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Abstract: In this paper, automated generation of linear parameter-varying (LPV) state-space
models to embed the dynamical behavior of nonlinear systems is considered, focusing on the
trade-off between scheduling complexity and model accuracy and on the minimization of the
conservativeness of the resulting embedding. The LPV state-space model is synthesized with
affine scheduling dependency, while the scheduling variables themselves are nonlinear functions
of the state and input variables of the original system. The method allows to generate complete
or approximative embedding of the nonlinear system model and also it can be used to minimize
complexity of existing LPV embeddings. The capabilities of the method are demonstrated on
simulation examples and also in an empirical case study where the first-principle motion model
of a 3-DOF control moment gyroscope is converted by the proposed method to LPV model with
low scheduling complexity. Using the resulting model, a gain-scheduled controller is designed
and applied on the gyroscope, demonstrating the efficiency of the developed approach.

1. INTRODUCTION

The linear parameter-varying (LPV) framework has been
introduced to tackle the control problem of nonlinear
(NL) and time-varying (TV) systems using the extension
of powerful linear control methods Rugh and Shamma
(2000b). This methodology offers great potential in a wide
variety of practical applications Hoffmann and Werner
(2015). By using so-called scheduling variables, which ex-
press nonlinear or time-varying behavior, LPV systems
are capable of representing the solution set of NL/TV
systems in terms of a linear structure. Extension of linear-
time invariant (LTI) methods to exploit this linear proxy
representation has seen a tremendous development Hoff-
mann and Werner (2015); however, the lack of system-
atic methods that are capable of automatically deriving
LPV embeddings of NL/TV systems has prevented the
widespread industrial use of the LPV concept Toth (2010).

While LPV system identification methods have matured
over the last 15 years with many competitive approaches,
e.g. Tóth et al. (2012); Goos and Pintelon (2016); Laurain
et al. (2012); Tóth et al. (2012); Zhao et al. (2012);
Bachnas et al. (2014); Toth (2010); Liu et al. (2019) to
mention a few, conversion methods of existing NL/TV
models of applications has seen only moderate progress.
As in practice, often high-fidelity models of the target
application are available due to the development and
design process, e.g. rigid body/flexible motion dynamics

in mechatronic applications. The need for embedding
approaches in which such models are converted to LPV
description to be used for control design or prediction
purposes is of great significance.

Existing methods can be categorized as local and global
methods. In local LPV model conversion, an NL descrip-
tion of the system is linearized at several operating points,
then the obtained linearized models are interpolated to
get an LPV model. However, due to the local information
on the dynamic aspects, closed-loop stability and perfor-
mance cannot be guaranteed by controllers, designed based
on the resulting LPV models, unless the variation of the
scheduling variable is guaranteed to be sufficiently slow,
see Toth (2010); Bachnas et al. (2014) for an overview.
In global methods, the NL/TV system model is directly
converted to an LPV representation such that the orig-
inal system behavior is embedded in the solution set of
the resulting LPV model. The methods can be catego-
rized as substation-based transformation methods and (au-
tomated) model transformation methods. In substitution
based transformation techniques, NL terms are considered
to be absorbed by the introduced scheduling variables,
which results in a global LPV embedding of NL dynamics;
nevertheless, the applicability of these approaches is either
limited to a narrow class of NL systems (e.g., Shin et al.
(2002); Marcos and Balas (2004)) or the methods are
based on commonly used, but ad-hoc substitutions (e.g.,
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Zin et al. (2006); Rugh and Shamma (2000a)). In the so-
called velocity linearization Leith and Leithhead (1998),
differentiating the NL state-space model of a system, a
representation in terms of derivatives of the inputs, out-
puts, and state variables multiplied by some nonlinear
functions are obtained. Considering these nonlinearities as
the scheduling, an LPV model is developed, but requiring
specialized control synthesis methods. Model transforma-
tion methods are based on the systematic exploration of
possible ways of reformulating the NL system as an LPV
model with the smallest possible conservatism. Next to
the computationally intensive methods in Toth (2010),
recent developments include approaches based on linear
fractional representation (LFR) with a nonlinear feedback
block converted to an LPV model depending affinly on the
scheduling variables in Schoukens and Toth (2018). Choos-
ing a LPV embedding for nonlinear systems is investigated
in Robles et al. (2019) by minimizing the projection of the
nonlinearities onto directions deleterious for performance.
The later problem is cast as a computationally intensive
linear matrix inequality (LMI) based optimization. A sys-
tematic embedding method to achieve a state-minimal
LPV representation in the observable canonical form is
presented in Abbas et al. (2014). Besides the problem
of LPV embedding, reduction of complexity in sense of
reducing the number of scheduling variables, simplification
of the dependency on the scheduling variables, and tighten-
ing the admissible region of the scheduling variables have
received attention in recent years. In Kwiatkowski and
Werner (2008), taking advantage of principal component
analysis (PCA) applied on the typical scheduling trajec-
tories, a method is proposed to obtain LPV models with
fewer scheduling variables. It is alleged that the procedure
can lead to less overbounding of admissible regions for the
scheduling variables without providing a rigorous proof.
As an extension to that method, a linear fractional trans-
formation (LFT)-based LPV representation for descriptor
systems is proposed in Hoffmann and Werner (2015). The
drawback related to these approaches is that they mainly
focus on the scheduling variables not their effects on the
dynamical behavior of the system. An approach based on
Ho-Kalman algorithm is presented in Siraj et al. (2012) to
address the problem of joint state-order and scheduling-
dependency reduction but applicability of this approach is
limited to small scale problems.

In summary, next to accurate representation of the behav-
ior of the NL/TV system, the three main challenges that
LPV embedding methods need to face with are (i) schedul-
ing complexity minimization, (ii) minimization of conser-
vativeness of the embedding, (iii) preservation of structural
properties like controllability, stability, etc. Most LPV con-
troller synthesis methods rely on linear or quadratic opti-
mization with LMI constraints Scherer (2001); Hjartarson
et al. (2015); Caigny et al. (2008); Daafouz et al. (2008);
Sato and Peaucelle (2013); Sadeghzadeh (2019); Hanema
et al. (2019), the number of which grows exponentially
with the scheduling dimension/number of vertices used
to describe the scheduling range. Therefore, in terms of
problem (i), achieving a minimum number of scheduling
variables in LPV modeling has paramount importance
in practice. Moreover, many methods are formulated for
LPV state-space representations with affine dependence
on the scheduling variables, while for mechatronic and

