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Abstract

The twisted partition monoid PΦ
n is an infinite monoid obtained from the classical finite

partition monoid Pn by taking into account the number of floating components when multi-
plying partitions. The main result of this paper is a complete description of the congruences
on PΦ

n . The succinct encoding of a congruence, which we call a C-pair, consists of a sequence
of n+ 1 congruences on the additive monoid N of natural numbers and a certain (n+ 1)×N
matrix. We also give a description of the inclusion ordering of congruences in terms of a
lexicographic-like ordering on C-pairs. This is then used to classify congruences on the finite
d-twisted partition monoids PΦ

n,d, which are obtained by factoring out from PΦ
n the ideal of

all partitions with more than d floating components. Further applications of our results, elu-
cidating the structure and properties of the congruence lattices of the (d-)twisted partition
monoids, will be the subject of a future article.
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1 Introduction

The partition algebras were independently discovered in the 1990s by Vaughan Jones [37] and
Paul Martin [48]. These algebras have bases consisting of certain set partitions, which are rep-
resented and composed diagrammatically, and they naturally contain classical structures such
as Brauer and Temperley-Lieb algebras, as well as symmetric group algebras [12, 57, 58]. These
‘diagram algebras’ have diverse origins and applications, including in theoretical physics, clas-
sical groups, topology, invariant theory and logic [1, 8, 9, 31, 33, 35–40, 44–46, 48–52, 59, 61]. The
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representation theory of the algebras plays a crucial role in many of the above studies, and the
need to understand the kernels of representations was highlighted by Lehrer and Zhang in their
article [44], which does precisely that for Brauer’s original representation of the (now-named)
Brauer algebra by invariants of the orthogonal group [12]. This has recently been extended to
partition algebras by Benkart and Halverson in [9]. Kernels of representations can be equiva-
lently viewed as ideals or as congruences. Understanding congruences is the key motivation for
the current article, and indeed for the broader program of which it is a part [23–26].

A partition algebra can be constructed as a twisted semigroup algebra of an associated
(finite) partition monoid, since the product in the algebra of two partitions α, β is always a
scalar multiple of another partition, denoted αβ. The scalar is always a power of a fixed element
of the underlying field, and the power to which this element is raised is the number Φ(α, β)
of ‘floating components’ when the partitions α, β are connected. (Formal definitions are given
below.) It is also possible to construct partition algebras via (ordinary) semigroup algebras of
twisted partition monoids. These are countably infinite monoids whose elements are pairs (i, α),
consisting of a partition α and some natural number i of floating components. The product
of pairs is given by (i, α)(j, β) = (i + j + Φ(α, β), αβ). By incorporating the Φ parameters,
the twisted partition monoids reflect more of the structure of the algebras than do the ordinary
partition monoids. The above connection with semigroup algebras was formalised by Wilcox [60],
but the idea has its origins in the work of Jones [35] and Kauffman [40]; see also [33]. Partition
monoids, and other diagram monoids, have been studied by many authors, as for example in
[2,4,6,17–19,21,23,29,42,47,50,53]; see [22] for many more references. Studies of twisted diagram
monoids include [5, 7, 11,14–16,41,43].

The congruences of the partition monoid Pn were determined in [23], which also treated
several other diagram monoids such as the Brauer, Jones (a.k.a. Temperley-Lieb) and Motzkin
monoids. The article [23] also developed general machinery for constructing congruences on
arbitrary monoids, which has subsequently been applied to infinite partition monoids in [24],
and extended to categories and their ideals in [25]. The classification of congruences on Pn is
stated below in Theorem 2.5, and the lattice Cong(Pn) of all congruences is shown in Figure 2.
It can be seen from the figure that the lattice has a rather neat structure; apart from a small
prism-shaped part at the bottom, the lattice is mostly a chain. As explained in [23], this is a
consequence of several convenient structural properties of the monoid Pn, including the following:

• The ideals of Pn form a chain, I0 ⊂ I1 ⊂ · · · ⊂ In.

• The maximal subgroups of Pn are symmetric groups Sq (q = 0, 1, . . . , n), the normal
subgroups of which also form chains.

• The minimal ideal I0 is a rectangular band.

• The second-smallest ideal I1 is retractable, in the sense that there is a surmorphism I1 → I0

fixing I0, and no larger ideal is retractable.

In addition to these factors, a crucial role is also played by certain technical ‘separation prop-
erties’, which were explored in more depth in [25]. Roughly speaking, these properties ensure
that pairs of partitions suitably ‘separated’ by Green’s relations [32] generate ‘large’ principal
congruences.

The current article concerns the twisted partition monoid PΦ
n , which, as explained above,

is obtained from Pn by taking into account the number of floating components formed when
multiplying partitions. We also study the finite d-twisted quotients PΦ

n,d, which are obtained
by limiting the number of floating components to at most d, and collapsing all other elements
to zero. The main results are the classification of the congruences of PΦ

n and PΦ
n,d, and the

characterisation of the inclusion order in the lattices Cong(PΦ
n ) and Cong(PΦ

n,d).
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The congruences of PΦ
n are far more complicated than those of Pn. This is of course to be

expected, given the additional complexity in the structure of the twisted monoid. For exam-
ple, PΦ

n has (countably) infinitely many ideals, and these do not form a chain. Moreover, there
are infinite descending chains of ideals, and there is no minimal (non-empty) ideal. Nevertheless,
the ideals still have a reasonably simple description; the principal ones are denoted Iqi (and
defined below), indexed by integers 0 ≤ q ≤ n and i ≥ 0, and we have Iqi ⊆ Irj if and only if
q ≤ r and i ≥ j. This allows us to view PΦ

n as an (n + 1) × ω ‘grid’, and leads to a convenient
encoding of congruences by certain matrices of the same dimensions, combined with a chain
θ0 ⊇ θ1 ⊇ · · · ⊇ θn of congruences on the additive monoid of natural numbers. We will see that
each allowable matrix-chain pair leads to either one or two distinct congruences, depending on
its nature. The inclusion ordering on congruences involves a lexicographic-like ordering on pairs,
and some additional factors. For the finite d-twisted monoids PΦ

n,d, congruences are determined
by the matrices alone, which are now (n + 1) × (d + 1). In the very special case when d = 0,
the 0-twisted monoid PΦ

n,0 is in fact a chain of ideals, and its congruence lattice shares some
similarities with that of Pn itself, as can be observed by comparing Figures 2 and 5. The case
of d ≥ 1 is much more complicated, even for small n and d; for example, the lattice Cong(PΦ

3,2)
has size 329, and is shown in Figure 6.

The article is organised as follows. We begin in Section 2 with preliminaries on (twisted)
partition monoids. Section 3 contains the main result, Theorem 3.16, which completely classifies
the congruences of PΦ

n ; a number of examples are also considered, and some simple consequences
are recorded in Corollaries 3.22 and 3.23. The proof of Theorem 3.16 occupies the next two
sections. Section 4 shows that the relations stated in the theorem are indeed congruences, and
Section 5 shows, conversely, that every congruence has one of the stated forms. In Section 6
we characterise the inclusion ordering on the lattice Cong(PΦ

n ); see Theorem 6.5. We then
apply the above results to the finite d-twisted monoids in Section 7. Theorems 7.3 and 7.4
respectively classify the congruences of PΦ

n,d and characterise the inclusion ordering in Cong(PΦ
n,d).

Theorem 7.6 shows how the classification simplifies in the special case of 0-twisted monoids PΦ
n,0.

We also discuss visualisation techniques for the (finite) lattices; see Figures 5–7. Finally, Section 8
discusses the somewhat degenerate cases where n ≤ 1.

In the forthcoming article [26], we give a detailed analysis of the algebraic and combinatorial/order-
theoretic properties of the lattices Cong(PΦ

n ) and Cong(PΦ
n,d), proving results on (bounded) gen-

eration of congruences, (co)atoms, covers, (anti-)chains, distributivity, modularity and enumer-
ation.
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current paper and [26].

2 Preliminaries

This section contains the necessary background material. After reviewing some basic concepts
on monoids and congruences in Subsection 2.1, we recall the definition of the partition monoids
in Subsection 2.2 and state the classification of their congruences from [23]. In Subsection 2.3 we
define the twisted partition monoids, and prove some basic results concerning floating components
and Green’s relations. We define the finite d-twisted monoids in Subsection 2.4, and then prove
further auxilliary results in Subsection 2.5.
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2.1 Monoids and congruences

We briefly recall some basic facts on monoids; for more background, see for example [34,56].
A congruence on a monoid M is an equivalence relation σ on M that is compatible with the

product, meaning that for all (x, y) ∈ σ and a ∈M we have (ax, ay), (xa, ya) ∈ σ. We will often
write a · (x, y) for (ax, ay), with similar meanings for (x, y) · a and a · (x, y) · b.

The set of all congruences on the monoid M , denoted Cong(M), is a lattice under inclusion.
The meet of two congruences σ, τ ∈ Cong(M) is their intersection, σ ∩ τ , while the join σ ∨ τ is
the transitive closure of their union. The top and bottom elements of Cong(M) are the universal
and trivial congruences:

∇M := M ×M and ∆M :=
{

(x, x) : x ∈M
}
.

We write Ω] for the congruence generated by a set of pairs Ω ⊆ M ×M . When Ω =
{

(x, y)
}

contains a single pair, we write (x, y)] = Ω] for the principal congruence generated by the pair.
An important family of congruences come from ideals. A subset I of M is an ideal if

MIM ⊆ I. It will be convenient for us to consider the empty set to be an ideal. For x ∈M , the
principal ideal of M generated by x is MxM . An ideal I of M gives rise to the Rees congruence

RI := ∆M ∪∇I =
{

(x, y) ∈M ×M : x = y or x, y ∈ I
}
.

In particular, we have RM = ∇M and R∅ = ∆M .

Definition 2.1. Let σ be a congruence on a monoid M . Let I be the set of all ideals I of M
such that RI ⊆ σ, and define I(σ) :=

⋃
I∈I I.

It is easy to see that I(σ) is the largest ideal I of M such that RI ⊆ σ, but note that we
might have I(σ) = ∅, even if σ is non-trivial.

Green’s equivalences R, L , J , H and D on the monoid M are defined as follows. For
x, y ∈M , we have

x R y ⇔ xM = yM, x L y ⇔ Mx = My, x J y ⇔ MxM = MyM.

The remaining relations are defined by H = R ∩L and D = R ∨L . In any monoid we have
D = R ◦L = L ◦R. When M is finite, we have D = J . The set M/J = {Jx : x ∈ M} of
all J -classes of M has a partial order ≤ defined, for x, y ∈M , by

Jx ≤ Jy ⇔ x ∈MyM.

In all that follows, an important role will be played by the additive monoid of natural numbers,
N = {0, 1, 2, . . .}. Let us recall the simple structure of congruences on N. For every such non-
trivial congruence θ there exist unique m ≥ 0 and d ≥ 1, such that

θ = (m,m+ d)] = ∆N ∪
{

(i, j) ∈ N× N : i, j ≥ m, i ≡ j (mod d)
}
.

The number m will be called the minimum of θ and denoted min θ; the number d will be called
the period of θ and denoted per θ. For the universal congruence we have∇N = (0, 1)], min∇N = 0
and per∇N = 1. For the trivial congruence it is convenient to define min ∆N = per ∆N = ∞.
If θ1 and θ2 are congruences on N, then

θ1 ⊆ θ2 ⇔ min θ1 ≥ min θ2 and per θ2 | per θ1. (2.2)

Here | is the division relation on N∪{∞}, with the understanding that every element of this set
divides ∞.
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2.2 Partition monoids

For n ≥ 1, we write n = {1, . . . , n} and n0 = n ∪ {0}, and let n′ = {1′, . . . , n′} and n′′ =
{1′′, . . . , n′′} be two disjoint copies of n. The elements of the partition monoid Pn are the set
partitions of n ∪ n′. Such a partition α ∈ Pn is identified with any graph on vertex set n ∪ n′

whose connected components are the blocks of α. When drawing such a partition, vertices from
n are drawn on an upper line, with those from n′ directly below. See Figure 1 for some examples.

Given two partitions α, β ∈ Pn, the product αβ is defined as follows. First, let α↓ be the
graph on vertex set n ∪ n′′ obtained by changing every lower vertex x′ of α to x′′, and let β↑

be the graph on vertex set n′′ ∪ n′ obtained by changing every upper vertex x of β to x′′. The
product graph of the pair (α, β) is the graph Γ(α, β) on vertex set n ∪ n′′ ∪ n′ whose edge set is
the union of the edge sets of α↓ and β↑. We then define αβ to be the partition of n ∪ n′ such
that vertices x, y ∈ n ∪ n′ belong to the same block of αβ if and only if x, y belong to the same
connected component of Γ(α, β). An example product is given in Figure 1.

α =

β =

= αβ

Figure 1. Multiplication of two partitions in P6.

A block of a partition α ∈ Pn is called a transversal if it contains both dashed and un-dashed
elements; any other block is either an upper non-transversal (only un-dashed elements) or a lower
non-transversal (only dashed elements). The (co)domain and (co)kernel of α are defined by:

domα := {x ∈ n : x belongs to a transversal of α},
codomα := {x ∈ n : x′ belongs to a transversal of α},

kerα := {(x, y) ∈ n× n : x and y belong to the same block of α},
cokerα := {(x, y) ∈ n× n : x′ and y′ belong to the same block of α}.

The rank of α, denoted rankα, is the number of transversals of α. We will typically use the
following result without explicit reference; for proofs see [29, 60].

Lemma 2.3. For α, β ∈ Pn, we have

(i) α R β ⇔ domα = domβ and kerα = kerβ,

(ii) α L β ⇔ codomα = codomβ and cokerα = cokerβ,

(iii) α D β ⇔ α J β ⇔ rankα = rankβ.

The D = J -classes and non-empty ideals of Pn are the sets

Dq := {α ∈ Pn : rankα = q} and Iq := {α ∈ Pn : rankα ≤ q} for q ∈ n0,

and these are ordered by Dq ≤ Dr ⇔ Iq ⊆ Ir ⇔ q ≤ r.

The above notation for the D-classes and ideals of Pn will be fixed throughout the paper.
Given a partition α ∈ Pn, we write

α =
(
A1 . . . Aq C1 . . . Cs
B1 . . . Bq E1 . . . Et

)
5



to indicate that α has transversals Ai ∪ B′i (1 ≤ i ≤ q), upper non-transversals Ci (1 ≤ i ≤ s),
and lower non-transversals E′i (1 ≤ i ≤ t). Here for any A ⊆ n we write A′ = {a′ : a ∈ A}, and
we will also later refer to sets of the form A′′ = {a′′ : a ∈ A}. Thus, with α ∈ P6 as in Figure 1
we have α =

(
2, 3 1, 4 5, 6
4, 5 1, 2, 6 3

)
. The identity element of Pn is the partition

id :=
(

1 · · · n
1 · · · n

)
.

The congruences on the partition monoid Pn were determined in [23], and the classification
will play an important role in the current paper. To state it, we first introduce some notation.
First, we have a map

Pn → D0 : α =
(
A1 . . . Aq C1 . . . Cs
B1 . . . Bq E1 . . . Et

)
7→ α̂ =

(
A1 . . . Aq C1 . . . Cs
B1 . . . Bq E1 . . . Et

)
,

whose effect is to break apart all transversals of α into their upper and lower parts. Equivalently, α̂
is the unique element of D0 with the same kernel and cokernel as α. We will need the following
basic result, which follows from [23, Lemmas 3.3 and 5.2]:

Lemma 2.4. For any α ∈ I1 and η1, η2 ∈ Pn we have η̂1αη2 = η1α̂η2.

Next we have a family of relations on Dq (2 ≤ q ≤ n), denoted νN , indexed by normal
subgroups N of the symmetric group Sq. To define these relations consider a pair (α, β) of
H -related elements from Dq:

α =
(
A1 . . . Aq C1 . . . Cs
B1 . . . Bq E1 . . . Et

)
and β =

(
A1 . . . Aq C1 . . . Cs
B1π . . . Bqπ E1 . . . Et

)
for some π ∈ Sq.

We then define ∂(α, β) = π, which we think of as the permutational difference of α and β. Note
that ∂(α, β) is only well-defined up to conjugacy in Sq, as π depends on the above ordering on the
transversals of α and β. Nevertheless, for any normal subgroup N � Sq, we have a well-defined
equivalence relation (see [23, Lemmas 3.17 and 5.6]):

νN =
{

(α, β) ∈H �Dq : ∂(α, β) ∈ N
}
.

As extreme cases, note that νSq = H �Dq and ν{idq} = ∆Dq .

Theorem 2.5 ([23, Theorem 5.4]). For n ≥ 1, the congruences on the partition monoid Pn are
precisely:

• the Rees congruences Rq := RIq =
{

(α, β) ∈ Pn × Pn : α = β or rankα, rankβ ≤ q
}
for

q ∈ {0, . . . , n}, including ∇Pn = Rn;

• the relations RN := Rq−1 ∪ νN for q ∈ {2, . . . , n} and {idq} 6= N � Sq;

• the relations

λq :=
{

(α, β) ∈ Iq × Iq : α̂ L β̂
}
∪∆Pn ,

ρq :=
{

(α, β) ∈ Iq × Iq : α̂ R β̂
}
∪∆Pn ,

µq :=
{

(α, β) ∈ Iq × Iq : α̂ = β̂
}
∪∆Pn ,

for q ∈ {0, 1}, including ∆Pn = µ0, and the relations

λS2 := λ1 ∪ νS2 , ρS2 := ρ1 ∪ νS2 , µS2 := µ1 ∪ νS2 .

The congruence lattice Cong(Pn) is shown in Figure 2.
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µ0

R0

R1

R2

R3

Rn

ρ0

ρ1

ρS2

λ0

λ1

λS2

µ1

µS2

RS2

RA3

RS3

...

...

= ∆Pn

= ∇Pn

Figure 2. The Hasse diagram of Cong(Pn); see Theorem 2.5. Rees congruences are indicated in
blue outline.

The above notation for the congruences of Pn will be fixed and used throughout the paper.

Remark 2.6. As explained in [23,25], the α 7→ α̂mapping is largely responsible for the additional
complexity in the bottom part of Cong(Pn), as compared to the top part. In the twisted partition
monoid, to be defined shortly, the complexity increases hugely, and this mapping remains one
among the key factors.

The partition monoid has an involution defined by

Pn → Pn : α =
(
A1 . . . Aq C1 . . . Cs
B1 . . . Bq E1 . . . Et

)
7→ α∗ =

(
B1 . . . Bq E1 . . . Et
A1 . . . Aq C1 . . . Cs

)
,

satisfying (αβ)∗ = β∗α∗ and α = αα∗α, for all α, β ∈ Pn; so Pn is a regular ∗-semigroup in the
sense of [55]. Although we will not use this involution explicitly, it is responsible for a natural
left-right symmetry/duality that will allow us to shorten many proofs.

2.3 Twisted partition monoids

Consider two partitions α, β ∈ Pn. A connected component of the product graph Γ(α, β) is
said to be floating if all its vertices come from the middle row, n′′. Denote the number of
floating components in Γ(α, β) by Φ(α, β). For example, with α, β ∈ P6 as in Figure 1, we have
Φ(α, β) = 1, as {1′′, 2′′, 6′′} is the unique floating component of Γ(α, β). The next result is pivotal
in all that follows, and will be used without explicit reference; for a proof, see [29, Lemma 4.1]:
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Lemma 2.7. For any α, β, γ ∈ Pn we have Φ(α, β) + Φ(αβ, γ) = Φ(α, βγ) + Φ(β, γ).

We will write Φ(α, β, γ) for the common value in Lemma 2.7, and note that this is the number
of floating components created when forming the product (αβ)γ = α(βγ).

The twisted partition monoid PΦ
n is defined by

PΦ
n := N× Pn with product (i, α)(j, β) :=

(
i+ j + Φ(α, β), αβ

)
.

The operation featuring in the first component is the addition of natural numbers, and in the
second composition of partitions. Associativity follows from Lemma 2.7. Geometrically, one can
think of (i, α) ∈ PΦ

n as a diagram consisting of a graph representing α along with i additional
floating components, as explained in [5, 11]. In the formation of the product (i, α)(j, β), each
factor contributes its existing floating components, and a further Φ(α, β) new ones are created.

In order to describe Green’s relations on PΦ
n , we first need some basic lemmas. The first

describes two situations when two multiplications are guaranteed to create the same number of
floating components.

Lemma 2.8. Let α, β ∈ Pn.

(i) If α L β, then Φ(α, η) = Φ(β, η) for all η ∈ Pn.

(ii) If α R β, then Φ(η, α) = Φ(η, β) for all η ∈ Pn.

