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Abstract

Adaptive synchronization protocols for heterogeneous multi-agent network are

investigated. The interaction between each of the agents is carried out through

a directed graph. We highlight the lack of communication between agents and

the presence of uncertainties in each system among the conventional problems

that can arise in cooperative networks. Two methodologies are presented to

deal with the uncertainties: A strategy based on robust optimal control and a

strategy based on neural networks. Likewise, an input estimation methodology

is designed to face the disconnection that any agent may present on the network.

These control laws can guarantee synchronization between agents even when

there are disturbances or no communication from any agent. Stability and

boundary analyzes are performed. Cooperative cruise control simulation results

are shown to validate the performance of the proposed control methods.
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1. Introduction

Nowadays, multi-agent system control has a wide variety of applications

ranging from mechanical systems like robots synchronization to social behavior

for influence analysis [1, 2, 3]. For distributed control systems, problems based

on a reference or leader model have been widely considered [4, 5, 6, 7]. Cooper-

ative cruise control has drawn great attention as an application case among the

main problems to be tackled [8, 9].

Conventional control techniques for cooperative cruise systems have been

used for more than 20 years with effective results [10, 11]. However, the systems

are considered without disturbances neither network communication failures,

limiting the application of these control methods in practice.

Adaptive control theory is proposed as an effective method for dynamic sys-

tems with uncertainty parameters [12, 13], such as Model Reference Adaptive

Control (MRAC) for leader-follower models. MRAC allows the online adjust-

ment of the controller parameters through adaptive laws in order to synchro-

nize a dynamic with respect to a reference model [14]. For distributed systems,

MRAC is extended including matching conditions for both, the reference and

the dynamics of neighboring agents [15]. Similarly, as a robust complement, op-

timal adaptive theory or neural network approach could be included to mitigate

input system uncertainties [16, 17].

Likewise on a cooperative practical level, one of the common scenarios to

be presented is the communication loss between agents [18]. In the distributed

MRAC case, where communication of each agent control input is handled, the

lack of communication of this variable is common in practice due to different

conditions such as disconnection from the network by physical environment or

by pre-established configuration against energy losses. The conventional con-

trol strategies present failures in their operation by not considering a lack of

communication [19], or handle it as a disturbance but without considering an

adaptive law for estimation [20]. The challenge is build some adaptive proto-

cols to allow an input estimation of uncommunicated agents and also addresses
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input uncertainties in the case of a heterogeneous agents network.

In recent works, just few results have been proposed using the MRAC from

a robust optimal perspective to handle disturbances in centralized way [13, 21],

and some others results have proposed on distributed input estimation, but

without covering additional uncertainty parameters [22, 23]. In the distributed

control used to synchronize heterogeneous agents, the controller must adjust four

sets of parameters: the feedback matching conditions related to the dynamics of

the reference agent, the coupling matching conditions related to the dynamics

of neighboring agents, the uncertainty optimal parameters for the suppression

of disturbances, and the input estimation parameter for the uncommunicated

agents input. These parameters should be adjusted for agents that are directly

communicated with the reference and those which are not [15, 16].

The main contribution of this paper is Threefold, first the development of a

control protocol that allows the suppression of uncertainty parameters, second,

the development of a law for estimating the input in cases of communication

failure, and third the conjunction of these theories into a general control proto-

col. The validation of established control laws is presented through a boundary

analysis using Lyapunov’s theory. In particular, a third order cooperative cruise

control simulation case is presented to show the improvement in the temporal

response of the implemented control laws.

The rest of the paper is organized as follows. Section II presents the for-

mulation of the problem and the mathematical preliminaries, in Section III the

development of control laws for managing uncertainties through adaptive opti-

mal theory and the use of neural networks are presented. Section IV presents

the development of the control law for estimating input parameters, in Section

V the simulation results under the cooperative cruise control study case is pre-

sented, and finally section VI presents the conclusions of the work done and the

projections of future work.
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2. Problem Formulation and Mathematical Preliminaries

This section shows a contextualization of the heterogeneous agents synchro-

nization problem and the basic notations to be used throughout the paper.

Consider a heterogeneous network with N agents and a reference model.

Communication presented in the network is defined by a graph G = (V , E), where

V = {1, 2, . . . , N} is the set of nodes or agents in the network and E ⊆ V × V

is the link set of G. To determine communication, if there is a link between

agent i and agent j then (i, j) ∈ E , which means that i and j are neighboring

agents. For agent synchronization, the synchronization error between agent i

and agent j is defined as eij = xi − xj . Let A = [aij ] ∈ R
N be the adjacency

matrix of the graph where aij > 0 if (i, j) ∈ E , aij = 0 if (i, j) 6∈ E , and

aii = 0 ∀i. When a direct succession of paths is found from an agent i to an

agent j, {(i, k), (k, l), . . . , (l, j)} is defined as a direct path. If there is a direct

path for each agent it is defined as spanning tree. The Laplacian of a graph is

denoted as L = D − A where D = diag{d1, d2, . . . , dN}, with di =
∑N

j=1
aij .

