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ABSTRACT

Various real-world applications involve modeling complex systems with immense uncertainty and
optimizing multiple objectives based on the uncertain model. Quantifying the impact of the model
uncertainty on the given operational objectives is critical for designing optimal experiments that can
most effectively reduce the uncertainty that affect the objectives pertinent to the application at hand.
In this paper, we propose the concept of mean multi-objective cost of uncertainty (multi-objective
MOCU) that can be used for objective-based quantification of uncertainty for complex uncertain
systems considering multiple operational objectives. We provide several illustrative examples that
demonstrate the concept and strengths of the proposed multi-objective MOCU. Furthermore, we
present a real-world example based on the mammalian cell cycle network to demonstrate how the
multi-objective MOCU can be used for quantifying the operational impact of model uncertainty when
there are multiple, possibly competing, objectives.1

Keywords Mean objective cost of uncertainty (MOCU) · mean multi-objective cost of uncertainty (multi-objective
MOCU) · objective uncertainty quantification (objective-UQ) · optimal experimental design (OED)

1 Introduction

Investigating real-world systems and phenomena typically requires complex models that involve a large number of
parameters. Even with sizeable amount of observation data, the high complexity of the model may render accurate
parameter estimation impossible. While finding a reliable point estimate of the parameter vector may not be possible
in such a case, it may be possible to identify the parameter ranges based on the available data and/or prior system
knowledge, or in a more general setting, we may assume a joint distribution of the model parameters. Since different
parameter values are possible, this gives rise to an uncertainty class of all possible models [1, 2]. Furthermore, this
naturally places the uncertain model in a Bayesian framework, where the likelihood of every possible model in the
uncertainty class is described by a prior distribution that could be constructed from prior system knowledge and/or
existing data. For example, the MKDIP (maximal knowledge-driven information priors) proposed in [3, 4] shows how
relational knowledge between interacting variables in the model can be used to construct the prior through constrained
optimization based on a general framework of constraints stated in the form of conditional probabilities. The MKDIP

1This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which
this version may no longer be accessible.
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technique has been previously shown to effectively translate biological pathway knowledge into a prior distribution for
Bayesian learning, especially, for Bayesian classification and regression [3, 4].

Given an uncertain model and its uncertainty class, how can one mathematically quantify the amount of uncertainty
present in the model? Common approaches include estimating the variance or entropy of the uncertain parameters, as
they both provide a simple and intuitive measure of the model uncertainty. However, they both have a critical downside
from a practical perspective. In practical applications that involve mathematical modeling of a complex system, one
cares about the model as it can serve as a vehicle for designing an effective operator (i.e., controller, classifier, filter) that
can act on the system of interest or the data produced therefrom. As a result, if the model uncertainty does not affect the
performance of the operator–even if the variance or the entropy of the model parameters might be substantial–one may
not be concerned about the uncertainty from a practical perspective [1].

Objective uncertainty quantification (objective-UQ) [2] effectively addresses this shortcoming by measuring the impact
that the model uncertainty has on the operator performance by estimating the mean objective cost of uncertainty
(MOCU), originally proposed in [1]. MOCU quantifies the expected increase of the operational cost due to the
uncertainty of the model. The uncertainty present in the model results in a potential operational cost increase as
it prevents one from designing the operator that is optimal for the underlying true model (which is unknown) and
necessitates a robust operator that guarantees good overall performance for all potential models included in the
uncertainty class. While using a robust operator can guarantee good expected performance no matter what the actual
underlying model is, it is generally suboptimal for any specific model in the uncertainty class, hence resulting in a cost
increase.

As MOCU enables objective-based uncertainty quantification, it provides an effective means of quantifying the expected
impact of potential experiments on reducing model uncertainty that directly affects operator performance. For this
reason, MOCU has been recently utilized in various application domains for optimal experimental design (OED), where
examples include controlling uncertain gene regulatory networks (GRNs) [5, 6], synchronization of uncertain Kuramoto
oscillator models [7], designing materials with targeted functional properties [8], optimal sequential sampling [9], and
active learning for optimal Bayesian classification [10, 11].

Originally, MOCU [1] was proposed for applications with a single objective, while many real-world applications require
taking multiple objectives into account. For example, in drug design, one aims to find drug candidates with the greatest
therapeutic efficacy but also with the smallest potential of drug-induced liver injury (DILI) [12]. In materials discovery,
one may be interested in designing new compounds that enhance multiple target properties [13], where some properties
may even compete against each other. While various techniques exist for multi-objective optimization, no existing
technique can be used for objective-based quantification of model uncertainty to the best of our knowledge.