Proof. It suffices to prove the first statement, the second being dual. A floating component in
Γ(α, η) has the form F ′′ = B′′1 ∪ · · · ∪ B′′k for some collection B′1, . . . , B

′
k of lower blocks of α,

which are ‘brought together’ by means of upper non-transversals of η. Since α L β, the B′i are
also lower blocks of β, and F ′′ is a floating component in Γ(β, η) as well. Thus, by symmetry,
Γ(α, η) and Γ(β, η) have exactly the same floating components.

The next lemma will be of considerable importance throughout the paper, as it identifies
situations when we can avoid creating any floating components in multiplication:

Lemma 2.9. (i) For any α, β ∈ Pn, there exist α′, β′ ∈ Pn such that

αβ = α′β = αβ′ and Φ(α′, β) = Φ(α, β′) = 0.

(ii) For any α, β, γ ∈ Pn, there exist α′, γ′ ∈ Pn such that

αβγ = α′βγ′ and Φ(α′, β, γ′) = 0.

Proof. We just prove the existence of α′ in (i); the existence of β′ is dual, and (ii) follows
from (i). Let the floating components in Γ(α, β) be F ′′1 , . . . , F ′′k , where k = Φ(α, β) ≥ 0. For
each 1 ≤ i ≤ k, we have Fi = Bi1 ∪ · · · ∪ Bimk , where the B′ij are lower non-transversals of α.
Fix any block A∪B′ of α with A 6= ∅ (it does not matter if B = ∅). We then take α′ to be the
partition obtained from α by replacing the blocks A ∪ B′ and the B′ij (1 ≤ i ≤ k, 1 ≤ j ≤ mk)
by the single block A ∪B′ ∪ F ′1 ∪ · · · ∪ F ′k.

Lemma 2.10. If K is any of Green’s relations, and if α, β ∈ Pn and i, j ∈ N, then

(i, α) K (j, β) in PΦ
n ⇔ i = j and α K β in Pn.

The D = J -classes and principal ideals of PΦ
n are the sets

Dqi := {i} ×Dq and Iqi := {i, i+ 1, i+ 2, . . . } × Iq for q ∈ n0 and i ∈ N,

and these are ordered by Dqi ≤ Drj ⇔ Iqi ⊆ Irj ⇔ q ≤ r and i ≥ j.

8



Proof. We just prove the first statement for K = R, as everything else is analogous. Suppose
first that (i, α) R (j, β), so that

(i, α) = (j, β)(k, γ) = (j + k + Φ(β, γ), βγ) and (j, β) = (i, α)(l, δ) = (i+ l + Φ(α, δ), αδ)

for some γ, δ ∈ Pn and k, l ∈ N. The second coordinates immediately give α R β, and the first
quickly lead to i = j.

Conversely, suppose i = j and α R β. Then α = βγ and β = αδ for some γ, δ ∈ Pn. By
Lemma 2.9 there exist γ′, δ′ ∈ Pn such that α = βγ′ and β = αδ′, with Φ(β, γ′) = Φ(α, δ′) = 0.
It then follows that (i, α) = (i, β)(0, γ′) and (i, β) = (i, α)(0, δ′), so (i, α) R (j, β).

By the previous lemma the poset (PΦ
n /D ,≤) of J = D-classes is isomorphic to the direct

product (n0,≤)× (N,≥). Motivated by this, we will frequently view PΦ
n as a rectangular grid of

D-classes indexed by n0×N, as in Figure 3. Thus, we will refer to columns {i}×Pn (i ∈ N) and
rows N × Dq (q ∈ n0) of PΦ

n . This grid structure will feed into our description of congruences
on PΦ

n , in which certain n0 × N matrices will play a key part.

4 D40 D41 D42 D43 D44 · · ·
3 D30 D31 D32 D33 D34 · · ·
2 D20 D21 D22 D23 D24 · · ·
1 D10 D11 D12 D13 D14 · · ·
0 D00 D01 D02 D03 D04 · · ·
q/i 0 1 2 3 4 · · ·

Figure 3. PΦ
4 as a grid, and the ideal determined by (0, 0), (1, 2) and (3, 3).

2.4 Finite d-twisted partition monoids

In addition to the monoid PΦ
n , we will also be interested in certain finite quotients, where we

limit the number of floating components that are allowed to appear. Specifically, for d ∈ N, the
d-twisted partition monoid is defined to be the quotient

PΦ
n,d := PΦ

n /RIn,d+1

by the Rees congruence associated to the (principal) ideal In,d+1 = {d+ 1, d+ 2, . . . } × Pn. We
can also think of PΦ

n,d as PΦ
n with all elements with more than d floating components equated to

a zero element 0. Thus we may take PΦ
n,d to be the set

PΦ
n,d := (d0 × Pn) ∪ {0},

with multiplication

a · b :=

{
ab if a = (i, α), b = (j, β) and i+ j + Φ(α, β) ≤ d,
0 otherwise.

(2.11)

In this interpretation, PΦ
n,d consists of columns 0, 1, . . . , d of PΦ

n , plus the zero element 0.

Clearly the product in PΦ
n of two pairs (i, α) and (j, β) will be equal to their product in

all PΦ
n,d for sufficiently large d. So PΦ

n can be regarded as a limit of PΦ
n,d as d → ∞. One may

wonder to what extent this is reflected on the level of congruences, and this will be discussed in
more detail in Section 7, and further in [26].
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For d = 0, the 0-twisted partition monoid PΦ
n,0 is (isomorphic to) Pn∪{0} with multiplication

α · β :=

{
αβ if α, β ∈ Pn and Φ(α, β) = 0,
0 otherwise.

(2.12)

These monoids are closely related to the 0-partition algebras, which are important in represen-
tation theory; see for example [20].

2.5 Auxiliary results

We now gather some preliminary results concerning the multiplication of partitions and the float-
ing components that can arise when forming such products; these results will be used extensively
throughout the paper.

In [25] it was shown that underpinning the classification of congruences on Pn (Theorem 2.5)
are certain ‘separation properties’ of multiplication. In the current work, we need to extend
these to also include information about floating components, and the following is a suitable
strengthening of [25, Lemma 6.2].

Lemma 2.13. Suppose α ∈ Dq and β ∈ Dr with q ≥ r.

(i) If q > r and q ≥ 2, then there exists γ ∈ Pn such that γα ∈ Dq−1, γβ ∈ Iq−1 \Hγα and
Φ(γ, α) = 0.

(ii) If q = r ≥ 1 and (α, β) 6∈H , then there exists γ ∈ Pn such that, swapping α, β if necessary,

[αγ ∈ Dq, βγ ∈ Iq−1 and Φ(α, γ) = 0] or [γα ∈ Dq, γβ ∈ Iq−1 and Φ(γ, α) = 0].

(iii) If q ≥ 2 and β ∈ Hα \{α}, then there exists γ ∈ Pn such that γα ∈ Dq−1, γβ ∈ Iq−1 \Hγα

and Φ(γ, α) = 0.

Proof. Throughout the proof, we write α =
(
A1 . . . Aq C1 . . . Cs
B1 . . . Bq E1 . . . Et

)
, and we put C = C1 ∪ · · · ∪ Cs.

For each 1 ≤ i ≤ q, we fix some ai ∈ Ai. To reduce notational clutter, we will sometimes omit
the singleton blocks from our notation for partitions.

(i) If domα 6⊆ domβ, then we may assume without loss that a1 6∈ domβ. If domα ⊆ domβ,
then by the pigeon-hole principle we may assume without loss that (a1, a2) ∈ kerβ. In either
case, we take γ =

(
a1 · · · aq−2 aq−1

a1 · · · aq−2 {aq−1} ∪ C

)
. Then dom(γα) = {a1, . . . , aq−1} and ker(γα) is trivial,

so that γα ∈ Dq−1, and we have Φ(γ, α) = 0. Note also that dom(γβ) ⊆ dom γ = {a1, . . . , aq−1}.
In the domα ⊆ domβ case, we clearly have (a1, a2) ∈ ker(γβ). In the domα 6⊆ domβ case, we
either have a1 6∈ dom(γβ) or else (a1, aq−1) ∈ ker(γβ); to see this, consider the component of the
product graph Γ(γ, β) containing a1. Thus, in both cases we have γβ ∈ Iq−2 ⊆ Iq−1 \Hγα.

(ii) We assume that (α, β) 6∈ R, the case of (α, β) 6∈ L being dual. So either domα 6= domβ
or kerα 6= kerβ.

Case 1: domα 6= domβ. Swapping α, β if necessary, we may assume that a1 6∈ domβ. We then
take γ =

(
a1 · · · aq−1 aq
a1 · · · aq−1 {aq} ∪ C

)
. With similar reasoning to part (i), we have γα ∈ Dq, γβ ∈ Iq−1

and Φ(γ, α) = 0.

Case 2: domα = domβ but kerα 6= kerβ. Swapping α, β if necessary, we may assume there
exists (x1, x2) ∈ kerβ \ kerα. Note then that x1 and x2 either both belong to domβ = domα
or else both belong to n \ domα.

Subcase 2.1: x1, x2 ∈ domα. Here we may assume that x1 = a1 and x2 = a2. Again we take
γ =

(
a1 · · · aq−1 aq
a1 · · · aq−1 {aq} ∪ C

)
, and we have γα ∈ Dq, γβ ∈ Iq−1 and Φ(γ, α) = 0.

Subcase 2.2: x1, x2 6∈ domα. We may also assume that A1, . . . , Ar are the upper parts of the
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transversals of β (or otherwise we would be in the previous subcase). Without loss we may
assume that x1 ∈ C1, and we write E = C2 ∪ · · · ∪ Cs, noting that x2 ∈ E. This time we define
γ =

(
A1 . . . Aq−1 Aq ∪ C1 E
A1 . . . Aq−1 C1 Aq ∪ E

)
, and we have γβ ∈ Dq, γα ∈ Iq−1 and Φ(γ, β) = 0.

(iii) Here we have β =
(
A1 . . . Aq C1 . . . Cs
B1π . . . Bqπ E1 . . . Et

)
for some permutation π ∈ Sq, and without loss

we may assume that 1π = q. We then take γ =
(
a1 · · · aq−2 aq−1

a1 · · · aq−2 {aq−1} ∪ C

)
, and the desired conditions

are easily checked, noting that Bq ⊆ codom(γβ) \ codom(γα), which gives (γα, γβ) 6∈ L .

Note that in Lemma 2.13(iii) we actually have Φ(γ, α) = Φ(γ, β) = 0; indeed, this follows
from the proof or by Lemma 2.8. We cannot similarly strengthen the other parts of Lemma 2.13
in general, but the next result shows that part (ii) can be in certain special cases:

Lemma 2.14. (i) If α, β ∈ D1 and kerα 6= kerβ, then there exists γ ∈ Pn such that
rank(γα) 6= rank(γβ) and Φ(γ, α) = Φ(γ, β) = 0.

(ii) If α, β ∈ D1 and cokerα 6= cokerβ, then there exists γ ∈ Pn such that rank(αγ) 6= rank(βγ)
and Φ(α, γ) = Φ(β, γ) = 0.

Proof. Only the first assertion needs to be proved, the second being dual. We may assume
without loss that there exists (a, b) ∈ kerα \ kerβ. Since rankβ = 1, at most one of a, b belongs
to domβ. Without loss suppose b 6∈ domβ and let B be the upper block of β containing b. Then
it is straightforward to check the stated conditions for γ :=

(
B n \B
B n \B

)
.

It will turn out later on that the behaviour of congruences on PΦ
n on rows 0 and 1 is quite

different from that on other rows. One of the main technical reasons behind this is contained in
the following:

Lemma 2.15. For all α ∈ I1 and η ∈ Pn we have

rankα− rank(αη) = Φ(α̂, η)− Φ(α, η) and rankα− rank(ηα) = Φ(η, α̂)− Φ(η, α).

Proof. It is sufficient to prove the first statement; the second is dual. When rankα = 0 then
rank(αη) = 0 and α = α̂, so the equality is trivial. So suppose rankα = 1, and let A ∪ B′ be
its unique transversal. Let the connected components in Γ(α, η) and Γ(α̂, η) containing B′′ be U
and V , respectively. So V ⊆ n′′ ∪ n′ and U = A ∪ V . Then

V is floating in Γ(α̂, γ) ⇔ V ⊆ n′′ ⇔ U ⊆ n ∪ n′′ ⇔ rank(αη) = 0.

With the possible exception of V , the graphs Γ(α, η) and Γ(α̂, η) have exactly the same floating
components, and the result follows.

Our final preliminary lemma concerns the relation νN :

Lemma 2.16. Let N � Sq where 2 ≤ q ≤ n, and let (α, β) ∈H �Dq and γ ∈ Pn. Then

(i) αγ ∈ Dq ⇔ βγ ∈ Dq, in which case (α, β) ∈ νN ⇔ (αγ, βγ) ∈ νN ,

(ii) γα ∈ Dq ⇔ γβ ∈ Dq, in which case (α, β) ∈ νN ⇔ (γα, γβ) ∈ νN .

Proof. We just prove the first part, as the second is dual. Since L is a right congruence, we have
(α, β) ∈ H ⊆ L ⇒ (αγ, βγ) ∈ L ⊆ D , so certainly αγ ∈ Dq ⇔ βγ ∈ Dq. For the second
equivalence, the forwards implication follows immediately from the fact that RN = RIq−1 ∪ νN
is a congruence. The converse follows similarly, since, by Green’s Lemma [34, Lemma 2.2.1],
α = (αγ)δ and β = (βγ)δ for some δ ∈ Pn.
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3 C-pairs and the statement of the main result

In this section we give the statement of the main result, Theorem 3.16 below, which classifies
the congruences of the twisted partition monoid PΦ

n . The classification involves what we will
call C-pairs, which consist of a descending chain θ0 ⊇ · · · ⊇ θn of congruences on the additive
monoid N, and a certain n0×N matrix. The precise definitions are given in Subsection 3.2, and
the main result in Subsection 3.3. Since the definitions are somewhat technical, we will begin by
looking at some motivating examples in Subsection 3.1. En route we also discuss the projections
of a congruence on PΦ

n onto its ‘components’ Pn and N.

3.1 Examples and projections

We begin with the simplest kind of congruences, the Rees congruences:

Example 3.1. From the description of principal ideals in Lemma 2.10, and the fact that ev-
ery ideal is a union of principal ideals, we see that the ideals of PΦ

n correspond to the down-
ward closed subsets of the poset (n0,≤) × (N,≥). It is easy to see that in this poset there
are no infinite strictly increasing sequences, or infinite antichains, and hence for every ideal I
of PΦ

n there exists a uniquely-determined finite collection of mutually incomparable elements
(q1, i1), . . . , (qk, ik) ∈ n0 × N such that

I = Iq1i1 ∪ · · · ∪ Iqkik =
{

(i, α) ∈ PΦ
n : i ≥ it and rankα ≤ qt (∃t, 1 ≤ t ≤ k)

}
.

If PΦ
n is visualised as a grid, as discussed in Subsection 2.3, then an ideal looks like a SW–NE

staircase; see Figure 3 for an illustration. To every ideal I there corresponds the Rees congruence

RI =
{

(a, b) ∈ PΦ
n × PΦ

n : a = b or a, b ∈ I
}
.

To motivate the next family of congruences on PΦ
n , and for subsequent use, we make the

following definition.

Definition 3.2 (The projection of a congruence). Given a congruence σ on PΦ
n , its projec-

tion to Pn is the relation

σ :=
{

(α, β) ∈ Pn × Pn : ((i, α), (j, β)) ∈ σ (∃i, j ∈ N)
}
.

Proposition 3.3. The projection σ of any congruence σ ∈ Cong(PΦ
n ) is a congruence on Pn.

Proof. Reflexivity and symmetry are obvious, and compatibility follows from the fact that
the second components multiply as in Pn. For transitivity, suppose (α, β), (β, γ) ∈ σ, with
((i, α), (j, β)), ((k, β), (l, γ)) ∈ σ. Without loss assume that j ≤ k. Multiplying the first pair by
(k−j, id) we deduce ((i+k−j, α), (k, β)) ∈ σ. By transitivity of σ we have ((i+k−j, α), (l, γ)) ∈ σ,
and hence (α, γ) ∈ σ, as required.

It turns out that every congruence on Pn arises as the projection of a congruence on PΦ
n , via

the following construction.

Example 3.4. For any τ ∈ Cong(Pn) the relation
{

((i, α), (j, β)) : (α, β) ∈ τ, i, j ∈ N
}
is a

congruence on PΦ
n , and its projection is τ .

One may wonder whether, analogously, the projection of a congruence of PΦ
n onto the first

component N is also a congruence. This turns out not to be the case in general, as the following
example demonstrates. The example also highlights some of the unusual behaviour that occurs
on rows 0 and 1.
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Example 3.5. Consider the relation

σ := ∆PΦ
n
∪
{

((i, α), (j, β)) : i, j ∈ N, α, β ∈ I1, α̂ = β̂, rankα− rankβ = i− j
}
.

It relates all pairs a, b ∈ I10 whose underlying partitions satisfy α̂ = β̂, and which belong to a
single D1i, or one of them belongs to D0i and the other to D1,i+1. We show that it is a congruence
on PΦ

n . Indeed, symmetry and reflexivity are obvious, while transitivity follows quickly upon
rewriting rankα − rankβ = i − j as rankα − i = rankβ − j. For compatibility, let (a, b) ∈ σ
and let c ∈ PΦ

n be arbitrary. We just show that (ac, bc) ∈ σ; the proof that (ca, cb) ∈ σ is dual.
There is nothing to show if a = b, so suppose a = (i, α) and b = (j, β) where α, β ∈ I1, α̂ = β̂
and rankα− rankβ = i− j. Also write c = (k, γ). Then

ac = (i+ k + Φ(α, γ), αγ) and bc = (j + k + Φ(β, γ), βγ).

Since I1 is an ideal we have αγ, βγ ∈ I1, and Lemma 2.4 gives α̂γ = α̂γ = β̂γ = β̂γ. Also, using
Lemma 2.15, we have:

(i+ k + Φ(α, γ))− (j + k + Φ(β, γ))

=(i− j) + (rank(αγ)− rankα+ Φ(α̂, γ))− (rank(βγ)− rankβ + Φ(β̂, γ))

=(rank(αγ)− rank(βγ)) + (i− j)− (rankα− rankβ) + (Φ(α̂, γ)− Φ(β̂, γ))

= rank(αγ)− rank(βγ).

So σ is indeed a congruence. However, the projection of σ to N is the relation{
(i, j) ∈ N× N : |i− j| ≤ 1

}
,

which is not transitive.

On the other hand, given a congruence on N we can always construct a congruence on PΦ
n

with that projection.

Example 3.6. If θ is a congruence on N then the relation

σ :=
{

((i, α), (j, α)) : α ∈ Pn, (i, j) ∈ θ
}

is a congruence of PΦ
n . Indeed, σ is clearly an equivalence. For right compatibility (left is dual)

suppose we have (a, b) = ((i, α), (j, α)) ∈ σ and c = (k, β) ∈ PΦ
n . Then

ac = (i+ k + Φ(α, β), αβ) and bc = (j + k + Φ(α, β), αβ).

Since (i, j) ∈ θ, and since θ is a congruence on N, it follows that (i+k+Φ(α, β), j+k+Φ(α, β)) ∈ θ,
and so (ac, bc) ∈ σ. In the special case that θ = ∇N, the congruence constructed here is
σ =

{
((i, α), (j, α)) : α ∈ Pn, i, j ∈ N

}
, the kernel of the natural epimorphism PΦ

n → Pn,
(i, α) 7→ α.

In fact we can obtain more congruences by further developing the idea behind Example 3.6.

Example 3.7. Suppose θ0 ⊇ θ1 ⊇ · · · ⊇ θn is a chain of congruences on N, and define

σ :=
⋃
q∈n0

{
((i, α), (j, α)) : α ∈ Dq, (i, j) ∈ θq

}
.

This is a congruence, with essentially the same proof as in the previous example, and recalling
additionally that rank(αβ), rank(βα) ≤ rankα. Note that σ = ∆Pn for this congruence σ. In
what follows, it will transpire that every congruence on PΦ

n with trivial projection onto Pn is of
this form.
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3.2 C-pairs and congruences

We will encode congruences on PΦ
n by means of certain pairs (Θ,M), which we will call C-pairs.

Here Θ will be a descending chain θ0 ⊇ · · · ⊇ θn of congruences on N; and M = (Mqi)n0×N will
be an infinite matrix, whose entries are drawn from the following set of symbols:

{∆, µ↑, µ↓, µ, λ, ρ,R} ∪ {N : {idq} 6= N � Sq, 2 ≤ q ≤ n}.