Matrices and vectors it is used X and x respectively. The transpose of a matrix

or vector are defined as X⊤ and x⊤ respectively. The inverse of a square matrix

is represented as A−1 and the transpose of the inverse of a square matrix as

A−⊤.

The reference model is described as

ẋm = Amxm + bmr, (1)

where xm ∈ R
n is the reference state, r ∈ R

q is the reference signal, and Am

and bm are its respectively states matrix and input vector. The dynamics of

each agent is represented as

ẋi = Aixi + (bi + fi(xi))ui, i ∈ [1, ..., N ] , (2)

where xi ∈ R
n are the agent’s states, ui ∈ R

p is the control input, Ai is an

unknown matrix associated to the agent’s states, bi are known input vectors,

and fi : R
n → R

p is a bounded input uncertainty that acts as a disturbance.

Heterogeneity in the network means that Ai 6=Aj and bi 6=bj.
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Considering the characteristics of a conventional MRAC, we define some

matching conditions through the following assumptions, based on the general

characteristics of control based on the reference model and its extension to

distributed systems in acyclic cases [24, 22].

Assumption 1. The vector k∗ij and the scalar k∗rij exist and are defined

such that

Ai = Aj + bjk
∗⊤
ij ,

bi = bjk
∗
rij . (3)

Constants in (3) are known as coupling matching conditions.

Assumption 2. The vector k∗mi and the scalar k∗ri exist and satisfy

Am = Ai + bik
∗⊤
mi ,

bm = bik
∗
ri. (4)

Constants k∗mi and k
∗
ri in (4) are known as feedback matching conditions.

Assumption 3. Each agent communicate its input through a communica-

tion graph that must be acyclic and contain at least one spanning tree where

the leader is connected.

Problem: A network of N agents with dynamics (2), a model reference

(1), and Assumptions 1-3 verified. The control objective is to achieve that all

closed-loop signals must be bounded as t −→ ∞ for each agent in the presence

of input uncertainty parameters or disconnection of neighboring agents.

3. Adaptive Control Laws

In this section, the solutions to the proposed problems is tackled in two

directions: the first approach is a robust optimal approximation called adap-

tive optimal control modification; the second approach is an approximation of

disturbances by neural networks.
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3.1. Adaptive Optimal Control Modification

The network composed of heterogeneous agents with disturbances approxi-

mated from a robust optimal methodology is presented in this subsection. The

following proposition presents the adaptive optimal modification base case [13].

Proposition 1. Assume that agent x1 with dynamics (2) and the reference

(1) are directly connected. It is defined the control law as

u1 = kmxm + krr − uad, (5)

where km ∈ R
p × R

n is the constant associated with the reference states, kr ∈

R
p×R

q is associated with the reference signal and their adaptive laws are given

by

k̇⊤m = −sgn (kri
∗) γ b⊤mP (x1 − xm)x⊤1 ,

k̇r = −sgn (kri
∗) γ b⊤mP (x1 − xm) r. (6)

An adaptive gain γ > 0 is defined, and P can be obtained by

PAm +A⊤
mP = −Q, Q ≻ 0.

The auxiliary parameter uad ∈ R
p is an additional control term that allows

the suppression of input uncertainty parameters, which satisfies

uad = θ⊤φ, (7)

where θ ∈ R
n×p is the optimal modification parameter defined as

θ̇ = −γ
(

φe⊤Pb1 − v φ φ⊤θb⊤1 PA
−1
m b1

)

.

Also, the map φ : Rn → R
p is a known bounded basis function, b1 is the

input vector of the follower agent and v > 0 is an adaptive optimal constant.

Then, with the controller (5) synchronization error e1 = x1 − xm is bounded.

Proof: It follows from [24].

The disturbance management is defined as ǫ, where its representation is

ǫ∗(x) = θ∗⊤φ(x) − f(x).
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This representation allows uncertainties suppression.

From this approach, the following proposition is made for a distributed per-

spective.

