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Abstract— Distributed linear control plays a crucial role in
large-scale cyber-physical systems. It is generally desirable to
both impose information exchange (communication) constraints
on the distributed controller, and to limit the propagation
of disturbances to a local region without cascading to the
global network (localization). Recently proposed System Level
Synthesis (SLS) theory provides a framework where such
communication and localization requirements can be tractably
incorporated in controller design and implementation. In this
work, we develop upon the SLS framework and derive a
solution to the localized and distributed H2 state feedback
control problem, which previously could only be solved via the
FIR (Finite Impulse Response) approximation. In particular,
the proposed synthesis procedure can be decomposed column-
wise, and is therefore scalable to arbitrary large-scale networks.
Further, we lift the FIR filter requirement for SLS controllers
and make explicit the distributed and localized state space im-
plementation of the controller in the infinite-horizon case. Our
simulation demonstrates superior performance and numerical
stability of the proposed procedure over previous methods.

I. INTRODUCTION

Large-scale interconnected systems often demand control
designs that comply with structural constraints with respect
to communication and interaction. These requirements be-
come especially crucial in engineering applications such as
power grids [1] and vehicle platoons [2]. Collectively, the
challenge of designing controllers subject to these constraints
can be called the structured control problem [3]. It is known
that structured control problems are in general nonconvex.
Special cases of structural constraints, such as the ones
satisfying Quadratic Invariance (QI) [4], have been shown
to have exact convex reformulation. Moreover, when the
information transmission pattern for the distributed imple-
mentation requirement is partially nested [5], the optimal
controller is linear for LQG problems. Therefore, previous
works mostly focus on structured controller design in the QI
and partially nested information setting. As noted in [6], QI
requires global information exchange for strongly connected
plants such as a chain system. This imposes limitations for
scalability of the synthesis and implementation of distributed
controllers. Particularly, [7] explored cases where one wishes
to go beyond QI conditions and observed that solutions
leveraging QI can be more complex to synthesize than
its central counterpart [8], thus not scalable to arbitrary
large-scale networks. As the state dimensions of the control
systems grow beyond the order of the millions, two control
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design requirements emerge: (1) Localization: It it desirable
that the effects of disturbances are limited to a predefined
local region without cascading to the global network. (2) Dis-
tributed implementation: Controller implementation needs to
be distributed, allowing only sparse and local information to
be exchanged according to a user-specified pattern.

The first requirement is crucial for systems such as power
grids where cascading failures can cause socioeconomic
devastation [9]. The second requirement might be imposed
even when global information is available to local con-
trollers: computation of local control actions using global
information can become intractable in large networks. In this
article, we tackle the class of structured control problems
subject to these two constraints. In particular, we focus on
the state feedback H2 optimal control setting [10], [11].
Under QI framework, a large body of works have developed
solutions to the state feedback H2 control problems subject
to information sharing constraints [11], [12]. However, the
localization constraints were only recently considered in [13]
and [14] and motivate further investigation.

In this work, we present the solution to the localized and
distributed H2 optimal control problem. We extend previous
results that use finite-horizon approximation [6], [14] to
the infinite-horizon case and relieve several assumptions
such as block diagonal control matrix in this work. Futher,
We provide details of the distributed implementation and
computation of the controller. Leveraging the System Level
Synthesis parameterization of the closed-loop maps [7], [15],
we propose a novel decentralized synthesis procedure for
structured controllers that is scalable to large networks.
The resulting controller confines disturbances in a local
neighborhood while constraining the information exchange
among subsystems to a user-specified pattern.

Notation: Latin letters x ∈ Rn and A ∈ Rm×n are
vectors and matrices. A(i, j) refers to the (i, j)th position of
the matrix and x(j) refers to the jth position of vector x.
We use A(:, j) and A(j, :) to refer to the jth column and jth

row of A respectively. Bold font x denotes the signal vector
sequence x := {x[t]}∞t=1. Transfer matrices G ∈ Cn×m have
spectral component decomposition as G = Σ∞i=0z

−iG[i]
where G[i] ∈ Rn×m. We use ej ∈ Rn as the standard
basis with jth element being 1 and 0 everywhere else. We
denote 1n×m as an n by m matrix with all entries of 1’s
and 0n×m as an n by m matrix with all 0’s. sp (·) is the
support of a matrix where each entry of the support matrix
is denoted as 1 if the original matrix has nonzero element and
zero otherwise. For two binary matrices S1, S2 ∈ {0, 1}m×n,
the operation S1 ∪ S2 performs an element-wise OR. Given
matrix A, we say sp (A) ⊆ S1 if sp (A) ∪ S1 = S1. We
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Fig. 1. Scalar chain network with localization and communication
requirement that SL = A and SC = SL,e.

abbreviate the set {1, 2, . . . , N} as [N ] for N ∈ N.

II. THE LOCALIZED AND DISTRIBUTED H2 PROBLEM

We consider interconnected systems consisting of N sub-
systems. For each subsystem i, let xi ∈ Rni , ui ∈ Rmi ,
wi ∈ Rni be the local state, control, and disturbance vectors
respectively. Each subsystem i has dynamics:

xi[t] =
∑

j∈Nx(i)

Aijxj [t− 1] +
∑

j∈Nu(i)

Bijuj [t− 1] + wi[t]

for t = 0, 1, . . . , where we write j ∈ N x(i) if the states
xj of subsystem j affects the states of subsystem i through
the open-loop network dynamics. Similarly, we denote j ∈
N u(i) if the control action uj of subsystem j influence the
states of subsystem i. In addition, the open-loop network
interconnection pattern will be denoted as A ∈ {0, 1}N×N :

A(i, j) =

{
1 if j ∈ N x(i)

0 otherwise.