chemical systems, straightforward manual conversion re-
sults in rational or even exponential dependence that is
often hidden in new scheduling variables, leading to at
least doubling of the scheduling dimension. Regarding
problem (ii), the scheduling variables are usually assumed
to vary independently in some specified ranges; while
as the above discussion exemplify it, they are functions
of some measurable variables of the system with often
complicated nonlinear dependence. Thus, the scheduling
variable dependency in practice leads to conservativeness
of LPV models due to the fact that represented solutions
include the solution set of the embedded nonlinear system
plus those trajectories that result due to forgetting the
above mentioned dependence. This is the price to be paid
for a linear representation of the dynamics, but excessive
conservativeness can lead to degradation of the achievable
performance or even feasibility by LPV control as all ex-
tra dynamics resulting purely from conversion are needed
to be stabilized and shaped during control synthesis. To
the best of our knowledge, a general approach for LPV
embedding of nonlinear systems in which the aforemen-
tioned factors (i)-(iii) are all appropriately addressed is not
available yet. This paper aims to address problems (i)-(ii)
and balance complexity, conservativeness and accuracy in
LPV model conversion in terms of a practically applicable
method.

Three typical problem settings connected to model conver-
sion are considered, namely (a) embedding of nonlinear
systems to obtain LPV state-space representation with
affine dependence on the scheduling variables and mini-
mal conservativeness; (b) simplifying the dependency of
an LPV model depending nonlinearly on the scheduling
variables to an affine LPV state-space representation with
minimal conservativeness; (c) constructing an affine LPV
model with restricted number of scheduling variables from
an affine LPV model having too many scheduling vari-
ables. Our first contribution is to show that these problem
formulations can be uniformly expressed as a single re-
alization problem. Then, by deriving an extension of the
approach in Kwiatkowski and Werner (2008), we apply
principle component analysis (PCA) to solve the mini-
mal scheduling variable realization problem under affine
dependency of the resulting LPV state-space form using
a bundle of generated state and input trajectories of the
system along which the variation of state-equations are
expressed. Contrary to the method of Kwiatkowski and
Werner (2008) in which the PCA is applied on the data
matrix consisting of the individual scheduling variable
trajectories, our contribution is to consider variation of the
state-equations directly which, as shown through exam-
ples, leads to further reduction of the scheduling complex-
ity. Additionally, an accuracy index is defined to address
the trade-off between the number of scheduling variables
and the model accuracy, which facilitates determining the
number of scheduling variables that are required for the
embedding. To minimize conservativeness, we optimize the
scheduling range in terms of a minimal hyper-rectangle.
Our contribution is to formulate this scheduling range
minimization problem and the connected rotational prob-
lem of the scheduling space. To reveal the advantages of
the proposed method over the existing approaches, the
presented method in this paper is applied on simulation
examples and validated empirically on a 3-DOF gyroscope



system. In the later case, using the obtained LPV model, a
full-order gain-scheduled output feedback controller is de-
signed on the converted low complexity model and verified
on the experimental setup.

Notation: Li,j ∈ R denotes the elements of matrix

L ∈ R
m×n, i.e. L := [Li,j]m×n

.
−→
Γ refers to row-wise

vectorization of L:
−→
L := [L1,1 · · ·L1,n L2,1 · · ·L2,n · · · Lm,1 · · ·Lm,n ]

⊤
.

For X =
−→
L ∈ R

(mn)×1, the reverse operation is

L = X←−−−
m × n

∈ R
m×n.

The notation ‖L‖F :=
√

∑m

i=1

∑n

j=1 |Li,j |2 corresponds to

the Frobenius norm. For a vector function F : Rnα → R
m,

SDDN
(Γ(α)) denotes the empirical standard deviation of

the elements of Γ(α(t)) over a data set DN := {α(t)}N−1
t=0 :

SDDN
(Γ(α)) := [ σDN

(Γ1(α)) · · · σDN
(Γm(α)) ]

⊤

where

σDN
(Γi(α)) :=

√

√

√

√

1

N

N−1
∑

t=0

(

Γi(α(t)) − EDN
(Γ(α))

)2

with EDN
(Γ(α)) := 1

N

∑N−1
t=0 Γi(α(t)). A function α : R→

R is called class C1 if it is continuous and its first derivative
exits.

2. PROBLEM STATEMENT

Consider an NL system defined by the finite dimensional
state-space (SS) representation:

ẋ(t) = f(x(t), u(t)), (1a)

y(t) = h(x(t), u(t)), (1b)

where x : R→ X ⊆ R
nx is the state variable, u : R→ U ⊆

R
nu is the input , and y : R → Y ⊆ R

ny is the output of
the system for which it is true that (y, x, u) satisfies (1)
in the ordinary sense. X and U are considered to be open
sets containing the origin.

Assumption 1. It is assumed that the nonlinear functions
f and h are factorisable as

f(x(t), u(t)) = A(x(t), u(t))x(t) + B(x(t), u(t))u(t), (2a)

h(x(t), u(t)) = C(x(t), u(t))x(t) +D(x(t), u(t))u(t), (2b)

where A, B, C, and D are bounded and smooth functions
on X×U. This is a mildly restrictive assumption, as a wide
class of nonlinear systems can be represented by (2), such
as rational or polynomial nonlinear systems.

It is supposed that for all initial condition x0 ∈ X at
any t0 ∈ R, there exists a unique solution (y, x, u) which
is forward complete. Based on these assumptions, denote
the solution set, i.e. the so-called behavior, of the system
represented by (1) as

BNL = {(y, x, u) ∈ (Y×X×U)R
+

0 | (y, x, u) s.t. (1) holds

∀t ∈ R
+
0 with x ∈ Cnx

1 and x(0) = x0 ∈ X}. (3)

Introduce the notation B
(x)
NL = {x ∈ X

R
+

0 | ∃(y, u) ∈ (Y ×

U)R
+

0 s.t. (y, x, u) ∈ BNL}. Factorization (2) implies the
following SS representation for (1):

ẋ(t) = A(x(t), u(t))x(t) + B(x(t), u(t))u(t), (4a)

y(t) = C(x(t), u(t))x(t) +D(x(t), u(t))u(t). (4b)

In this paper, three types of problems are tackled.