Proposition 2. Consider a second follower agent with dynamics (2), which

is not directly connected to the reference, with the proposed control law

u2 = k⊤21x1 + k⊤m2 (x2 − x1) + kr21u1 − θ⊤2 φ2,

and the adaptive laws

k̇⊤21 = −sgn (k∗r2) γ b
⊤
mP (x2 − x1)x

⊤
2 ,

k̇⊤m2 = −sgn (k∗r2) γ b
⊤
mP (x2 − x1) (x2 − x1)

⊤
, (8)

k̇r21 = −sgn (k∗r2) γ b
⊤
mP (x2 − x1)u1,

θ̇2 = −γ
(

φ2(x2 − x1)
⊤Pb2 − vφ2φ

⊤
2 θ

⊤
2 b

⊤
2 PA

−1
m b2

)

,

then the synchronization error e21 = x2 − x1 is bounded.

Proof: In order to validate the convergence of closed-loop signals in this case,

the dynamics of the error are defined starting from

ė21 = Ame21 + b2

(

k̃⊤21x1 + k̃⊤m2e21 + k̃⊤r21u1 − θ̃⊤2 φ2

)

,

where k̃21 = k21 − k∗21; k̃m2 = km2 − k∗m2; k̃r21 = kr21 − k∗r21; θ̃2 = θ2 − θ∗2 . The

following Lyapunov function is considered

V21 = e⊤21Pe21 + tr

(

k̃⊤21k̃21

γ|k∗r2|

)

+ tr

(

k̃⊤m2k̃m2

γ|k∗r2|

)

+
k̃2r21
γ|k∗r2|

+ tr
(

θ̃⊤2 γ
−1θ̃2

)

, (9)

this equation derived in ė21 is

V̇21 = e⊤21
(

PAm +A⊤
mP
)

e21 + 2e⊤21Pb2

(

k̃⊤21x1 + k̃⊤m2e21 + k̃⊤r21u1 − θ̃⊤2 φ2

)

+ 2tr

(

k̃⊤21γ
−1 ˙̃k21

|k∗r2|

)

+ 2tr

(

k̃⊤m2γ
−1 ˙̃km2

|k∗r2|

)

+ 2
k̃⊤r21γ

−1 ˙̃kr21
|k∗r2|

− 2tr
(

θ̃⊤2 φ2[e
⊤
21P − vφ⊤2 θ2b

⊤
2 PA

−1
m ]b2

)

, (10)
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where doing math reduction

V̇21 = −e⊤21Qe21 + 2
(

sgn (k∗r2) b
⊤
mPe21x

⊤
1 + γ−1k̃⊤21

) k̃⊤21
|k∗r2|

+ 2
(

sgn (k∗r2) b
⊤
mPe21e

⊤
21 + γ−1k̃⊤m2

) k̃⊤m2

|k∗r2|

+ 2
(

sgn (k∗r2) b
⊤
mPe21u1 + γ−1k̃⊤r21

) k̃⊤r21
|k∗r2|

+ 2vφ⊤2 θ̃2b
⊤
2 PA

−1
m b2θ̃

⊤
2 φ2 + 2vφ⊤2

(

θ⊤2 φ2 + ǫ2
)

b⊤2 PA
−1
m b2θ̃

⊤
2 φ2.

In this case, we define the condition b⊤2 PA
−1
m b2 < 0 for the equality

2vφ⊤2 θ̃2b
⊤
2 PA

−1
m b2θ̃

⊤
2 φ2 = −vφ⊤2 θ̃2b

⊤
2 A

−⊤
m QA−1

m b2θ̃
⊤
2 φ2,

where β2 = λmin(b2A
−⊤
m QA−1

m b2) and β3 =
‖b⊤

2
PA−1

m
b2‖θ02

β2

, θ02 = ‖θ∗2‖, δǫ2 =

sup |ǫ2| is used and can defined the following bound

‖e21‖ ≥

√

vβ2β3‖φ2‖2

β1
= ψ2,

therefore, equation (10) will be bounded by

V̇21 ≤ −λmin (Q) ‖e21‖
2 + 2λmax(P )‖b2‖

(

‖θ∗⊤2 φ2‖+ ‖δǫ2‖
)

‖e21‖

− vλmin(Q)‖A−1
m b2θ

⊤
2 φ2‖

2,

where ‖θ∗⊤2 φ2‖ = ‖supt |θ
∗⊤
2 φ2|‖, in this case, φ2 is a bounded basis function,

then ‖e21‖ has as lower bound ψ2, this infers that V̇21 ≤ 0, so the background

are then met to guarantee that closed loop signals of the agent which are not

communicated with the reference are bounded. �

Continuing with this methodology, it is important to consider different com-

munication links for each agent, since Propositions 1 and 2 only have a link to

the leader or another agent, we present the following proposition for an agent

with two links.