Stacking the dynamics of all subsystems, we can represent
the global network dynamics as

x[t] = Ax[t− 1] +Bu[t− 1] + w[t]. (1)

Example 1: Consider Figure 1 where a chain network
is displayed. Each subsystem i has its local plant Pi and
controller Ci with scalar states xi and control actions ui. As
is illustrated, the setN x(i) of each subsystem i only contains
its nearest neighbors. For example, N x(4) = {3, 4, 5} while
N x(1) = {1, 2}. The local controllers are dynamically
decoupled, namely, N u(i) = {i}. The stacked network dy-
namics (1) for this system has tri-diagonal state propagation
matrix A and diagonal B matrix:

A =


∗ ∗ 0 0 0
∗ ∗ ∗ 0 0
0 ∗ ∗ ∗ 0
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗

 B =


∗ 0 0 0 0
0 ∗ 0 0 0
0 0 ∗ 0 0
0 0 0 ∗ 0
0 0 0 0 ∗

 . (2)

A. Localization

It is often desirable to limit the effects of disturbances in
(1) to a local region for a large network. One may specify
disturbance localization pattern with a binary matrix.

Definition 2.1 (Disturbance Localization): The closed-
loop of (1) is said to satisfy disturbance localization
according to SL ∈ {0, 1}N×N if the following holds:

Disturbance wj entering subsystem j can propagate to the
states xi at subsystem i if and only if SL(i, j) 6= 0.

Example 2: As an example of Definition 2.1, consider
Figure 1. Let us constrain the closed-loop localization of
this chain network to SL = A. This means that each
local disturbance wi can only spread to the set N x(i).
According to the sparsity of A in (2), the closed-loop satisfies
disturbance localization according to SL if disturbance w1

entering at subsystem P1 can propagate only to P2, while
P3 through P5 remain unaffected. Similarly, perturbations
entering at P5 only disturb P4 and P5.

We call the subsystems that can be affected by wi the
localized region of wi. Elements in the localized region of
wi corresponds to the nonzero elements of the ith column
of SL. In example 1, localized region for wi is N x(i).
An equivalent requirement of disturbance localization per
Definition 2.1 is that the ”boundary” subsystems of each
localized region remains zeros to prevent disturbances from
propagating outside of the localized region. To this end, we
formalize the notion of the boundary subsystems.

Definition 2.2 (Extended Localization Pattern): Given
sparsity pattern SL for disturbance localization, the extended
localization pattern is SL,e = sp

(
ASL

)
.

Matrix SL,e can be interpreted as the propagation of SL
according to dynamics (1) if no actions were taken to contain
the spread of disturbances. We now define the boundary
subsystems for a given localization pattern SL.

Definition 2.3 (Boundary Subsystems): The set of the
boundary subsystems for the localized region of wi is

B(i) := {j ∈ [N ] | SL,e(j, i)− SL(j, i) 6= 0}.
Intuitively, the set B(i) for the localized region of wi

contains the indices of the bordering subsystems that controls
the spread of the disturbance from within the localized region
to the outside of the region.

Example 3: We continue with Example 2 where SL = A.
With Definition 2.2 and 2.3, one can verify:

SL,e =


1 1 1 0 0
1 1 1 1 0
1 1 1 1 1
0 1 1 1 1
0 0 1 1 1

 ,SL,e−SL =


0 0 1 0 0
0 0 0 1 0
1 0 0 0 1
0 1 0 0 0
0 0 1 0 0

 .
The boundary index set B(i) thus corresponds to the position
of nonzero elements on the ith column of SL,e − SL. For
instance, B(3) = {1, 5} and B(1) = {3}.
B. Distributed Implementation

Controllers for large networks are generally required to
have distributed implementation. This means that each local
controller for subsystems only has access to information from
its neighboring subsystems. We denote the information about
subsystem j at time t as Ijt that includes all past states,
control actions and controller internal states at subsystem j
up to time t. Given a priori specified sparsity pattern for
communication among subsystems, we have:

Definition 2.4 (Distributed Communication): A controller
K for (1) is said to conform to the communication constraint



according to SC ∈ {0, 1}N×N if the following holds:
Subsystem i at time t has access to information set Ijt from
subsystem j for all t ∈ N if and only if SC(i, j) 6= 0.

In other words, a controller conforms to the communi-
cation constraint according to SC if the computation of
ui[t] does not involve Ijt whenever SC(i, j) = 0. The
subsystems whose information is needed for computation of
ui corresponds to the nonzero element of the ith row of SC .

Remark 1: It is clear that SL,e ⊆ SC is required. One
can only hope to localize the closed-loop if information
transmission among the boundary subsystems for each lo-
calized region is allowed. Indeed, designing for suitable and
realizable localization and communication sparsity pattern is
a subtle task due to the complex interplay between actuation
and state propagation. We refer interested readers to Chapter
5 and 7 of [16] for detailed discussion on this topic.

Example 4: Consider Figure 1. Let the communication
pattern in this case be SC = SL,e, which is the minimum
communication requirement for SL to be achievable. At
every time step, control actions u1 generated by subsystem
1 depends on the information from subsystem 1,2,and 3 as
shown in Figure 1. Similarly, we need information from
subsystem 1, 2, 3, and 4 for u2.