Problem 1 (Embedding a nonlinear model into an affine
LPV model): Find an LPV-SS representation for (4) in the
form of

ẋ(t) = A(θ(t))x(t) +B(θ(t))u(t), (5a)

y(t) = C(θ(t))x(t) +D(θ(t))u(t), (5b)

such that θ := µ(x, u) µ : X × U → Θ ⊆ R
nθ is a

bounded smooth vector function, Θ is a convex set, and
matrix functions A, B, C, and D have affine dependence
on θ(t) := [θ1(t) · · · θnθ

(t)]⊤, i.e.,

M(θ(t)) = M0 +

nθ
∑

i=1

θi(t)Mi, (6)

where M(θ(t)) represents any of the matrix functions
A(θ(t)), . . . , D(θ(t)). Let us define the solution set of (5)
as follows:

BLPV = {(y, x, u, θ) ∈ (Y× X× U×Θ)R
+

0 | (y, x, u, θ)

s.t. (5) holds ∀t ∈ R
+
0 with x ∈ Cnx

1 and x(0) = x0 ∈ X}.
(7)

Note that BNL ⊆ BLPV, due to the fact that θ can get any
value in the admissible set Θ irrespective of the values of x
and u. For this problem, the goal is to minimize BLPV\BNL

in terms of a measure on X×U among all possible choices
of A, . . . , D, µ, and Θ.

Additionally, one can alternatively seek an approximate
affine LPV model as follows:

ẋ(t) = Â(θ̂(t))x(t) + B̂(θ̂(t))u(t), (8a)

y(t) = Ĉ(θ̂(t))x(t) + D̂(θ̂(t))u(t), (8b)

where θ̂ := µ̂(x, u) : X × U → Θ̂ ⊆ R
n
θ̂ and n

θ̂
< nθ by

minimizing a measure of discrepancy between the matrices
A, . . . , D and Â, . . . , D̂, which measure is precisely defined
later in this section.

Problem 2 (Converting an LPV model with nonlinear
dependency on the scheduling variables into an affine LPV
model): Given an LPV embedding of (1) in the form of

ẋ(t) = Ã(α(t))x(t) + B̃(α(t))u(t), (9a)

y(t) = C̃(α(t))x(t) + D̃(α(t))u(t), (9b)

for which Ã, B̃, C̃, and D̃ are non-affine functions of the
scheduling variable α = κ(x, u) with α(t) ∈ Ωα ⊂ R

n
α.

In practice, such an embedding can easily happen in
case of manual conversion of an NL model to an LPV
form (e.g. in case of mechatronic systems (see Sec. 7),
direct substitution of the position dependency in the
inertia matrices with scheduling variables leads to LPV-
SS representations with rational dependence). The goal
is to find A, . . . , D, µ, and Θ in terms of (5) and (6)

such that the discrepancy between the matrices Ã, . . . , D̃
and A, . . . , D is minimized. As in our setting LPV models
represent an underlying NL system, we will consider this
minimization over all realizations of α and θ in terms of
κ(B

(x,u)
NL ) and µ(B

(x,u)
NL ).

Problem 3 (Obtaining an affine LPV model with reduced
number of scheduling variables from an affine LPV model):
Given an LPV embedding of (1) in terms of (9), where the
state-space matrices are affine functions of α. The goal
is to find an approximate LPV model (8) such that the



discrepancy between the matrices Ã, . . . , D̃ and Â, . . . , D̂

is minimized over all realizations of α and θ̂ in terms
of κ(B

(x,u)
NL ) and µ̂(B

(x,u)
NL ). This problem represents the

case when the initial number of scheduling variables nα

and/or the admissible set for α are non-minimal or further
reduction of these is required for feasibility of control
synthesis.

Indeed, the mentioned problems are all low complexity
embedding problems for either nonlinear or complex LPV
systems. The objective is to find an LPVmodel, affine with
respect to a set of constructed scheduling variables, while
the accuracy and the conservativeness of the resulting
embedding is taken into account. Next we show that
Problems 1-3 can be considered under a unified setting.
Introduce the representation

[

ẋ(t)
y(t)

]

= L(α(t))

[

x(t)
u(t)

]

, (10)

where
L(α(t)) := [Li,j(α(t))]m×n

∈ R
m×n,

with m := nx + ny, n := nx + nu. The variables αi(t)
are assumed to lie in a hyper-rectangle Ωα, which is the
Cartesian product of intervals

αi ≤ αi(t) ≤ αi

where αi and αi are a priori known. Thus, α(t) ∈ Ωα, ∀t ≥
0. Then Problems 1-3 are represented as follows:

• Problem 1: L(α(t)) is a NL matrix function of α(t) :=
[x(t)⊤ u(t)⊤]⊤ and is defined as follows:

L(α(t)) :=

[

A(x(t), u(t)) B(x(t), u(t))
C(x(t), u(t)) D(x(t), u(t))

]

. (11)

• Problem 2: L(α(t)) is a NL matrix function of the
scheduling variable α(t) and defined as follows:

L(α(t)) :=

[

Ã(α(t)) B̃(α(t))
B̃(α(t)) C̃(α(t))

]

. (12)

• Problem 3: L(α(t)) is an affine function of scheduling
variable α(t) and is defined as in (12).

Let us define

Γ(α(t)) := [ Γ1(α(t)) Γ2(α(t)) · · · ΓnΓ
(α(t)) ]

⊤

=
−→
L (α(t)) ∈ RnΓ ,

where nΓ = (nx + ny)(nx + nu). The ultimate goal in this
paper is to find an LPV model with affine dependency

[

ẋ(t)
y(t)

]

= L̂(θ(t))

[

x(t)
u(t)

]

, (13)

for (10) by introducing an affine mapping

θ(t) = [ θ1(t) · · · θnθ
(t) ]

⊤

:=T (Γ(α(t))) ∈ Ωθ, T : RnΓ → R
nθ (14)

such that an accuracy index (defined next) is minimized for
a prescribed value of nθ ≤ nΓ. Alternatively, the number
of scheduling variables nθ can be chosen by the designer
based on the accuracy index value obtained for different
number of scheduling variables. The hyper-rectangle set
Ωθ denoted by

θi ≤ θi(t) ≤ θi, (15)

is characterized by its lower and upper bounds θi and θi.
The mapping T (Γ(α(t))) should be determined in such a
way that the volume of Ωθ is kept at its possible minimum
to minimize the conservativeness of the obtained model.

