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 

Abstract—This paper suggests leveraging reactive power 
potential (RPP) embedded in wind farms to improve power 
system operational safety and optimality. First, three typical RPP 
provision approaches are analyzed and a two-stage robust linear 
optimization based RPP evaluation method is proposed. This 
approach yields an RPP range that ensures the security of wind 
farm operations under any realization of uncertainty regarding 
the wind farm. Simplified DistFlow equations are employed here 
for a compromise between computational accuracy and cost. Next, 
an uncertain RPP-involved reactive power optimization problem 
is introduced, through which system operators ensure 
system-wide security and optimality regarding the base case and 
against any possible deviation caused by uncertain lumped loads 
and renewable generation. Steady-state models of automatic 
generation control and local voltage control are also captured in 
this uncertain reactive power optimization, which is then 
transformed through Soyster’s method into a deterministic 
optimization problem that is readily solvable. Case studies have 
conceptually validated that even with notable uncertainty, wind 
farms are still a competent reactive power resource providing 
considerable RPP. Also, simulation confirms positive and notable 
improvement of leveraging wind-farm RPP on system-wide 
operational security and optimality, especially for power systems 
with high wind penetration. 

 
Index Terms—Robust optimization, reactive power 

optimization, reactive power potential, wind farm. 

 

NOMENCLATURE 

A. Notations for Wind Farm RPP Evaluation Problem 

ᵅ���, ᵅ���, ᵅ��� Active, reactive power, and squared voltage at node ᵅ�ᵅ�. 

ᵅ���, ᵅ��� Bounds for the RPP at the POI, i.e., node ᵅ�1. 

ᵃ��,ᵃ�� Default limits for the reactive power at the POI. 

ᵅ����, ᵅ����, ᵅ���� Active, reactive power, squared current through line ᵅ�ᵅ�ᵅ�. 

ᵅ������, ᵅ������ Real-time measurements of ᵅ����, ᵅ����. 

ᵅ����, ᵅ����, ᵅ���� Resistance, reactance, and tap ratio regarding line ᵅ�ᵅ�ᵅ�.  

ᵅ����, ᵅ����, ᵃ���� Active, reactive, and apparent power for DFIG ᵅ�ᵃ�ᵅ�. 

ᵅ������, ∆��� Forecasted power and possible deviation for DFIG ᵅ�ᵃ�ᵅ�. 

ᵅ����, ᵅ����, ᵃ���� Reactive power from SVG ᵅ�ᵃ�ᵅ� and capacitor banks ᵅ�ᵃ�ᵅ�, 
and apparent power regarding SVG ᵅ�ᵃ�ᵅ�. 
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ᵃ�ᵃ������,ᵃ�ᵃ����� Possible tap ratios and capacitance of the capacitor banks. 

ᵅ������, ᵅ�������, ᵰ� Auxiliary continuous variables regarding linearization. 

ᵃ������, ᵃ������� Auxiliary binary variables regarding linearization. 

ᵃ����
��� , ᵯ� POI voltage setpoint and the preference weight. 

H(ᵅ�),T(ᵅ�) The sets of the parent and child nodes of node ᵅ�ᵅ�. 

ᵀ�,ᵀ�, ᵀ�, ᵀ�, ᵀ�, ᵀ�, 
ᵀ�,ᵁ�, ᵆ�, ᵆ�, ᵆ�, ᵆ�, ᵆ� 

The coefficient matrices (bold capitals) and vectors (in 
bold italics) in the canonical RO formulation. 

ᵴ�,ᵵ�,ᵵ�,ᵳ�, ᵆ��, ᵆ�� Auxiliary variables used in the solution method. 

B. Notations for System-wide Optimization Problem 

ᵃ��, ᵰ��, ᵅ��, ᵅ�� Voltage, phase angle, active and reactive power at bus ᵅ�. 
ᵆ� , ᵳ�, ᵆ�, ᵆ� Voltages, phase angles, active and reactive power of all the 

buses in the system. 
ᵅ���, ᵅ���, ᵅ���, ᵅ��� Active, reactive power of generators and lumped loads. 

ᵅ�ᵃ��, ᵅ�ᵃ�� Auxiliary variables regarding bus ᵅ�. 
ᵃ���, ᵃ���, ᵅ���  The (ᵅ�, ᵅ�)  element of the system’s conductance and 

susceptance matrices; the active power through line ᵅ�ᵅ�. 
ᵅ�����,∆�� Forecasted POI active power and possible deviation. 

ᵯ�� The participation factor for the generator at bus ᵅ�. 
ᵴ�, ᵴ� The vectors of uncertain parameters and control variables 

for this problem (note that ᵴ� is in bold italics). 
ᵃ��, ᵆ��, ᵆ��, ᵆ���, ᵯ� The coefficient matrices and vectors used to explain 

Soyster’s method. 

Note that, due to space limitations, the other ad hoc notations 
will be explained where they first appear. Moreover, unless 

particularly specified, notations ∎ and ∎ denote the upper and 

lower limits for a variable placeholder ∎ , [∎�]  a vector 

composed of a series of variable ∎� , ᵼ�  (in bold) an all-one 

vector, superscript T transpose. 