C. Problem Statement

We now state the localized and distributed state feedback
H2 problem. In particular, we minimize the H2 performance
index on output z = Q

1
2 x + R

1
2 u of the closed-loop of

(1). In this case, w[t]’s are assumed to be independently
and identically distributed and drawn from N (0, I), and
Q

1
2 , R

1
2 � 0. Denote x = {x[t]}∞t=0, u = {u[t]}∞t=0. The

objective is to search for a controller that localizes the closed-
loop and uses distributed implementation. We write this as
the following optimization problem:

minimize
K

Ew[t]∼N (0,I)

∥∥∥∥[Q 1
2 0

0 R
1
2

] [
x
u

]∥∥∥∥2

L2

(P0)

subject to x[t] = Ax[t− 1] +Bu[t− 1] + w[t]

u = Kx, K internally stabilizing

K localizes closed-loop according to SL (3a)
K conforms to the communication constraint

according to SC . (3b)

where ‖x‖2L2
:=
∑∞

k=0 ‖x[k]‖22 denotes the norm on signals
in the L2 space. We also assume (A,B) is stabilizable.
We note that in contrast to all previously formulated SLS
problems, there is no FIR constraint in P0.

III. PRELIMINARIES ON SYSTEM LEVEL SYNTHESIS

Before the development of the solution to Problem (P0),
we first review the System Level Synthesis framework [13]
that has seen much success in distributed [17], nonlinear [18],
MPC [19], and adaptive [20] control design.

Consider the closed-loop dynamics of (1) under a linear
feedback law u = Kx. We denote the closed-loop mapping

from disturbance w to x and u by Φx,Φu respectively, i.e.,[
x
u

]
=

[
Φx

Φu

]
w. (4)

Let Nx =
∑N

i ni and Nu =
∑N

i mi. Then Φx(k, j) and
Φu(l, j) are the impulse response transfer function from
w(j) to x(k) and u(l) for k ∈ [Nx] and l ∈ [Nu]. The closed-
loop mappings Φx and Φu can be explicitly represented as
Φx = z(zI −A−BK)−1 and Φu = zK(zI −A−BK)−1

after performing the Z-transformation of the closed loop of
(1). Note we have followed convention in nonlinear SLS
theory [15] where Φx and Φu are causal operators here.
The System Level Synthesis (SLS) framework introduces
a novel parametrization of all such achievable closed-loop
mappings (CLMs) under internally stabilizing controllers
K ∈ RH∞. Crucially, SLS allows re-parameterization of
any stabilizing controllers to be expressed and implemented
with CLMs. Instead of searching for controller K, one looks
for desirable closed-loop responses Φx,Φu and recovers the
controller transfer function that realizes these closed-loop
behaviors as K = Φu(Φx)−1. Importantly, SLS provides
a special implementation of controller K that preserves the
structures imposed on the closed-loop responses Φx,Φu.
This is formalized as the following result adapted from [7].

Theorem 1 ([7]): For the dynamics (1), the affine sub-
space in variables Φx and Φu defined by

Φx[0] = I, Φx,Φu ∈ RH∞ (5a)
Φx[t+ 1] = AΦx[t] +BΦu[t], (5b)

characterizes all closed-loop mappings achievable by an
internally stabilizing controller. Moreover, for any Φu,Φx

satisfying (5), controller K = Φu(Φx)−1 achieves the de-
sired closed-loop responses Φx,Φu, is internally stabilizing
and can be implemented equivalently as

u[t] =

t∑
k=0

Φu[k]ŵ[t− k] (6a)

ŵ[t+ 1] = x[t+ 1]−
t+1∑
k=1

Φx[k]ŵ[t+ 1− k], (6b)

where ŵ is the internal state of the controller, for t =
0, 1, . . . , with initial condition ŵ[0] = x[0].

Controller (6) can be regarded as estimating past distur-
bances in (6b) and acting upon the estimated disturbances
according to a specified closed-loop mapping Φu in (6a). An
important consequence of Theorem 1 is that any structures
imposed on the closed-loop responses Φx,Φu satisfying (5),
such as sparsity constraints on the FIR spectral elements of
Φx,Φu, trivially translate into structures on the realizing
controllers (6) that achieves the responses.

Note constraint (3a) and (3b) can be equivalently ex-
pressed in terms of the CLMs of the closed loop of (1).
We first define what it means for CLMs of (1) to conform
to localization and communication sparsity patterns.

Definition 3.1 (Sparsity of CLMs): Given a closed-loop
mapping Φx ∈ C

∑
i ni×

∑
i ni for (1), We say Φx ∈ SL



if for all k ∈ N, sp (Φx[k]) is a block matrix with (i, j)th

block being 1ni×nj when SL(i, j) = 1, and 0ni×nj
when

SL(i, j) = 0. Similarly, for Φu ∈ C
∑

i mi×
∑

i ni , we say
Φu ∈ SC if for all k ∈ N, sp (Φu[k]) is a block matrix with
(i, j)th block being 1mi×nj

when SC(i, j) = 1, and 0mi×nj

when SC(i, j) = 0.
By definition of Φx in (4), constraint (3a) is equivalent to

requiring Φx ∈ SL. On the other hand, note that controller
(6) inherits the communication pattern from the sparsity of
Φx,Φu. Based on Remark 1, we conclude that (3b) can be
expressed as Φu ∈ SC , provided that Φx ∈ SL.