Under the assumption that a DN := {α(t)}N−1
t=0 data set,

representative w.r.t. typical operation of the system (10)
(bundle of measured trajectories, equidistant griding of
X × U, etc.) is available, we chose the accuracy index as
the weighted norm:

η :=
∥

∥

∥
W (Πα − Π̂θ)

∥

∥

∥

F
(16)

where

Πα := [ Γ(α(0)) Γ(α(T )) · · · Γ(α((N − 1)T )) ] , (17a)

Π̂θ :=
[

Γ̂(θ(0)) Γ̂(θ(T )) · · · Γ̂(θ((N − 1)T ))
]

, (17b)

with Γ̂(θ(t)) =
−→
L̂ (θ(t)) ∈ RnΓ , sampling time T > 0 and

weighting

W := diag (SDDN
(Γ(α))

−1
. (18)

Note that the Frobenius norm of a matrix is a convenient
metric to quantify the approximation error of matrices
based on singular value decomposition (SVD) type of pro-
jections and makes it possible to give explicit character-
ization of their approximation error. As it becomes clear
later, our proposed method is based on such an SVD type
of approximation, hence, the Frobenius norm is a natural
choice of performance measure for our method. However, it
is just a particular choice of norm and other matrix norms
can be utilized for this purpose, although other choices
lose the connection with the SVD based projection. In the
subsequent sections, the problem of finding the mapping
T , introduced in (14), is addressed.

3. PARAMETER SET MAPPING

To compute the scheduling mapping, PCA is applied
on the data matrix (17a), inspired by the method in
Kwiatkowski and Werner (2008). Note that contrary to
the method in Kwiatkowski and Werner (2008), PCA is
applied on the data matrix Πα, capturing the time-domain
trajectories of all the elements of the state-space matrices,
not only the scheduling trajectories. As we will show, this
not only allows to jointly treat Problems 1-3, but it also
allows achieving more accurate models with less number of
scheduling variables compared to Kwiatkowski andWerner
(2008).

First, let us define the affine projection lawN (i) as follows:

Γ̄i(α(t)) := N
(i)(Γi(α(t)))

=
1

σDN
(Γi(α))

(

Γi(α(t)) − EDN
(Γ(α))

)

(19)

where σDN
(Γi(α)) and EDN

(Γ(α)) are respectively the
standard deviation and the mean of Γi(α) over the data
set DN . Now, we can define Γ̄(α(t)) = N (Γ(α(t))) which
means that the corresponding affine mappings are applied
on the related elements of the vector Γ(α(t)). Similarly,

we can introduce Π̄
(i)
α = N (i)(Π

(i)
α ) and the overall Π̄α =

N (Πα) to obtain a scaled (unit variance), zero mean
representation of the variation of the state-space matrices.
Let

Π̄α = UΣV ⊤ (20)

be the SVD of Π̄α. Singular values indicate the princi-
pal components of the data. Small singular values indi-
cate relatively unimportant components Olver and Shak-
iban (2006), which means that projection onto a low-
dimensional subspace spanned by the dominant singular



vectors will not cause losing too much information. Sup-
pose that σ1, σ2, · · · , σnρ

are considered as the significant
singular values (based on their relative magnitudes). By
neglecting the singular values σnρ+1, · · · , σnΓ

and parti-
tioning U , Σ := diag(σ1, σ2, · · · , σnρ

, · · · , σnΓ
), and V as

follows:

Σ :=

[

Σρ 0 0
0 Ση 0

]

, U := [Uρ Uη ] , V := [ Vρ Uη ] ,

where Σρ = diag(σ1, σ2, · · · , σnρ
) and Ση =

diag(σnρ+1, · · · , σnΓ
), one can obtain the following

approximation for Πα

Π̂ρ := N−1
(

UρU
⊤

ρ Π̄α

)

= N−1
(

UρU
⊤

ρ N (Πα)
)

≈ Πα,
(21)

where N−1 denotes the rescaling and translation, respec-
tively, such that N−1 (N (Πα)) = Πα.

Let us define the affine reduced mapping

ρ(t) :=M(α(t)) = U⊤

ρ Γ̄(α(t)) = U⊤

ρ N (Γ(α(t))), (22)

considering (17a) and (21), one can see that

Πα ≈ Π̂ρ :=
[

Γ̂(ρ(0)) Γ̂(ρ(T )) · · · Γ̂(ρ((N − 1)T ))
]

where
Γ̂(ρ(t)) := N−1 (Uρρ(t)) . (23)

Subsequently, one can define

L̂(ρ(t)) := Γ̂←−−
m × n

(ρ(t)). (24)

Note that L̂(ρ(t)) is an affine function of ρ(t), and ρ(t)

is also an affine function of Γ(α(t)). Thus, L̂(ρ(t)) is an
affine function of Γ(α(t)), but depending on the function
Γ (original dependencies of the state-matrices) can be a
nonlinear function of α. Based on a well-known matrix
approximation lemma Eckart and Young (1936), we have

∥

∥

∥
N (Πα)−N (Π̂ρ)

∥

∥

∥

F
= σnρ+1 + · · ·+ σnΓ

:= η (25)

Bear in mind that N is an affine transformation. There-
fore, one can easily see thatN (Πα)−N (Πρ) = W (Πα−Πρ)
where the matrix W is given by (18). This immediately
implies

η = σnρ+1 + · · ·+ σnΓ
= ‖W (Πα −Πρ)‖F . (26)

Note that ρ(t) :=
[

ρ1(t) · · · ρnρ
(t)

]⊤
∈ R

nρ belongs to a
hyper-rectangle Ωρ denoted by

ρ
i
≤ ρi(t) ≤ ρi.

The lower and upper bounds ρ
i
and ρi are obtained

respectively as the minimum and maximum values of ρi(t)
in terms of (22) over all admissible values of α(t) ∈ Ωα.

Taking into account that L̂(ρ(t)) depends affinely on the
newly introduced scheduling vector ρ(t), which is in turn
an affine vector function of the elements of L(α(t)), one
can see that the embedding Problems 1-3 have been
successfully addressed. In the next section, the reduction
of the associated conservativeness with the LPV models is
investigated.

Remark 1. Note that the number of elements of L(α(t)) in
Problem 1 is usually greater than the number of individual
nonlinear functions that appear in L(α(t)). In this case,
some of the singular values become zero. If nρ is chosen
equal to the number of nonzero singular values, then an
exact LPVmodel is obtained (see 6.2), and an approximate

LPV model is obtained if nρ is selected smaller than the
number of nonzero singular values. However, for Problems
2 and 3, usually an approximate affine LPV model is
developed where the approximation error is characterized
by the accuracy index (16).