Proposition 3. Consider a graph V = {1, 2, 3}, E = {(1, 2), (2, 3)}, where

the agent 3 has a link to agents 1 and 2, the control law proposed is

u3 = k⊤31
x1

2
+ k⊤32

x2

2
+ k⊤m3

e31 + e32

2
+ k⊤r31

u1

2
+ k⊤r32

u2

2
−
θ⊤3 φ3

2
,
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where e31 = x3 − x1 and e32 = x3 − x2. Adaptive laws in this case are defined

as

k̇⊤31 = −sgn (k∗r3) γ b
⊤
mP (e31 + e32) x

⊤
1 ,

k̇⊤32 = −sgn (k∗r3) γ b
⊤
mP (e31 + e32) x

⊤
2 ,

k̇⊤m3 = −sgn (k∗r3) γ b
⊤
mP (e31 + e32) (e31 + e32)

⊤
,

k̇r31 = −sgn (k∗r3) γ b
⊤
mP (e31 + e32) u1,

k̇r32 = −sgn (k∗r3) γ b
⊤
mP (e31 + e32) u2,

θ̇3 = −γ
(

φ3(e31 + e32)
⊤Pb3 − vφ3φ

⊤
3 θ

⊤
3 b

⊤
3 PA

−1
m b3

)

, (11)

then, a synchronization of the errors e31 and e32 are bounded.

Proof: It follows from [16].

From these formulations, it is possible to define in general a control law

that allows the synchronization of an agents network with respect to a refer-

ence model and suppressing input uncertainties, the following theorem is then

proposed.

Theorem 1. For a N heterogeneous agents network, with dynamics (2), a

reference model (1), and Assumptions 1-3 hold, defining the following control

law

āui = āk⊤ijxi + kmiΞij + ākrijui − θ⊤i φi,

where Ξij =
∑N

j=1
aij(xi − xj) and ā =

∑N
j=1

aij . Similarly, with the adaptive

laws

k̇⊤ij =− sgn(k∗ri)γ b
⊤
mPΞijx

⊤
i ,

k̇⊤mi =− sgn(k∗ri)γ b
⊤
mPΞijΞ

⊤
ij ,

k̇rij =− sgn(k∗ri)γ b
⊤
mPΞijui. (12)

The matched uncertainty parameter is selected from (7), with the optimal mod-

ification parameter denoted as

θ̇i = −γ
(

φi(xi − xj)
⊤Pbi − vφiφ

⊤
i θ

⊤
i b

⊤
i PA

−1
m bi

)

.

Then, all synchronization error are bounded.
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Proof: To validate the boundary of closed-loop signals, the following Lya-

punov function is defined

V =

N
∑

i=1

Ξ⊤
ijPΞij +

N
∑

j=1

tr

[

k̃⊤mik̃mi

γ |k∗ri|

]

+

N
∑

i=1

ā tr

[

k̃⊤ij k̃ij

γ |k∗ri|

]

+

N
∑

i=1

ā
k̃2ri
γ |k∗r |

+

N
∑

i=1

tr(θ̃⊤i γ
−1θ̃i),

where j = 0 represents the reference model. For the analysis, the dynamics of

the error is selected as ei = xi − xm and

ėij = Ameij + bi[k̃
⊤
ijxi + k̃⊤mieij + k̃⊤rijui − θ̃i

⊤
φi − θ̃j

⊤
φj ].

With this dynamic, the derivative along its trajectory is

V̇ =

N
∑

i=1

Ξ⊤
ij(PAm +A⊤

mP )Ξij + 2Ξ⊤
ijPbi

[

āk̃⊤ijxi + k̃⊤miāeij + āk̃rijui − θ⊤j φj

]

+
N
∑

i=1

tr

[

k̃⊤miγ
−1 ˙̃kmi

|k∗ri|

]

+
N
∑

i=1

tr





k̃⊤ijγ
−1 ˙̃kij

|k∗ri|



+
N
∑

i=1

ā
k̃rijγ

−1 ˙̃krij
|k∗ri|

− 2

N
∑

i=1

N
∑

j=1

tr
(

θ̃⊤i φi[e
⊤
ijP − vφ⊤i θib

⊤
i PA

−1
m ]bi

)

, (13)

reducing this Lyapunov function

V̇ = −

N
∑

i=1

Ξ⊤
ijQΞij +

N
∑

i=1

2vφ⊤i θ̃ib
⊤
i PA

−1
m biθ̃

⊤
i φi

+

N
∑

i=1

2vφ⊤i
(

θ⊤i φi + ǫi
)

b⊤i PA
−1
m biθ̃

⊤
i φi.

On the case, b⊤i PA
−1
m bi < 0, hence

2vφ⊤i θ̃ib
⊤
i PA

−1
m biθ̃

⊤
i φi = −vφ⊤i θ̃ib

⊤
i A

−⊤
m QA−1

m biθ̃
⊤
i φi.