IV. MAIN RESULTS

We derive the solution to Problem (P0) in two parts.
First, we present the synthesis of the localized and dis-
tributed controller via CLMs using the SLS parameteri-
zation. The synthesis procedure naturally decomposes into
smaller problems, allowing computation to only involve local
information, thus favorably scales to large networks. The
second part of the solution investigates the implementation
of the localized and distributed controller. We make explicit
how decomposed local controllers subject to communication
constraints achieve the global objective of stabilization and
localization.

A. Synthesis of CLMs

We aim to synthesize closed-loop behaviors that conforms
to the disturbance localization and distributed implemen-
tation requirements defined in the preceding section. In
particular, Problem (P0) will be transformed and decomposed
via the SLS parameterization in sequential steps.

Step 1: Re-parameterization with CLMs

We substitute variables Φuw and Φxw in place of x and
u as the optimization variable in Problem (P0). An equivalent
re-parameterization is as follows:

minimize
Φx,Φu

∞∑
k=0

Φx[k]TQΦx[k] + Φu[k]TRΦu[k] (P1)

subject to (5a), (5b)

Φx ∈ SL, Φu ∈ SC

where the equivalence of the objective functions in (P0)
and (P1) are due to the the relationship (4) between CLMs
Φx,Φu and x,u. After simplifying the objective function
in (P0) using the fact that i.i.d. white noise w has identity
covariance, we arrive at (P1). As addressed in Section III,
(5a) and (5b) characterize the space of CLMs achievable
by an stabilizing controller K, thus replacing the equality
constraints in (P0).

Step 2: Column-wise Decomposition

As a feature of SLS problems, (P1) can be decomposed
in a column-wise fashion [17]. The columns of Φx and Φu

can be solved in parallel and reconstructed to recover the
solution to (P1). For each column j ∈ [Nx], we denote Φj

x

and Φj
u as the jth column of Φx and Φu. The decomposed

problem (P1) for each j ∈ [Nx] has the form:

minimize
Φj

x,Φ
j
u∈RH∞

∞∑
k=0

Φj
x[k]TQΦj

x[k] + Φj
u[k]TRΦj

u[k] (P2)

subject to Φj
x[0] = ej (8a)

Φj
x[t+ 1] = AΦj

x[t] +BΦj
u[t] (8b)

Φj
x ∈ SL(:, j), Φj

u ∈ SC(:, j). (8c)

Recall that the (k, j)th position of Φx represents the closed-
loop transfer function from w(j) to x(k) with k ∈ [Nx].
Within the column vector Φj

x, we can identify Φj
x(k) with

position k’s associating to the states in subsystems in B(j).
Moreover, since column vector Φj

x and Φj
u are constrained

to the jth column of prescribed sparsity patterns SL and SC
respectively, we can reduce (P2) by removing zero entries
other than those associated with B(j). We denote the reduced
column vectors that contains the entries associated with B(j)
as Φ̃j

x and Φ̃j
u. Similarly, the problem parameters A, B,

Q, R can be reduced by selecting submatrices A(j), B(j),
Q(j), and R(j) consisting of columns and rows associated
with the boundary entries and non-zero entries of Φj

x and
Φj

u. Note these submatrices now contain only dynamics
information from subsystems that are allowed to transmit
information to the jth state’s subsystem. We further rearrange
the reduce vectors and matrices in (8b) by grouping the
entries associating with boundary subsystems as follows:[

Φ̃j
x,n

Φ̃j
x,b

]
[k + 1]︸ ︷︷ ︸

Φ̃j
x[k+1]

=

[
A

(j)
nn A

(j)
nb

A
(j)
bn A

(j)
bb

]
︸ ︷︷ ︸

A(j)

[
Φ̃j

x,n

Φ̃j
x,b

]
[k] +

[
B

(j)
n

B
(j)
b

]
︸ ︷︷ ︸

B(j)

Φ̃j
u[k]

(9)
where Φ̃j

x,b denotes the entries on column vector Φ̃j
x that are

associated with B(j) and Φ̃j
x,n represents the nonzero entries

of Φ̃j
x that are not associated with boundary subsystems.

Here, A(j) and B(j) are partitioned accordingly. With abuse
of notation, We overload Φ̃j

u to denote the rearranged and
reduced vector Φj

u.
Example 5: Consider the scalar chain example in Figure

1 for the local problem with j = 4, i.e., the subproblem
(P2) corresponding to the fourth column of Φx,Φu. We have
the constraint Φ4

x = [0, 0, Φx(3, 4), Φx(4, 4), Φx(5, 4)]T

according to the fourth column of localization pattern SL =
A. In this case, we have Φ̃4

x,b = [Φx(2, 4)]T defined in
Definition 2.3 and Φ̃4

x,n = [Φx(3, 4), Φx(4, 4), Φx(5, 4)]T .
Therefore, the rearranged and reduced vector is Φ̃4

x =
[Φx(3, 4), Φx(4, 4), Φx(5, 4), Φx(2, 4)]T .