In this paper, we extend the definition of MOCU for uncertain complex systems in case of multiple operational goals.
This work will pave the way for multi-objective OED for various real-world applications–including drug design and
materials discovery–that involve multi-objective optimization based on models with substantial uncertainty. The paper
is organized as follows. In Sec. 2, we provide a brief review of the single-objective MOCU and extend it for the case
when there are two objectives, accompanied by additional insights and motivation for the proposed extension. Section 3
presents simulation results that demonstrate the efficacy of the multi-objective MOCU for capturing the operational
impact of model uncertainty on multiple objectives. A real-world example based on the mammalian cell cycle network
is provided in Sec. 4, focusing on objective-based uncertainty quantification for robust structural intervention with
multiple intervention goals. In Sec. 5, we conclude the paper with further discussions on the significance of the proposed
multi-objective MOCU, relation to other existing methods, and potential future applications.

2 Objective Uncertainty Quantification

In this section, we first review the definition of single-objective MOCU, which we originally proposed in [1], and then
extend the definition to allow objective-based uncertainty quantification under multi-objective settings.

2.1 Brief review of single-objective MOCU

Let θ ∈ Θ be the parameter vector of the uncertain model that belongs to an uncertainty class Θ comprised of all
possible models. We denote ψ ∈ Ψ as an operator in an operator class Ψ, where ξθ(ψ) is the cost of applying the
operator ψ when the true model is θ. Given full knowledge of the model θ, we can design the optimal operator ψθ that
minimizes the operational cost as follows

ψθ = arg min
ψ∈Ψ

ξθ(ψ). (1)
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When the true model θ is not precisely known, the optimal operator for the true underlying model cannot be designed,
in which case it is desirable to design a robust operator that keeps the expected operational cost at a minimum for all
possible models θ ∈ Θ. For example, we can design the optimal robust operator

ψ∗ = arg min
ψ∈Ψ

EΘ

[
ξθ(ψ)

]
(2)

that minimizes the expected operational cost ξθ(ψ), where the expectation is taken with respect to the prior distribution
π(θ) of the model θ ∈ Θ. The prior π(θ) may be mathematically constructed from the available prior knowledge
regarding the system being modeled, for which techniques such as the MKDIP (Maximal Knowledge-Driven Information
Priors) [3, 4] can be used. If no such prior knowledge is available, one may simply use a noninformative uniform prior.
MOCU [1] quantifies the objective cost of uncertainty as follows:

η = EΘ

[
ξθ(ψ

∗)− ξθ(ψθ)
]

(3)

by measuring the increase of operational cost due to using a robust operator rather than the optimal operator for the true
model, which is inevitable since the true model is unknown.

2.2 Objective uncertainty quantification for two objectives

Now suppose that we have two different cost functions of interest, ξ1
θ(ψ) and ξ2

θ(ψ), which measure the operational
performance of a given operator ψ for two different objectives, respectively. How can we quantify the objective cost of
uncertainty in this case? A reasonable approach would be to define a weighted cost function as follows

ξθ(ψ, λ) = λξ1
θ(ψ) + (1− λ)ξ2

θ(ψ) (4)

where λ ∈ [0, 1] is a weight parameter. Based on this weighted cost function, one could assess to what extent the
model uncertainty increases the combined cost for the two objectives at hand. In fact, similar approaches are often used
in multi-objective optimization problems, as it reduces multiple objective functions into a single weighted objective
function, thereby keeping the optimization problem computationally tractable.

For any given λ ∈ [0, 1], we can define the optimal model-specific operator as follows

ψθ(λ) = arg min
ψ∈Ψ

ξθ(ψ, λ), (5)

which minimizes the combined cost function ξθ(ψ, λ) for the model θ. Similarly, we can also define the optimal robust
operator

ψ∗(λ) = arg min
ψ∈Ψ

EΘ

[
ξθ(ψ, λ)

]
, (6)

which minimizes the expected value of the combined cost function for all possible models θ ∈ Θ. Based on (5) and (6),
we can define the MOCU for a specific value of λ as a function of λ as follows:

η(λ) = EΘ

[
ξθ
(
ψ∗(λ), λ

)
− ξθ

(
ψθ(λ), λ

)]
. (7)

It should be noted that η(λ) ≥ 0 for any λ ∈ [0, 1]. When λ = 1, η(λ) becomes the single-objective MOCU for using
the first cost function ξ1

θ(ψ). When λ = 0, η(λ) becomes identical to the second single-objective MOCU for using the
cost function ξ2

θ(ψ).