I. INTRODUCTION 

HIS conventional power plants replaced by renewable 
generation, power grids in many places, such as 

Germany, are short of reactive power resources [1]-[3]. In this 
context, it has been confirmed that doubly-fed induction 
generators (DFIGs) can provide reactive power support to 
power grids [4]-[6]. For example, a recent pilot project in 
Lolland shows that the wind farms there “offered the required 
amount of 40 Mvar reactive power” [6]. Hence, although the 
issue of economic incentives remains to be solved [6],[7], it is 
fair to say that leveraging reactive power potential (RPP), 
which is a deterministic and continuous range of the adjustable 
reactive power [2], from wind turbines and wind farms, is 
promising for power systems that lack reactive power 
resources. 

For the system operator to leverage this RPP, there are two 
paradigms in general: one is to interface with every DFIG in 
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wind farms directly, and the other is to interact with a whole 
wind farm. This paper suggests and focuses on the second 
paradigm because of the following considerations [8],[9]: (1) it 
would simplify system operators’ supervision and control 
process and thus probably be more practicable and scalable1, 
and (2) the issue of data privacy - wind farms may be reluctant 
and even resist to let the system operator know its inner model 
and data. 

Although leveraging the RPP of a whole wind farm is more 
attractive, it requires a wind farm control center to accurately 
evaluate the RPP, which is technically challenging because of 
(1) nonlinear power flow equations regarding a wind farm, (2) 
uncertain parameters such as DFIGs’ active power, and (3) 
discrete controls in a wind farm, such as switchable capacitor 
banks and online load tap changers (OLTCs) [10],[11]. In the 
literature, how to accurately and efficiently evaluate wind farm 
RPP has yet to be addressed. Ref. [7] presents a wind farm RPP 
evaluation method considering DFIGs’ uncertain active power. 
However, the researchers neglected the discrete controls and 
the uncertainty in the voltage setpoint of the point of 
interconnection (POI), which is subsequently set by the system 
operator through an OPF program after receiving the RPP2. Ref. 
[10] considers the uncertainty and presents a nonlinear RPP 
evaluation method for a wind farm based on mixed-integer 
second-order cone programming (MISOCP). Since solving 
MISOCP is typically computationally expensive for large-scale 
problems, this method, though accurate, might be inefficient for 
online applications. A similar method was also applied to 
evaluate the RPP of a distribution system [12]. To lighten the 
computational burdens, the researchers then tested a linear RPP 
evaluation method in [13] by using the linear DistFlow 
equations [14],[15]; however, since the network losses 
regarding the distribution system are ignored in this set of linear 
DistFlow equations, this method might yield an inaccurate RPP 
evaluation. Hence, one needs to balance the accuracy and 
computational cost properly when evaluating RPP. 

In addition to the RPP evaluation problem that plagues wind 
farm control centers, the upstream system operator, after 
receiving wind farm RPP, also faces challenges to her/his 
RPP-involved reactive power optimization (RPO) process. One 
major challenge to be considered in this paper is that this RPO 
can be afflicted with uncertainty like uncertain lumped loads 
and renewable generation [16],[17]. In the literature, these 
uncertainties are often modeled as uncertain deviations from a 
deterministic forecast value (defined as base-case value) that 
will occur most likely, and these deviations are typically 
assumed to follow a certain type of probability distributions or 
stay within an interval, e.g., [16]-[19]. To improve this 
RPP-involved RPO’s practicability, we will consider these 

 
1 To see this, imagine two scenarios: in the first the system operator supervises 
wind farms’ reactive power at the points of interconnection (POIs), which is a 
standard optimal power flow (OPF) problem; in the second the operator has to 
supervise tens or even hundreds of DFIGs in those wind farms while 
considering operational constraints regarding every farm. For the cases that 
multiple wind farms are considered, the latter is extremely complicated. 
2 The reason for modeling the POI voltage setpoint as an uncertain parameter is 
similar to that for modelling the boundary voltage setpoint in the problem of 
evaluating the RPP of a distribution system, as explained in [12].  

uncertainties and study the model and solution method for this 
uncertain RPO problem. 

To summarize, this paper suggests that a system operator in 
need of reactive power resources leverage the wind farm RPP in 
her/his RPO process. To this end, we present two methods: one 
for a wind farm control center to evaluate wind farm RPP and 
one for system operators to optimize the usage of RPP and other 
dispatchable resources in an uncertain RPO problem. 
Compared with previous relevant studies, the technical 
contribution of this paper is twofold: 
1) To balance computational accuracy and cost of evaluating 

RPP, we use a simplified DistFlow model that linearly 
approximates network losses. On the one hand, this method 
has the same computational expense order as the method in 
[13] but is more accurate. On the other hand, although not as 
accurate as the MISOCP-based method in [10],[12], this 
method can be solved much more efficiently. This advantage 
will be substantiated in case studies. Moreover, we also 
introduce a preference weight in this RPP evaluation method 
to reflect a system operator’s preference for inductive or 
capacitive RPP in the subsequent RPO process. 