We will refer to the entries in the second set collectively as the N -symbols. The entry Mqi of M
can be thought of as corresponding to the D-class Dqi of PΦ

n . Therefore, we will think of the
matrix M having its first entry M00 in the bottom left corner to correspond to our visualisation
of PΦ

n as in Figure 3. In the first approximation, and not entirely accurately, one can think of the
symbol Mqi as a specification for the restriction of the intended congruence to the corresponding
D-class.

We now describe the allowable matrices M , given a fixed chain Θ = (θ0 ⊇ · · · ⊇ θn). The
description will be by row, with a total of ten allowable row types, denoted RT1–RT10, and with
two verticality conditions (V1) and (V2) governing allowable combinations of rows. The first
seven types deal simultaneously with the two bottom rows.

Row Type RT1. Rows 0 and 1 may consist of ∆s only:

1 ∆ ∆ ∆ . . .

0 ∆ ∆ ∆ . . .

Row Type RT2. If θ0 = θ1 = ∆N, rows 0 and 1 may be:

1 ∆ . . . ∆ ζ µ µ . . .

0 ∆ . . . ∆ µ µ µ . . .

i

Here i ≥ 0. The symbol ζ can be any of µ, µ↑, µ↓ or ∆.

Row Type RT3. If θ0 = (m,m+ 1)], rows 0 and 1 may be:

1 ∆ . . . ∆ ∆ ∆ ∆ . . .

0 ∆ . . . ∆ ξ ξ ξ . . .

m

The symbol ξ can be any of ρ, λ or R.

Row Type RT4. If θ0 = θ1 = (m,m+ d)], rows 0 and 1 may be:

1 ∆ . . . ∆ ξ ξ . . .

0 ∆ . . . ∆ ξ ξ . . .

m

If d = 1 the symbol ξ can be any of µ, ρ, λ or R; if d > 1 then ξ = µ.

Row Type RT5. If θ0 = (m,m+ d)] and θ1 = (m+ 1,m+ 1 + d)], rows 0 and 1 may be:

1 ∆ . . . ∆ ζ µ . . . µ µ ξ ξ . . .

0 ∆ . . . ∆ µ µ . . . µ ξ ξ ξ . . .

i m
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Here 0 ≤ i < m. If d = 1 the symbol ξ can be any of µ, ρ, λ or R; if d > 1 then ξ = µ. The
symbol ζ can be any of µ, µ↑, µ↓ or ∆.

Row Type RT6. If θ0 = (m,m+ d)] and θ1 = (l, l + d)] with l > m, rows 0 and 1 may be:

1 ∆ . . . ∆ ∆ . . . ∆ ζ ξ . . .

0 ∆ . . . ∆ ξ . . . ξ ξ ξ . . .

m l

If d = 1 the symbol ξ can be any of µ, ρ, λ or R; if d > 1 then ξ = µ. The symbol ζ can be any
of µ, µ↑, µ↓ or ∆.

Row Type RT7. If θ0 = (m,m + d)] and θ1 = (l, l + d)] with l − 1 > m > 0 and
l − 1 ≡ m (mod d), rows 0 and 1 may be:

1 ∆ . . . ∆ ∆ ∆ . . . ∆ µ ξ . . .

0 ∆ . . . ∆ µ ξ . . . ξ ξ ξ . . .

m l

If d = 1 the symbol ξ can be any of µ, ρ, λ or R; if d > 1 then ξ = µ.

In the above, note that per θ0 = per θ1 in almost all cases, the possible exceptions being only
in types RT1 and RT3. Also note that the only symbols that can appear before min θ0 or min θ1

are ∆, µ, µ↑ and µ↓; the only entries that can appear after (or at) min θ0 or min θ1 are ∆, µ, λ, ρ
or R.

The remaining three types RT8–RT10 specify an arbitrary row q with q ≥ 2.

Row Type RT8. Row q ≥ 2 may consist of ∆s only:

q ∆ ∆ ∆ . . .

Row Type RT9. Row q ≥ 2 may be:

q ∆ . . . ∆ Ni Ni+1 . . . Nk−1 N N . . .

i k

Here 0 ≤ i ≤ k ≤ min θq, and {idq} 6= Ni ≤ · · · ≤ Nk−1 ≤ N are non-trivial normal subgroups
of Sq.

Row Type RT10. If q ≥ 2 and θq = (m,m+ 1)], row q may be:

q ∆ . . . ∆ Ni Ni+1 . . . Nm−1 R R . . .

i m

Here 0 ≤ i ≤ m, and {idq} 6= Ni ≤ · · · ≤ Nm−1 are non-trivial normal subgroups of Sq.

Having specified the possible rows in M , the way they can be put together is governed by
the following verticality conditions:

(V1) An N -symbol cannot be immediately above ∆, µ↑, µ↓, or another N -symbol.

(V2) Every entry equal to R in row q ≥ 2 must be directly above an R entry from row q − 1.
(The same automatically holds for Rs in row q = 1 by examining types RT1–RT7.)
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Definition 3.8 (C-pair). A C-pair (Θ,M) consists of a descending chain Θ = (θ0, . . . , θn)
of congruences on N, and a matrix M = (Mqi)n0×N, in which rows 0 and 1 are of one of the
types RT1–RT7, each of the remaining rows is of one of the types RT8–RT10, and the verticality
conditions (V1) and (V2) are satisfied. We refer to Θ as a C-chain, and to M as a C-matrix.
With a slight abuse of terminology, we will say that M is of type RT1–RT7, as appropriate,
according to the type of rows 0 and 1.

Remark 3.9. The specifications of row types and the verticality conditions impose severe re-
strictions about the content of a C-matrix:

(i) For any q ∈ n0, and for any (i, j) ∈ θq, we have Mqi = Mqj . Thus, if m := min θq 6= ∞,
then Mqi = Mqm for all i ≥ m.

(ii) If M1i 6= ∆ for some i ∈ N, then M0j = M1,j+1 for all j ≥ i.

(iii) If M1i = ξ 6= ∆ for some i ≥ min θ1, then M1j = M0k = ξ for all j ≥ min θ1 and all
k ≥ min θ0.

(iv) Symbols ∆ and R can appear in any row; N -symbols can appear in rows q ≥ 2; µ, ρ and λ
can appear in rows 0 and 1; µ↑ and µ↓ can appear only in row 1, and M has at most one
entry from {µ↑, µ↓}.

(v) Given an entry Mqi, only certain entries can occur directly to the right or below it; they
are given in Table 1.

(vi) At most one row can be of type RT9, and any rows above such a row consist entirely of ∆s.

Mqi ∆ µ↑, µ↓, µ ρ λ N R

Mq−1,i any µ, ρ, λ,R ρ λ µ, ρ, λ,R R

Mq,i+1 any µ, ρ, λ,R ρ λ N ′(≥ N), R R

Table 1. Allowed entries below and to the right of an entry in a C-matrix.

The next definition gives a detailed specification for the congruence corresponding to a C-
pair. That this indeed is a congruence will be proved in Section 4. The definition involves the ∂
operator, defined just before Theorem 2.5.

Definition 3.10 (Congruence corresponding to a C-pair). The congruence associated with
a C-pair (Θ,M) is the relation cg(Θ,M) on PΦ

n consisting of all pairs ((i, α), (j, β)) ∈ PΦ
n ×PΦ

n

such that one of the following holds, writing q = rankα and r = rankβ:

(C1) Mqi = Mrj = ∆, (i, j) ∈ θq and α = β;

(C2) Mqi = Mrj = R;

(C3) Mqi = Mrj = N , (i, j) ∈ θq, α H β and ∂(α, β) ∈ N ;

(C4) Mqi = Mrj = λ and α̂ L β̂;

(C5) Mqi = Mrj = ρ and α̂ R β̂;

(C6) Mqi = Mrj = µ↓, α̂ = β̂ and α L β;

(C7) Mqi = Mrj = µ↑, α̂ = β̂ and α R β;
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(C8) Mqi = Mrj = µ, α̂ = β̂ and one of the following holds:

• q = r and (i, j) ∈ θq, or
• q 6= r, (i+ r, j + q) ∈ θ0, i < min θq and j < min θr, or
• q 6= r, (i+ r, j + q) ∈ θ0, i ≥ min θq and j ≥ min θr.

Note that in (C1) and (C3) we necessarily have q = r. Similarly, in (C4), (C5) and (C8) we
have q, r ∈ {0, 1}; in (C6) and (C7) we have q = r = 1 and i = j. The comparatively complex
rule in (C8) is to do with the interactions between the α 7→ α̂ map and the Φ parameters, as
already gleaned in Lemma 2.15 and Example 3.5.

Remark 3.11. It will often be convenient to replace (C1) in the above definition by:

(C1′) (i, j) ∈ θq and α = β.

While (C1) of course implies (C1′), the converse is not true. Nevertheless, (C1′) implies that one
of (C1)–(C8) holds, as is easily checked, keeping in mind that α = β implies q = r and then
(i, j) ∈ θq implies Mqi = Mrj by Remark 3.9(i).

Remark 3.12. If (i, α) and (j, β) are related via (C8) then i < min θq if and only if j < min θr.

Remark 3.13. It will sometimes be convenient to treat ∆ in row q ≥ 2 as an N -symbol, by
allowing the trivial subgroup {idq} among the latter, and then identifying ∆ with it. In this
way, (C1) is contained in (C3) for q ≥ 2, as α H α and ∂(α, α) = idq for all α ∈ Dq. This
convention will be particularly useful in the treatment of exceptional C-pairs (see Definition 3.14
below) where the exceptional row is q = 2 and we have {id2} = A2.

It turns out that ‘most’ congruences on PΦ
n are of the form cg(Θ,M). Only one other family

of congruences arises, and this only for a very specific kind of C-pair:

Definition 3.14 (Exceptional C-pair). A C-pair (Θ,M) is exceptional if there exists q ≥ 2
such that:

• θq = (m,m+ 2d)] for some m ≥ 0 and d ≥ 1;

• Mqm = Aq if q > 2;

• If q = 2 then M2m = ∆, M1m ∈ {µ, ρ, λ,R} and (m,m+ d)] ⊆ θ1.

This q is necessarily unique (Remark 3.9(vi)), and we call row q the exceptional row, and
write q =: x(M). If θq = (m,m+ 2d)], we let θx := (m,m+ d)]. Thus the final condition in the
last bullet point above states that if x(M) = 2 then θx

2 ⊆ θ1. In fact, θx
q ⊆ θq−1 for any value of

q = x(M). Indeed, for q ≥ 3, condition (V1) ensures that the entry below Mqm = Aq is R, and
then we have per θq−1 = 1; we also have min θq−1 ≤ min θq = m, as θq ⊆ θq−1.

Definition 3.15 (Exceptional congruence). To the exceptional C-pair (Θ,M), in addition
to cg(Θ,M), we also associate the exceptional congruence cgx(Θ,M) consisting of all pairs
((i, α), (j, β)) such that one of (C1)–(C8) holds, or else:

(C9) (i, j) ∈ θx
q \ θq, α H β and ∂(α, β) ∈ Sq \ Aq.

Intuitively we can think about the extra pairs in (C9) as follows. Keeping the above notation,
the partition Sq = Aq ∪̇ (Sq \Aq) induces a partition of an arbitrary H -class H contained in Dq,
say H = A ∪̇B, using the ∂ operator. Rule (C3) implies in particular that for i, j ≥ m with
i ≡ j (mod 2d), the elements of {i} ×A and {j} ×A are all related to each other, and similarly
with {i}×B and {j}×B. What rule (C9) does is introduce additional ‘in-between’ pairs, which
‘twist around’ A and B, in the sense that for i, j ≥ m with i ≡ j + d (mod 2d), the elements of
{i} ×A and {j} ×B are all related to each other, and similarly with {i} ×B and {j} ×A.
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3.3 The main result

We are now ready to state the main result of the paper.

Theorem 3.16. For n ≥ 1, the congruences on the twisted partition monoid PΦ
n are precisely:

• cg(Θ,M) where (Θ,M) is any C-pair;

• cgx(Θ,M) where (Θ,M) is any exceptional C-pair.

Outline of proof. The proof naturally splits into two parts: we show in Section 4 that each
relation listed in the theorem is indeed a congruence, and in Section 5 that any congruence on PΦ

n

has one of the listed forms.

Before we proceed with the proof it is worth returning to the example congruences from
Subsection 3.1, and finding their associated C-pairs. We will adopt the notation for C-pairs
where we write the matrix as usual and write each congruence θq to the right of row q.

Example 3.17. Regarding Rees congruences, consider an ideal I of PΦ
n . Then RI = cg(Θ,M),

where the C-pair (Θ,M) is defined as follows. First, for any q ∈ n0 and i ∈ N, we have

Mqi =

{
R if Dqi ⊆ I
∆ otherwise.

For any q ∈ n0, we have θq = ∆N if row q of M consists entirely of ∆s; otherwise, θq =
(mq,mq + 1)] where mq = min{i ∈ N : Mqi = R}. For example, if I is the ideal of PΦ

4 pictured
in Figure 3, then RI = cg(Π), where Π = (Θ,M) is

∆ ∆ ∆ ∆ ∆ · · · ∆N

∆ ∆ ∆ R R · · · (3, 4)]

∆ ∆ ∆ R R · · · (3, 4)]

∆ ∆ R R R · · · (2, 3)]

R R R R R · · · ∇N

.

Example 3.18. Next, let τ ∈ Cong(Pn), and let σ be the congruence on PΦ
n defined in Exam-

ple 3.4. This time σ = cg(Θ,M), where Θ = (∇N, . . . ,∇N), and where the form of M depends
on the congruence τ (as per Theorem 2.5). For example with n = 4, and taking τ to be λ0, ρ1,
µS2 or RA3 , respectively, σ = cg(Π), where Π is:

∆ ∆ ∆ · · · ∇N

∆ ∆ ∆ · · · ∇N

∆ ∆ ∆ · · · ∇N

∆ ∆ ∆ · · · ∇N

λ λ λ · · · ∇N

,

∆ ∆ ∆ · · · ∇N

∆ ∆ ∆ · · · ∇N

∆ ∆ ∆ · · · ∇N

ρ ρ ρ · · · ∇N

ρ ρ ρ · · · ∇N

,

∆ ∆ ∆ · · · ∇N

∆ ∆ ∆ · · · ∇N

S2 S2 S2 · · · ∇N

µ µ µ · · · ∇N

µ µ µ · · · ∇N

or

∆ ∆ ∆ · · · ∇N

A3 A3 A3 · · · ∇N

R R R · · · ∇N

R R R · · · ∇N

R R R · · · ∇N

.

Example 3.19. The relatively unusual congruence from Example 3.5 has the following C-pair:

∆ ∆ ∆ · · · ∆N
...

...
...

...
...

∆ ∆ ∆ · · · ∆N

µ µ µ · · · ∆N

µ µ µ · · · ∆N

.

Example 3.20. Finally, the congruences in Examples 3.6 and 3.7 both have M = (∆)n0×N.

Note that none of the above congruences are exceptional.
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Example 3.21. The following are three examples of exceptional C-pairs with n = 4, and with
the exceptional row at q = 4, 3 and 2 respectively (in the first, K4 denotes the Klein 4-group):

∆ ∆ ∆ ∆ ∆ ∆ K4 K4 A4 A4 A4 · · · (9, 11)]

∆ ∆ ∆ ∆ A3 S3 R R R R R · · · (6, 7)]

∆ S2 S2 R R R R R R R R · · · (3, 4)]

∆ µ R R R R R R R R R · · · (2, 3)]

R R R R R R R R R R R · · · ∇N

,

∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ · · · (7, 23)]

∆ ∆ ∆ ∆ ∆ A3 A3 A3 A3 A3 · · · (7, 15)]

∆ ∆ ∆ ∆ R R R R R R · · · (4, 5)]

∆ ∆ ∆ µ R R R R R R · · · (4, 5)]

µ R R R R R R R R R · · · (1, 2)]

,

∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ · · · ∆N

∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ · · · (9, 13)]

∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ · · · (8, 12)]

∆ µ↓ µ µ µ µ µ µ µ µ · · · (6, 8)]

∆ µ µ µ µ µ µ µ µ µ · · · (5, 7)]

.

We conclude this section by recording some simple consequences of Theorem 3.16. The first
concerns the number of congruences. Note that a semigroup S can have as many as |Eq(S)|
congruences, where Eq(S) is the set of all equivalence relations on S, and that |Eq(S)| = 2|S|

when S is infinite.

Corollary 3.22. The twisted partition monoid PΦ
n has only countably many congruences.

Proof. There are only countably many congruences on N, and hence only countably many C-
chains. The number of C-matrices is also countable, because each C-matrix has n+ 1 rows, and
each row is eventually constant. Hence there are only countably many C-pairs, and each yields
at most two congruences.

We can also characterise congruences of finite index:

Corollary 3.23. Let σ be a congruence of PΦ
n , and let (Θ,M) be the associated C-pair. Then

the quotient PΦ
n /σ is finite if and only if θn 6= ∆N.

Proof. If θn = ∆N then row n is of type RT8 or RT9, and is not exceptional (though a lower
row might be). It follows from (C1) or (C3) that for any i ∈ N, elements of Dni can only be
σ-related to elements of Dni, and so σ has infinitely many classes.

Conversely, if θn = (m,m + d)], then since every other θq contains θn, it follows from (C1′)
that each element of PΦ

n is σ-related to an element from columns 0, 1, . . . ,m+ d− 1. Since the
columns themselves are finite, σ has only finitely many classes.

Remark 3.24. Although infinite, a C-pair (Θ,M) can be finitely encoded. Indeed, the C-chain
Θ = (θ0, . . . , θn) is determined by the numbers min θq, per θq ∈ N ∪ {∞}, for each q ∈ n0; and
each row of the C-matrixM , being eventually constant, is determined by the symbols that appear
in that row, and the first position of each such symbol.

Remark 3.25. A reader can spot some similarities between the twisted partition monoid PΦ
n and

the direct product N× Pn of the additive monoid of natural numbers and the partition monoid
Pn. Perhaps the similarities are most striking in the rectangular description of D-classes, as
illustrated in Figure 3. The problem of finding congruences of a direct product in general is
a difficult one, but recent work of Araújo, Bentz and Gomes [3] treats it in the special case
of transformation and matrix semigroups. There are certain formal similarities between their
description and ours, and a careful examination of these may be a useful pointer for future
investigations.
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4 C-pair relations are congruences

This section is entirely devoted to proving the following:

Proposition 4.1. For any C-pair Π = (Θ,M) the relation cg(Π) is a congruence, and, if Π is
exceptional, the relation cgx(Π) is also a congruence.

Proof. For the first statement, write σ := cg(Π). First we check that σ is an equivalence. Indeed,
symmetry and reflexivity follow immediately by checking each of (C1)–(C8); for (C3), note that
this says (i, j) ∈ θq and (α, β) belong to the equivalence νN defined just before Theorem 2.5.
For transitivity, suppose (a, b), (b, c) ∈ σ, where a = (i, α), b = (j, β) and c = (k, γ). We then
identify which of the conditions (C1)–(C8) is ‘responsible’ for the pair (a, b) belonging to σ. But
then that the same condition applies to (b, c) because of the associated matrix entries. It is now
easy to verify directly in each case (C1)–(C8) that (a, b) ∈ σ; when dealing with (C8) an appeal
to Remark 3.12 deals with the conditions concerning min θq and min θr.

For compatibility, fix (a, b) ∈ σ and c ∈ PΦ
n . We must show that (ac, bc), (ca, cb) ∈ σ.

Write a = (i, α) ∈ Dqi, b = (j, β) ∈ Drj , c = (k, γ), and

ac = (i+ k + Φ(α, γ), αγ) ∈ Dq1i1 , ca = (k + i+ Φ(γ, α), γα) ∈ Dq2i2 ,

bc = (j + k + Φ(β, γ), βγ) ∈ Dr1j1 , cb = (k + j + Φ(γ, β), γβ) ∈ Dr2j2 .

For t ∈ {1, 2}, note that qt ≤ q, rt ≤ r, it ≥ i and jt ≥ j. We now split the proof into cases,
depending on which of (C1)–(C8) is responsible for the pair (a, b) belonging to σ. In each case
we will check that (ac, bc) ∈ σ. With the exception of (C6), the proof that (ca, cb) ∈ σ is dual,
and is omitted without further comment.

(C1) From α = β and (i, j) ∈ θq it follows that αγ = βγ and (i1, j1) ∈ θq ⊆ θq1 since θq is a
congruence on N. Thus, (ac, bc) ∈ σ via (C1′) (from Remark 3.11).

(C2) The entry Mq1i1 is to the right and below of Mqi (possibly not strictly), and hence
Mq1i1 = R by Table 1. Analogously Mr1j1 = R, and hence (ac, bc) ∈ σ via (C2).