Defining the parameters β1 = λmin(Q), β2 = λmin(biA
−⊤
m QA−1

m bi) and β3 =

‖b⊤
i
PA−1

m
bi‖θ0i

β2

, θ0i = ‖θ∗i ‖ and δǫi = sup |ǫi|, we define the following bounds

N
∑

i=1

N
∑

j=1

‖eij‖ ≥

√

vβ2β3‖φi‖2

β1
= ψi,
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so, (13) is bounded by

V̇ ≤ −

N
∑

i=1

λmin (Q)

N
∑

j=1

‖eij‖
2 + 2

N
∑

i=1

N
∑

j=1

λmax(P )‖bi‖
(

‖θ∗⊤i φi‖+ ‖δǫi‖
)

‖eij‖

−
N
∑

i=1

vλmin(Q)‖A−1
m biθ

⊤
i φi‖

2,

where ‖θ∗⊤i φi‖ = ‖supt |θ
∗⊤
i φi|‖, as φi is a bounded basis function, therefore

‖eij‖ has as lower bound ψi, this implies that V̇ ≤ 0, so we can guarantee that

all the synchronization errors eij are bounded. �

Remark 1. Compared to similar control strategies for multi-agent sys-

tems involving observers [25], the proposed scheme only uses the communica-

tion of the input between agents, also guaranteeing synchronization under a

pre-established reference model.

3.2. Neural Network Approximation

In this case, a network of N heterogeneous agents, the input uncertainty,

and the Assumptions 1-3 are also used and verified. The following proposition

shows the protocol used to synchronize an agent with a reference [13].

Proposition 4. Consider an agent with dynamics (2) and a reference model

(1), neural network approximation control law for the agent synchronization is

u1 = k⊤m1x1 + kr1r − θ⊤1 φ1(W
⊤
1 x̄1), (14)

where the uncertainty approximation depends on the function φ1(W
⊤
1 x̄1). The

adaptive laws km1 and kr1 are obtained by (6), while the adaptive laws associ-

ated with neural networks are

θ̇1 =− γφ1(W
⊤
1 x̄1)(x1 − x0)

⊤Pb1,

Ẇ1 =− γx̄1(x1 − x0)
⊤Pb1V

⊤σ(W⊤
1 x̄1),

where θ1 andW1 are weight adaptive matrices, x̄1 = [1 x⊤1 ]
⊤ ∈ R

n+1, V ∈ R
p×n

is a bias vector, φ1(W
⊤
1 x̄1) = [1 σ⊤

1 (W⊤
1 x̄1)]

⊤ ∈ R
n+1, a is ”bell-shaped”

11



approximation constant and with σ1(x1) as a sigmoidal function described by

σi(xi) =
1

1 + e−axi

,

then, with adaptive protocol (14) synchronization error e1 is bounded.

Proof: Its obtained from [13].

As in the previous case, the distributed extension for agents who do not have

communication with the reference is defined in the following proposition.

Proposition 5. Consider a agent with dynamic (2) uncommunicated with

the reference (1), the following control law is proposed

u2 = k⊤21x1 + k⊤m2 (x2 − x1) + kr21u1 − θ⊤2 φ2(W
⊤
2 x̄2), (15)

the adaptive laws associated with the MRAC k⊤21, k
⊤
m2, kr21 are taken from (8),

and the laws associated with neural networks are

θ̇2 =− γφ2(W
⊤
2 x̄2)(x2 − x1)

⊤Pb2,

Ẇ2 =− γx̄2(x2 − x1)
⊤Pb2V

⊤σ(W⊤
2 x̄2),

then, the synchronization error e21 is bounded.

Proof: To ensure boundary of the closed-loop signals, the error dynamics is

defined as

ė21 = Ame21 + b2[u2 − k∗⊤21 x1 − k∗⊤m2e21 − k∗⊤r21u1 − θ∗2φ2 + ǫ∗2 − θ∗1φ1 + ǫ∗1], (16)

also considering the matching conditions described in Assumptions 1-3, and the

Lyapunov function (9). The derivative along (16) is

V̇21 = e⊤21(PAm +A⊤
mP )e21 + 2e⊤21Pb2

[

k̃⊤21x2 + k̃⊤m2e21 + k̃r21u1 − θ⊤2 φ2 + ǫ∗2

]

+ tr

(

k̃⊤m2γ
−1 ˙̃km2

|k∗r2|

)

+ tr

(

k̃⊤21γ
−1 ˙̃k21

|k∗r2|

)

+
k̃r21γ

−1 ˙̃kr21
|k∗r2|

− 2tr
(

θ̃⊤2 φ2e
⊤
21Pb2

)

,

where doing math reduction

V̇21 = −e21
⊤Qe21 + 2e21

⊤Pb2

(

θ̃⊤2 φ2 + ǫ∗2

)

,
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and

V̇21 = −e21
⊤Qe21 + 2e21

⊤Pb2ǫ
∗
2 ≤ −λmin (Q) ‖e21‖

2 + 2‖Pb2‖‖e21‖ǫ
∗
0.