4. MINIMAL ENCLOSING HYPER RECTANGLES

The hyper rectangle set Ωρ contains the new scheduling
variable ρ(t); however, Ωρ is not necessarily the hyper
rectangle with the smallest volume. In this section, we
would like to introduce an invertible affine transformation
R consisting of translation and rotation as follows:

θ(t) := R(ρ(t)) ∈ Ωθ, R : Rnρ → R
nθ , nρ = nθ

such that the hyper rectangle Ωθ, denoted by (15), has
the minimum possible volume. The problem to find the
hyper rectangle Ωθ with the minimum possible volume can
be cast as the problem of finding a hyper rectangle with
minimum-volume enclosing a set of points. We consider
two distinct cases nθ ≤ 3 and nθ > 3 for reasons that will
be clear soon.

4.1 The case when nθ ≤ 3

Finding the minimum volume enclosing hyper rectangle
has already been tackled for two- and three-dimensional
point sets in the literature Freeman and Shapira (1975);
Toussaint (1983); O’Rourke (1985). In Barequet and Har-
Peled (2001), finding a minimum-volume bounding box for
a set of n points in R

3 is considered where an efficient
O(n + 1/ǫ4.5)-time algorithm for computing a (1 + ǫ)-
approximation of the minimum-volume bounding box is
solved; thus, the running time of this algorithm is linear
in n (number of the time samples). Examples of implemen-
tation of this algorithm can be found in Korsawe (2020);
Diener (2020). The minimum-volume bounding box ob-
tained by any of the available methods is characterized by
its vertices. Note that the bounding box is generally not
aligned with the coordinate axes. To describe it with lower
and upper bounds on the individual scheduling variables,
which is more desirable from the viewpoint of controller
synthesis, one should resort to an appropriate rotation of
the scheduling space. Thus, we first find the minimum
volume enclosing hyper rectangle, then, we compute a
rotation of the scheduling space, i.e. transformation of
ρ(t), such that we align the hyper rectangle with the new
scheduling coordinate axes.

To compute the rotation transformation, we take advan-
tage of the Kabsch algorithm Kabsch (1976). Let us define

P := [ v1 − v̄ v2 − v̄ · · · vnv
− v̄ ]

where vi is either in R
2 or R3 and represents vertex i of the

minimum-volume bounding box with nv vertices (either
nv = 4 or nv = 8) and v̄ = 1

nv

∑nv

i=1 vi is the centroid of
the box. Let us consider

Q :=

[

σ̄1 σ̄1 −σ̄1 −σ̄1

σ̄2 −σ̄2 −σ̄2 σ̄2

]

for nθ = nρ = 2 scheduling variables and

Q :=

[

σ̄1 σ̄1 −σ̄1 −σ̄1 −σ̄1 −σ̄1 σ̄1 σ̄1

σ̄2 −σ̄2 −σ̄2 σ̄2 σ̄2 −σ̄2 −σ̄2 σ̄2

σ̄3 σ̄3 σ̄3 σ̄3 −σ̄3 −σ̄3 −σ̄3 −σ̄3

]



for nθ = nρ = 3 scheduling variables, where σ̄1, σ̄2 and
σ̄1, σ̄2, σ̄3 are the singular values of P for the case of
nθ = 2 and nθ = 3, respectively. In virtue of the Kabsch
algorithm, one can obtain the transformation R having
been previously introduced as follows:

θ(t) = R(ρ(t)) = (QP⊤PQ⊤)
1
2 (PQ⊤)−1 (ρ(t)− v̄) + v̄

(27)
This way the newly introduced scheduling variable vector
θ(t) reside in a hyper rectangle Ωθ which is defined by
(15), i.e. the hyper rectangle Ωθ can be characterized by
the lower and upper bounds on the individual scheduling
variables θi . It should be mentioned that the volume of
Ωθ is exactly equal to the volume of the initial minimum-
volume bounding box due to the fact that R(·) consists
of rotation and translation only which operations preserve
volume.

Remark 2. It is worth mentioning that the rotated
minimum-volume bounding box, called hereafter Ωθ, is
not unique due to the fact that the rotation may be
carried out in different directions by choosing alternative
ordering in Q. However, irrespective of the direction of the
rotation, the obtained minimum-volume bounding boxes
can be characterized by the upper and lower bounds of
the introduced scheduling variables. These bounding boxes
can be converted to each other by changing the ordering
of the scheduling variables and/or changing the sign of the
variables.

4.2 The case when nθ > 3

We are not aware of any previously-published polynomial-
time algorithm that tackles the problem of finding an
enclosing hyper rectangle for a set of points for dimension
higher than 3. In case it is required to have an LPV
model with more than three scheduling variables, one
solution is to find a minimum-volume ellipsoid enclosing
the scheduling variable trajectories ρ(t) corresponding to
the variation in DN , and then to determine a hyper
rectangle enclosing this ellipsoid to be considered as the
minimum-volume box. However, there is no guarantee
that this hyper rectangle will be the minimum-volume
hyper rectangle which encloses the possible scheduling
variations, but it may potentially have a volume less than
Ωρ, resulting in a model with reduced conservativeness.

The problem of finding the minimum-volume enclosing
ellipsoid has been widely investigated in the literature,
see e.g. Khachiyan (1996); Kumar and Yildirim (2005);
Todd and Yıldırım (2007). An algorithm to solve this
problem can be found in Moshtagh (2020). Suppose that
the minimum-volume ellipsoid is parametrized as follows:

E :=
{

v ∈ R
nθ | (v − v̄e)

⊤Pe(v − v̄e) ≤ 1
}

where nθ > 3 and Pe ∈ R
nθ×nθ is a symmetric positive-

definite matrix and v̄e ∈ R
nθ is the center of the ellipsoid.

In short, this ellipsoid can be obtained by solving the
following convex optimization problem:

min
Pe,v̄e

− log detPe (28)

s.t. (v − v̄e)
⊤Pe(v − v̄e) ≤ 1, ∀v ∈ D̂N

Pe > 0

where D̂N := {ρ(t)}N−1
t=0 , and Pe and v̄e are decision

variables. Let
Pe = UeΣeV

⊤

e

be the singular value decomposition of Pe. Then, using the
following transformation

θ(t) = R(ρ(t)) = Ue(ρ(t)− v̄e) + v̄e (29)

the minimum-volume ellipsoid is rotated around the center
v̄e such that the principal axes become parallel to the
coordinate axes. Now, the required hyper rectangle can be
defined by the lower and upper bounds on the individual
scheduling variables, which are obtained as the minimum
and maximum values of θi.

5. AFFINE LPV MODEL CONSTRUCTION

To recapitulate the previous sections, one can obtain an
approximate affine LPV model (13) with nθ scheduling
variables for any of the three considered problems by the
following affine mapping

θ(t) := T (α(t)) = R (M(α(t))) = R
(

U⊤

ρ N (Γ(α(t)))
)

∈ Ωθ

where R(ρ(t)) is given by either (27) or (29). The hyper
rectangle Ωθ is characterized by the upper and lower
bounds of θi.