(C3) Since (α, β) ∈ H ⊆ L ⇒ (αγ, βγ) ∈ L ⊆J , we have q1 = r1. By Lemma 2.8 we
have Φ(α, γ) = Φ(β, γ), and so (i1, j1) ∈ θq ⊆ θq1 . Remark 3.9(i) then gives Mq1i1 = Mr1j1 .

Case 1: q1 = q. Here Lemma 2.16 gives (αγ, βγ) ∈ νN . By Table 1, Mqi1 = Mqj1 must be
either R or else some N ′ ≥ N , so it follows that (ac, bc) ∈ σ via (C2) or (C3), depending on the
actual value of Mqi1 .

Case 2: q1 < q. If q > 2 then Mq1i1 = Mr1j1 = R by Table 1, and hence (ac, bc) ∈ σ via (C2).
So now suppose q = 2. By Table 1, we haveMq1i1 = Mr1j1 ∈ {R, λ, ρ, µ}. Since (α, β) belongs to
the congruence µS2 (on Pn), so too does (αγ, βγ), so it follows that α̂γ = β̂γ. Hence (ac, bc) ∈ σ
via one of (C2), (C4), (C5) or (C8), as appropriate.

(C4) Here we have Mq1i1 = Mr1j1 = λ by Table 1. Since α̂ L β̂ means that (α, β) ∈ λ1, a
congruence on Pn, it follows that (αγ, βγ) ∈ λ1, whence α̂γ L β̂γ, so (ac, bc) ∈ σ via (C4).

(C5) This is dual to (C4).

(C6) Here we must have q = r = 1, i = j, α̂ = β̂ and α L β. By Lemma 2.8 we have
Φ(α, γ) = Φ(β, γ), and so i1 = j1. As with (C3), we also have αγ L βγ and so q1 = r1. In
particular, we have Mq1i1 = Mr1j1 ∈ {R, λ, ρ, µ, µ↓} by Table 1. From α̂ = β̂, Lemma 2.4 gives
α̂γ = β̂γ. It follows that (ac, bc) ∈ σ via (C2), (C4), (C5), (C6) or (C8).

In this case we do need to also verify that (ca, cb) ∈ σ. We still have γ̂α = γ̂β, but we might
not have q2 = r2 or i2 = j2. Writing f := Φ(γ, α̂) = Φ(γ, β̂), Lemma 2.15 gives

Φ(γ, α) = f − 1 + q2 and Φ(γ, β) = f − 1 + r2. (4.2)
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Swapping α and β if necessary, we may assume that q2 ≥ r2.

Case 1: q2 = r2 = 1. Here it follows quickly from (4.2) that i2 = j2, so again we have
Mq2i2 = Mr2j2 ∈ {R, λ, ρ, µ, µ↓}. Using rank(γα) = q2 = 1 = rank(α) it is easy to see that
codom(γα) = codom(α) and coker(γα) = coker(α), i.e. γα L α. Similarly, γβ L β, and so
γα L γβ. It again follows that (ca, cb) ∈ σ via (C2), (C4), (C5), (C6) or (C8).

Case 2: q2 = r2 = 0. Again i2 = j2, but now γα = γ̂α = γ̂β = γβ, so (ca, cb) ∈ σ via (C1′).

Case 3: q2 = 1 and r2 = 0. This time, (4.2) gives i2 = j2 + 1, and so i2 > j2 ≥ j = i. It follows
from Remark 3.9(ii) and (iv) and Table 1 that Mq2i2 = M1,j2+1 = M0j2 = Mr2j2 ∈ {R, λ, ρ, µ},
and so (ca, cb) ∈ σ via (C2), (C4), (C5) or (C8). In the µ case, we use the second or third option
in (C8); since the presence of the µ↓ symbol implies type RT2, RT5 or RT6, the conditions on
min θ0 and min θ1 are fulfilled because i2 = j2 + 1.

(C7) This is dual to (C6).

(C8) This time Table 1 gives Mq1i1 ,Mr1j1 ∈ {R, λ, ρ, µ}. Also α̂γ = β̂γ, as above. This time
we write f := Φ(α̂, γ) = Φ(β̂, γ), and Lemma 2.15 gives

Φ(α, γ) = f − q + q1 and Φ(β, γ) = f − r + r1. (4.3)

For the rest of the proof we write m0 := min θ0 and m1 := min θ1.

Case 1: q = r and (i, j) ∈ θq, i.e. the first option from (C8) holds. Here it is convenient to
consider subcases, depending on whether or not q1 = r1.

Subcase 1.1: q1 = r1. It follows from (4.3) that (i1, j1) ∈ θq ⊆ θq1 , so Mq1i1 = Mr1j1 by
Remark 3.9(i). But then (ac, bc) ∈ σ via (C2), (C4), (C5) or (C8), as appropriate.

Subcase 1.2: q1 6= r1. Without loss, we assume that q1 = 1 and r1 = 0. Since q1 ≤ q, it follows
that in fact q = r = 1. It also follows from (4.3) that

(i1 + r1, j1 + q1) = (i1, j1 + 1) = (i+ k + f, j + k + f) ∈ θq ⊆ θ0.

If we can show that Mq1i1 = Mr1j1 , then it will again follow that (ac, bc) ∈ σ via (C2), (C4),
(C5) or (C8); alongside we will also verify the condition on m0 and m1 required in the (C8) case.

If i = j, then in fact i1 = j1 + 1, so Remark 3.9(ii) gives Mq1i1 = M1,j1+1 = M0j1 = Mr1j1 .
If i = j ≥ m1, then i1 ≥ i ≥ m1 and j1 ≥ j ≥ m1 ≥ m0. If i = j < m1, then the presence of
M1i = µ to the left of m1 implies we are in one of types RT2, RT5, RT6 or RT7; in each of these
cases, and combined with i1 = j1 + 1, it is easy to check that either i1 < m1 and j1 < m0, or
else i1 ≥ m1 and j1 ≥ m1.

If i 6= j, then i, j ≥ m1 (as (i, j) ∈ θq = θ1), and so i1 ≥ m1 and j1 ≥ m0 as above;
Remark 3.9(iii) then gives Mq1i1 = M1i1 = µ = M0j1 = Mr1j1 , as required.

Case 2: q 6= r and (i + r, j + q) ∈ θ0. Here we are in the second or third option under (C8),
but we do not need to distinguish these until later in the proof. Without loss we assume that
q = 1 and r = 0, so (i, j + 1) ∈ θ0. Note also that from r1 ≤ r and q1 ≤ q, we have r1 = 0 and
q1 ∈ {0, 1}. Using (4.3), we also have

i1 = i+ (k + f − 1 + q1) and j1 = (j + 1) + (k + f − 1). (4.4)

Subcase 2.1: q1 = 0. From (4.4) and i1 ≥ i we obtain k + f − 1 ≥ 0. Using (4.4) again, and
(i, j + 1) ∈ θ0, it follows that (i1, j1) ∈ θ0. Since q1 = r1 = 0, we also have αγ = α̂γ = β̂γ = βγ,
so (ac, bc) ∈ σ via (C1′).

Subcase 2.2: q1 = 1. This time (4.4) gives

(i1 + r1, j1 + q1) = (i1, j1 + 1) = (i+ (k + f), j + 1 + (k + f)) ∈ θ0. (4.5)
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Since q1 6= r1 and α̂γ = β̂γ, as shown above, it remains as usual to show that Mq1i1 = Mr1j1 ,
but we must also check the conditions on m0 and m1 required when applying (C8).

If i ≥ m1 and j ≥ m0, then i1 ≥ i ≥ m1 and j1 ≥ j ≥ m0, and it then also follows from
Remark 3.9(iii) that Mq1i1 = Mr1j1 . We assume now that i < m1 and j < m0. The presence
of M0j = µ to the left of m0 implies that we are in one of types RT2, RT5 or RT7. In RT2,
m0 = m1 =∞, and M1i1 = M0j1 = µ, completing the proof in this case.

Next consider RT5. First we claim that i = j + 1. Indeed, if j + 1 < m0, then this follows
from (i, j + 1) ∈ θ0. If j + 1 = m0 (the only other option, as j < m0), then from (i, j + 1) ∈ θ0

it follows that i ≥ m0 = m1 − 1 (as we are in RT5); together with i < m1 it follows that
i = m1 − 1 = m0 = j + 1, as required. Now that the claim is proved, it follows from (4.5) that
i1 = j1 + 1. Checking the matrix in RT5, it follows from this that M1i1 = M0j1 , and that the
conditions on m0 and m1 also hold.

Finally, consider RT7. By the form of the matrix, we must have i = m1 − 1 and j = m0 − 1.
From (4.4) we have (i1, j1) = (i+ (k+ f), j+ (k+ f)), and the required conditions again quickly
follow.

Now that we have proved the first assertion of the proposition, we move on to the second. For
this, suppose Π is exceptional, and write τ := cgx(Π). We keep the notation of Definition 3.14,
including the exceptional row q = x(M) ≥ 2 and the congruence θx

q . Again τ is clearly symmetric
and reflexive. For transitivity, suppose (a, b), (b, c) ∈ τ . It suffices to assume that (C9) is
responsible for (a, b) ∈ τ . Since the entries of M at the positions determined by the D-classes
containing a and b are Aq (keeping Remark 3.13 in mind for q = 2), and since (b, c) ∈ τ , it
quickly follows that one of (C3) or (C9) is responsible for (b, c) ∈ τ . But then (a, c) ∈ τ via (C9)
or (C3), respectively.

For compatibility, let (a, b) ∈ τ and c ∈ PΦ
n . It suffices to assume that (C9) is responsible

for (a, b) ∈ τ , and by symmetry we just need to show that (ac, bc) ∈ τ . Writing a = (i, α),
b = (j, β) and c = (k, γ), we have (i, j) ∈ θx

q \ θq and (α, β) ∈ νSq \ νAq . Also write ac = (i1, αγ)
and bc = (j1, βγ). By Lemma 2.8 we have Φ(α, γ) = Φ(β, γ), and it quickly follows that
(i1, j1) ∈ θx

q \ θq. If αγ ∈ Dq, then it follows from Lemma 2.16 that (αγ, βγ) ∈ νSq \ νAq ,
which shows that (ac, bc) ∈ τ via (C9). So suppose instead that αγ ∈ Dr with r < q; as usual,
(α, β) ∈H implies βγ ∈ Dr as well. If q > 2 then using Table 1 we see that Mri1 = Mrj1 = R.
If q = 2 then θx

2 ⊆ θ1 ⊆ θr, Definition 3.14 and Table 1 together give Mri1 = Mrj1 ∈ {R, ρ, λ, µ}.
The proof that (ac, bc) ∈ τ now concludes as in the second case of the (C3) above.

5 Every congruence is a C-pair congruence

We now turn to the second stage of the proof of our main theorem: we fix an arbitrary con-
gruence σ on PΦ

n and work towards proving that it arises from a C-pair (Θ,M). We begin in
Subsection 5.1 with some basic general properties of σ, and then in Subsection 5.2 construct
the C-chain Θ. Subsections 5.3–5.5 establish further auxiliary results concerning σ, focussing
on its restrictions to individual D-classes. This is then used in Subsection 5.6 to construct the
C-matrix M . Subsection 5.7 contains yet further technical lemmas concerning restrictions to
pairs of D-classes. Finally, in Subsection 5.8 we complete the proof of the theorem by showing
that σ is either the congruence or exceptional congruence associated to the C-pair (Θ,M).

5.1 Basic general properties of congruences

In this subsection we prove three basic lemmas that establish certain ‘translational properties’
of the (fixed) congruence σ on PΦ

n . These lemmas, and many results of the subsections to come,
will be concerned with the restrictions of σ to the D-classes of PΦ

n : σ�Dqi = σ ∩ (Dqi × Dqi).
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Such a restriction can be naturally interpreted as an equivalence on the associated D-class Dq

of Pn, by ‘forgetting’ the entries from N. Formally, we define

σqi :=
{

(α, β) ∈ Dq ×Dq : ((i, α), (i, β)) ∈ σ
}

for q ∈ n0 and i ∈ N.

Lemma 5.1. If ((i, α), (j, β)) ∈ σ then ((i+ k, α), (j + k, β)) ∈ σ for all k ∈ N.

Proof. We have ((i+ k, α), (j + k, β)) = ((i, α), (j, β)) · (k, id).

Lemma 5.2. For any q ∈ n0 and i ∈ N, we have σqi ⊆ σq,i+1.

Proof. This is a direct consequence of Lemma 5.1.

Lemma 5.3. Suppose ((i, α), (j, α)) ∈ σ for some i, j ∈ N and α ∈ Dq. Then:

(i)
{

((i, γ), (j, γ)) : γ ∈ Dq

}
⊆ σ;

(ii) σqi = σqj.

Proof. (i) Let γ ∈ Dq. Since γ J α, we have γ = η1αη2 for some η1, η2 ∈ Pn; by Lemma 2.9
we may assume that Φ(η1, α, η2) = 0. Then ((i, γ), (j, γ)) = (0, η1) · ((i, α), (j, α)) · (0, η2) ∈ σ.

(ii) This follows from (i) and transitivity. Indeed, if γ, δ ∈ Dq, then since σ contains both
((i, γ), (j, γ)) and ((i, δ), (j, δ)), we have ((i, γ), (i, δ)) ∈ σ ⇔ ((j, γ), (j, δ)) ∈ σ.

5.2 The C-chain associated to a congruence

Recall that we wish to associate a C-pair (Θ,M) to the congruence σ on PΦ
n . We can already

define the C-chain Θ.

Definition 5.4 (The C-chain associated to a congruence). Given a congruence σ on PΦ
n ,

we define the tuple Θ = (θ0, . . . , θn), where for each q ∈ n0:

θq :=
{

(i, j) ∈ N× N : ((i, α), (j, α)) ∈ σ for some α ∈ Dq

}
=
{

(i, j) ∈ N× N : ((i, α), (j, α)) ∈ σ for all α ∈ Dq

}
.

The equality of the two relations in the above definition is an immediate consequence of
Lemma 5.3(i).

Lemma 5.5. The tuple Θ = (θ0, . . . , θn) in Definition 5.4 is a C-chain.

Proof. Clearly each θq is an equivalence on N; compatibility follows from Lemma 5.1. Now,
suppose q > 0, and let (i, j) ∈ θq. Let α ∈ Dq and η ∈ Pn be such that αη ∈ Dq−1; by
Lemma 2.9 we may assume that Φ(α, η) = 0. Then ((i, αη), (j, αη)) = ((i, α), (j, α)) · (0, η) ∈ σ,
and so (i, j) ∈ θq−1, proving that θq ⊆ θq−1.

5.3 The restrictions in row 0

This and the next two subsections explore consequences of σ containing certain types of pairs.
The guiding principle is that we are aiming to understand the possible restrictions σqi.

We begin with q = 0, proving some results concerning the behaviour of σ on the ideal I00.
We will make frequent use of the partition ω :=

(
n
n

)
, which has the single block n ∪ n′. Note

that for any α ∈ D1 and β ∈ D0, we have

αωα = α, ωαω = ω, βωβ = β, ωβω = ω̂ =
(

n
n

)
.

Further, for any γ ∈ Pn we have Φ(ω, γ) = Φ(γ, ω) = Φ(ω, γ, ω) = 0. We will typically use these
facts without explicit comment.
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Lemma 5.6. If σ ∩ (D0i ×D0j) 6= ∅ then (i, j) ∈ θ0.

Proof. For any (a, b) ∈ σ ∩ (D0i ×D0j) we have ((i, ω̂), (j, ω̂)) = (0, ω) · (a, b) · (0, ω) ∈ σ.

Lemma 5.7. If σ0i 6= ∆D0 then (i, i+ 1) ∈ θ0.

Proof. Suppose (α, β) ∈ σ0i with α 6= β. Without loss we may assume that β has an upper
block A that does not contain (and is not equal to) any upper blocks of α. Let η :=

(
n

n \A A

)
.

Then Φ(η, α) = 0 and Φ(η, β) = 1. Hence ((i, ηα), (i + 1, ηβ)) = (0, η) · ((i, α), (i, β)) ∈ σ, and
the result follows by Lemma 5.6.

We now bring the projection σ of σ to Pn into play; see Definition 3.2. We also recall the
congruences on Pn, as listed in Theorem 2.5 and depicted in Figure 2. Note that σ ∩ R0 is one
of ∆Pn , λ0, ρ0 or R0.

Lemma 5.8. If σ ∩R0 6= ∆Pn, then θ0 = (m,m+ 1)] for some m ∈ N, and we have{
((i, α), (j, β)) : i, j ≥ m, (α, β) ∈ σ�D0

}
⊆ σ.

Proof. Let (γ, δ) ∈ σ�D0
with γ 6= δ. By definition of σ, we have ((k, γ), (l, δ)) ∈ σ for some

k, l ∈ N, and Lemma 5.6 then gives (k, l) ∈ θ0. Thus, (k, δ) σ (l, δ) σ (k, γ). Since γ 6= δ, it follows
from Lemma 5.7 that (k, k + 1) ∈ θ0. But this means that per θ0 = 1, and so θ0 = (m,m + 1)]

for some m ∈ N.
Now let i, j ≥ m and (α, β) ∈ σ�D0

be arbitrary, so that ((g, α), (h, β)) ∈ σ for some g, h ∈ N.
If α = β, then from (i, j) ∈ θ0 we have (i, α) σ (j, α) = (j, β). Now suppose α 6= β. As above,
we have (g, g + 1) ∈ θ0 so that g ≥ m, and similarly h ≥ m. But then (i, g), (h, j) ∈ θ0, and so
(i, α) σ (g, α) σ (h, β) σ (j, β).

Lemma 5.9. (i) If σ ⊆ µS2, then σ0i = ∆D0 for all i ∈ N.

(ii) If σ 6⊆ µS2, then θ0 = (m,m+ 1)] for some m ∈ N, and

σ0i =

{
∆D0 if i < m

σ�D0
if i ≥ m.

Proof. (i) This follows immediately from the fact that µS2�D0
= ∆D0 .

(ii) Using Theorem 2.5 and Figure 2, the condition σ 6⊆ µS2 tells us that σ ∩ R0 6= ∆Pn .
Lemma 5.8 gives θ0 = (m,m+ 1)] for some m ∈ N. It remains to check the assertion regarding
the σ0i. The i < m case follows immediately from Lemma 5.7. For i ≥ m, Lemma 5.8 gives
σ�D0

⊆ σ0i, and the reverse inclusion follows quickly from the definitions.

We conclude this subsection by listing the possible restrictions of σ to the D-classes in the
bottom row of PΦ

n .

Lemma 5.10. For a congruence σ on PΦ
n , and for any i ∈ N, the relation σ0i is one of ∆D0,

λ0�D0
, ρ0�D0

or ∇D0.

Proof. This follows directly from Lemma 5.9 and Theorem 2.5.
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5.4 The restrictions in row 1

As we glimpsed in Example 3.5, and saw in more detail in (C8), the behaviour of a congruence
on the ideal I10 can be rather complex. It will be one of the recurring motifs in this paper that
rows 0 and 1 of PΦ

n and their related pairs need to receive special treatment. This subsection
establishes technical tools for doing this. We continue to use the notation ω =

(
n
n

)
.

We begin with a simple general fact that will be used often.

Lemma 5.11. If σ ∩ (D0i ×Drj) 6= ∅ for some r ≥ 1, then (i+ 1, j) ∈ θ0.

Proof. If ((i, α), (j, β)) ∈ σ∩ (D0i×Drj), then ((i+ 1, αω̂), (j, βω̂)) = ((i, α), (j, β)) · (0, ω̂) ∈ σ,
with αω̂, βω̂ ∈ D0, so that (i+ 1, j) ∈ θ0 by Lemma 5.6.

Lemma 5.6 showed that any σ-relationship between D-classes D0i and D0j implies relation-
ships between all elements of these D-classes with equal underlying partitions. The next lemma
does the same for relationships within row 1, and the following one gives the analogous result
for relationships between rows 0 and 1.

Lemma 5.12. If σ ∩ (D1i ×D1j) 6= ∅ then (i, j) ∈ θ1.

Proof. If (a, b) ∈ σ ∩ (D1i ×D1j) then ((i, ω), (j, ω)) = (0, ω) · (a, b) · (0, ω) ∈ σ.

Lemma 5.13. If σ ∩ (D0i ×D1j) 6= ∅ then{
((i, γ̂), (j, γ)) : γ ∈ D1

}
∪
{

((j, γ), (j, δ)) : γ, δ ∈ D1, γ̂ = δ̂
}
⊆ σ.

Proof. Fix some ((i, α), (j, β)) ∈ σ ∩ (D0i × D1j), and let γ ∈ D1 be arbitrary. Noting that
γ̂ = (γω)α(ωγ) and γ = (γω)β(ωγ), with Φ(γω, α, ωγ) = Φ(γω, β, ωγ) = 0, we have

((i, γ̂), (j, γ)) = (0, γω) · ((i, α), (j, β)) · (0, ωγ) ∈ σ.