In this case, V̇ ≤ 0 if we consider

−λmin (Q) ‖e21‖
2 + 2‖Pb2‖‖eij21‖ǫ

∗
0 ≤ 0 ⇒ ‖e21‖ ≥

2‖Pb2‖ǫ
∗
0

λminQ
.

With this we can conclude that the synchronization error of an agent that

is not directly communicated with the reference using an approximation with

neural networks is bounded. �

It has been proven that the control law (15) allows the synchronization of

an agent disconnected from the reference using a protocol approximated by

neural networks. From this approach, the control law for an agent with an

input connection of two agents is determined, defining a set of coupled error

dynamics, as presented in the following proposition.

Proposition 6. Consider an agent with dynamics (2) that is not connected

to the reference and has two agents in its vicinity, the following control law is

proposed

u3 = k⊤31
x1

2
+ k⊤32

x2

2
+ k⊤m3

e31 + e32

2
+ k⊤r31

u1

2
+ k⊤r32

u2

2
−
θ⊤3 φ3(W

⊤
3 x̄3)

2
,

where the adaptive laws k⊤31, k
⊤
32, k

⊤
m3, k

⊤
r31, k

⊤
r32 are taken from (11), and the

laws associated with neural networks are

θ̇3 =− γφ3(W
⊤
3 x̄3)(e+31 + e32)

⊤Pb3,

Ẇ3 =− γx̄3(e+31 + e32)
⊤Pb3V

⊤σ(W⊤
3 x̄3).

Then, with this control law, synchronization errors e31 and e32 are bounded.

Proof: In this case, the proof takes the same structure as the Proposition 5.

Finally, with this methodological description, the following theorem presents

in a general way the control law and its capability for handling input uncertain-

ties in heterogeneous systems through neural networks.

Theorem 2. Considering aN heterogeneous network with dynamics (2) and

a reference (1), for agents that are not directly communicated with the reference,

13



the control law with neural network approximation used for synchronization is

āui = āk⊤mijxj + kmiΞ̄ij + krij āuj − θ⊤i φi(W
⊤
i x̄i). (17)

The adaptive laws associated with MRAC are (12), and the adaptive control

laws associated with neural networks are

θ̇i =− γφi(W
⊤
i x̄i)e

⊤
ijPbi,

Ẇi =− γx̄ie
⊤
ijPbiV

⊤σ(W⊤
i x̄i),

then the control law (17) allow the agents to synchronize its dynamics with

respect to the reference model.

Proof: This proof validates the general bounding of closed-loop synchro-

nization errors in the presence of input uncertainties for heterogeneous agents,

the dynamics of the error in this case is defined as

ėij = Ameij + bi[ui − k∗⊤mijxj − k∗⊤mieij − k∗⊤rijuj − θ∗i φi − ǫ∗i + θ∗jφj + ǫ∗j ], (18)

where considering k̃mi = kmi − k∗mi; k̃mij = kmij − k∗mij ; k̃ri = kri − k∗ri;

k̃rij = krij −k
∗
rij ; θ̃i = θi− θ

∗
i , the Lyapunov function considering in this case is

V =

N
∑

i=1

Ξ⊤
ijPΞij +

N
∑

j=1

tr

(

k̃⊤mik̃mi

γ |k∗ri|

)

+

N
∑

i=1

ā tr

(

k̃⊤mij k̃mij

γ |k∗ri|

)

+

N
∑

i=1

ā
k̃2ri
γ |k∗r |

+ tr(θ̃⊤i γ
−1θ̃i). (19)

The derivative of (19) along (18) is

V̇ =

N
∑

i=1

Ξ⊤
ij(PA0 +A⊤

0 P )Ξij

+ 2Ξ⊤
ijPbi

[

āk̃⊤mijxi + k̃⊤miΞij + āk̃rijui − θ⊤i φi + ǫ∗i

]

+

N
∑

i=1

tr

(

k̃⊤miγ
−1 ˙̃kmi

|k∗ri|

)

+

N
∑

i=1

tr





k̃⊤mijγ
−1 ˙̃kij

|k∗ri|



+

N
∑

i=1

ā
k̃rijγ

−1 ˙̃krij
|k∗ri|

− 2

N
∑

i=1

N
∑

j=1

tr
(

θ̃⊤i φie
⊤
ijPbi

)

,
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also doing mathematical reduction, we find that

V̇ = −

N
∑

i=1

Ξ⊤
ijQΞij + 2Ξ⊤

ijPbi

(

θ̃⊤i φi + ǫ∗i

)

,

then

V̇ = −

N
∑

i=1

Ξ⊤
ijQΞij+2Ξ⊤

ijPbiǫ
∗
i ≤ −

N
∑

i=1

λmin (Q)

N
∑

j=1

‖eij‖
2+2

N
∑

i=1

N
∑

j=1

‖Pbi‖‖eij‖ǫ
∗
0.