2) Unlike our previous study [10],[12] that neglect the 
uncertainty in the RPO process, we consider these 
uncertainties and establish an “AC-base and 
linear-superposition” procedure to ensure system-wide 
power flow feasibility under both the base case (the case 
where the uncertain parameters are set to the base-case 
values) and any realization of uncertain deviations from the 
base-case values. The effect of automatic generation control 
(AGC) and local voltage control against the deviations are 
also captured in our uncertain RPO model. 
In addition to the above contribution, this paper also 

demonstrates through case studies that wind farms, despite 
uncertainty in the DFIGs’ active power, are still competent 
reactive power resources for system operators, and the safety 
and optimality of system operations are thus notably improved.  

The remainder of the paper is arranged as follows. Section II 
delineates the proposed linear RPP evaluation method on top of 
a qualitative analysis of three interaction approaches. Section 
III shows the model and the solution method regarding the 
uncertain RPO problem. Section IV presents the case study 
results and related analysis. Conclusions are given in Section V. 

II. WIND FARM REACTIVE POWER POTENTIAL 

A. Three Interaction Approaches 

Below we briefly present three approaches in which a wind 
farm may interact with a power system on RPP. 

Approach 1: Do-not-provide-RPP (RPP0). In this approach, a 
wind farm control center fixes the POI reactive power to a 
constant value (e.g., zero), so there is no room for the upstream 
system operator to adjust the POI reactive power in the RPO 
process. This RPP0 represents a conventional and passive way 
in which wind farms interact with power systems [11]. 

Approach 2: RPP-by-deterministic-methods (RPPD). In this 
approach, a wind farm control center evaluates the RPP but 
neglects the impact of uncertainty, e.g., the DFIG’s uncertain 
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active power. The deterministic method of evaluating a 
distribution system RPP in [20] exemplifies this approach. 
Detailed mathematical formulations given in [20],[12] have 
shown that evaluating RPPD is computationally 
straightforward. However, if a realization of the uncertainty 
deviates significantly from the expectation adopted for this 
evaluation, the resultant RPPD can be unreliable in the sense 
that the system operator’s required POI reactive power, though 
located in RRPD, is not actually providable due to the wind farm 
operational constraints; otherwise, the operational security of 
this wind farm will be compromised. This is a major drawback 
of this approach. 

Approach 3: RPP-by-robust-optimization-methods (RPPR). 
When considering uncertainty, it is straightforward to see that 
an RPP range would likely vary with different realizations of 
uncertainty. For example, the wind turbine’s uncertain active 
power may affect both the adjustable range of this turbine’s 
reactive power and the power flow inside the wind farm, 
consequently affecting the whole wind farm RPP. Nevertheless, 
one can expect that these RPP ranges would still have a 
non-empty intersection, denoted by RPPR, which is constant 
against any realization of uncertainty. This expectation can be 
verified and this RPPR constructed by solving the following 
problem: 

To find �ᵅ���, ᵅ���� having the largest span, such that for any 

POI reactive power setpoint ᵅ��� ∈ �ᵅ���, ᵅ����, the operational 

constraints of the wind farm are always feasible for any 
realization of uncertain parameters. 

If this problem has a solution �ᵅ���, ᵅ����, we can assert that it 

is possible to construct this RPPR that is immune to uncertainty. 

B. Construction of RPPR 

As shown in the previous studies [10],[12], constructing the 
RPPR can be formulated as a two-stage robust optimization 
(RO) problem through a series of mathematical 
transformations. However, the model in [12] entails 
mixed-integer variables as well as an SOC-relaxed DistFlow 
model, which imposes heavy computational burdens for 
large-scale problems. Meanwhile, the linear model in [13], 
though readily solvable, neglects network losses, so it may not 
always meet our expectation of accuracy. 

In this paper, we use a simplified DistFlow model that 
linearly approximates the losses using the wind farm’s 

real-time measurements ᵅ������, ᵅ������  which are always 

available in practice. Another difference from the previous 
study is that in addition to maximizing the span of the RPPR, we 

introduce a preference weight ᵯ�  to the objective function in 
(1a) to reflect the system operator’s preference for inductive or 

capacitive RPP (larger ᵯ� corresponds to more inductive RPP, 
and vice versa): 

   minmize
2 2

1 1w w w wq Q q Q    .           (1a) 

Given ᵅ������, ᵅ������, the classical DistFlow equations will be 

first simplified as follows: 

 
( ) ( )k j i jwj wjk wij wij wijp p p r l

 
   T H

 ,       (1b) 

 
( ) ( )k j i jwj wjk wij wij wijq q q x l

 
   T H

 ,       (1c) 

   2 22wj wi wij wij wij wij wij wij wijv v r p x q r x l      ,  (1d) 

,0 ,0wij wij wij wij wi wijp p q q v l  .                    (1e) 

The justification for replacing the original ᵅ����, ᵅ����  by 

ᵅ������, ᵅ������ in (1e) is illustrated in Fig.1 The shadow sector 

shows that unless the future operating point significantly 
deviates from the current one, the accuracy of (1e) would be 
acceptable. Furthermore, use the real-time measurement or the 

nominal value (e.g., 1.0 p.u.) of ᵅ��� to eliminate the remaining 

nonlinearity in (1e)3. Thus far, we have set up a simplified 
DistFlow model. 