The accuracy index for the approximate model is as
follows:

η = ‖W (Πα −Πθ)‖F = σnρ+1 + · · ·+ σnΓ
(30)

where Πθ = Πρ|ρ=R−1(θ). Note that θ(t) = R(ρ(t)) is
just a change of variable; consequently, it is easy to see
that Πθ = Πρ. Thus, (26) immediately implies (30).
As we mentioned previously, M(·) is an affine mapping;
therefore, T (·) is also an affine mapping.

Taking into account (23), (24), (27), and (29) and by
defining

Γ̂(θ(t)) := N−1
(

UρR
−1 (θ(t))

)

,

the affine LPV model (13) is obtained where

L̂(θ(t)) := Γ̂←−−
m × n

(θ(t)).

Bear in mind thatR(·) andN (·) are invertible affine trans-
formations. Note that the number of scheduling variables
nθ can either be considered as a prescribed value or chosen
based on the accuracy index η.

6. NUMERICAL ILLUSTRATION

In this section, two numerical examples are provided to
reveal the advantages of the proposed method in addition
to comparison with some available approaches in the
literature.

6.1 Example1

This example is provided to evaluate the effectiveness of
the proposed method for Problem 3 in this paper. Consider
an LPV system given by (9) with the following state-space
matrices





Ā(α) B̄(α)

C̄(α) D̄(α)



 =





1 + 2α1 3 + α2 3α3 + 7α2

2 + 3α3 20α1 + 5α2 1
α1 0 0





(31)
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Fig. 1. Left plot: scheduling variables ρi (plotted over
DN ), Ωρ (red dashed box), and the minimum-volume
enclosing box (green box). Right plot: scheduling
variables θi and Ωθ. The figure demonstrates that
computation of the minimal enclosing hyper rectangle
and the proposed transformation results in smaller
scheduling sets and hence reduced conservativeness of
the resulting model.

with scheduling variable α(t) ∈ [0, 2]×[0, 5]×[−1, 1] = Ωα.
The goal is to obtain an approximate LPVmodel (13) with

two scheduling variables θ := [θ1 θ2]
⊤ ∈ Ωθ and with the

minimum possible value of η, given by (16), such that Ωθ,
characterized by θ1, θ1, θ2, and θ2, has minimum-volume.

Let us consider T = 10−3 and scheduling trajectories

α1(t) = 2 sin2(10t), α2(t) = 5 cos2(20t+
π

5
),

α3(t) = sin(10t) cos(20t).

to generate DN with N = 3000. These trajectories ad-
equately explore Ωα and represent the typical operation
of the system we would like to preserve in our LPV
model. Using the proposed method, an approximate model
with two scheduling variables is obtained. In the left plot
of Fig. 1, the scheduling variable vector ρ, Ωρ, and the
minimum-volume enclosing box is depicted. Additionally,
the scheduling variable vector θ and Ωθ is shown in
the right plot of Fig. 1. The minimum-volume bounding
box is obtained by the algorithm in Diener (2020). The
centroid of the minimum-volume enclosing box around
which the rotation is carried out is (0.1688, 0.0365). Ωθ

can be characterized by −2.2798 ≤ θ1 ≤ 2.6174 and
−2.3341 ≤ θ2 ≤ 2.4071. The volume of Ωρ and Ωθ are
respectively 31.2870 and 23.2186. We have η = 54.4705
for the proposed method.

For comparison purposes, the proposed method in
Kwiatkowski and Werner (2008) is also applied on this
system to obtain an approximate model with two schedul-
ing variables. To visualize the results, variation of some
elements of A(α(t)): a11 = 1 + 2α1, a22 = 20α1 + 5α2,
and b11 = 3α3 + 7α2 and their approximate counterparts
are shown in Fig. 2 for a time interval between t = 1
and t = 2. Obviously, the proposed method provides a
better approximation for the original LPV system with
the same number of the scheduling variables. It is worth to
mention that for the method in Kwiatkowski and Werner
(2008), the obtained value for η, given by (16), equals to
η = 68.2811, which is greater than that of the proposed

method (η = 54.4705). This also reinforces the superiority
of the proposed method.

6.2 Example 2

In this example, the applicability of the proposed method
for Problem 1 is numerically investigated. Consider a
nonlinear system given by (4) as follows:

[

A(x, u) B(x, u)
C(x, u) D(x, u)

]

=







2 sin(x1) + 1 3x1 + 5 0

x1 0 1

sin(x1) 2x1 0






(32)

It is assumed that −π
2 ≤ x1(t) ≤

π
2 . In the proposed

method, after constructing normalized matrix Π̄α using
the sampling period T = 0.01, one can see that the singular
values are

σ1 = 39.5533, σ2 = 2.3526, σ3 = σ4 = σ5 = 0,

which implies that using just two scheduling variables an
equivalent LPV embedding of the system is available. Ob-
viously, it is expected since all the elements of E(x(t), u(t))
are affine functions of the terms sin(x1(t)) and x1(t) which
can be considered as the scheduling variables. Note that
the zero terms in E(x(t), u(t)) are excluded from construc-
tion of Γ(α(t)) without any loss of generality. Applying the
proposed method and considering two scheduling variables
yields an exact LPV model (13) with L̂(θ(t)) as




0.6337θ1 + 0.7773θ2 + 1 1.2226θ1 − 0.9968θ2 + 5 0
0.4075θ1 − 0.3323θ2 0 1
0.3169θ1 + 0.3887θ2 0.8151θ1 − 0.6645θ2 0





(33)
where the scheduling variables θ1 and θ2 are defined by
the following affine mapping of the elements of (32):

[

θ1
θ2

]

=











0.3150 0.3864
0.1638 −0.1335
0.4913 −0.4006
0.6301 0.7728
0.2457 −0.2003











⊤ 









2 sin(x1) + 1
3x1 + 5

x1

sin(x1)
2x1











+

[

−1.1339
0.2812

]

The above given construction implies the scheduling map

µ(x(t)) =

{

θ1(t) = 1.2601 sin(x1(t)) + 1.4740x1(t),

θ2(t) = 1.5456 sin(x1(t))− 1.2017x1(t).

If θ1(t) and θ2(t) are substituted with the scheduling

map µ in L̂(θ(t)), then the same nonlinear model (32)
is obtained. However, note that the proposed method is
an automated affine LPV embedding approach for the
nonlinear systems.