Validating, V̇ ≤ 0 if

−

N
∑

i=1

λmin (Q)

N
∑

j=1

‖eij‖
2+2

N
∑

i=1

N
∑

j=1

‖Pbi‖‖eij‖ǫ
∗
0 ≤ 0 ⇒⇒

N
∑

i=1

N
∑

j=1

‖eij‖ ≥
2‖Pbi‖ǫ

∗
0

λminQ
,

this inequality makes it possible to ensure that closed-loop synchronization er-

rors are bounded in a heterogeneous network with input uncertainty worked

from a neural network approach. �

With these control laws, it is possible to validate a robust approach for a

multi-agent control in the presence of input uncertainty parameters. Next, we

show a second case in this type of network associated to the input estimation

in disconnected agents.

4. Input Estimation

In this section, we present the case where some neighboring agent j cannot

communicate the input value to its neighborhood. The definition of a control

law that allows the estimation of neighbors inputs in order to avoid failures in

the proposed control laws due to the communication is presented. The control

law to employ is

āui = āk⊤ijxi + kmiΞij + āûji − θ⊤i φi, (20)

The adaptive laws associated with the MRAC are taken from (12), validat-

ing that the law krij is no longer used due to the isolation of the input from

neighboring agents, the control law for the input estimation ûji is

˙̂uji = −sgn(k∗ri)γb
⊤
0 PΞij .
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Theorem 3. Considering a network of N heterogeneous agents with

dynamics (2) and a reference model (1). Then, controller (20) allow the syn-

chronization of the network even in the presence of agents isolated to its neigh-

borhood.

Proof: This proof also validates the closed-loop synchronization error bound-

ary. In this case, the dynamic of the error is defined as

ėij = Ameij + bi[ui − k∗⊤mijxj − k∗⊤mieij − u∗ji − θ∗i φi − ǫ∗i + θ∗jφj + ǫ∗j ], (21)

where ũji = uji − u∗ji, we can define the following Lyapunov equation

V =

N
∑

i=1

Ξ⊤
ijPΞij +

N
∑

j=1

tr

(

k̃⊤mik̃mi

γ |k∗ri|

)

+

N
∑

i=1

ā tr

(

k̃⊤mij k̃mij

γ |k∗ri|

)

+

N
∑

i=1

ā
ũ2ji

γ |k∗r |

+ tr(θ̃⊤i γ
−1θ̃i),

where its derivative along (21) is

V̇ =

N
∑

i=1

Ξ⊤
ij(PA0 +A⊤

0 P )Ξij

+ 2 [Ξij ]
⊤
Pbi

[

āk̃⊤mijxi + k̃⊤miΞij + āũji − θ⊤i φi + ǫ∗i

]

+

N
∑

i=1

tr

(

k̃⊤miγ
−1 ˙̃kmi

|k∗ri|

)

+

N
∑

i=1

tr





k̃⊤mijγ
−1 ˙̃kij

|k∗ri|



+

N
∑

i=1

ā
ũjiγ

−1 ˙̃uji
|k∗ri|

− 2

N
∑

i=1

N
∑

j=1

tr
(

θ̃⊤i φie
⊤
ijPbi

)

,

and doing math reduction,

V̇ = −

N
∑

i=1

Ξ⊤
ijQΞij + 2Ξ⊤

ijPbi

(

θ̃⊤i φi + ǫ∗i

)

,

then

V̇ = −

N
∑

i=1

Ξ⊤
ijQΞij+2Ξ⊤

ijPbiǫ
∗
i ≤ −

N
∑

i=1

λmin (Q)

N
∑

j=1

‖eij‖
2+2

N
∑

i=1

N
∑

j=1

‖Pbi‖‖eij‖ǫ
∗
0.