,0 ,0
( , )

wij wij
p q

2 2

wij wij wi wij
p q v l 

wij
q

wij
p

,0 ,0wij wij wij wij wi wij
p p q q v l 

 
Fig.1.  Illustration of the accuracy of (1e) on ᵅ���� − ᵅ���� plane. 

As for a line equipped with an OLTC with ᵅ���� , (1d) is 

reformulated using McCormick’s convex envelop as follows: 

   2 2 22wj wij wi wij wij wij wij wij wij wijv t v r p x q r x l      ,(1f) 

,
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


(1g) 

The current limit for every line reads ᵅ���� ≤ ᵅ���� ≤ ᵅ���� . 

As for the nodes connected with DFIGs, capacitors and 
SVGs, the nodal power injections are formulated as: 

wj wGj
p p ,   

wj wGj wSj wCj
q q q q   .               (1h) 

The possibly existing static var generators (SVGs) and 
switchable capacitor banks in the wind farm are modeled as 

Sw j wS j w S jS q S   ,                        (1i) 

, ,
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


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




(1j) 

The active and reactive power of a single DFIG is modeled 
as follows: 

2 2 2
wGj wGj wGjp q S   ,                           (1k) 

,0 ,0wGj wGj wGj wGj wGjp p p      .          (1l) 

where (1l) means that the uncertain ᵅ����  may continuously 

vary between �ᵅ������ − ∆���, ᵅ������ + ∆���� . The 

 
3 Notice that if we use the nominal values of ᵅ����, ᵅ����, ᵅ���  rather than the 

real-time measurements, then this set of simplified DistFlow equations 
regresses to the equations used in [21].  
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constraint (1k) can be further linearized as [12], where K can be 
4 or 8: 

cos( ) sin( ) , 1, ,
wGj wGj wGj wGjK K

S p q S K         .  (1m) 

Supposing that the nodal voltage square should be 
constrained in a reasonable range when the wind farm provides 
RPP, we have 

2
1 ( )set

w POIv V , and ,  1wj wj wjv v v j     .    (1n) 

As explained in Footnote 2, unlike [22], ᵃ����
���  in (1n) is taken 

as an uncertain parameter varying between �ᵃ����
��� , ᵃ����

��� �. 

In addition to the uncertain ᵅ����  and ᵃ����
��� , the system 

operator’s POI reactive power setpoint, i.e., ᵅ��� , is also 
uncertain to the wind farm control center in this RPP evaluation 

stage, but it should be located within the RPPR �ᵅ���, ᵅ����. To 

model this, we introduce an uncertain parameter ᵅ�� ∈ [0,1] and 

formulate ᵅ��� as ᵅ��� = ᵅ��� + ᵅ���ᵅ��� − ᵅ����. 

Thus far, we have concretely modeled all the variables, 
constraints, and uncertainty in the RPP evaluation problem. As 
the variables related to the RPP bounds, the tap positions and 

on/off status of the switchable capacitors, denoted by ᵆ�, should 
be determined before checking the feasibility of the wind farm 
operational constraints under any realization of the uncertainty 

parameters ᵆ� = ��ᵅ�����; ᵃ����
��� ; ᵅ���  [10],[12],[23], the above 

model is mathematically a two-stage RO problem whose 
canonical formulation is shown in (2), 

 for

min ( )
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where ᵆ� denotes the left variables in (1) excluding ᵆ� and ᵆ�, ᵃ�  

the formula in (1a),   the polyhedral uncertainty set 

constrained by the aforementioned limits on ᵅ����, ᵃ����
��� , ᵅ�� . 

Although (2) looks similar to the evaluation model in [13], it 
should be noted that they are physically different because 
network losses are considered here. 
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 Fig.2.  Flowchart of the algorithm to solve (2). 

Nevertheless, due to the similarity, one can still adopt the 
algorithm in [13] to solve (2). Its flowchart is shown in Fig. 2. 
Compared with the original column-and-constraint generation 
(C&CG) algorithm in [24], our algorithm is a reduced version: 
no need to record and compare upper and lower bounds to 
terminate. This is both because the second-stage problem in (2) 

is to check whether there exists a ᵆ� for any ᵆ� for a given ᵆ�, 

which corresponds to �+� = 0 in Fig. 2 [13], and because 

ᵃ�(ᵆ�), the objective function in both (2) and the master problem 

in Fig. 2, is increasingly constrained with more constraints 
added during the iteration. Moreover, it is not hard to see that 
the convergence of this reduced C&CG algorithm depends on a 

finite number of the extreme points of the uncertainty set , like 
the algorithm in [24]. Hence, it will also converge within finite 

iterations as long as  is a polyhedron or a finite discrete set. 

III. RPP-INVOLVED REACTIVE POWER OPTIMIZATION 

A. Statement of Problem 

As stated previously, one advantage of leveraging the whole 
wind farm RPP is to simplify system operators’ RPO process. 
For a system operator knowing every wind farm RPP 

�ᵅ���, ᵅ���� , s/he only needs to solve an OPF problem to 

determine the usage of the RPP and other dispatchable 
resources, e.g., for minimal network losses, and then sends the 
wind farm control centers the commands of how much reactive 
power is required from the wind farm, i.e., the POI reactive 

power setpoint ᵅ���, as well as the POI voltage setpoint ᵃ����
��� . 