Note that the first part of constraint (8c) now becomes
equivalent to the requirement that Φ̃j

x,b remains at origin at
all time for the localized region of wj . This is because of
the ”initial condition” (8a). By keeping the entries associated
with boundary subsystems at zero, we implicitly impose
that for all k, sp

(
AΦj

x[k] +BΦj
u[k]

)
⊆ SL(:, j), which is

necessary and sufficient to ensure Φj
x ∈ SL(:, j). Therefore,



the local problem (P2) after rearrangement becomes

min
Φ̃j

x,Φ̃
j
u∈RH∞

∞∑
k=0

Φ̃j
x[k]TQ(j)Φ̃j

x[k] + Φ̃j
u[k]TR(j)Φ̃j

u[k]

(P3)

subject to Φ̃j
x[0] = ejj (10a)

(9)

Φ̃j
x,b[k] = 0,∀k (10b)

where ji denotes the new position of element Φx(j, i) in the
rearranged and reduced vector Φ̃i

x. Vectors eji have the same
dimension as Φ̃i

x. We differentiate the position of element
Φx(j, i) in Φ̃i

x,n with the notation j̃i. Vectors ej̃i has the
same dimension as Φ̃i

x,n.
Example 6: Continuing Example 5 where i, j = 4, then

Φx(4, 4) is in the second position in rearranged and reduced
vector Φ̃4

x. Thus, j4 = 2, ej4 = [0, 1, 0, 0]
T , and j̃4 =

2 with ej̃4 = [0, 1, 0]
T . Consider instead j = 4 and

i = 5, then Φx(4, 5) is in the first position in Φ̃5
x =

[Φx(4, 5), Φx(5, 5), Φx(3, 5)]T while it is also in the first
position in Φ̃5

x,n = [Φx(4, 5), Φx(5, 5)]T . We then have
j5 = 1 with ej5 = [1, 0, 0]T and j̃5 = 1 with ej̃5 = [1, 0]T .

Step 3: De-constraining Subproblems

We now de-constrain (P3) by characterizing CLMs that
satisfy (10b). We first substitute (10b) into (9) in (P3) and
conclude that (10b) is equivalent to requiring

−B(j)
b Φ̃j

u = A
(j)
bn Φ̃j

x,n. (11)

Due to the equality constraint (10a) and (9), the free opti-
mization variable is Φ̃j

u in (P3). Therefore, (11) has solutions
Φ̃j

u if and only if the following assumption holds:
Assumption 1: B(j)

b B
(j)†
b = I .

Recall that constraint (10b) is sufficient and necessary for
the CLMs to comply to the localization pattern SL. This
means assumption 1 is the minimum requirement for the
each local problems (P3) to be localizable according to the
local neighborhood specified by SL. Further, per Definition
2.3, the number of boundary subsystems can generally be
less than the total dimension of control actions, i.e., B(j)

b is
a wide matrix. Hence it is reasonable to assume B

(j)
b has

linearly independent rows.
Lemma 2: Under Assumption 1, the parametrization

Φ̃j
u[k] = −B(j)†

b A
(j)
bn Φ̃j

x,n[k] +
(
I −B(j)†

b B
(j)
b

)
vj [k] (12)

with vj [k] a free vector variable characterizes all Φ̃j
u[k] that

satisfies (10b).
Proof: Under Assumption 1, (11) has solutions of

the form (12). This can be checked by confirming that
Range

(
I −B(j)†

b B
(j)
b

)
= Kernel

(
B

(j)
b

)
. Substituting (12)

in (9), one can verify that Φ̃j
x,b[k] = 0, ∀k = 1, 2, . . . .

The re-parametrization of optimization variable Φ̃j
u,b in

(P3) with vj allows us to express an equivalent local op-
timization problem without (10b). Substitute (12) into (P3)

and regroup variables, we have:

min
Φ̃j

x,n,vj∈RH∞

∞∑
k=0

Φ̃j
x,n[k]T Q̃(j)Φ̃j

x,n[k] + vj T [k]R̃(j)vj [k]

subject to Φ̃j
x,n[0] = ej̃j (P4)

Φ̃j
x,n[k + 1] = Ã(j)Φ̃j

x,n[k] + B̃(j)vj [k]

where

R̃(j) =

((
R(j)

) 1
2
(
I −B(j)†

b B
(j)
b

))T

((
R(j)

) 1
2
(
I −B(j)†

b B
(j)
b

))
Q̃(j) =

(
(Q(j))

1
2 − (R(j))

1
2B

(j)†
b A

(j)
bn

)T
(

(Q(j))
1
2 − (R(j))

1
2B

(j)†
b A

(j)
bn

)
Ã(j) = A(j)

nn −B(j)
n B

(j)†
b A

(j)
bn

B̃(j) = B(j)
n

(
I −B(j)†

b B
(j)
b

)
.

Step 5: Local Riccati Solutions

For each column j with j ∈ [Nx], problem (P4) can be
treated as an infinite horizon LQR problem with which an
optimal ”control policy” K̃(j) can be computed in closed
form via discrete-time algebraic Riccati equation (DARE):

K̃(j) = −
(
R̃(j) + B̃(j)TX(j)B̃(j)

)−1

B̃(j)TX(j)Ã(j),

where X(j) is the Riccati solution to the DARE:

X(j) = Q̃(j) + Ã(j)TX(j)Ã(j) − Ã(j)TX(j)B̃(j)(
R̃(j) + B̃(j)TX(j)B̃(j)

)−1

B̃(j)TX(j)Ã(j).

With optimal solutions vj [k] = K̃(j)Φ̃j
x,n[k], k = 0, 1, . . .

to (P4), solutions to (P3) can be recovered via (12) as:

Φ̃j
x,n[0] = ej̃j (14)

Φ̃j
u[k] =

(
−B(j)†

b A
(j)
bn +

(
I −B(j)†

b B
(j)
b

)
K̃(j)

)
Φ̃j

x,n[k]

Φ̃j
x,n[k] =

(
Ã(j) + B̃(j)K̃(j)

)
Φ̃j

x,n[k − 1].

Note that by the LQR theory, the optimal solution to (P4)
via the Riccati equation is stable, i.e., vj and Φ̃j

x,n are both
stable and proper transfer matrices.