In this case, in the same way V̇ ≤ 0 if

−
N
∑

i=1

λmin (Q)
N
∑

j=1

‖eij‖
2 + 2

N
∑

i=1

N
∑

j=1

‖Pbi‖‖eij‖ǫ
∗
0 ≤ 0 ⇒⇒

N
∑

i=1

N
∑

j=1

‖eij‖ ≥
2‖Pbi‖ǫ

∗
0

λminQ
,
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with this condition we can then ensure that all synchronization errors are

bounded even when there is no communication of the input between agents.

�

5. Simulation Results

This section presents the study case of cooperative cruise control as an ap-

plication of proposed Theorems 1-3 and the simulation results obtained.

5.1. Motivational Example

We introduce the cooperative cruise control, where a network of vehicles

will maintain the same speed and distance between each other. The technique

is known as cooperative adaptive cruise control. Figure 1 shows the graphic

interpretation of this methodology, where vi represents the speed present in

each vehicle and di the distance between them. Each agent is modeled as

ẋi =











0 1 0

0 0 1

0 0 − 1

τi











xi +





















0

0

1

τi











+ fi(xi)











ui,

where τi represents the inertial time lag of the power-train system, that varies

between each vehicle, according to its physical characteristics and its environ-

ment. Input ui is the acceleration defined as the force per vehicle mass. In

this case, there is a leading agent that defines the acceleration profile that the

vehicle network must maintain. If the vehicles only maintain internal sensors in

each one, it would be just a case of adaptive cruise control, where each vehicle in

their neighborhood must take a measurement of the speed and position of them,

to take the pertinent actions, under the logic of string stability [26]. In cooper-

ative adaptive cruise control, vehicles come with a communication technology

via wireless sensors incorporated, allowing better operation at the network level.

The type of control laws shown in this work have a great contribution derived

from the fact that most of the related works to date have focused on the con-

trol of homogeneous systems, without considering that on highways, there is

prominence of heterogeneity in the network [27].
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d i d ( i+1)

vi
v( i+1)

Figure 1: Cooperative cruise control methodology.

5.2. Simulations

Considering a network of vehicles, we define the communication graph in

Figure 2 to validate the algorithms developed. In this case, the dynamics of each

3

0

1

2

4

5

6

Figure 2: Leader-follower communication graph.

agent take the form of (22), where the coefficients are observed in Table 1. The

Table 1: Agent’s Coefficients and Initial Conditions

τ x0

A0 -4 [1 − 1]⊤

A1 1 [1 0]⊤

A2 0.4 [−1 0.5]⊤

A3 0.25 [1 0]⊤

A4 0.45 [−1 1]⊤

A5 0.5 [−0.5 1]⊤

A6 1.25 [0 − 1]⊤

agent 0 acts as the reference model, which is considered as the only stable open-

loop system. For the development of adaptive laws, the following parameters are

necessary γ = 10, v = 1 and Q = diag(10, 1, 1) is the matrix associated with the

solution of the linear Lyapunov function. The matching conditions associated

with the neighbors and the reference are initialized to 0. The input uncertainty
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defined for simulation is fi(xi) = 0.1 sinx3i. Figure 3 shows the response of

the system with adaptive optimal control law included, with a reference value

r = 2 sin(t) and it is observed that in the presence of uncertainties the desired

behavior is achieved. Similarly, Figure 4 shows the temporal response of the

same agents network with input uncertainty but managed through the neural

network approximation, we can observe that this approximation also allows

to suppress the included disturbance with a slight oscillation in its temporal

response.

0 5 10 15
-2

-1

0

1

2

Figure 3: Temporal response agents synchronization with optimal adaptive law.

0 5 10 15
-2

-1

0

1

2

Figure 4: Temporal response agents synchronization with neural network approximation.

Finally, the result in the network is validated through the input estimation

for agents who cannot communicate it, the response in this case is developed

and its response is observed in Figure 5 with a constant reference r = 2 instead

of a sinusoidal reference due to fluctuations that may present.
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Figure 5: Temporal response with input estimation for uncommunicated agents synchroniza-

tion.

6. Conclusions

In this work, adaptive control laws based on robust models are presented

in the case of cooperative cruise control study. An adaptive optimal control

law and a neural network based approach are proposed for the suppression of

each agent input uncertainty parameters. Likewise, an estimation law is used

for its application in the case of disconnected agents. For the adaptive control

laws the use of matching conditions allows a synchronization of the agents with

the reference and its neighbors. In the case of uncertainty, these conditions

must be estimated. The theoretical results obtained make it possible to guar-

antee the limitation of synchronization errors in the closed-loop network under

pre-established conditions. The cooperative adaptive cruise control application

case, being a platoon synchronization methodology through input communi-

cation and being extensively studied in the literature, can be shown as the

motivational example of these control laws. Future developments may focus on

extending algorithms to nonlinear systems or with switched topologies in an

output regulation methodology.
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