This shows the inclusion in σ of the first set in the left-hand side union, and the second follows
by transitivity.

The next lemma refers to the congruences λ1 and ρ1 on Pn.

Lemma 5.14. (i) If σ1i 6⊆ ρ1, then λ1�D1
⊆ σ1i.

(ii) If σ1i 6⊆ λ1, then ρ1�D1
⊆ σ1i.

Proof. Only the first statement needs to be proved, as the second is dual. To do so, fix
some (α, β) ∈ σ1i \ ρ1, so α, β ∈ D1 and kerα 6= kerβ. It follows from Lemma 2.14 that
σ ∩ (D0i ×D1i) 6= ∅, and then from Lemma 5.13 that

{
((i, γ), (i, γ̂)) : γ ∈ D1

}
⊆ σ. But then

(i, α̂) σ (i, α) σ (i, β) σ (i, β̂) with ker α̂ 6= ker β̂, and hence λ0�D0
⊆ σ0i by Lemma 5.10. Now

for any (γ, δ) ∈ λ1�D1
we have γ̂ L δ̂, i.e. (γ̂, δ̂) ∈ λ0�D0

, and hence (i, γ) σ (i, γ̂) σ (i, δ̂) σ (i, δ),
completing the proof.

One way in which σ�I10
may be unusual is that the relations σ1i are not necessarily restrictions

of congruences of Pn to D1. Two additional relations that may occur will play an important role
in what follows:

Definition 5.15. The relations µ↑ and µ↓ on D1 are defined by:

µ↑ :=
{

(α, β) ∈ D1 ×D1 : α̂ = β̂, α R β
}

and µ↓ :=
{

(α, β) ∈ D1 ×D1 : α̂ = β̂, α L β
}
.
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As the notation suggests, these two relations are closely tied to their counterpart labels in
C-matrices; see Subsection 3.2.

Lemma 5.16. (i) If σ1i 6⊆ µ↑, then µ↓ ⊆ σ1i.

(ii) If σ1i 6⊆ µ↓, then µ↑ ⊆ σ1i.

Proof. Again, only the first statement needs proof. If σ1i is not contained in one of ρ1 or λ1,
then by Lemma 5.14, σ1i contains one of λ1�D1

or ρ1�D1
, both of which contain µ↓. Thus, we now

assume that σ1i ⊆ ρ1 ∩ λ1 = µ1. Fix some (α, β) ∈ σ1i \ µ↑. Noting then that (α, β) ∈ µ1 \ µ↑,
we have α̂ = β̂ and (α, β) 6∈ R; consequently, kerα = kerβ and domα 6= domβ. By post-
multiplying ((i, α), (i, β)) by (0, ω), we may assume that α =

(
A1 A2 . . . Ak
n

)
and β =

(
Ak A1 . . . Ak−1

n

)
.

Now let (γ, δ) ∈ µ↓ be arbitrary. So γ, δ ∈ D1, γ L δ and γ̂ = δ̂, and we need to show that
((i, γ), (i, δ)) ∈ σ. If γ = δ there is nothing to prove, so suppose γ 6= δ. We may then write
γ =

(
B1 B2 . . . Bl
C1 C2 . . . Cm

)
and δ =

(
Bl B1 . . . Bl−1

C1 C2 . . . Cm

)
. Then with η1 :=

(
B1 Bl B2 . . . Bl−1

A1 A2 ∪ · · · ∪Ak

)
and

η2 :=
(

n
C1 C2 . . . Cm

)
, we have ((i, γ), (i, δ)) = (0, η1) · ((i, α), (i, β)) · (0, η2) ∈ σ, as required.

We can now describe all possible restrictions of σ to D-classes in row 1.

Lemma 5.17. For a congruence σ on PΦ
n , and for any i ∈ N, the relation σ1i is one of ∆D1,

µ↑, µ↓, µ1�D1
, ρ1�D1

, λ1�D1
or ∇D1 .

Proof. To simplify the proof, we write τ = σ1i, λ = λ1�D1
, ρ = ρ1�D1

, µ = µ1�D1
, ∆ = ∆D1 and

∇ = ∇D1 . The following argument is structured around the inclusion diagram of these relations:

∆

∇

µ↓ µ↑

µ

λ ρ

Case 1: τ 6⊆ λ and τ 6⊆ ρ. Using Lemma 5.14, these respectively give ρ ⊆ τ and λ ⊆ τ . It then
follows that ∇ = λ ∨ ρ ⊆ τ , so τ = ∇.

Case 2: τ 6⊆ λ and τ ⊆ ρ. From the former, Lemma 5.14 gives ρ ⊆ τ , so τ = ρ.

Case 3: τ ⊆ λ and τ 6⊆ ρ. By symmetry, this time we have τ = λ.

Case 4: τ ⊆ λ and τ ⊆ ρ. Here we have τ ⊆ λ ∩ ρ = µ. As above, we now consider subcases
according to whether τ is contained in µ↑ and/or µ↓. We use Lemma 5.16 in place of Lemma 5.14,
and also µ↑ ∨ µ↓ = µ and µ↑ ∩ µ↓ = ∆, to deduce that τ is one of µ, µ↑, µ↓ or ∆.

We conclude this subsection with the following important corollary:

Lemma 5.18. If σ1i 6= ∆D1 then
{

((j, γ̂), (j + 1, γ)) : γ ∈ D1

}
⊆ σ for all j ≥ i.

Proof. By Lemma 5.17 we may assume without loss that µ↑ ⊆ σ1i. Hence,((
i,
(
n
1 2 . . . n

))
,
(
i,
(
n
n 1 . . . n− 1

)))
∈ σ.

Post-multiplying this pair by
(
j − i,

(
1 2, . . . , n
n

))
we obtain ((j + 1, ω), (j, ω̂)) ∈ σ. The result

then follows by Lemma 5.13.
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5.5 The restrictions in rows q ≥ 2

Next we examine the behaviour of σ on rows q ≥ 2. The following sequence of lemmas can be
viewed as working the ‘separation’ Lemma 2.13 into the context of PΦ

n . In the next lemma we
do not assume that q ≥ 2.

Lemma 5.19. If σ ∩ (Dqi ×Drj) 6= ∅, then for every γ ∈ Iq there exist δ ∈ Ir and l ≥ j such
that ((i, γ), (l, δ)) ∈ σ.

Proof. Let ((i, α), (j, β)) ∈ σ ∩ (Dqi × Drj). Using Lemma 2.9, let η1, η2 ∈ Pn be such that
η1αη2 = γ with Φ(η1, α, η2) = 0, and then let δ := η1βη2 ∈ Ir and l := j + Φ(η1, β, η2) ≥ j.
Then ((i, γ), (l, δ)) = (0, η1) · ((i, α), (j, β)) · (0, η2) ∈ σ.

Lemma 5.20. If σ ∩ (Dqi ×Drj) 6= ∅, where q > r and q ≥ 2, then for every γ ∈ Iq \D0 there
exist l ≥ j and δ ∈ Pn such that rank δ < rank γ and ((i, γ), (l, δ)) ∈ σ.

Proof. Let ((i, α), (j, β)) ∈ σ ∩ (Dqi × Drj), and write s := rank γ. If s = q the assertion
follows from Lemma 5.19. Now suppose s < q. Write α =

(
A1 . . . Aq C1 . . . Cu
B1 . . . Bq E1 . . . Ev

)
, and pick at ∈ At

(t = 1, . . . , q). Since q ≥ 2 and q > r, reordering the transversals of α if necessary, we may assume
that one of the following holds: a1 6∈ domβ, or else a1, a2 ∈ domβ and (a1, a2) ∈ kerβ. In either
case let η :=

(
a1 . . . as−1 as
a1 . . . as−1 {as} ∪ C1 ∪ · · · ∪ Cu

)
, again with unlisted elements being singletons. Now

for γ′ := ηα, δ′ := ηβ and l′ := j + Φ(η, β) ≥ j, we have rank γ′ = s > rank δ′ and Φ(η, α) = 0,
so that ((i, γ′), (l′, δ′)) = (0, η) · ((i, α), (j, β)) ∈ σ. Since rank γ = rank γ′, another application of
Lemma 5.19 now implies the existence of δ and l as specified.

Lemma 5.21. If σ ∩ (Dqi ×Drj) 6= ∅, where q > r and q ≥ 2, then σ ∩ (Dqi ×Dsk) 6= ∅ for
some s ≤ r and k ≥ i.

Proof. If j ≥ i we are already done, so suppose j < i, and fix ((i, α), (j, β)) ∈ σ ∩ (Dqi ×Drj).
Write β =

(
A1 . . . Ar C1 . . . Cu
B1 . . . Br E1 . . . Ev

)
, and set η :=

(
B1 . . . Br−1 Br ∪ E1 ∪ · · · ∪ Ev
B1 . . . Br−1 Br E1 · · · Ev

)
. Then β = βη

and Φ(β, η) = 0. Then with k := i+Φ(α, η), we have ((j, β), (k, αη)) = ((j, β), (i, α)) · (0, η) ∈ σ,
and so ((i, α), (k, αη)) ∈ σ by transitivity. But k ≥ i, and s := rank(αη) ≤ rank η = r.

Lemma 5.22. If σ ∩ (Dqi ×Drj) 6= ∅, where q > r and q ≥ 2, then σ ∩ (Dqi ×D0k) 6= ∅ for
some k ∈ N.

Proof. If r = 0 then there is nothing to show, so suppose instead that 0 < r < q. By induction,
it suffices to show that σ ∩ (Dqi ×Dsj′) 6= ∅ for some j′ ∈ N and some s < r. By Lemma 5.21
we may assume that j ≥ i, and we fix some ((i, α), (j, β)) ∈ σ ∩ (Dqi ×Drj). Now, Lemma 5.20
(with γ = β) gives ((i, β), (l, δ)) ∈ σ for some l ≥ j and δ ∈ Ir−1. Since j ≥ i, it then follows from
Lemma 5.1 that ((j, β), (l+ j− i, δ)) ∈ σ, and then by transitivity that ((i, α), (l+ j− i, δ)) ∈ σ,
as required.

The next two statements refer to the (possibly empty) ideal I(σ) of PΦ
n from Definition 2.1.

Lemma 5.23. If σ ∩ (Dqi ×Drj) 6= ∅, where q > r and q ≥ 2, then Iqi ∪ Irj ⊆ I(σ).

Proof. Since the ideal I(σ) is a σ-class, it suffices to show that Iqi ⊆ I(σ), since then also
Irj ⊆ I(σ). By Lemma 5.22 we have σ ∩ (Dqi ×D0k) 6= ∅ for some k ∈ N, and by Lemma 5.21
we may assume that k ≥ i. Again, it suffices to show that I0k ⊆ I(σ).

By Lemma 5.11, we have (i, k + 1) ∈ θ0; since i < k + 1 (as i ≤ k), it follows that
i ≥ m := min θ0. Since σ ∩ (Dqi × D0k) 6= ∅, it follows that σ ∩ (Dq × D0) 6= ∅, so Theo-
rem 2.5 (see Figure 2) gives σ ⊇ R0, and so σ�D0

= ∇D0 . It then follows from Lemma 5.8 that
RI0m ⊆ σ, i.e. I0m ⊆ I(σ), and we are done since k ≥ i ≥ m.
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Lemma 5.24. If ((i, α), (j, β)) ∈ σ ∩ (Dqi × Drj), where q ≥ r, q ≥ 2 and (α, β) 6∈ H , then
Iqi ∪ Irj ⊆ I(σ).

Proof. In light of Lemma 5.23, it suffices to consider the case in which q = r, and again it
suffices to show that I(σ) contains either Iqi or Iqj . By Lemma 2.13(ii), one of σ ∩ (Dqi ×Dsk)
or σ∩ (Dqj ×Dsk) is non-empty for some s < q and k ∈ N. The result then follows from another
application of Lemma 5.23.

The next two statements refer to the relations νN defined just before Theorem 2.5; recall in
particular that ν{idq} = ∆Dq .

Lemma 5.25. If σqi ⊆H where q ≥ 2, then σqi = νN for some N � Sq.

Proof. Bearing in mind the classification of congruences on Pn from Theorem 2.5, it is sufficient
to show that σqi is the restriction to Dq of a congruence on Pn. To prove this, it is in turn
sufficient to prove that for (α, β) ∈ σqi and γ ∈ Pn either (αγ, βγ) ∈ σqi or αγ, βγ ∈ Iq−1. Since
(α, β) ∈ H , it follows as usual that either αγ, βγ ∈ Dq or αγ, βγ ∈ Iq−1, and in the latter
case we are done. So suppose αγ, βγ ∈ Dq. By Lemma 2.9, there exists γ′ ∈ Pn such that
αγ = αγ′ and Φ(α, γ′) = 0. From α L β it follows that βγ = βγ′, and also that Φ(β, γ′) = 0 by
Lemma 2.8. So ((i, αγ), (i, βγ)) = ((i, α), (i, β)) · (0, γ′) ∈ σ, and hence (αγ, βγ) ∈ σqi.

We can now describe all possible restrictions of σ to D-classes in rows q ≥ 2.

Lemma 5.26. For a congruence σ on PΦ
n , and for any q ∈ {2, . . . , n} and i ∈ N, the relation σqi

is either ∇Dq or else νN for some N�Sq. Furthermore, if σqi = ∇Dq and q 6= n, then Dqi ⊆ I(σ).

Proof. This follows by combining Lemmas 5.24 and 5.25, keeping in mind that the only q for
which Dq is an H -class is q = n.

5.6 The C-pair associated to a congruence

We are now ready to define the C-matrix M associated with σ, and then prove that Π = (Θ,M)
is a C-pair.

To defineM we proceed as follows. For each D-class Dqi, we refer back to Lemmas 5.10, 5.17
and 5.26, which list all possible restrictions σqi; in almost all cases, this is enough to uniquely
determine the entry Mqi in the obvious way, with two ambiguities that need to be resolved:

• If σ0i = ∆D0 = µ0�D0
, then M0i is either µ or ∆, depending on whether there are σ-

relationships between elements of D0i and those of some D1j .

• If σni = ∇Dn = νSn , then Mni is either R or the N -symbol Sn, depending on whether
Dni ⊆ I(σ).

More formally:

Definition 5.27 (The C-matrix associated to a congruence). Given a congruence σ on PΦ
n ,

we define the matrix M = (Mqi)n0×N according to the rules given in Table 2.

We remark that when Mqi = N , the clause Dqi * I(σ) in Table 2 always follows from
σqi = νN except when N = Sn as discussed above; similarly, Dqi ⊆ I(σ) is only needed for
Mqi = R when q = n.

The rest of this subsection is devoted to showing that Π := (Θ,M) is indeed a C-pair, which
will be accomplished in Lemma 5.36. To get there, we proceed with a host of auxiliary results
about M . They are mostly concerned with what entries in M can occur below and to the right
of an entry, and with the interplay between M and Θ.
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q Mqi σqi Ambiguity resolution

q ≥ 2

∆ ∆Dq

N νN Dqi 6⊆ I(σ)

R ∇Dq Dqi ⊆ I(σ)

q = 1

∆ ∆D1

µ↑ µ↑

µ↓ µ↓

µ µ1�D1

λ λ1�D1

ρ ρ1�D1

R ∇Dq

q = 0

∆ ∆D0 σ ∩ (D0i ×D1j) = ∅ (∀j ∈ N)

µ ∆D0 σ ∩ (D0i ×D1j) 6= ∅ (∃j ∈ N)

λ λ0�D0

ρ ρ0�D0

R ∇Dq

Table 2. The specification of the C-matrix M = (Mqi)n0×N associated to the congruence σ on PΦ
n .

Lemma 5.28. For any q ∈ n0, all entries Mqi with i ≥ min θq are equal.

Proof. If θq = ∆N the statement is vacuous, so suppose d := per θq <∞. We aim to prove that
Mqi = Mq,i+1 for i ≥ min θq. Note that a matrix entry is entirely determined by the restriction
of σ to the corresponding D-class and (in some cases) the presence or absence of σ-relationships
between that D-class and another one in a different row. By Lemmas 5.2 and 5.3 we have
σqi ⊆ σq,i+1 ⊆ · · · ⊆ σq,i+d = σqi, and so σqi = σq,i+1. To complete the proof we must show that
the following are equivalent:

(i) σ ∩ (Dqi ×Drj) 6= ∅ for some j ∈ N and r 6= q,

(ii) σ ∩ (Dq,i+1 ×Drj) 6= ∅ for some j ∈ N and r 6= q.

For (i)⇒ (ii), we use Lemma 5.1. For (ii)⇒ (i), fix ((i+ 1, α), (j, β)) ∈ σ ∩ (Dq,i+1 ×Drj), where
r 6= q. Then from (i, i+ d) ∈ θq and Lemma 5.1 we have (i, α) σ (i+ d, α) σ (j + d− 1, β).

Now we look at the entries equal to ∆, R and N � Sq:

Lemma 5.29. If Mqi = R then i ≥ min θq, per θq = 1, and Mrj = R whenever r ≤ q and j ≥ i.

Proof. Mqi = R means Dqi ⊆ I(σ), so that Drj ⊆ I(σ) whenever r ≤ q and j ≥ i; in particular
((i, α), (i+ 1, α)) ∈ σ for any α ∈ Dq, and all three statements follow.

Lemma 5.30. If Mqi = N where {idq} 6= N � Sq, then

(i) Mq−1,i is one of R, µ, ρ or λ,

(ii) Mq,i+1 is either R or some N ′ � Sq with N ≤ N ′.
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Proof. (i) If q > 2 then combining Lemmas 2.13(iii) and 5.24 we have Dq−1,i ⊆ I(σ), and so
Mq−1,i = R.

For q = 2, fix some ((i, α), (i, β)) ∈ σ where (α, β) ∈ νS2 and α 6= β. By Lemmas 2.13(iii), 2.9
and 2.8, there exists γ ∈ Pn such that γα ∈ D1 and γβ ∈ I1 \Hγα, with Φ(γ, α) = Φ(γ, β) = 0.
It follows that ((i, γα), (i, γβ)) ∈ σ. From (α, β) ∈ H ⊆ R, we have (γα, γβ) ∈ R ⊆ D , so in
fact (γα, γβ) ∈ σ1i. Since (γα, γβ) 6∈ H but (γα, γβ) ∈ R, we deduce (γα, γβ) 6∈ L , and so
σ1i 6⊆ µ↓. Thus, Lemma 5.16 gives µ↑ ⊆ σ1i. The dual of the above argument gives µ↓ ⊆ σ1i, so
in fact µ = µ↓ ∨ µ↑ ⊆ σ1i. This rules out the possibilities ∆, µ↑, µ↓ for Mq−1,i (cf. Lemma 5.17).

(ii) Consulting Table 2, Mq,i+1 is certainly R or some N ′�Sq. In the latter case, Lemma 5.2
gives νN = σqi ⊆ σq,i+1 = νN ′ , and so N ≤ N ′.

Lemma 5.31. If Mqi = ∆, then Mq,i−1 = ∆ if i ≥ 1, and Mq+1,i = ∆ if q < n.

Proof. For the first statement, suppose i ≥ 1. FromMqi = ∆ we have σqi = ∆Dq , so Lemma 5.2
gives σq,i−1 = ∆Dq ; this completes the proof for q ≥ 1. For q = 0, we could only haveM0,i−1 = ∆
or µ; but in the latter case we would have σ∩(D0,i−1×D1j) 6= ∅ for some j ∈ N, and Lemma 5.1
would then give σ ∩ (D0i ×D1,j+1) 6= ∅, whence M0i = µ, a contradiction.

The second statement follows immediately from Lemma 5.18 (with j = i) for q = 0, or from
Lemmas 5.29 and 5.30 for 0 < q < n.

Now we move on to the entries in rows 0 and 1 and their interdependencies:

Lemma 5.32. If σ ∩ (D0i ×D1j) 6= ∅ then M0i = M1j ∈ {µ, λ, ρ,R}, and either

[i < min θ0 and j < min θ1] or [i ≥ min θ0 and j ≥ min θ1].

Proof. Consulting Table 2, we haveM0i ∈ {µ, λ, ρ,R}. It then follows quickly from Lemma 5.13
that M1j = M0i.

Suppose now that j ≥ min θ1. Let d := per θ1, and let α ∈ D1 be arbitrary. Using Lem-
mas 5.13 and 5.1, and the definition of θ1, we have (i, α̂) σ (j, α) σ (j + d, α) σ (i + d, α̂), and
so i ≥ min θ0. An entirely analogous argument shows that if i ≥ min θ0 then j ≥ min θ1, and
completes the proof.

