4] C. Ning and F. You, “Optimization under uncertainty in the era of big
data and deep learning: When machine learning meets mathematical
programming,” Comput. Chem. Eng., vol. 125, pp. 434 – 448, 2019.

[5] A. R. Conn, K. Scheinberg, and L. N. Vicente, Introduction to

Derivative-Free Optimization. Philadelphia, PA, USA: SIAM, 2009.

[6] A. Bandeira, K. Scheinberg, and L. Vicente, “Convergence of trust-

0 50 100 150 200 250

t [min]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

F
(t

) 
[m

L 
m

in
-1

]

Batch 1
Batch 7
Plant
Model

0 50 100 150 200 250

t [min]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

F
(t

) 
[m

L 
m

in
-1

]

Batch 8
Batch 14
Plant
Model

Fig. 3: Input profiles for the two scenarios

region methods based on probabilistic models,” SIAM J. Optimization,
vol. 24, no. 3, pp. 1238–1264, 2014.

[7] J. Larson and S. C. Billups, “Stochastic derivative-free optimization
using a trust region framework,” Comput. Optim. Appl., vol. 64, no. 3,
pp. 619–645, Jul. 2016.

[8] S. Lucia and B. Karg, “A deep learning-based approach to robust non-
linear model predictive control,” IFAC-PapersOnLine, vol. 51, no. 20,
pp. 511–516, 2018.

[9] L. Hewing, A. Liniger, and M. N. Zeilinger, “Cautious NMPC with
gaussian process dynamics for autonomous miniature race cars,” IEEE,
pp. 1341–1348, 2018.

[10] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine

Learning. The MIT Press, 2005.
[11] S. Shalev-Shwartz and N. Srebro, “SVM optimization: Inverse depen-

dence on training set size,” in Proc. 25th Int. Conf. on Machine Learning.
New York, NY, USA: ACM, 2008, pp. 928–935.

[12] F. Augustin and Y. M. Marzouk, “A trust-region method for derivative-
free nonlinear constrained stochastic optimization,” ArXiv e-prints, Mar.
2017.

[13] T. de Avila Ferreira, H. Shukla, T. Faulwasser, C. Jones, and D. Bonvin,
“Real-time optimization of uncertain process systems via modifier
adaptation and gaussian processes,” 2018 European Control Conference,
pp. 465–470, 2018.

[14] E. A. del Rio Chanona, J. E. Alves Graciano, E. Bradford, and
B. Chachuat, “Modier-adaptation schemes employing gaussian processes
and trust regions for real-time optimization,” Florianópolis - SC, Brazil,
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