It is critical to remember that η(λ) given by (7) cannot be simply obtained by computing the weighted average of η(1)
(i.e., the single-objective MOCU based on the first objective) and η(0) (i.e., the single-objective MOCU based on the
second objective). The optimal robust operator ψ∗(λ) depends on the value of λ in a highly complex manner, and by no
means can it be obtained by interpolating the robust operators for different values of λ – e.g., via interpolation of ψ∗(0)
and ψ∗(1). Consequently, the λ-specific MOCU η(λ) in (7) cannot be simply obtained from a linear combination of
single-objective MOCU values (i.e., η(1) and η(0)), as η(λ) depends on the optimal robust operator ψ∗(λ) as well as
the optimal model-specific operator ψθ(λ).

Now, a natural question arises: how should we select the value of λ? When a weighted cost function – like the one in
(4) – is used for multi-objective optimization, the choice is often somewhat arbitrary. Choosing a specific value for λ
requires predetermining the relative importance of the two cost functions. Instead of choosing an arbitrary λ, we can
compute the average cost of uncertainty for all possible values of λ in the following way

η =

∫ 1

0

η(λ)dλ. (8)

3



A PREPRINT - FEBRUARY 5, 2022

We can generalize this further by estimating the expectation of η(λ) with respect to a distribution p(λ) of λ as follows

η = Eλ

[
η(λ)

]
=

∫
η(λ)p(λ)dλ, (9)

where (8) is a special case when p(λ) is a uniform distribution for λ ∈ [0, 1]. This double-objective MOCU extends
the single-objective MOCU given by (3) in a nontrivial manner by adding novel dimensions to the original definition:
(i) the optimization of the robust operator for two (possibly competing) objectives and (ii) the quantification of the
expected cost of model uncertainty by assessing the performance degradation of this robust operator that is optimized
for both objectives simultaneously.

2.3 Multi-objective MOCU

We can further generalize the definition of MOCU for two objectives, shown in (9), for the cases when we have multiple
objectives. Suppose there are n different cost functions

ξ1
θ(ψ), ξ2

θ(ψ), · · · , ξnθ (ψ), (10)

where ξkθ (ψ) is the cost function that is used to assess the operational cost of a given operator ψ with respect to the
k-th objective at hand. Let λ = (λ1, λ2, · · · , λn) be a weight vector such that

∑n
i=1 λi = 1 and λi ≥ 0. Given λ, we

define the following combined cost function as follows

ξθ(ψ,λ) =

n∑
i=1

λiξ
i
θ(ψ), (11)

which gives us the weighted operational cost of applying the operator ψ to the model θ. For any given λ, we can define
the optimal model-specific operator as follows:

ψθ(λ) = arg min
ψ∈Ψ

ξθ(ψ,λ). (12)

Similarly, we can also define the optimal robust operator:

ψ∗(λ) = arg min
ψ∈Ψ

EΘ

[
ξθ(ψ,λ)

]
. (13)

As in Sec. 2.2, based on (12) and (13), we can define the MOCU for a specific value of λ as a function of λ as follows:

η(λ) = EΘ

[
ξθ(ψ

∗(λ),λ)− ξθ(ψθ,λ)
]
. (14)

As before, in order to avoid choosing a fixed weight vector λ, we instead define the multi-objective MOCU (i.e., the
mean multi-objective cost of uncertainty) as follows:

ηmulti = Eλ

[
η(λ)

]
=

∫
η(λ)p(λ) dλ, (15)

where p(λ) is the distribution of the weight vector. When we do not have a specific preference regarding λ, we can use
a uniform distribution for p(λ) such that λ is uniformly distributed on the hyperplane that satisfies λi ≥ 0 for ∀i and∑n
i=1 λi = 1, which is simply a flat Dirichlet distribution.