Then, the wind farm control center disaggregates this ᵅ��� 

among the wind turbines (and SVCs if any). This framework is 
shown in Fig. 3. Moreover, the wind farm should inform the 

system of its POI active power forecast value ᵅ�����  and the 

radius of its possible deviation ∆��. The method of forecasting 

ᵅ����� and estimation of ∆�� is beyond the scope of this paper. 

Interested readers can refer to [25],[26]. 
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Fig.3.  The schematic diagram for the wind farm RPP-involved RPO process. 

In this RPO stage, the system operator may face uncertainty 
in lumped loads as well as the aggregated active power of wind 

farms (e.g., represented by ᵅ�����, ∆�� ) and solar stations. 

Hence, the security regarding the base case and any possible 
scenario should be ensured in this RPO, which is technically 
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challenging. To overcome this challenge, we establish an 
“AC-base and linear-superposition” procedure, which imitates 
a commonly adopted real-time dispatch paradigm that an 
operator determines base-case setpoints to ensure system-wide 
AC-power-flow feasibility while leveraging AGC and local 
voltage control against uncertain deviations from the base case. 
It should be noted that this procedure relies on a common and 
usually tenable assumption that the deviations should stay 
within a reasonable region such that linearized power flow 
equations would be a good approximation of the relationships 
between power injection and bus voltages.  

B. Mathematical Model 

1) Feasibly constraints for the base case 
For every bus in the base case, we have the following AC 

power flow constraints: 

 cos sini Gi i i j ij ij ij j ijj
p p pd V V G B V     , (3a) 

 ,0 sin cosi i Di i j ij ij ij j ijj
q qg q V V G B V     , (3b) 

where ᵅ�ᵃ�� = ᵅ����� − ∑ ᵅ������∈� , ᵅ�ᵃ�� = ᵅ��� + ∑ ᵅ����∈� , 

ᵰ��� = ᵰ�� − ᵰ��, and ᵅ� ∈ ᵅ� denote all the wind farms connected 

to bus ᵅ�, the subscript 0 the forecasted base-case value. The POI 

setpoint for the wind farm at bus ᵅ� is set as ᵃ����
��� = ᵃ��. 

The line flow, bus voltages, and the controls should stay 
within their limits in this base case: 

2( cos ) sinij ij ij i j ij i ij i j ij ijp p G VV V B VV p      , (3c) 

i i i
V V V  , 

Gi Gi Gi
p p p  , 

Gi Gi Gi
q q q  , ᵅ��� ∈ �ᵅ���, ᵅ����.(3d) 

2) Feasibly constraints against deviations 
When a realization of uncertainty deviates from the base case 

to some extent, AGC and local voltage control will be 
activated. Accurate emulation of these dynamic control 
behaviors is complicated and beyond the scope of this paper. 
Instead, we capture the steady-state behaviors of these controls, 
e.g., the linear control policy of the AGC on top of a linear 
power flow model. 
a) Linear power flow model 

Classify the system buses into four categories: (i) a reference 

bus whose voltage remains constant and phase angle = 0; (ii) a 
group of AGC buses connected to AGC generators that are 
assumed to be equipped with local voltage controls as well; (iii) 
voltage control buses that do not connect with AGC generators 
but have voltage control facilities, e.g., wind farms providing 
RPP with uncertain generation (see Fig. 3); (iv) the remaining 

buses with no AGC nor voltage controls. Let subscripts R,A, 

V, and D denote these four bus categories respectively, and the 

prefix ∆ the deviation or increment of the variables. Then, we 

have ∆ᵳ�R = 0 , and it follows from the linear power flow 

model in [27] that 

[ ; ]

[ ; ]
   

 

     
              

LA V D R A V D

R A V D

p p

V q q


 ,            (4a) 

where L is a constant matrix. 
b) Active power deviation and AGC model 

Without loss of generality, let ∆ᵆ� ∈ �∆ᵆ�, ∆ᵆ�� be the active 

power deviations caused by uncertain loads and renewable 

generation4 at all buses, so we have ∆ᵆ�V∪D = ∆ᵆ�V∪D . The 

total deviation amount ᵼ��∆ᵆ�  should be offset by the AGC 
system that is assumed to take a linear control policy with 

non-negative participation factor vector ᵳ� regarding the AGC 
generator as well as the “virtual” generator at the reference bus 

to be optimized. Specifically,  ∆ᵅ��� = (ᵼ��∆ᵆ�)ᵯ�� , so 

∆ᵆ�R∪A = (ᵼ��∆ᵆ�)ᵳ� − ∆ᵆ�R∪A  subject to the following 

technical constraints: 
T 11  , 0 , Gi Gi Gi Gip p p p   .       (4b) 

c) Reactive power deviations and local voltage control model 
First, assume the reactive power deviations for the category 

D  is ∆ᵆ�D = ᵭ�∆ᵆ�D , where ᵭ�  is the diagonal matrix of the 
power factors regarding the related buses. Next, following the 
idea in [28] one can derive linear incremental relationships 
between local reactive power and voltage magnitudes as 
follows:  