Lemma 5.33. If M1i 6= ∆ then M0i = M1,i+1 ∈ {µ, ρ, λ,R} and per θ0 = per θ1.

Proof. The first assertion follows from Lemmas 5.18 and 5.32. For the second, θ1 ⊆ θ0 gives
per θ0 ≤ per θ1. It remains to show that per θ1 ≤ per θ0. This being clear if per θ0 =∞, suppose
instead that θ0 = (m,m + d)]. Fix some α ∈ D1, and put j := max(i,m). Since j ≥ i,
Lemma 5.18 gives ((j, α̂), (j + 1, α)) ∈ σ. Since j ≥ m, we have (j, j + d) ∈ θ0. Combining the
above with Lemma 5.1, it follows that (j + 1, α) σ (j, α̂) σ (j + d, α̂) σ (j + 1 + d, α). But then
(j + 1, j + 1 + d) ∈ θ1, so that per θ1 ≤ d = per θ0, as required.

Lemma 5.34. If Mqi ∈ {ρ, λ,R} then i ≥ min θq and per θq = 1.

Proof. The q = 0 case follows from Lemma 5.9(ii), and the Mqi = R case from Lemma 5.29.
So consider q = 1. By Lemma 5.33 and σ1i ⊆ σ1,i+1, we have M0i = M1,i+1 ∈ {ρ, λ,R}. The
q = 0 case then gives i ≥ min θ0 and per θ0 = 1. Since σ1i contains λ1�D1

or ρ1�D1
, Lemma 2.14

implies there exists ((i, α), (i, β)) ∈ σ ∩ (D1i ×D0i). Then using Lemma 5.1 and (i, i+ 1) ∈ θ0,
we have (i, α) σ (i, β) σ (i+ 1, β) σ (i+ 1, α), so that (i, i+ 1) ∈ θ1. The result follows.

Lemma 5.35. If M0i = µ for some i < min θ0, then there exists a unique j ∈ N such that
σ ∩ (D0i ×D1j) 6= ∅. Furthermore, we have M1j = µ, and also

i < j < min θ1 and i+ min θ1 = j + min θ0.
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Proof. Beginning with the first assertion, M0i = µ implies the existence of at least one such j
(see Table 2); M1j = µ follows from Lemma 5.32. To prove uniqueness of j, and aiming for a
contradiction, suppose σ ∩ (D0i ×D1j) 6= ∅ and σ ∩ (D0i × D1k) 6= ∅ with j < k, and write
d := k − j > 0. Fix some α ∈ D1. Lemma 5.13 gives (j, α) σ (i, α̂) σ (k, α) = (j + d, α).
Combining this with Lemma 5.1, we have (i, α̂) σ (j + d, α) σ (i+ d, α̂), which gives (i, i+d) ∈ θ0,
contradicting i < min θ0. Thus, j is indeed unique.

Since i < min θ0, Lemma 5.32 gives j < min θ1. If i ≥ j, then since M1j = µ, Lemma 5.18
gives σ ∩ (D0i ×D1,i+1) 6= ∅ with i+ 1 > j, contradicting the uniqueness of j. So i < j.

For the final assertion, write m0 := min θ0 and m1 := min θ1. Since M1j = µ, Lemma 5.33
gives per θ1 = per θ0. It follows that either m0 = m1 = ∞ or else m0,m1 < ∞, and of course
i+m1 = j+m0 only needs proof in the second case. Since i < m0, and since σ ∩ (D0i ×D1j) 6= ∅,
Lemma 5.1 (with k = m0 − i − 1 and k = m0 − i) tells us that σ ∩ (D0,m0−1 × D1,j+m0−i−1)
and σ ∩ (D0,m0 × D1,j+m0−i) are both non-empty. It then follows from Lemma 5.32 that
j +m0 − i− 1 < m1 and j +m0 − i ≥ m1. Solving these leads to i+m1 = j +m0.

We are now ready to prove the main result of this subsection.

Lemma 5.36. Given a congruence σ on PΦ
n , the pair Π = (Θ,M) given in Definitions 5.4

and 5.27 is a C-pair.

Proof. We have already seen that Θ is a C-chain in Lemma 5.5, so we now turn to the matrixM .
By Lemmas 5.28–5.30, each row q ≥ 2 is of type RT8–RT10, and the verticality conditions (V1)
and (V2) hold. It remains to be proved that rows 0 and 1 are of one of the types RT1–RT7. We
split our considerations into cases, depending on whether θ0 and/or θ1 is ∆N. Throughout the
proof we make extensive use of Table 2 without explicit reference, and also of the fact that any
entry above or to the left of a ∆ is also ∆ (Lemma 5.31). We also keep the meaning of symbols
such as i, ξ and ζ from the row type specifications in Subsection 3.2.

Case 1: θ0 = θ1 = ∆N. By Lemma 5.34, the only symbols that can appear in row 0 are ∆ and µ,
and in row 1 the only possibilities are ∆, µ↑, µ↓ and µ. If row 0 consists entirely of ∆s, then so
too does row 1 and we have type RT1. Otherwise, row 0 has the form ∆ . . .∆µµµ . . . , with the
first µ in position i, say. The entries above the ∆s are also ∆s. For any j ≥ i, it follows from
M0j = µ and Lemma 5.11 that σ ∩ (D0j × D1,j+1) 6= ∅; Lemma 5.35 then gives M1,j+1 = µ.
Thus, M1k = µ for all k ≥ i+ 1. Since M1i ∈ {∆, µ↑, µ↓, µ}, we have type RT2.

Case 2: θ0 6= ∆N and θ1 = ∆N. Lemma 5.33 implies that row 1 consists entirely of ∆s. It
then follows from Lemmas 5.35 and 5.13 that row 0 may not contain any µ. If row 0 consists
entirely of ∆s, then we have RT1. Otherwise, by Lemmas 5.28 and 5.34, row 0 has the form
∆ . . .∆ξξ . . . , with ξ ∈ {λ, ρ,R} and per θ0 = 1, and hence we have type RT3.

Case 3: θ0, θ1 6= ∆N. If all the entries in row 1 are ∆, then as in the previous case we have
type RT1 or RT3. So for the remainder of the proof we will assume that some entries of row 1
are distinct from ∆. By Lemma 5.33 and θ0 ⊇ θ1, we must have

θ0 = (m,m+ d)] and θ1 = (l, l + d)] for some 0 ≤ m ≤ l and d ≥ 1.

From Lemmas 5.28 and 5.33, there exists ξ ∈ {µ, λ, ρ,R} such that M0j = M1k = ξ for all j ≥ m
and all k ≥ l. Furthermore, we note that if ξ ∈ {λ, ρ,R} then d = 1 by Lemma 5.34. We now
split into subcases, depending on the relationship between m and l.

Subcase 3.1: m = l. We claim that any entries on both rows to the left of m equal ∆, and we
note then that we will have type RT4. To prove the claim, it is sufficient to show thatM0,m−1 = ∆
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if m ≥ 1. But ifM0,m−1 6= ∆, then Lemma 5.34 givesM0,m−1 = µ, and Lemma 5.35 then implies
the existence of an integer j satisfying m− 1 < j < m, a contradiction.

Subcase 3.2: l = m + 1. If m = 0 or if M0,m−1 = ∆, then M0j = M1j = ∆ for all j < m; the
entry M1m can only be one of ∆, µ↑, µ↓ or µ by Lemma 5.34, and we have type RT6. The only
remaining option (again see Lemma 5.34) is that M0i = · · · = M0,m−1 = µ for some i ≤ m − 1,
and we assume that i is minimal with this property. Again, we must have M0j = M1j = ∆
for all j < i. Applying Lemma 5.35, and keeping min θ1 = min θ0 + 1 in mind, it follows that
M1,i+1 = · · · = M1m = µ. Finally, the entry M1i can again only be one of ∆, µ↑, µ↓ or µ, and
we have type RT5.

Subcase 3.3: l > m+1. As usual, the entryM1,l−1 must be one of ∆, µ↑, µ↓ or µ. IfM1,l−2 6= ∆,
then Lemma 5.18 would give σ ∩ (D0,l−2 ×D1,l−1) 6= ∅, and this contradicts Lemma 5.32 since
l−2 ≥ min θ0 (as l > m+1) and l−1 < min θ1. It follows that M1,l−2 = ∆, and hence M1j = ∆
for all j ≤ l − 2. If m = 0 or M0,m−1 = ∆, then M0j = ∆ for all j < m, and we have RT6.

So now suppose m ≥ 1 and M0,m−1 6= ∆, which means M0,m−1 = µ. Applying Lemma 5.35
with i = m− 1, the j from the conclusion has to be j = l− 1; in particular, we have M1,l−1 = µ.
Since σ ∩ (D0,m−1 ×D1,l−1) 6= ∅, Lemma 5.11 gives (m, l − 1) ∈ θ0, i.e. l − 1 ≡ m (mod d). If
m ≥ 2 and M0,m−2 6= ∆, then M0,m−2 = µ, and as above Lemma 5.35 (with i = m − 2) leads
to M1,l−2 = µ, contradicting M1,l−2 = ∆. Thus, we have either m = 1 or M0,m−2 = ∆, so that
M0j = ∆ for all j ≤ m− 2. Therefore, this time we have type RT7.

5.7 Restrictions to pairs of D-classes

Now that we have associated the C-pair Π = (Θ,M) to the congruence σ on PΦ
n (Definitions 5.4

and 5.27), we wish to show that σ is one of the congruences associated to the pair (Definitions 3.10
and 3.14). We do this in Subsection 5.8, but first we require some further technical lemmas
describing the possible restrictions of σ to pairs of D-classes.

For any q ∈ n0, we clearly have (i, j) ∈ θq ⇒ σ∩(Dqi×Dqj) 6= ∅. By Lemmas 5.6 and 5.12,
the reverse implication holds as well for q ≤ 1. This need not be the case for q ≥ 2, however, as
shown by the exceptional congruences. The next lemma shows how to deal with this possibility.

For the duration of Subsection 5.7, we will treat ∆-entries in row 2 as N -symbols, ∆ ≡ A2

(see Remark 3.13).

Lemma 5.37. If σ ∩ (Dqi × Dqj) 6= ∅, but (i, j) 6∈ θq, then Π is exceptional, x(M) = q, and
(i, j) ∈ θx

q \ θq.

Proof. Clearly i 6= j, say i < j. By Lemmas 5.6 and 5.12 we have q ≥ 2. Referring to
Definition 3.14, we must show that all of the following items hold:

(a) θq = (m,m+ 2d)] for some m ≥ 0 and d ≥ 1;

(b) θx
q := (m,m+ d)] ⊆ θq−1 if q = 2;

(c) Mqm = Aq (remembering A2 ≡ ∆ for q = 2);

(d) M1m ∈ {µ, ρ, λ,R} if q = 2;

(e) (i, j) ∈ θx
q \ θq.

Let us begin with an arbitrary ((i, α), (j, β)) ∈ σ ∩ (Dqi ×Dqj).
We first claim that Mqi 6∈ {Sq, R}. Indeed, if Mqi = R, then we also have ((i, α), (i, β)) ∈ σ,

and hence ((i, β), (j, β)) ∈ σ by transitivity, so that (i, j) ∈ θq, a contradiction. IfMqi = Sq, note
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that Lemma 5.24 gives (α, β) ∈ H �Dq = νSq = σqi, so that ((i, α), (i, β)) ∈ σ again, leading to
the same contradiction. This completes the proof of the claim.

It follows from Lemma 5.26 that σqi = νN for some N C Sq. An analogous argument shows
that σqj = νN ′ for some N ′ C Sq, and so N ≤ N ′ ≤ Aq by Lemma 5.2. By Lemma 5.24, for any
((i, γ), (j, δ)) ∈ σ ∩ (Dqi ×Dqj) we must have γ H δ.

Using Lemmas 2.9 and 2.8 we see that every element (i, γ) in the R-class of (i, α) is σ-related
to some element of Dqj ; similarly, every element in the L -class of any such (i, γ) is σ-related to
some element of Dqj . Since D = R ◦L , and by the previous paragraph, it follows that:

∀γ ∈ Dq : ∃δ ∈ Hγ : (i, γ) σ (j, δ), (5.38)

where Hγ is the H -class of γ in Pn.
Let us now focus on a particular H -class of Dq, the one containing the elements α such that

domα = codomα = n and n/ kerα = n/ kerβ = {{1}, . . . , {q − 1}, {q, . . . , n}}. This is a group
H -class isomorphic to Sq, and we denote the natural isomorphism by

π 7→ π\ =
(

1\ · · · q\

(1π)\ · · · (qπ)\

)
for π ∈ Sq, where j\ =

{
{j} if j < q

{q, . . . , n} if j = q.

Observe that Φ(π\, η) = Φ(η, π\) = 0 for all π ∈ Sq and η ∈ Pn.
By (5.38) we have ((i, id\q), (j, π

\)) ∈ σ for some π ∈ Sq. Note that π 6∈ N , for otherwise
(i, π\) σ (i, id\q) σ (j, π\), contradicting (i, j) 6∈ θq. Writing e := j − i > 0, we have

((i+ e, π\), (i+ 2e, (π2)\)) = ((i, id\q), (j, π
\)) · (e, π\) ∈ σ.

Continuing and using transitivity we conclude ((i, id]q), (i+ le, id]q)) ∈ σ, where l ≥ 1 is the order
of π in Sq. Therefore (i, i + le) ∈ θq. In particular, θq 6= ∆N, say θq = (m,m + f)]. Since
i 6= i+ le, we also have i ≥ m, so also j ≥ i ≥ m, and Lemma 5.28 then gives N = N ′.

Now, supposing N 6= Aq, the quotient Sq/N has a trivial center, and, recalling π 6∈ N , there
exists η ∈ Sq such that [π, η] = πηπ−1η−1 6∈ N . Consider again the pair ((i, id\q), (j, π

\)) ∈ σ,
and multiply it by (0, η\) on the left, and on the right, to obtain (j, (ηπ)\) σ (i, η\) σ (j, (πη)\),
from which it follows that [π, η] = ∂((ηπ)\, (πη)\) ∈ N , a contradiction. (The ∂ operator was
defined just before Theorem 2.5.) Therefore, we must have N = N ′ = Aq. Since i ≥ m and
Mqi = Aq, it follows from Remark 3.9(i) that Mqm = Aq, i.e. (c) holds.

It now follows that π is an odd permutation, and π2 even. SinceMq,i+2e = Aq by Lemma 5.28,
we have

(i, id\q) σ (i+ e, π\) σ (i+ 2e, (π2)\) σ (i+ 2e, id\q),

so that (i, i+2e) ∈ θq. Hence f = per θq | 2e, and, combining with f - e (as (i, i+e) = (i, j) 6∈ θq)
it follows that f is even, say f = 2d, and that j − i = e ≡ d (mod 2d). Since i, j ≥ m, it follows
that (i, j) ∈ (m,m+ d)] \ θq. This all shows that (a) and (e) both hold.

We are left to deal with (b) and (d), so we assume that q = 2 for the rest of the proof. Note
that the permutation π ∈ S2 \ A2 must in fact be the transposition (1, 2). To simplify notation
in what follows, we will write

γ := id\2 =
(

1\ 2\

1\ 2\

)
and δ := π\ =

(
1\ 2\

2\ 1\

)
.

As above, we have ((i, γ), (j, δ)) ∈ σ. Next we claim that

((m, γ), (m+ d, δ)) ∈ σ. (5.39)
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To prove this, let t ∈ N be such that m+ 2td ≥ i, say m+ 2td = i+u. Since j− i ≡ d (mod 2d)
and i, j ≥ m, we have (j, i+ d) ∈ θ2, and so (i, γ) σ (j, δ) σ (i+ d, δ). Combining the above with
Lemma 5.1, and keeping in mind that per θ2 = 2d, it follows that indeed

(m, γ) σ (m+ 2td, γ) = (i+ u, γ) σ (i+ d+ u, δ) = (m+ d+ 2td, δ) σ (m+ d, δ).

Using (5.39), and again writing ω :=
(

n
n

)
, we have

((m,ω), (m+ d, ω)) = (0, ω) · ((m, γ), (m+ d, δ)) ∈ σ.

Since ω ∈ D1, this shows that (m,m+ d) ∈ θ1, from which (b) follows.

Finally, let η1 =
(

1\ 2\

2\ 1\

)
and η2 =

(
2\ 1\

1\ 2\

)
. Then again using (5.39) we have

((m, η1), (m+ d, η1δ)) = (0, η1) · ((m, γ), (m+ d, δ)) ∈ σ,

and similarly ((m, η2), (m+ d, δη2)). But η1δ = δη2 =
(

1\ 2\

1\ 2\

)
, so it follows that

(m, η1) σ (m+ d, η1δ) = (m+ d, δη2) σ (m, η2),

and so (η1, η2) ∈ σ1m. Since η1 and η2 are neither µ↑- nor µ↓-related (as they are neither R- nor
L -related), it follows that σ1m cannot be one of ∆D1 , µ↑ or µ↓. Examining Table 2, we see then
that M1m ∈ {µ, ρ, λ,R}. This completes the proof of (d), and indeed of the lemma.

The next lemma describes the conditions under which σ-relationships can exist between
distinct D-classes, and then the two subsequent ones characterise all such relationships.

Lemma 5.40. Suppose σ ∩ (Dqi ×Drj) 6= ∅, where q ≤ r and (q, i) 6= (r, j). Then at least one
of the following holds:

(i) Mqi = Mrj = R;

(ii) q = r, Mqi = Mrj and (i, j) ∈ θq;

(iii) q = 0, r = 1, M0i = M1j 6= ∆, i ≥ min θ0, j ≥ min θ1 and (i+ 1, j) ∈ θ0;

(iv) q = 0, r = 1, M0i = M1j = µ, i < min θ0, j < min θ1 and (i+ 1, j) ∈ θ0;

(v) q = r ≥ 2, Π is exceptional, x(M) = q, and (i, j) ∈ θx
q \ θq.

Proof. We split our considerations into cases, depending on whether q = r and whether r > 1.

Case 1: q 6= r and r > 1. By Lemma 5.24 we have Mqi = Mrj = R, and so (i) holds.

Case 2: q = r > 1. If (i, j) ∈ θq then Lemma 5.28 gives (ii). Otherwise Lemma 5.37 gives (v).

Case 3: q = r ≤ 1. Here Lemmas 5.6, 5.12 and 5.28 imply (ii).

Case 4: q = 0 and r = 1. Lemmas 5.11 and 5.32 give (i+1, j) ∈ θ0 andM0i = M1j ∈ {µ, λ, ρ,R}.
Lemma 5.32 also tells us that either i ≥ min θ0 and j ≥ min θ1, or else i < min θ0 and j < min θ1.
In the former case, (iii) holds. In the latter case, Lemma 5.34 gives M0i = µ, so (iv) holds.

It turns out that the converse of Lemma 5.40 is almost true. The only exception is in item (v),
which concerns exceptional congruences. Accordingly, the next lemma treats cases (i)–(iv), and
the following one deals with (v).
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Lemma 5.41. Suppose q, r ∈ n0 and i, j ∈ N are such that q ≤ r and (q, i) 6= (r, j). If any
of conditions (i)–(iv) from Lemma 5.40 hold, then σ ∩ (Dqi × Drj) 6= ∅. Moreover, in these
respective cases, the following hold for all α ∈ Dq and β ∈ Dr:

(i) ((i, α), (j, β)) ∈ σ;

(ii) ((i, α), (j, β)) ∈ σ ⇔ (α, β) ∈ σqi;

(iii) ((i, α), (j, β)) ∈ σ ⇔ (α, β̂) ∈ σ0i;

(iv) ((i, α), (j, β)) ∈ σ ⇔ α = β̂.

Proof. (i) By definition of M , when Mqi = Mrj = R we have Dqi, Drj ⊆ I(σ), which is a
σ-class, giving the claims.

(ii) Since (i, j) ∈ θq, certainly σ ∩ (Dqi ×Dqj) 6= ∅. Moreover, for any α, β ∈ Dq it follows
from ((i, β), (j, β)) ∈ σ that ((i, α), (j, β)) ∈ σ ⇔ ((i, α), (i, β)) ∈ σ ⇔ (α, β) ∈ σqi.

(iii) Write d := per θ0 = per θ1 (see Lemma 5.33), and let α ∈ D0 and β ∈ D1. From
M1j 6= ∆, Lemma 5.18 gives ((j, β̂), (j + 1, β)) ∈ σ. It also follows from (i + 1, j) ∈ θ0 that
((i+ 1, β̂), (j, β̂)) ∈ σ. Since i ≥ min θ0 and j ≥ min θ1, we have (i, i+d) ∈ θ0 and (j, j+d) ∈ θ1,
with 1 ≤ d <∞. Combining all of the above with Lemma 5.1, we have

(i, β̂) σ (i+d, β̂) = ((i+1)+(d−1), β̂) σ (j+(d−1), β̂) σ ((j+1)+(d−1), β) = (j+d, β) σ (j, β).