One can see that σ2 is negligible in comparison with σ1.
Therefore, it is also possible to obtain an approximately
accurate LPV model with just one scheduling variable for
this system. After applying the proposed method, an affine
LPV model is obtained:

L̂(θ) =





0.6337θ1 + 1 1.2226θ1 + 5 0
0.4075θ1 0 1
0.3169θ1 0.8151θ1 0



 (34)

with θ1(t) = µ(x(t)) = 1.2601 sin(x1(t)) + 1.4740x1(t).

As these systems are unstable, for comparison purposes,
the response of the nonlinear and the affine LPV system



Fig. 2. Dashed lines: true trajectories of a11, a22, and b11. Thick lines (red): approximate trajectories obtained by the
method of Kwiatkowski and Werner (2008). Thin lines (green): approximate trajectories obtained by the proposed
method. The figures show that the proposed method achieves significantly lower approximation error of the system
with 2 scheduling variables than the method in Kwiatkowski and Werner (2008).
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Fig. 3. The state trajectories of the LPV model (blue lines)
and the nonlinear system (dashed black lines) in a
time-domain simulation using a gain-scheduled state
feedback controller for Example 6.2. The responses
show that the LPV model with a single scheduling
variable has highly similar closed-loop response as the
nonlinear system.

(with one scheduling variable) are computed under the
same gain-scheduled state feedback controller. Fig. 3 re-
veals good coincidence between the time-domain simula-
tion results starting from the initial state x(0) = [1 0]⊤.

7. EXPERIMENTAL EXAMPLE

In this section, the proposed method is applied on a 3-DOF
gyroscope system by Quanser, shown in Fig. 4. Using a
first-principle model of the system and measured data, an
LPV model of the system is constructed with our method.
Subsequently, exploiting the obtained model, a full-order
gain-scheduled output feedback controller is designed and
applied on the setup. Converting the motion model of
the gyroscope to an LPV form is challenging and results
in an excessive number of scheduling variables Hoffmann
and Werner (2015), so obtaining an LPV model with low
number of scheduling variables is an achievement in itself
by the proposed method.

Fig. 4. The gyroscope experimental setup by Quanser

7.1 Plant description

The gyroscope consists of a golden flywheel mounted inside
an inner blue gimbal which in turn is mounted inside an
outer red gimbal. The red gimbal is attached to a rotating
silver frame. In the experiment considered in this paper,
it is supposed that the rectangular silver frame is fixed.
The blue and red gimbals can be actuated about their
rotation axes using DC motors and the angular position
of both gimbals are measured using optical encoders. The
flywheel is actuated using another motor.

In our experiment, the flywheel is regulated by a controller
which follows an unknown reference signal. The objective
is to achieve servo control of the red and blue frames
together by rejecting the disturbance generated by the
change of the velocity of the flywheel. Let q2(t) and
q3(t) represent the angular position of the blue and red
gimbals, respectively. Moreover, the angular velocity of the
flywheel, the blue gimbal, and the red gimbal are denoted
by q̇1(t), q̇2(t), and q̇3(t). The torque applied on the blue
and red gimbals are given by τb(t) and τr(t).

7.2 LPV modeling

Through the Euler-Lagrange equations and frames defined
for the rational bodies in the gyroscope, a dynamical
motion model of the system is derived:



M(q)q̈ + C(q, q̇)q̇ = τ. (35)

whereM(q) is the inertia matrix and C(q, q̇) is the Coriolis
matrix whose elements are derived as the result of the
summation of the Christoffel symbols and the generalized
angular velocities. The corresponding coefficients of these
matrix functions are identified using measured data form
the physical system and prediction error minimization
with nonlinear optimization. As the flywheel can be seen
as a separate subsystem, an NL-SS model of (35) w.r.t. the
dynamics of the blue and red gimbals is derived in terms
of (2) with

[

A(x, q1)B(x)
C D

]

=



















0 0 1 0 0 0
0 0 0 1 0 0

0 0 f1(x, q1) f2(x, q1) g1(x) g2(x)

0 0 f3(x, q1) f4(x, q1) g3(x) g4(x)

1 0 0 0 0 0
0 1 0 0 0 0



















(36)
with x := [ q2 q3 q̇2 q̇3 ]⊤ and u = [ τb τr ]⊤. Due to the
division by M(q) to derive (36), the rather complicated
rational trigonometrical expressions of f1, . . . , f4, which
all depend on (q2, q3, q̇1, q̇2, q̇3), and also g1, . . . , g4, which
depend on (q2, q3), are not given here. The interested
reader can obtain them from the equations provided in
Bloemers and Toth (2019). (36) is a difficult nonlinear
model for which we would like to obtain a low complexity
affine LPVmodel (Problem 1). Using the proposed method
with nθ = 2 an affine LPV model is obtained:

ẋp(t) = Ap(θ(t))xp(t) +Bp(θ(t))u(t), (37)

y(t) = Cpxp(t), (38)

where θ := [ θ1 θ2 ]
⊤
. The corresponding matrices in

the affine Ap(θ), Bp(θ), and the constant matrix Cp are
not included here for the sake of brevity. Moreover, the
following bounds on the scheduling variables are obtained:

−4.5577 ≤ θ1(t) ≤ 2.3802, − 3.4307 ≤ θ2(t) ≤ 3.4885

Additionally, one can readily compute the bounds on
the derivative of the scheduling variables given below
which are required for the controller synthesis in the next
sections.

−70.9504 ≤ θ̇1(t) ≤ 81.4165, −16.9968 ≤ θ̇2(t) ≤ 33.9214

Thus, θ̇(t) also lies in a hyper rectangle θ̇(t) ∈ Λθ. The
quality of the obtained LPV model is assessed in a closed-
loop simulation study with an LPV controller designed in
Section 7.3 and compared with the closed loop response of
the nonlinear system operated with the same controller. In
case of the nonlinear gyroscope model, the angular velocity
of the disc q̇1 is regulated by a second controller to track a
sinusoidal reference. Two multisine signals, different from
those employed to obtain DN and construct Πα, are used
as the desired reference signals for q2 and q3 in the closed-
loop simulation. The related results for τb, τr, q2, and q3
are shown in Fig. 5. The root mean square error (RMSE)
of the obtained response of the LPV model w.r.t. the true
system response is given in Table 1. Obviously, the LPV
model well captures the dynamics of the original system.
Moreover, magnitude plots of the frequency response of
the LPV model are depicted in Fig. 7 for some frozen
scheduling variables in the related intervals, which clearly
reveals the significant variation of the model over the
scheduling set.
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Fig. 5. Validation plots of input torques τb, τr and angular
positions q2, q3 of the original nonlinear system (solid-
red lines for gimbal red and solid-blue lines for gimbal
blue) and the LPV model (dashed-black line).