[ ; ]          M NR A V A V D D R A Vq p q V  ,   (4c) 

where M and N are constant matrices. To further simplify (4c), 
which would otherwise make this RPO a difficult two-stage 

nonlinear optimization problem, we assume ∆ᵆ�R∪A∪V ≈ 0 

based on the fact that local voltage control typically makes 
local voltages deviate insignificantly from the base case [29]. 
Hence, (4c) is further simplified as 

[ ; ]      MR A V A V D Dq p d  .             (4d) 

The reactive power regulated as (4d), i.e., a function of 

uncertainty ∆ᵆ�, ᵭ�∆ᵆ�D and control variables ᵳ�, should ensure 
that the system-wide bus voltage magnitudes stay within their 

acceptable regions �ᵃ��, ᵃ��� with voltage control facilities and 

wind farms constrained by their technical limits as follows, 

i i i i
V V V V   , 

Gi Gi Gi Gi
q q q q   , ᵅ��� + ∆ᵅ��� ∈ �ᵅ���, ᵅ����.(4e) 

d) Other operational constraints 
We can formulate other operational constraints against 

deviation scenarios, e.g., the line’s power flow limits below: 

ij ij ij ijp p p p                          (4f) 

where ∆ᵅ��� = −ᵃ����∆ᵃ�� − ∆ᵃ��� + ᵃ���(∆ᵰ�� − ∆ᵰ��)  [27]. 

This constraint means that the power flow through every line 
should be limited by its transmission capacity5. 
3) Integral Model 

Thus far, we have modeled the feasibility constraints for both 
the base case in (3) and any possible deviation scenario in (4). If 
we choose minimizing the system-wide network losses in the 
base case6, as shown in (5),  

min
�

2 2[ 2 cos( )]
ij i j i j i j

G V V VV     ,           (5) 

as the objective, we finally formulate the following uncertain 
RPO problem: 

 
4 For instance, as for a wind farm, its �∆ᵆ�,∆ᵆ�� = [−∆��, ∆��]. 
5 Since instantaneous three-phase power equals the active power, lines’ thermal 
effect is usually formulated through active power constraint [30]. 
6 The choice of objective functions is not unique: one can add the regulation 
cost of the AGC, which is also a function of control ᵴ�, into (5). In general, the 
choices will not affect workability of the following solution method. 
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Objective function: (5) Constraints: (3) and (4) 

Uncertainty ᵴ� = [∆ᵆ�;∆ᵆ�D] Control ᵴ� = �[ᵅ���]; [ᵅ���]; [ᵅ���];ᵳ�� 

C. Solution Method 

Substituting (4a) and (4d) into (4b), (4e), and (4f), one can 

derive a set of inequalities linear in ᵴ�, ᵴ�, and/or �ᵆ���ᵴ��� ᵴ�. 

Since the uncertainty set of ᵴ�  is box-shaped for this RPO 
problem, one can adopt Soyster’s method in [31] to convert 

these constraints affected by ᵴ�  into their equivalent 
deterministic counterpart. To show this, a canonical formula 
representative of every inequality in (4) is first given below, 

T T
0

[ , ]
max { ( ) }a    


   a a a
  

    .        (6a) 

Soyster’s method introduces an auxiliary variable ᵰ�  to 
equivalently transform (6a) to a set of linear inequalities as 
follows: 

T T T
0

T T

( )

( ) ( ), 0.

a  

 



 

      
     

a a a

a a

   

    
           (6b) 

Using the transformation in (6), one can transform the 
uncertain RPO problem into a deterministic nonlinear 
optimization problem, which is readily solvable by 
off-the-shelf solvers through an interior-point method [32],[33]. 
We should point out that in this RPO problem, integer variables 
are not explicitly considered. Because of the complexity of the 
this RPO formulation, if the system-wide discrete controls need 
to be involved in the RPO process, we suggest adopting a 
heuristic approach in which the integers are first taken as 
continuous variables for a temporary RPO solution and then 
refined heuristically, e.g., with a classical round-off approach. 
Interested readers can refer to [34]. 

D. Tracking Reactive Power Command 

Consistent with the assumptions for the two-stage-RO-based 
RPP evaluation model, the uncertainty regarding the wind farm 
has been realized when the control center tracks the system 
operator’s reactive power command, i.e., the POI reactive 

power setpoint ᵅ���. Hence, the wind farm control center only 

needs to solve a regular OPF problem to disaggregate this ᵅ��� 
among the wind turbines and SVCs if any, namely, to specify 
the reactive power provided by every wind turbines and SVC, 

i.e., ᵅ���� and ᵅ����  (see Fig. 3). The constraint set of this 

tracking problem includes (1b)–(1n) (here (1e) can recover its 
nonlinearity) with the discrete variables fixed to the values 
solved from (2) for the reason explained in [13],[23]. The 
objective function can be minimizing the deviations of the 
tracking as [13], or together with other optional terms such as 
minimizing the network losses inside the wind farm [22],[35]. 
More details about this tracking process are given in [13].  