Consequently, σ ∩ (D0i ×D1j) 6= ∅. From ((i, β̂), (j, β)) ∈ σ, it also follows that

((i, α), (j, β)) ∈ σ ⇔ ((i, α), (i, β̂)) ∈ σ ⇔ (α, β̂) ∈ σ0i.

(iv) As in the previous part, it is enough to show that ((i, β̂), (j, β)) ∈ σ for all β ∈ D1,
keeping in mind that σ0i = ∆D0 , as M0i = µ. By Lemma 5.35, we have σ ∩ (D0i ×D1k) 6= ∅ for
a unique k ∈ N, and we also have M1k = µ, i < k < m1, and i+m1 = k+m0. By Lemmas 5.13
and 5.11 we have ((i, β̂), (k, β)) ∈ σ and (i+ 1, k) ∈ θ0. Since also (i+ 1, j) ∈ θ0 by assumption,
we have (j, k) ∈ θ0.

To complete the proof, it remains to show that j = k, as we have already shown that
((i, β̂), (k, β)) ∈ σ. Aiming for a contradiction, suppose instead that j 6= k. Since (j, k) ∈ θ0, we
then have j, k ≥ m0. Since also (i + 1, j) ∈ θ0 it follows that i + 1 ≥ m0 as well. Combined
with i < m0 (which is one of the underlying assumptions in this case), we deduce that in fact
m0 = i + 1. From i + m1 = k + m0, it follows that m1 = k + 1. Since j < m1 = k + 1 and
j 6= k, we then deduce j ≤ k− 1. Since M1j = µ, Lemma 5.18 then gives ((k− 1, β̂), (k, β)) ∈ σ.
Combined with ((i, β̂), (k, β)) ∈ σ and transitivity, it follows that ((i, β̂), (k − 1, β̂)) ∈ σ and
so (i, k − 1) ∈ θ0. Since i < m0 we deduce that i = k − 1. But then j ≤ k − 1 = i. Adding
e := i−j ≥ 0 to (j, i+1) ∈ θ0, we obtain (i, i+1+e) ∈ θ0, with i+1+e > i, and this contradicts
i < m0. This completes the proof.

Lemma 5.42. Suppose Π is exceptional, with x(M) = q. If σ ∩ (Dqi × Dqj) 6= ∅ for some
(i, j) ∈ θx

q \ θq, then for all α, β ∈ Dq:

((i, α), (j, β)) ∈ σ ⇔ α H β and ∂(α, β) ∈ Sq \ Aq.

Proof. Since Mqi 6= R, Lemma 5.24 tells us that any pair ((i, α), (j, β)) ∈ σ ∩ (Dqi × Dqj)
satisfies α H β. So we need to show that for (α, β) ∈H �Dq we have

((i, α), (j, β)) ∈ σ ⇔ ∂(α, β) ∈ Sq \ Aq, i.e. ((i, α), (j, β)) ∈ σ ⇔ (α, β) 6∈ νAq .

(⇒) Aiming for a contradiction, suppose ((i, α), (j, β)) ∈ σ and (α, β) ∈ νAq . Then from
Mqi = Aq, we have ((i, α), (i, β)) ∈ σ, so that ((i, β), (j, β)) ∈ σ, contradicting (i, j) 6∈ θq.
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(⇐) Suppose (α, β) 6∈ νAq . As in the proof of Lemma 5.37, it follows from σ∩(Dqi×Dqj) 6= ∅
that ((i, α), (j, γ)) ∈ σ for some γ ∈ Dq. As in the previous two paragraphs, we have α H γ
and (α, γ) 6∈ νAq . Since the H -class containing α, β, γ is split into two νAq -classes, and since
(α, β), (α, γ) 6∈ νAq , it follows that (β, γ) ∈ νAq . Since σqj = νAq , this gives ((j, β), (j, γ)) ∈ σ.
It then follows by transitivity that ((i, α), (j, β)) ∈ σ.

5.8 The completion of the proof

We are now ready to complete the proof of our main result, Theorem 3.16.

Proposition 5.43. Let σ be a congruence on PΦ
n , and let Π := (Θ,M) be the C-pair given in

Definitions 5.4 and 5.27. Then σ = cg(Π), or else Π is exceptional and σ = cgx(Π).

Proof. Suppose first that Π is not exceptional, and let τ := cg(Π). We need to prove that

((i, α), (j, β)) ∈ σ ⇔ ((i, α), (j, β)) ∈ τ for all i, j ∈ N and all α, β ∈ Pn. (5.44)

To do so, fix i, j ∈ N and α, β ∈ Pn, and write q := rankα and r := rankβ.
Since the matrix entries are defined with direct reference to the restrictions of σ to the

corresponding D-classes, it immediately follows that (5.44) holds whenever (q, i) = (r, j). So
let us assume that (q, i) 6= (r, j), and without loss of generality that q ≤ r. By inspection of
Lemma 5.40 and (C1)–(C8) we see that ifMqi 6= Mrj then σ∩(Dqi×Drj) = ∅ = τ ∩(Dqi×Drj),
and so (5.44) holds. So for the rest of the proof, we assume that Mqi = Mrj . We now split into
cases, depending on the actual value of Mqi.

Case 1: Mqi = Mrj = ∆. If we do not have both q = r and (i, j) ∈ θq, then by Lemma 5.40(ii)
and (C1), σ ∩ (Dqi ×Drj) = ∅ = τ ∩ (Dqi ×Drj). For this, note that when q = r = 2, item (v)
of Lemma 5.40 involves Mqi = Mrj = A2 ≡ ∆; however the remaining conditions of this item
cannot hold, as Π is not exceptional. If q = r and (i, j) ∈ θq then Lemma 5.41(ii) and (C1) give

((i, α), (j, β)) ∈ σ ⇔ (α, β) ∈ σqi = ∆Dq ⇔ α = β ⇔ ((i, α), (j, β)) ∈ τ.

Case 2: Mqi = Mrj = R. This is an immediate consequence of Lemma 5.41(i) and (C2).

Case 3: Mqi = Mrj = N � Sq. Here we must of course have q = r ≥ 2, and hence i 6= j.
Again, note that item (v) from Lemma 5.40 cannot hold, since Π is not exceptional. Therefore,
if (i, j) 6∈ θq then σ ∩ (Dqi ×Drj) = ∅ = τ ∩ (Dqi ×Drj). If (i, j) ∈ θq then by Lemma 5.41(ii)
and (C3),

((i, α), (j, β)) ∈ σ ⇔ (α, β) ∈ σqi = νN ⇔ α H β and ∂(α, β) ∈ N ⇔ ((i, α), (j, β)) ∈ τ.

In all the remaining cases we have q, r ∈ {0, 1}.

Case 4: Mqi = Mrj = λ. By Lemma 5.34 we must have i ≥ min θq, j ≥ min θr and per θq =
per θr = 1. Now, if q = r, then i, j ≥ min θq gives (i, j) ∈ θq, and we use Lemma 5.41(ii) and (C4)
to obtain

((i, α), (j, β)) ∈ σ ⇔ (α, β) ∈ σqi = λq�Dq ⇔ α̂ L β̂ ⇔ ((i, α), (j, β)) ∈ τ.

If q 6= r, i.e. q = 0 and r = 1, we use Lemma 5.41(iii) and (C4), noting that α = α̂ and
(i+ 1, j) ∈ θ0 (as i ≥ min θ0, j ≥ min θ1 ≥ min θ0 and per θ0 = 1):

((i, α), (j, β)) ∈ σ ⇔ (α, β̂) ∈ σ0i = λ0�D0
⇔ α L β̂ ⇔ ((i, α), (j, β)) ∈ τ.
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Case 5: Mqi = Mrj = ρ. This is dual to the previous case.

Case 6: Mqi = Mrj ∈ {µ↑, µ↓}. Since there is at most one such entry, this case does not arise.

Case 7: Mqi = Mrj = µ. Suppose first that q = r. In the same way as in Case 3 we can deal
with the case (i, j) 6∈ θq. If (i, j) ∈ θq then using Lemma 5.41(ii) and (C8) we have:

((i, α), (j, β)) ∈ σ ⇔ (α, β) ∈ σqi = µq�Dq ⇔ α̂ = β̂ ⇔ ((i, α), (j, β)) ∈ τ.

Now suppose q 6= r, i.e. q = 0 and r = 1. In this case, by (C8), τ ∩ (Dqi ×Drj) is non-empty
precisely when one of conditions (iii) or (iv) of Lemma 5.40 holds. By Lemmas 5.40 and 5.41,
these are precisely the conditions for σ∩ (Dqi×Drj) to be non-empty. By (C8) and Lemma 5.41,
when one of these conditions holds, we have

((i, α), (j, β)) ∈ σ ⇔ α = β̂ ⇔ ((i, α), (j, β)) ∈ τ,

keeping in mind that α = α̂ (as α ∈ D0), and that σ0i = ∆D0 (as M0i = µ).
This completes the proof in the non-exceptional case.

Suppose now that Π is exceptional and that σ 6= cg(Π). This time let τ := cgx(Π). Since τ
differs from cg(Π) only by virtue of containing certain pairs from D-classes whose corresponding
entry is Aq�Sq (including A2 ≡ ∆ for q = 2), as per Definition 3.14, it follows that the preceding
argument remains valid, with the exception of Cases 1 and 3, at the point where we ruled out
the conditions from Lemma 5.40(v). So this time we use Lemma 5.42 and (C9) to obtain:

((i, α), (j, β)) ∈ σ ⇔ α H β and ∂(α, β) ∈ Sq \ Aq ⇔ ((i, α), (j, β)) ∈ τ,

and the proof is complete.

6 Description of the inclusion ordering in terms of C-Pairs

Having shown how to encode congruences on PΦ
n as C-pairs, we now want to express the inclusion

ordering on congruences in terms of an appropriate ordering on C-pairs (Theorem 6.5).
To build towards this, let ≤C be the ordering on C-chains defined by componentwise inclusion

of congruences on N. Next, on the set

{∆, µ↑, µ↓, µ, λ, ρ,R} ∪ {N : {idq} 6= N � Sq, 2 ≤ q ≤ n}

of all possible C-matrix entries, we define an ordering via Hasse diagram in Figure 4. With a
slight abuse of notation we will denote this ordering by ≤C as well. Next we extend this ordering
to an ordering ≤C on the set of all C-matrices in a componentwise manner. And, finally, we
define ≤C on the set of all C-pairs, also componentwise.

Ideally, one might hope that σ1 ⊆ σ2 ⇔ Π1 ≤C Π2, where σt are congruences and Πt are
their corresponding C-pairs. Unfortunately, this is not true, due to related pairs brought in by
matching µs in rows 0 and 1, as well as those brought in by the exceptional congruences. The
most succinct statement we can make, which will be then used in the full description, as well as
subsequent applications, is the following:

Lemma 6.1. Let σ1 and σ2 be two congruences on PΦ
n , with corresponding C-pairs Π1 = (Θ1,M1)

and Π2 = (Θ2,M2).

(i) If σ1 ⊆ σ2 then Π1 ≤C Π2.

(ii) If Π1 ≤C Π2, M1 is not of type RT2, RT5 or RT7, and each σt = cg(Πt), then σ1 ⊆ σ2.
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ρλ

Figure 4. The partial ordering ≤C on the C-matrix entries.

Proof. (i) Suppose σ1 ⊆ σ2. To show that Θ1 ≤C Θ2, let q ∈ n0 and α ∈ Dq, and use (C1′) to
obtain

(i, j) ∈ θ1
q ⇒ ((i, α), (j, α)) ∈ σ1 ⊆ σ2 ⇒ (i, j) ∈ θ2

q .

To show that M1 ≤C M2, fix some q ∈ n0 and i ∈ N; we need to show that M1
qi ≤C M2

qi.
From σ1 ⊆ σ2, we immediately obtain σ1

qi ⊆ σ2
qi. Comparing Table 2 with Figure 4, we see that

σ1
qi ⊆ σ2

qi implies M1
qi ≤C M2

qi in all but the following two cases:

[q = n, M1
ni = R and M2

ni = Sn] or [q = 0, M1
0i = µ and M2

0i = ∆].

So it remains to show that these cases do not arise. Now, ifM1
ni = R, then Dni ⊆ I(σ1) ⊆ I(σ2),

which means that M2
ni = R as well. If M1

0i = µ, then we have σ1 ∩ (D0i ×D1j) 6= ∅ for some
j ∈ N, and this implies σ2 ∩ (D0i ×D1j) 6= ∅, so that M2

0i = µ as well.
(ii) Suppose the stated assumptions hold. Fix some (a, b) ∈ σ1, and write a = (i, α) ∈ Dqi

and b = (j, β) ∈ Drj . We must show that (a, b) ∈ σ2. Comparing Table 2 with Figure 4,
we see that M1

qi ≤C M2
qi implies σ1

qi ⊆ σ2
qi in all cases, so we certainly have (a, b) ∈ σ2 when

(q, i) = (r, j). We now assume (q, i) 6= (r, j), and we split our considerations into cases, depending
on which of (C1)–(C8) is responsible for (a, b) ∈ σ1 = cg(Π1).

(C1) Here α = β and (i, j) ∈ θ1
q ⊆ θ2

q , so that (a, b) ∈ σ2 by (C1′).

(C2) From R = M1
qi ≤C M2

qi and Figure 4 we conclude M2
qi = R, and analogously M2

rj = R.
Thus, (a, b) ∈ σ2 by (C2).

(C3) From (q, i) 6= (r, j) and q = r we have i 6= j, and hence i, j ≥ min θ1
q ≥ min θ2

q , which
implies M2

qi = M2
rj . If M2

qi = R then (a, b) ∈ σ2 by (C2); otherwise M2
qi = N ′ ≥ N , so that

(a, b) ∈ σ2 by (C3), keeping in mind that (i, j) ∈ θ1
q ⊆ θ2

q .

(C4) Because of the λ entries, we have i ≥ min θ1
q ≥ min θ2

q and j ≥ min θ1
r ≥ min θ2

r , from
which we deduce that M2

qi = M2
rj . The possible values for these entries are λ and R, and so

(a, b) ∈ σ2 by (C4) or (C2).

(C5) This is dual to (C4).

(C6) and (C7) do not arise, due to (q, i) 6= (r, j).

(C8) If q = r, then since (i, j) ∈ θ1
q ⊆ θ2

q we have M2
qi = M2

rj ∈ {µ, ρ, λ,R}, and then
(a, b) ∈ σ2 by (C2), (C4), (C5) or (C8).

Now suppose q 6= r, say q = 0 and r = 1. Then (i + 1, j) ∈ θ1
0 ⊆ θ2

0, and because of the
constraints on the row types of M1, we have i ≥ min θ1

0 ≥ min θ2
0 and j ≥ min θ1

1 ≥ min θ2
1.

Therefore Mqi = Mrj , and (a, b) ∈ σ2 as above.
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The assumption about the forbidden row types only came into play in the very last paragraph
of the above proof. Nevertheless, it is easy to see that when M1 is of type RT2, RT5 or RT7,
the condition Π1 ≤C Π2 is no longer sufficient for cg(Π1) ⊆ cg(Π2):

Example 6.2. Consider the C-pairs

Π1 :=

∆ ∆ ∆ ∆ · · · ∆N
...

...
...

...
...

...
∆ ∆ ∆ ∆ · · · ∆N

∆ µ µ µ · · · ∆N

µ µ µ µ · · · ∆N

and Π2 :=

∆ ∆ ∆ ∆ · · · ∆N
...

...
...

...
...

...
∆ ∆ ∆ ∆ · · · ∆N

∆ µ R R · · · (2, 3)]

R R R R · · · ∇N

.

Then clearly Π1 ≤C Π2. However, cg(Π1) * cg(Π2), because ((0, α̂), (1, α)) ∈ cg(Π1)\ cg(Π2) for
all α ∈ D1. Intuitively, the ‘problem’ is that the relationships between D00 and D11 indicated
by the first matching µs in M1 have been ‘broken’ by M2.

Our full description of inclusions will have to deal with the ‘problem’ raised in the example
just considered, and also with the exceptional congruences. To do this, we introduce some
notation. Suppose M is a C-matrix of type RT2, RT5 or RT7. These are precisely the types
that have ‘initial µs’ in row 0, by which we mean entries M0j = µ with j < min θ0. These initial
µs are coloured green in the description of row types in Subsection 3.2. We define µin0(M) to
be the position of the first initial µ in row 0. We then define µin1(M) to be the position of its
‘matching µ’ in row 1. Thus, in the notation of Subsection 3.2:

µin0(M) =

{
i for RT2 and RT5
m− 1 for RT7,

and µin1(M) =

{
i+ 1 for RT2 and RT5
l − 1 for RT7.

Note that µin1(M) need not be the position of the first µ in row 1, as we could have ζ = µ in
types RT2 and RT5. Also note that in any of types RT2, RT5 or RT7, we have

j − i = µin1(M)− µin0(M) ⇒ M0i = M1j for all i, j ≥ µin0(M), and (6.3)

j − i = µin1(M)− µin0(M) ⇔ (i+ 1, j) ∈ θ0 for all µin0(M) ≤ i < min θ0 (6.4)
and µin1(M) ≤ j < min θ1.

Indeed, these are both easily checked by examining the three types.
Also, to deal with exceptional congruences, for an exceptional C-pair Π = (Θ,M), recall

that x(M) is the index of the exceptional row (see Definition 3.14).

Theorem 6.5. Let n ≥ 1, and let Π1 = (Θ1,M1) and Π2 = (Θ2,M2) be two C-pairs for PΦ
n .

(i) We have cg(Π1) ⊆ cg(Π2) if and only if both of the following hold:

(a) Π1 ≤C Π2, and

(b) if M1 has type RT2, RT5 or RT7, then at least one of the following holds:

(b1) min θ2
0 ≤ µin0(M1) and min θ2

1 ≤ µin1(M1), or
(b2) M2 also has type RT2, RT5 or RT7 (not necessarily the same as M1), and

µin1(M2)− µin0(M2) = µin1(M1)− µin0(M1).

(ii) When Π2 is exceptional, we have cg(Π1) ⊆ cgx(Π2) if and only if cg(Π1) ⊆ cg(Π2).

(iii) When Π1 is exceptional, we have cgx(Π1) ⊆ cg(Π2) if and only if all of the following hold,
where q := x(M1):

(a) cg(Π1) ⊆ cg(Π2),
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(b) 2 per θ2
q | per θ1

q , and

(c) M2
qi ∈ {Sq, R} for all i ≥ min θ2

q .

(iv) When both Π1 and Π2 are exceptional, we have cgx(Π1) ⊆ cgx(Π2) if and only if both of
the following hold:

(a) cg(Π1) ⊆ cg(Π2), and

(b) if x(M1) = x(M2) =: q, then the ratio per θ1
q/ per θ2

q is an odd integer.

Proof. (i) If M1 does not have type RT2, RT5 or RT7, this follows from Lemma 6.1. Suppose
now that M1 has one of types RT2, RT5 or RT7, and write σ1 = cg(Π1) and σ2 = cg(Π2).

(⇒) Suppose σ1 ⊆ σ2. Lemma 6.1(i) gives Π1 ≤C Π2. We have to show additionally that
one of (b1) or (b2) holds. Put i = µin0(M1) and j = µin1(M1). In any of the three row types,
we have (i + 1, j) ∈ θ1

0, and also i < min θ1
0 and j < min θ1

1. Thus, ((i, α̂), (j, α)) ∈ σ1 via (C8)
for all α ∈ D1. Since σ1 ⊆ σ2, it follows that σ2 ∩ (D0i×D1j) 6= ∅. But then, by Definition 3.10
and the specification of row types from Subsection 3.2, we have either

[i < min θ2
0 and j < min θ2

1] or [i ≥ min θ2
0 and j ≥ min θ2

1].

The second of these is precisely (b1), so we assume the first holds. Since σ2 ∩ (D0i ×D1j) 6= ∅,
we see by examining the types that M2 has type RT2, RT5 or RT7, and that M2

0i = M2
1j = µ;

in particular, i ≥ µin0(M2) and j ≥ µin1(M2). Since (i+ 1, j) ∈ θ1
0 ⊆ θ2

0, (6.4) yields

j − i = µin1(M2)− µin0(M2),

as required.
(⇐) Suppose now that (a) and (b) both hold. The proof of Lemma 6.1(ii) remains valid until

the point in the (C8) case when we appealed to the assumption that M1 was not of type RT2,
RT5 or RT7. So we reconnect with the proof at that point, and recall that

((i, α), (j, β)) ∈ σ1 ∩ (D0i ×D1j), M1
0i = M1

1j = µ, α = β̂, (i+ 1, j) ∈ θ1
0 ⊆ θ2

0,

and we wish to show that ((i, α), (j, β)) ∈ σ2. Furthermore, if i ≥ min θ1
0 and j ≥ min θ1

1 the rest
of the proof of Lemma 6.1(ii) applies. So we are left to consider the case in which i < min θ1

0 and
j < min θ1

1. Since M1
0i = M1

1j = µ, we have i ≥ µin0(M1) and j ≥ µin1(M1). From M1 ≤C M2

we have M2
0i,M

2
1j ∈ {µ, ρ, λ,R}; see Figure 4.