In summary, we went through a series of transforma-
tions and decompositions from the original localized and
distributed state feedback H2 problem (P0) to (P4). Indeed,
given solutions to the local problems (P4), solutions to
(P0) can be recovered. In particular, we define embedding
operator Ex(·) and Eu(·) that apply padding of zero’s to the
reduced vectors Φ̃j

x,n and Φ̃j
u by assigning entries of Φ̃j

x,n

and Φ̃j
u to the positions of nonzero elements of Φx(:, j) and

Φu(:, j) such that Ex

(
Φ̃j

x,n

)
∈ RNx and Eu

(
Φ̃j

u

)
∈ RNu .

Example 7: Consider the reduced vector Φ̃4
x,n =

[Φx(3, 4), Φx(4, 4), Φx(5, 4)]
T for j = 4 in Exam-

ple 5. Applying the embedding operator, we have that



Ex

(
Φ̃4

x,n

)
= [0, 0 ,Φx(3, 4), Φx(4, 4), Φx(5, 4)]

T , which
recovers Φ4

x respecting the sparsity of SL(:, 4). Similarly,
ej̃j = [0, 1, 0]

T and Ex

(
ej̃j

)
= ej = [0, 0, 0, 1, 0]

T .
Theorem 3: Let Φ∗x be the column-wise concatenation of

Ex

(
Φ̃j

x,n

)
’s and let Φ∗u be the column-wise concatenation

of Eu

(
Φ̃j

u

)
’s with Φ̃j

x,n’s and Φ̃j
u’s recovered from the

solution to (P4) via (14). Then Φ∗x and Φ∗u are the minimizers
of (P1).

Proof: It is straight forward to check that optimiza-
tion (P1) is an instance of column-wise separable problem
(Section III, [17]) where both the objective function and
constraints are column-wise separable and can be partitioned
and solved in columns as in (P2) in parallel. Therefore,
solutions to subproblem (P2) can be concatenated to recover
the solution to (P1). Note that by construction, Ex

(
Φ̃j

x,n

)
=

Φj
x and Eu

(
Φ̃j

u

)
= Φj

u comprise the optimal solution to

(P2) for each j. Concatenate Ex

(
Φ̃j

x,n

)
’s and Eu

(
Φ̃j

u

)
’s

in a column-wise fashion and the resulting matrices are
solutions to (P1).

B. Controller Realization & Implementation

A second design requirement is the distributed implemen-
tation of the the controller that achieves localized closed-
loop. Given CLMs Φx, Φu synthesized in Section IV-A, we
can directly conclude that theoretically, K = Φu (Φx)

−1

with implementation (6) achieves the given CLMs Φx,Φu

and conforms to the communication constraint according to
SC . This is because the inheritance of sparsity structures
of the controller implementation from CLMs by Theorem
1, and the requirement that SL ⊂ SC as discussed in
Remark 1. Interested readers are referred to [21] for in-depth
discussion on implementation of SLS controllers for cyber-
physical systems. However, due to the state-space form of
solutions from (P4), practical implementation of a controller
that achieves the theoretical global CLMs remains elusive.

We decompose the global SLS controller (6) into Nx ”sub-
controllers” using the solution to (P3). The global control
action u[t] can be accordingly decomposed into Nx ”sub-
control actions”. These sub-control actions will be computed
using solutions from (P3). These sub-control actions are
then assembled together to form a global control action.
Importantly, the computation of each sub-control action
conforms to communication constraint Sc. We now make
precise of this high-level description.

To ease notation, we denote x`[t] ∈ R and w`[t] ∈ R,
for ` ∈ [Nx] as the `th position in the state and disturbance
vector x[t] and w[t] in the global dynamics (1), respectively.
Further, we define the indices associated with the state vector
xj ∈ Rnj of subsystem j ∈ [N ] as X (j) := {` ∈ [Nx] |x` ∈
xj}. Thus, X (j)’s partition the global state vector x[t] in
(1) into N sets containing the states associated with the
N subsystems. Conversely, we use X−1(`) to denote the
subsystem index to which state x` belongs.

For each ` ∈ [Nx], we compute the sub-control action

vector u`, which has the same vector dimension as Φ̃`
u, as:

ŵ`[t] = x`[t]−
∑

i∈Nw(`)

ξi[t]
(

˜̀
i

)
(15a)

ξ`[t+ 1] = A`
Kξ`[t] +B`

Kŵ`[t] (15b)

u`[t] = C`
Kξ`[t] +D`

Kŵ`[t], (15c)

where ŵ`[t] ∈ R can be considered as an estimate of
disturbance w`[t]. Internal state ξ`[t] of each sub-controller
has the same dimension as Φ̃`

x,n[t] and ξi[t]
(

˜̀
i

)
denotes

the ˜̀ th
i element in the internal state vectors ξi. Note that

controller internal variables have initial condition ŵ`[0] =
x`[0] and ξ`[0] = 0. We also define the set Nw(`) as
Nw(`) :=

{
i ∈ [Nx] |SL

(
X−1(`),X−1(i)

)
6= 0
}
. In par-

ticular, the set Nw(`) contains global indices i ∈ [Nx]
such that xi is a state that is allowed to communicate its
information to the subsystem that contains state x`, conform-
ing to communication pattern SC . The compliance to the
communication constraint is due to the fact that SL ⊂ SC
as noted in Remark 1.