IV. CASE STUDIES 

A. Simulation Systems 

The first simulation was performed on a small-scale system 
for conceptual validation. We adopted an IEEE 9-bus system 
whose original load at bus 5 was replaced by a wind farm [36]. 
This configuration is shown in Fig. 4. The four bus categories 

for this system are R:{Bus 1}, A: {Buses 2, 3}, V: {Bus 5}, 

and D: {the remaining buses}. The voltage magnitude limits at 
Bus 5, namely the wind farm POI, is set to [0.99, 1.01] p.u. The 
voltage magnitude limits regarding the other buses are set to 
[0.97, 1.03] p.u. The adjustable range regarding all the 
five-bus-system generator active power is set to [40, 100] MW. 
The base-case values of the uncertain lumped loads are set to 
the values specified in the case-data file in [37], and the 

uncertain deviations are up to ±10% of the base-case values. 

As for the wind farm, there are six DFIGs. The OLTC at Line 
W1-W2 is adjustable in the range [0.98, 1.02] with a step 0.01. 
The transformer at Line W3-W4 is not adjustable with the ratio 
set to 1. The capacitor shunts at Nodes W3 and W4 have two 
switchable 2.5-Mvar banks individually. As for each wind 

turbine, we assume that ᵅ������ is 1.0 MW, ∆��� is 0.1 MW. 

The wind farm’s POI active power forecast and the radius of the 
uncertain deviation are taken as the sum of these 

ᵅ������, ∆���
7. The other data for the system parameters and 

wind farms can be referred to [36],[37]. 
The second simulation was performed on a larger system. 

We adopted an IEEE 39-bus system where its original load at 
Buses 10 and 17 are replaced by ten similar wind farms, 
respectively. Since the ten wind farms at the same bus share the 
same POI, the RPP, the active power forecast, and radius of the 
deviations at this bus are the summation of the counterparts of 
the wind farms. The settings of the POI voltage magnitude 
limits and uncertain lumped loads are the same as the first 

simulation. Moreover, R includes the reference bus, A the PV 

buses, V Buses 10 and 17, and D the remaining buses. The 
other data are also available in [36] and [37]. In the following 

tests, ᵯ�  in (1a) is set to 1.0 by default, representing system 
operators’ neutral preference for capacitive or inductive RPP.  

MATLAB and GUROBI are used as the simulation 
environment and the solver, respectively. The codes are 
implemented on a PC with an Intel i5 CPU@3.0 GHz and 8 GB 
of RAM. 
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Fig. 4.  Graphic of the modified IEEE 9-bus system. 

B. Tests on RPP Evaluation Methods 

1) Accuracy and computational efficiency  
On the 9-bus system with one wind farm, we compare the 

computational accuracy and efficiency regarding four RPP 
evaluation methods: RPPD in  [20] and [12], a nonlinear RPPR 
(RPPR-1) in [10],[12], a linear RPPR (RPPR-2) neglecting 
 
7  We adopted this rough estimation to simplify the simulation. Accurate 
estimation methods as noted in Section III.A are beyond the scope of this paper. 
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network losses in [13], and the method proposed in this paper 
(RPPR-3). The results are shown in Table I. First, it shows that 
RPPD is larger than the three RPPR’s, both because the former 
ignores the uncertainty, which may risk the following 
system-wide RPO as discussed in Section II.A, and because 
RPPD employs inconsistent optimal capacitor banks (i.e., ([5,5], 

[0,0]) and tap positions (i.e., 0.98, 1.02 ) for ᵅ���, ᵅ���, which 

may not be practically attainable [23]. Therefore, though 
evaluating RPPD is fastest in this test, it may yield risky RPP. 
Second, Table I shows that RPPR-1 is accurate but requires the 
longest computing time, several times of that of RPPR-2 and 
RPPR-3. This deficiency would be more severe for larger 
systems. Third, in comparison with RPPR-2, RPPR-3 is closer to 
RPPR-1 because network losses are approximately considered in 
this method, but their computing times are of the same order. 

TABLE I 
COMPARISON OF FOUR RPP EVALUATION METHODS 

Approaches RPPD (terms 
related to ᵅ���, ᵅ���) 

RPPR-1 RPPR-2 RPPR-3 

RPPs (Mvar) [-18.32,15.31] [-7.17,5.84] [-7.57,5.37] [-7.32,5.46] 
Capacitors (Mvar) [5,5], [0,0] [0.5] [0,5] [0,5] 

Tap Ratios (p.u.) 0.98, 1.02 1 1 1 
Computing Time (s) 0.031, 0.036 42.05 4.52 5.06 

2) Impact of the uncertainty of DFIG’s active power 
Another interesting question is how much the DFIG’s 

uncertain active power would affect RPPR, or would this RPPR 
diminish with increasing uncertainty? To answer it, Table II 
presents RPPR-3 with increasing uncertainty measured in terms 

of the percentage of the radius of uncertain deviations ∆��� to 

the base-case forecast ᵅ������. It shows that although this RPP 

diminishes gradually, a wind farm still provides a considerable 

RPP range: a span of nearly 11 Mvar even when ∆��� ᵅ������⁄  

reaches 80%, a notable uncertainty level. 
TABLE II 

IMPACT OF UNCERTAINTY IN DFIG’ ACTIVE POWER 

ΔG,j/pG0,j 10% 20% 60% 80% 

Span of RPPR-3 (Mvar) 12.8 12.6 11.6 11.0 

3) Impact of the preference weight 

Three ᵯ�' s, 0.5, 1.0, and 1.5, representing three types of 
system operator’s preferences for RPP: capacitive-favored, 
neutral, and inductive-favored. The simulation results are given 

in Table III. These results confirm that regulating ᵯ�  is a 
practical approach of providing capacitive- or inductive- 
skewed wind farm RPP, as indicated by (1a). In real-world 

applications, this ᵯ� can be dynamically regulated based on the 
system operator’s real-time preference for reactive power. 