Suppose first that (b1) holds. In particular, min θ2
0,min θ2

1 <∞, and also i ≥ µin0(M1) ≥ min θ2
0

and j ≥ µin1(M1) ≥ min θ2
1. Examining the row types in Subsection 3.2, it follows that

M2
0i = M2

1j ∈ {µ, ρ, λ,R}, and so ((i, α), (j, β)) ∈ σ2 via (C2), (C4), (C5) or (C8).

Now suppose (b2) holds. Combined with (6.4) applied to σ1, it follows that

j − i = µin1(M1)− µin0(M1) = µin1(M2)− µin0(M2). (6.6)

Since M2
0i,M

2
1j 6= ∆, we have i, j ≥ µin0(M2). It follows from (6.6) and (6.3) that M2

0i = M2
1j ,

and from (6.6), and inspection of the types RT2, RT5 and RT7, that either

[i < min θ2
0 and j < min θ2

1] or [i ≥ min θ2
0 and j ≥ min θ2

1].

We then have ((i, α), (j, β)) ∈ σ2 via (C2), (C4), (C5) or (C8).

(ii) (⇐) This follows immediately from cg(Π2) ⊆ cgx(Π2); see Definition 3.14.

(⇒) We need to show that no ‘exceptional pair’ ((i, α), (j, β)) ∈ cgx(Π2) \ cg(Π2) belongs
to cg(Π1). But this follows quickly from M1

qi,M
1
qj ≤C Aq and the definition of cg(Π1).
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(iii) For this part we write θ1
q = (m,m+ 2d)].

(⇒) Clearly (a) holds, and it follows from part (i) that Π1 ≤C Π2. Recall that all M2
qi

(i ≥ min θ2
q) are equal. Fix some (α, β) ∈ νSq \ νAq , so ((m,α), (m+ d, β)) ∈ cgx(Π1) ⊆ cg(Π2).

Since M1 ≤C M2 and M1
qm = M1

q,m+d = Aq, it follows that ((m,α), (m + d, β)) ∈ cg(Π2)

via (C2) or (C3), with M2
qm = M2

q,m+d ∈ {Sq, R}; this shows that (c) holds. It also follows
from M2

qm ∈ {Sq, R} that ((m,α), (m,β)) ∈ cg(Π2), and so ((m,β), (m + d, β)) ∈ cg(Π2) by
transitivity. Thus, (m,m+ d) ∈ θ2

q , and so per θ2
q | d, which gives (b).

(⇐) By (b) we have per θ2
q | d. By (a) and part (i) we have θ1

q ⊆ θ2
q , so min θ2

q ≤ m. It follows
that (m,m+d)] ⊆ θ2

q . Now let ((i, α), (j, β)) ∈ cgx(Π1)\cg(Π1). Then (C9) is responsible for this
pair; consequently, we have i, j ≥ m ≥ min θ2

q , (i, j) ∈ (m,m+ d)] ⊆ θ2
q , and (α, β) ∈ νSq \ νAq .

By (c) we have M2
qi = M2

qj ∈ {Sq, R}, and so ((i, α), (j, β)) ∈ cg(Π2) via (C2) or (C3).

(iv) We again let q := x(M1), and write θ1
q = (m,m+ 2d)].

(⇒) That cg(Π1) ⊆ cg(Π2) follows from part (ii). If x(M2) 6= q we are finished. So sup-
pose x(M2) = q. Part (i) then gives θ1

q ⊆ θ2
q , so that min θ2

q ≤ m and per θ2
q | 2d. Let

(α, β) ∈ νSq \ νAq , so ((m,α), (m + d, β)) ∈ cgx(Π1) ⊆ cgx(Π2). Since M2 is exceptional, and
since m ≥ min θ2

q we must have M2
qm = M2

q,m+d = Aq. Since (α, β) 6∈ νAq , we must have
d = (m+ d)−m ≡ e (mod 2e), where 2e := per θ2

q . It quickly follows that per θ1
q/ per θ2

q = d/e
is an odd integer.

(⇐) From cg(Π1) ⊆ cg(Π2) it follows that cg(Π1) ⊆ cgx(Π2), and also that m ≥ min θ2
q

using part (i). Now let ((i, α), (j, β)) ∈ cgx(Π1) \ cg(Π1). This must be via (C9), so we have
i, j ≥ m ≥ min θ2

q , j − i ≡ d (mod 2d) and (α, β) ∈ νSq \ νAq .
Suppose first that x(M2) 6= q, i.e. row q is not exceptional in M2. Since i, j ≥ min θ2

q , we see
thatM2

qi = M2
qj is the ‘terminal symbol’ of row q. This is not an N -symbol as row q is not excep-

tional, and it is not ∆ as M2
qi ≥C M1

qi = Aq. Thus, M2
qi = M2

qj = R, so ((i, α), (j, β)) ∈ cg(Π2)
via (C2).

Now suppose x(M2) = q, and let 2e := per θ2
q . Since d/e = per θ1

q/per θ2
q is an odd integer, it

quickly follows that j − i ≡ e (mod 2e). But then ((i, α), (j, β)) ∈ cgx(Π2) via (C9), completing
the proof of this case, and of the theorem.

Remark 6.7. In Example 6.2 we exhibited C-pairs Π1 ≤C Π2 with cg(Π1) 6⊆ cg(Π2). Examining
Theorem 6.5(i), we see that M1 has type RT2, but items (b1) and (b2) both fail: (b1) because
min θ2

1 > µin1(M1), and (b2) because M2 has type RT6.

7 Congruences of d-twisted partition monoids

Recall from Subsection 2.4 that for n, d ≥ 0, the d-twisted partition monoid is defined as the
Rees quotient

PΦ
n,d := PΦ

n /RI where I := In,d+1.

We now apply the main results of the preceding sections to classify the congruences on PΦ
n,d, and

characterise the inclusion order in the lattice Cong(PΦ
n,d).

As explained in Example 3.17, the Rees congruence RI has C-pair representation RI = cg(Π),
where

Π :=

∆ ∆ · · · ∆ R R · · · (d+ 1, d+ 2)]

...
...

...
...

...
...

...
...

∆ ∆ · · · ∆ R R · · · (d+ 1, d+ 2)]

∆ ∆ · · · ∆ R R · · · (d+ 1, d+ 2)]

d

.
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By the Correspondence Theorem (see for example [13, Theorem 6.20]), the congruence lattice
Cong(PΦ

n,d) is isomorphic to the interval [RI ,∇PΦ
n

] in Cong(PΦ
n ).

With the help of our description of inclusion in Theorem 6.5, let us look at this interval more
closely. So consider some congruence σ ∈ [RI ,∇PΦ

n
], and let (Θ,M) be the C-pair associated

to σ. By Theorem 6.5 we must have:

• Mqi = R for all q ∈ n0 and i ≥ d+ 1;

• min θq ≤ d+ 1 and per θq = 1 for all q ∈ n0;

• Mqi ∈ {∆, R} ∪ {N : {idq} 6= N � Sq} for all 2 ≤ q ≤ n and i ≤ d;

• M1i ∈ {∆, µ↑, µ↓, µ,R} for all i ≤ d;

• M0i ∈ {∆, µ,R} for all i ≤ d.

It is significant to observe that that the C-pair (Θ,M) cannot be exceptional, as every row ends
with an infinite sequence of Rs; hence σ = cg(Θ,M). Furthermore, M has no λ or ρ entries.
Theorem 6.5 also gives the converse: if the above conditions are satisfied then cg(Θ,M) does
belong to the interval [RI ,∇Pn ]. Furthermore, the value min θq can be deduced from the matrix:
it is the first point where R makes an appearance in row q. It therefore follows that σ can be
encoded by the n0×d0 submatrix M ′ consisting of columns 0, 1, . . . , d of M . In this context we
will write minq(M

′) for the value min θq.
Another consequence of the above conditions is that not all row types RT1–RT10 are possible

for the matrix M , and those that are possible have additional restrictions. Specifically:

• Row types RT1, RT2, RT3, RT8 and RT9 do not occur.

• In row types RT4–RT7 we have ξ = R.

Restricting to the n0 × d0 submatrix M ′, we arrive at the following finitary row types:

fRT1
1 ∆ . . . ∆ R . . . R

0 ∆ . . . ∆ R . . . R

k

0 ≤ k ≤ d+ 1,

fRT2
1 ∆ . . . ∆ ζ µ . . . µ µ R . . . R

0 ∆ . . . ∆ µ µ . . . µ R R . . . R

i k

0 ≤ i < k ≤ d,
ζ ∈ {µ, µ↑, µ↓,∆},

fRT3
1 ∆ . . . ∆ ∆ . . . ∆ ζ R . . . R

0 ∆ . . . ∆ R . . . R R R . . . R

k l

0 ≤ k < l ≤ d+ 1,

ζ ∈ {µ, µ↑, µ↓,∆},

fRT4
1 ∆ . . . ∆ ∆ ∆ . . . ∆ µ R . . . R

0 ∆ . . . ∆ µ R . . . R R R . . . R

k l

0 < k < l − 1 ≤ d,

fRT5 q ∆ . . . ∆ Ni Ni+1 . . . Nk−1 R . . . R

i k

q ≥ 2,

0 ≤ i ≤ k ≤ d+ 1,

{idq} 6= Ni ≤ · · · ≤ Nk−1,

Ni, . . . , Nk−1 � Sq.
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Definition 7.1 (Finitary C-matrix). A finitary C-matrix, or fC-matrix for short, is a matrix
M = (Mqi)n0×d0 with entries from {∆, µ↑, µ↓, µ,R} ∪ {N : {idq} 6= N � Sq, 2 ≤ q ≤ n} such
that rows 0 and 1 are of one of types fRT1–fRT4, each row q ≥ 2 is of type fRT5, andM satisfies
the verticality conditions (V1) and (V2).

Switching to the representation of PΦ
n,d as (d0 × Pn) ∪ {0}, with product given in (2.11),

Definition 3.10 translates into the following description of the congruence defined by an fC-
matrix.

Definition 7.2 (Congruence corresponding to a finitary C-matrix). The congruence
associated with a finitary C-matrix M is the relation cg(M) on PΦ

n,d consisting of all pairs
((i, α), (j, β)) ∈ PΦ

n,d × PΦ
n,d such that one of the following holds, writing q = rankα and r = rankβ:

(fC1) Mqi = Mrj = ∆, i = j and α = β;

(fC2) Mqi = Mrj = R;

(fC3) Mqi = Mrj = N , i = j, α H β and ∂(α, β) ∈ N ;

(fC4) Mqi = Mrj = µ↓, α̂ = β̂ and α L β;

(fC5) Mqi = Mrj = µ↑, α̂ = β̂ and α R β;

(fC6) Mqi = Mrj = µ, α̂ = β̂, and either (q, i) = (r, j) or i− j = minq(M)−minr(M);

as well as the pairs:

(fC7) ((i, α),0), (0, (i, α)) with Mqi = R;

(fC8) (0,0).

Putting all these observations together, and combining with Theorem 3.16 we obtain the
following classification of the congruences on PΦ

n,d:

Theorem 7.3. For n ≥ 1 and d ≥ 0, the congruences on the d-twisted partition monoid PΦ
n,d

are precisely cg(M), where M is any fC-matrix.

The description of inclusion given in Theorem 6.5 also becomes much simpler, in that only
part (i) applies. However, the complication caused by the matching µs in rows 0 and 1 persists.
The following statement uses the µin0(M) and µin1(M) notation introduced before Theorem 6.5,
which applies to fC-matrices of types fRT2 and fRT4; in these types we have µin1(M)−µin0(M) =
min1(M)−min0(M).

Theorem 7.4. Let n ≥ 1 and d ≥ 0, and let M1 and M2 be any two fC-matrices for PΦ
n,d. Then

cg(M1) ⊆ cg(M2) if and only if both of the following hold:

(a) M1 ≤C M2;

(b) If M1 has type fRT2 or fRT4, then at least one of the following holds:

(b1) min0(M2) ≤ µin0(M1) and min1(M2) ≤ µin1(M1), or

(b2) M2 also has type fRT2 or fRT4, and min1(M2)−min0(M2) = min1(M1)−min0(M1).
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The very special case of the 0-twisted partition monoid PΦ
n,0 deserves a separate mention,

not least because it provided an early source of motivation for the work presented here, in the
form of a question V. Mazorchuk asked the first author at the 2018 Rhodesfest conference in Bar
Ilan. Mazorchuk observed that the ideals of PΦ

n,0 form a chain, and asked whether the methods of
[23,25] can be applied to describe its congruences. This indeed is the case, but such a description
can also be derived as a (very) special case of Theorems 7.3 and 7.4.

Indeed, when d = 0 the fC-matrices are just columns. There are two basic patterns (with
{idq} 6= N � Sq in row q ≥ 2 in the second), as well as four ‘sporadic’ forms:

∆
...

∆

∆

R
...
R

,

∆
...

∆

q N

R
...
R

and

∆
...

∆

∆

µ↑

R

,

∆
...

∆

∆

µ↓

R

,

∆
...

∆

∆

µ

R

,

∆
...

∆

S2

µ

R

. (7.5)

Identifying PΦ
n,0 with the set Pn ∪ {0}, with product given in (2.12), the simple forms of the

fC-matrices in (7.5) lead to a neat description of the congruences of PΦ
n,0, which dispenses with

matrices altogether, and which we now give. For the statement, we define rank(0) = −∞. We
also slightly abuse notation, by momentarily re-using symbols to give convenient names to the
congruences.

Theorem 7.6. For n ≥ 2, the congruences on the 0-twisted partition monoid PΦ
n,0 are precisely:

• the Rees congruences Rq :=
{

(α, β) ∈ PΦ
n,0 × PΦ

n,0 : α = β or rankα, rankβ ≤ q
}

for
q ∈ {−∞, 0, . . . , n}, including ∇PΦ

n,0
= Rn and ∆PΦ

n,0
= R−∞,

• the relations RN := Rq−1 ∪ νN for q ∈ {2, . . . , n} and {idq} 6= N � Sq,

• the relations

µ↑ := R0 ∪
{

(α, β) ∈ D1 ×D1 : α̂ = β̂, α R β
}
,

µ↓ := R0 ∪
{

(α, β) ∈ D1 ×D1 : α̂ = β̂, α L β
}
,

µ := R0 ∪
{

(α, β) ∈ D1 ×D1 : α̂ = β̂
}
,

µS2 := µ ∪ νS2 .

The congruence lattice Cong(PΦ
n,0) is shown in Figure 5.

It is interesting to compare the structures of the lattices Cong(Pn) and Cong(PΦ
n,0) shown in

Figures 2 and 5. There are certainly some obvious similarities. Both have a chain at the top of
the lattice, consisting of the interval [RS2 ,∇], and below this both lattices feature four-element
diamond sublattices; they differ, however, in the number of these diamonds, as well as the way
they connect to each other.

For d > 0 the lattices Cong(PΦ
n,d) are much more complicated, even for small values of n and d.

As an illustration, Figure 6 shows the Hasse diagram of Cong(PΦ
3,2). By the Correspondence

Theorem, this lattice contains a principal filter isomorphic to Cong(PΦ
3,1), which in turn contains

a copy of Cong(PΦ
3,0); these two lattices are highlighted in the figure, as are the Rees congruences.

The figure was produced using the Digraphs package [10] in GAP [30], as well as Graphviz [27]
and dot2tex [28].

The Semigroups package [54] for GAP can directly compute the congruences of PΦ
n,d for rel-

atively small n and d, by performing a simple but time-consuming search, and this formed an
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∆

R0

µ↓ µ↑

µ

R1 µS2

RS2

R2

RA3

RSn

Rn

...

= ∇

Figure 5. The Hasse diagram of Cong(PΦ
n,0); Rees congruences are indicated in blue outline,

‘sporadic’ congruences in red, and we abbreviate ∆ = ∆PΦ
n,0

and ∇ = ∇PΦ
n,0

.

important part of our initial investigations on the topic. However, Figure 6 was created using our
combinatorial description of the lattice via fC-matrices encapsulated by Theorems 7.3 and 7.4,
which allows one to deal with larger n and d.

For fixed n we have a sequence of lattices Cong(PΦ
n,d) for d = 0, 1, 2, 3, 4, . . ., and as each is

contained in the next, Cong(PΦ
n ) contains the direct limit of this chain:⋃

d∈N
[RIn,d+1

,∇PΦ
n

].

However, this limit is not Cong(PΦ
n ) itself. Indeed, the congruences belonging to this sublattice

can be characterised in many equivalent ways: for example,

• those containing a Rees congruence of the form RIni for some i ∈ N, or

• those whose associated C-matrix has the top row of type RT10, or

• those whose projection to Pn is the universal congruence.

A more detailed and systematic analysis of the properties of the lattices Cong(PΦ
n ) and Cong(PΦ

n,d)
will be the subject of a future article [26].
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Figure 6. Hasse diagram of Cong(PΦ
3,2), with sublattices corresponding to Cong(PΦ

3,1) and
Cong(PΦ

3,0) highlighted. Vertices corresponding to Rees congruences are coloured blue, and a copy
of the 5-element diamond is higlighted in red.
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8 The (non-)partition monoids PΦ
1 and PΦ

1,d

In this final section we consider an interesting kind of degeneracy that arises by considering small
values of n.

When n = 0, the partition monoid consists of the empty partition only, and hence is trivial.
It then follows that PΦ

0
∼= N, and its congruence lattice is completely described by (2.2).

When n = 1 there are precisely two partitions, namely
(

1
1

)
and

(
1
1

)
, and P1 is isomorphic

to ({0, 1},×), the two-element semilattice. It follows that PΦ
1 is isomorphic to N× {0, 1} under

the multiplication
(i, q)(j, r) = (i+ j + δ0qδ0r, qr),

where δ is the Kronecker delta. Theorem 3.16 remains valid for n = 1, even though many
congruences become redundant. For one thing, there are no rows q ≥ 2, and so no N -symbols,
and no exceptional congruences. Additionally, since α̂ = β̂ for all α, β ∈ P1, it follows that certain
symbols play the same role: µ↑ ≡ µ↓ ≡ ∆ and λ ≡ ρ ≡ R, and there are no unmatched µs. Thus,
C-matrices have labels from {∆, µ,R}, and only items (C1), (C2) and (C8) from Definition 3.10
are needed to specify the congruence cg(Θ,M).

Turning to the finite monoids PΦ
1,d, the case d = 0 is trivial, with the congruence lattice

a three-element chain. So, let us assume that d > 0. Here there are only three families of
fC-matrix:

1 ∆ . . . ∆ ∆ . . . ∆ R . . . R

0 ∆ . . . ∆ R . . . R R . . . R

i j

for 0 ≤ i ≤ j ≤ d+ 1,

1 ∆ . . . ∆ ∆ µ . . . µ µ R . . . R

0 ∆ . . . ∆ µ µ . . . µ R R . . . R

i j

for 0 ≤ i < j ≤ d,

1 ∆ . . . ∆ ∆ ∆ . . . ∆ µ R . . . R

0 ∆ . . . ∆ µ R . . . R R R . . . R

i j

for 1 ≤ i < j − 1 ≤ d.

Each such fC-matrix leads to a (unique) congruence, and we denote the three families of congru-
ences by Rij (0 ≤ i ≤ j ≤ d + 1), σij (0 ≤ i < j ≤ d) and τij (1 ≤ i < j − 1 ≤ d), respectively.
The inclusion relation among these congruences takes on a particularly simple form, and the
lattice Cong(PΦ

1,d) has a neat structure; see Figure 7 for d = 4.

We remark that it is apparent from Figure 7 that Cong(PΦ
1,d) contains many five-element

diamond sublattices, which means that this lattice is not distributive. Although it is less obvious,
the lattices Cong(PΦ

n,d) also contain diamonds for n ≥ 2 and d ≥ 1, though not for d = 0; for
example, Figure 6 indicates a diamond sublattice of Cong(PΦ

3,2) in red. Distributivity, modularity
and other properties of the lattices Cong(PΦ

n ) and Cong(PΦ
n,d) will be one of the main topics of

the forthcoming article [26].
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