 `
x

<latexit sha1_base64="iVvzRxnsbbMnpCXDDAgMvSWCT48=">AAAB/XicbVDLSsNAFL2pr1pf8bFzM1gEVyWRgrorunFZwT6giWEynbRDJw9mJmINxV9x40IRt/6HO//GSZuFth4YOJxzL/fM8RPOpLKsb6O0tLyyulZer2xsbm3vmLt7bRmngtAWiXksuj6WlLOIthRTnHYTQXHoc9rxR1e537mnQrI4ulXjhLohHkQsYAQrLXnmgRNiNfSDzGlKNrlzKOfeg2dWrZo1BVokdkGqUKDpmV9OPyZpSCNFOJayZ1uJcjMsFCOcTipOKmmCyQgPaE/TCIdUutk0/QQda6WPgljoFyk0VX9vZDiUchz6ejLPKue9XPzP66UqOHczFiWpohGZHQpSjlSM8ipQnwlKFB9rgolgOisiQywwUbqwii7Bnv/yImmf1ux67eKmXm1cFnWU4RCO4ARsOIMGXEMTWkDgEZ7hFd6MJ+PFeDc+ZqMlo9jZhz8wPn8AAqGVmw==</latexit>

 `
u

<latexit sha1_base64="+j8j1MdWxDGGWA7kwnB2L2d4IvM=">AAAB/XicbVDLSsNAFJ34rPUVHzs3g0VwVRIpqLuiG5cV7AOaGCbTm3boZBJmJkINxV9x40IRt/6HO//GSduFth4YOJxzL/fMCVPOlHacb2tpeWV1bb20Ud7c2t7Ztff2WyrJJIUmTXgiOyFRwJmApmaaQyeVQOKQQzscXhd++wGkYom406MU/Jj0BYsYJdpIgX3oxUQPwij3GoqN7z3gPMgCu+JUnQnwInFnpIJmaAT2l9dLaBaD0JQTpbquk2o/J1IzymFc9jIFKaFD0oeuoYLEoPx8kn6MT4zSw1EizRMaT9TfGzmJlRrFoZkssqp5rxD/87qZji78nIk00yDo9FCUcawTXFSBe0wC1XxkCKGSmayYDogkVJvCyqYEd/7Li6R1VnVr1cvbWqV+NaujhI7QMTpFLjpHdXSDGqiJKHpEz+gVvVlP1ov1bn1MR5es2c4B+gPr8wf+BpWY</latexit>
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Fig. 2. Column-wise sub-controller implementation for global controller
K = Φu(Φx)−1. Here, x` is the `th state, ŵ` is the estimated `th

disturbance, and u` is the sub-control actions induced by `th state’s deviation
from origin.

Equation (15b) and (15c) are the sub-controller internal
dynamics specified by

(
A`

K , B
`
K , C

`
K , D

`
K

)
that takes in

estimated disturbance ŵ` and output decomposed control
actions u`. The internal dynamics for ` is specified by:

A`
K = Ã(`) + B̃(`)K̃(`)

B`
K =

(
Ã(`) + B̃(`)K̃(`)

)
e ˜̀̀

C`
K = −B(`)†

b A
(`)
bn +

(
I −B(`)†

b B
(`)
b

)
K̃(`)

D`
K =

(
−B(`)†

b A
(`)
bn +

(
I −B(`)†

b B
(`)
b

)
K̃(`)

)
e ˜̀̀ .

Referring to (14), it is straight forward to verify that (15) is
indeed the state space realization of each decomposed SLS
controller implementing the reduced `th column of Φx and
Φu synthesized from (P3). In particular, (15) implements a
transfer function mapping from scalar signal x` to vector
signal u`. Further, each sub-controller is stable since A`

K

is Hurwitz. The block diagram of this transfer function is
shown in Figure 2, where:

Ψ`
x =

[
A`

K B`
K

I 0

]
, Ψ`

u =

[
A`

K B`
K

C`
K D`

K

]
. (16)

For each state `th state x` deviating from the origin due
to disturbance w`, it invokes subsystems j ∈ NC(`) to
transmit information among each other in order to generate
a collaborative sub-control action u` from these subsystems.
Moreover, internal dynamics (15b), (15c) of each ` sub-
controller involves only the global dynamics associated with



subsystems j ∈ NC(`). Therefore, by definition of NC(`),
we conclude that each sub-controller’s implementation con-
forms to the communication pattern specified by SC . By the
superposition property of the input-output behaviors of linear
systems, we can sum over all the sub-control actions induced
by each w` and the global control action u[t] ∈ RNu is:

u[t] =

Nx∑
i=1

Eu(u`[t]), (17)

where each sub-control action u`, which has the same vector
dimension as Φ̃`

u can be appropriately padded with zeros
using the linear operator Eu(·) to recover a vector dimension
in RNu as in Example 7.

The following result confirms that collectively, the sub-
controllers indeed achieve the prescribed global behaviors.

Theorem 4: controller implemented (15) and (17) defined
by solutions to (P3) is internally stabilizing for (1) and
achieves the closed-loop mappings Φx and Φu constructed
by stacking in a column-wise fashion the solutions to (P3).

Proof: Recall Theorem 1, where an internally stabi-
lizing controller that realizes given closed-loop maps Φx

and Φu has centralized implementation (6). Therefore, we
establish the equivalence between global control action u[t]
generated from (6) and u[t] generated from (17). Consider
(6b) where the controller’s internal state ŵ has dynamics

ŵ[t] = x[t]−
t∑

k=1

Φx[k]ŵ[t− k]

= x[t]−
Nx∑
i=1

t∑
k=1

Φi
x[k]ŵi[t− k].