TABLE III 
THE IMPACT OF PREFERENCE WEIGHT ON RPP 

ᵯ� RPPR (Mvar) Capacitors (Mvar) Tap Ratios (p.u.) 
0.5 [-16.26 -2.99] [5, 5] 0.98 
1 [-7.32,5.46] [0, 5] 1 

1.5 [-4.82,7.86] [2.5,0] 1.01 

C. Tests on Leveraging Wind Farm RPP in RPO Process 

1) Scalability 
As we claimed previously, it is computationally more 

scalable for system operators to leverage the whole wind farm 
RPP instead of interfacing with a group of DFIGs. Table IV 
substantiates this claim. For this modified 39-bus system, the 
numbers of the RPO problem’s variables and constraints are 

reduced by about 90% by leveraging wind farm RPP. Wind 
farm control centers undertake most of these saved 
computational burdens in their RPP evaluation and tracking 
process, which can be further implemented distributedly among 
these wind farms. 

TABLE IV 
NUMBERS OF VARIABLES AND CONSTRAINTS FOR 39-BUS SYSTEM’S RPO 

Interface Objects  
Discrete 

Variables 
Continuously 

Variables 
Constraints 

With Wind Farms 0 77 403 
With DFIGs 60 914 4183 

2) Improvements in system operations 
To validate the effect of leveraging wind farm RPP, Table V 

compares the optimal values of the 9-bus system’s uncertain 
RPO problem through two RPP approaches, RPP0 and RPPR-3. 
In RPP0, i.e., do-not-provide-RPP, which provides a 
benchmark, the POI reactive power is set to zero. Three 
system-wide uncertainty levels, measured by the percentage of 
maximum possible deviation to its base-case value across the 
system, were simulated. First, for the uncertainty levels 5% and 
10%, Table V shows that the system-wide network losses are 
reduced by about 0.03 MW when the wind farm provides RPPR. 
Second, it is interesting to see that if this wind farm does not 
provide RPP, the resultant RPO problem has no solution when 
the uncertainty level reaches 14%. This test, though performed 
on this small-scale system, resembles a real-world predicament 
that with a decreasing amount of conventional reactive power 
resources, it becomes increasingly difficult to secure power 
systems, which is plaguing system operators in many places.  

TABLE V 
THE 9-BUS SYSTEM-WIDE NETWORK LOSSES WITH TWO RPP APPROACHES 

Uncertainty Levels 5% 10% 14% 
Losses with RPP0 1.88 MW 1.90 MW No Solution 
Losses with RPPR-3 1.85 MW 1.87 MW 1.91 MW 

Furthermore, Table VI compares the network losses for the 
39-bus system with 20 wind farms. It can be seen that with 
multiple wind farms actively providing RPP, the system-wide 
network losses are reduced by about 7 MW, i.e., 13%. This 
significant reduction confirms the positive and notable effect of 
leveraging wind-farm RPP on improving operating optimality, 
especially for power systems with high wind penetration. 

TABLE VI 
THE 39-BUS SYSTEM-WIDE NETWORK LOSSES WITH TWO RPP APPROACHES  

Approaches RPP0 RPPR-3 
Network Losses (MW) 52.69 45.52 

V. CONCLUSION 

This paper suggests leveraging wind farm RPP in the power 
system RPO process to improve system operational safety and 
optimality. First, an RO-based linear RPP evaluation method is 
proposed, which, as shown by case studies, achieves better 
accuracy than the previous linear evaluation method and enjoys 
cheaper computational cost than the nonlinear evaluation 
method. Case studies also show that a wind farm with rather 
significant uncertainty in DFIGs still provides a considerable 
RPP range. System operators’ desire for inductive or capacitive 
reactive power resources can also be satisfied. 

Second, an uncertain RPP-involved RPO problem is 
introduced, formulated, and transformed into a regular 
optimization problem that can be readily solved. Case studies 
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confirm that with increasing system-wide uncertainty, 
leveraging wind farm RPP is not only a powerful approach to 
decreasing network losses but also necessary to secure system 
operations. This simulation might be a useful indicator for 
power systems connecting with considerable wind farms.  

Future work may include (1) investigating a more accurate 
linear power flow model in the linear RPP evaluation, (2) 
exploring a less conservative uncertain RPO model by relaxing 

the assumption ∆ᵆ�R∪A∪V ≈ 0 , and (3) collaborating with 

industry partners for field implementation of this proposal. 
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