Fig. 6. Closed-loop control setup for the gyroscope.

Table 1. RMSE values of the obtained closed-
loop simulation response of the LPV model
w.r.t. the nonlinear gyroscope model operated

by the same controller.

τ2 τ3 q2 q3

RMSE 0.0036 0.0049 0.0013 0.0029

7.3 Control synthesis

In this section, using the obtained LPV model in Section
7.2, a gain-scheduled full-order output feedback controller
is sought for the gyroscope based on the closed-loop setup
shown in Fig. 6. Roughly speaking, the H∞-type perfor-
mance, more precisely the induced L2-gain performance,
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Fig. 7. Magnitude plots of the open-loop frequency re-
sponses of the LPV model for frozen (constant)
scheduling variables, where significant gain and pole
variations can be observed over the scheduling range.

is considered to shape the frozen sensitivity and control
sensitivity functions of the feedback system. To obtain
good tracking performance, while the actuator constraints
are taken into account, the following weighting functions
are employed:

Ws =







32s+ 20000

1.6s+ 1
0

0
11.2s+ 7000

1.6s+ 1






,

Wk =







0.024s+ 1.5

0.0016s+ 1
0

0
0.096s+ 6

0.0016s+ 1






,

The weighting function Ws has been designed based on the
standard mixed-sensitivity shaping approach to shape the
frozen sensitivity frequency responses of the closed-loop
system. Ws is chosen such that corresponds to a low-pass
filter with bandwidth 0.7 rad/s and low frequency gain of
about 80 dB to ensure good disturbance attenuation, fast
response time and less than 20% of expected overshoot.
Similarly the control sensitivity weighting function, Wk,
has been chosen considering the amplitude and frequency
constraints on the voltage to be applied to the DC motors
of the experimental setup. The open-loop weighted plant
displayed in Fig. 6 (by removing the controller) can be
expressed as:

ẋ(t) = A(θ(t))x(t) +Br(θ(t))r(t) +Bu(θ(t))u(t),

z(t) = Cz(θ(t))x(t) +Dr(θ(t))r(t) +Du(θ(t))u(t), (39)

y(t) = Cy(θ(t))x(t) +Dy(θ(t))r(t),

where x(t) ∈ R
n, r(t) ∈ R

m, u(t) ∈ R
p, z(t) ∈ R

q, and
y(t) ∈ R

r respectively denote the state vector, the external
input, the control input, the performance output, and the
measured output of the system, with
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Fig. 8. Experimental results of the designed LPV con-
troller with the gyroscope. Dashed lines: the desired
reference. Solid lines: the obtained results from the
real setup. The LPV controller designed based on the
low complexity LPV embedding of the plant using
the proposed approach of the paper shows adequate
tracking performance with this highly nonlinear sys-
tem.

[

A(θ(t)) Br(θ(t)) Bu(θ(t))
Cz(θ(t)) Dr(θ(t)) Du(θ(t))
Cy(θ(t)) Dy(θ(t)) 0

]

=























Ap(θ(t)) 0 0 0 Bp(θ(t))

−BsCp(θ(t)) As 0 Bs 0

0 0 Ak 0 Bk

−DsCp(θ(t)) Cs 0 Ds 0

0 0 Ck 0 Dk

−Cp(θ(t)) 0 0 I 0























(40)



where (As, Bs, Cs, Ds) and (Ak, Bk, Ck, Dk) are the state-
space realizations of Ws and Wk, respectively.

The goal is to design the full-order gain-scheduled con-
troller

K(θ) :

{

ẋc(t) = Ac(θ(t))xc(t) +Bc(θ(t))y(t)

u(t) = Cc(θ(t))xc(t) +Dc(θ(t))y(t)

such that it stabilizes the closed-loop system and assures
an upper bound γ on the induced L2-gain performance.
To design the controller, we use the method detailed in
Sadeghzadeh (2018).

The resulting parameter-dependent LMI problems are
solved through finite-dimensional LMI relaxation exploit-
ing homogeneous polynomial matrices inspired by the
method of Oliveira and Peres (2007). To this end, YALMIP
Löfberg (2004) and ROLMIP Agulhari et al. (2012) inter-
faces for the LMI solver MOSEK MOSEK ApS (2015) are
employed. With a λ = 0.001 an 8th-order controller is
obtained with a guaranteed L2-gain performance bound
of 240.81.

7.4 Experimental results

In this section, the gain-scheduled controller designed
based on the LPV model obtained via the proposed
method in this paper is experimentally validated on the
laboratory setup. The controller is described in block
diagrams in MATLAB/Simulink. Then using a dSPACE
board that implements a real time interface, it is applied
on the setup. The angular velocity of the flywheel is made
to track a sinusoidal reference between 10 to 30 rad/sec.
Since the movements of blue and red gimbals do not
considerably affect the rotational velocity of the flywheel,
a simple proportional controller is employed to ensure the
tracking. The change of the velocity of the flywheel is
considered as the exogenous disturbance, and have to be
rejected by the controller. The reference trajectories for
gimbals blue and red, i.e. q2 and q3, change within ±0.4
rad and are designed to cover different positions of blue
and red gimbals with respect to each other. The desired
and actual positions of the gimbals, the angular velocity
of the flywheel, and the control input signals are shown in
Fig. 8. One can see that both gimbals track successfully
the related reference trajectories while the input torques
τb and τr remain within acceptable levels.

8. CONCLUSION

A novel method taking advantage of PCA is devised in this
paper for LPV embedding of nonlinear systems. Contrary
to the available methods for LPV embedding of nonlinear
models based on PCA, the PCA is applied on a data
matrix consisting of the trajectories of all elements of the
state-space matrices not solely the scheduling variables.
Furthermore, by finding the minimum bounding box of the
scheduling variables and its proper rotation, the conserva-
tiveness related to over bounding the admissible region
of the scheduling variables is reduced by introducing an
invertible transformation to find a new set of scheduling
variables. In addition to academic examples, the proposed
method is deployed to generate an LPVmodel for a 3-DOF
gyroscope. Assessment of the LPV model and evaluation

of the closed-loop performance, which is obtained by a de-
signed gain-scheduled controller exploiting the developed
LPV model, successfully demonstrate the applicability of
the developed method in practice.
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