For each `th position in ŵ[t], due to the localization sparsity
pattern SL imposed on Φx, the scalar dynamics is

ŵ`[t] = x`[t]−
∑

i∈Nw(`)

t∑
k=1

Φx(`, i)[k] ŵi[t− k].

Since Φi
x for all i ∈ [Nx] are recovered from (14) via the

linear operators Ex(·), it is straight forward to verify that
t∑

k=1

Φx(`, i)[k] ŵi[t− k] = ξ`[t](˜̀
i), for t = 1, 2, . . . .

We therefore conclude that (6b) and (15a),(15b) are equiva-
lent. Similarly, re-write (6a) as

u[t] =

Nx∑
i=1

t∑
k=0

Φi
u[k]ŵi[t− k].

According to (14), one can check that
∑t

k=0 Φi
u[k]ŵi[t −

k] = Eu(u`[t]), thus verifying the equivalence between (6a)
and (15b),(15c),(17).

Thw intuition behind sub-controllers is that at every time
step, the global controller actions are decomposed into `th

sub-control actions that only attenuate the `th disturbance,
i.e., w`. Therefore, whenever w` enters the system, only

subsystems in the localized region of this disturbance reacts,
computing the sub-control actions using only local informa-
tion available according to SL.

Remark 2: We presented solution to the localized and
distributed H2 problem under instantaneous information ex-
change among subsystems that are allowed to communicate
according to SC . We comment that our methodology can
be extended to the case where information transmission
is delayed. In particular, we can employ the state-space
augmentation by introducing fictitious relay subsystems that
have trivial dynamics and do not have associated cost nor
noise [8]. An efficient representation and computation of
solution to delayed localized and distributedH2 problem will
be future work.

Remark 3: In addition to the localized and distributed H2

problem, the derivation presented in preceding sections also
extend the finite-horizon approximation controller derived
in existing SLS literature [13], [14] to the infinite horizon
case. To the best of our knowledge, this is the first result
that derives infinite-horizon CLMs with explicit state space
controller implementation. Therefore, our result could also be
regarded as solving the infinite-horizon SLS problem when
the cost objective is quadratic [7]. One immediate implication
of our infinite-horizon SLS result is the extension of SLS in
continuous-time systems. Prior to this work, SLS controller
implementation relies on Finite Impulse Response (FIR)
filters for discrete-time systems, which has no clear extension
in the continuous-time case. On the other hand,the same
procedure presented here can be carried out for continuous-
time SLS both for infinite-horizon CLMs synthesis and state-
space controller implementation of said CLMs.

V. SIMULATIONS

In this section, we validate our results and highlight the
advantage of the proposed infinite-horizon H2 controller.
In particular, we use a bi-directional scalar chain system
parametrized by α and ρ.

xi[t+ 1] = ρ(1− 2α)xi[t] + ρα
∑

j∈{i±1}

xj [t] + ui[t] +wi[t]

The parameter ρ characterizes the stability of the overall
system while α decides how coupled the dynamics between
each node is. The ith state in the global state vector x is
dynamically coupled to its nearest neighbors.The localization
and communication constraints in this case are chosen to
be (A, d)-sparse and (A, d + 1)-sparse, respectively (for
details, see section II-B in [6]) with d specifying how many
neighbors a disturbance can spread to.

Figure 3 shows that that the proposed infinite-horizon H2

controller outperforms previous FIR SLS controllers, which
uses finite-horizon approximation to solve for suboptimal
controllers to the localized and distributed H2 problem. As
the finite horizon grows larger and larger, the FIR SLS
controller’s cost approaches the optimal cost achieved by the
proposed method. In the same vain, Figure 4 demonstrates
that as the global network’s state dimension grows larger,
the cost reduction of the proposed H2 controller over FIR



SLS controllers becomes more pronounced. Crucially, the
numerical advantage of our method is also illustrated in this
simulation. While our proposed controller only require Nx

parallel closed-form computation of Riccati solution with
each Riccati equation’s dimension being ñi � Nx, the
number of optimization variables (Nx(Nx +Nu)T variables
total for finite horizon T ) could grow too large for the CVX
to be numerically stable.
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Fig. 3. H2 Cost comparison between the FIR SLS controller [7] and the
infinite-horizon SLS controller proposed in this paper. Clearly, as the FIR
horizon becomes larger, the FIR controller’s cost converges to the infinite-
horizon optimal controller. In this example, we have an 20-node unstable
chain system with α = 0.4 and ρ = 1.25 with 50% actuation where only
every other subsystem has control authority ui 6= 0. We impose (A, d)
and (A, d + 1) sparsity on the localization and communication pattern
respectively with d = 5. Note when FIR horizon is less than T = 6, it
is infeasible to find the FIR SLS controller.
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Fig. 4. H2 cost for FIR and Infinite-horizon SLS controller as the
number of subsystems (state dimensions of the global network) increases.
We have fixed T = 10 as the FIR horizon. As state dimension grows,
the proposed infinite-horizon controller leads a bigger advantage over FIR
SLS controllers. Moreover, the computation efficiency of our proposed
method is also clear in this simulation. In particular, the yellow triagles
denotes when CVX returns ”NaN” for the finite-horizon SLS problems.
This happens when the number of optimization variables becomes too large
for numerical computation. On the other hand, the proposed controller only
require Nx simultaneous computation closed form Riccati solution and
remains numerically stable.

VI. CONCLUSION

We propose and derive solution to the localized and
distributed H2 problem in this paper. Our result generalizes

previous methods that uses finite-horizon approximation and
make explicit the distributed implementation of the infinite-
horizon controller.
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