3 Simulation Results

In this section, we consider a multi-objective optimization problem under uncertainty to demonstrate the efficacy of the
multi-objective MOCU proposed in Sec. 2. For this purpose, we define two objective functions f1(x, y) and f2(x, y),
where the first objective function is defined as

f1(x, y) = α1(x− γ1)2 + β1(y − δ1)2 (16)

and the second objective is defined as

f2(x, y) = α2(x− γ2)2 + β2(y − δ2)2. (17)

The goal of this multi-objective optimization is to minimize both objectives, where some (or all) of the parameters (i.e.,
αi, βi, γi, δi)) may be uncertain. The functions (16) and (17) generalize test functions proposed in [14, 15], which are
frequently used for testing multi-objective optimization algorithms.

4
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(A)

(B)

Figure 1: Illustrative examples. (A) The global minimum does not depend on λ nor α1, α2, hence the model uncertainty
does not affect achieving the objective. (B) The location of the global minimum changes with λ, α1, α2, as a result of
which, the uncertainty induces an additional operational cost.

How does the presence of uncertainty in the parameters affect the objectives–i.e., minimization of the f1(x, y) and
f2(x, y)? To answer this question, we consider two simple examples. Let g1(x) = α1(x−γ1)2 and g2(x) = α2(x−γ2)2,
where we aim to minimize g(x, λ) = λg1(x) + (1− λ)g2(x). Figure 1A shows the objective function g(x, λ) for the
case when γ1 = γ2 = 5, α1 = 1, α2 = 3 for various values of λ. As we can see in Fig. 1A, as γ1 and γ2 are identical,
different values of λ does not affect the location of the global minimum. This is true for any α1 ≥ 0 and α2 ≥ 0, which
clearly shows that uncertainty regarding α1 and α2 does not affect the operational goal of minimizing g(x, λ). Now, let
us consider the case when γ1 = 2 and γ2 = 7, while α1 and α2 remain the same. Figure 1B depicts g(x, λ) in this case
for different values of λ. We can see that the global minimum changes for different λ. In fact, different values of α1,
α2, and λ will affect the location of the global minimum in this case, which immediately shows why any uncertainty in
α1 and α2 would affect the operational goal in this case.

While the proposed multi-objective MOCU can effectively capture the impact of such model uncertainty on the objective
and quantify the “objective” cost of uncertainty, traditional measures such as entropy and variance fail to do so as they
are not designed to measure the uncertainty pertinent to a specific objective.

3.1 Case-1

Here, we consider the two objective functions in (16) and (17), where α1 = α2 = β1 = β2 = c, γ1 = δ1 = 0, and
γ2, δ2 ∈ [0,∆]. Uncertainty is present in the parameters γ2 and δ2, both of which are uniformly distributed in [0,∆],
while all other parameters are known. Figure 2 shows the multi-objective MOCU estimated by (8) for various values of
c. As shown in Fig. 2, objective uncertainty (measured by MOCU) increases as the uncertain interval (∆) increases.
The graphs also show that the uncertainty impacts the performance more significantly when c is larger. In comparison,
while both entropy and variance will increase with ∆, neither of them can capture the impact of varying c, as they are
constant given the uncertain interval, independent of different values of α1, α2, β1, β2.

5
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Figure 2: Multi-objective MOCU estimation for Case-1. Increase of the interval (∆) of the uncertain parameters
increases the objective uncertainty measured by MOCU. For a given interval, the value of c affects how the model
uncertainty impacts the operational cost.
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Figure 3: Multi-objective MOCU estimation for Case-2. Increasing the interval (∆) leads to an increase of the objective
uncertainty measured by MOCU. The value of d affects how the model uncertainty impacts the operational cost. For
d = 0, we can see that the model uncertainty does not increase the cost at all.

3.2 Case-2

Suppose that the parameters α1, α2, β1, β2 are uncertain and that they are uniformly distributed with α1, α2, β1, β2 ∈
[0,∆]. The other parameters are known, where γ1 = δ1 = 0 and γ2 = δ2 = d. Figure 3 shows the estimated
multi-objective MOCU as a function of ∆ (i.e., length of the uncertain interval) for the unknown parameters. As

6



A PREPRINT - FEBRUARY 5, 2022

Figure 4: Multi-objective MOCU estimation for Case-3.

expected, MOCU increases with a larger ∆. The impact of this uncertainty is larger when γ2 − γ1 and δ2 − δ1 tends to
be larger (i.e., for larger d), which is intuitive when we examine (16) and (17). One interesting point to note is that the
MOCU is zero when d = 0, implying that the uncertainty present in the parameters α1, α2, β1, β2 does not impact the
objective at all. It should be noted that neither the entropy nor the variance can be used to predict that the uncertainty
present in (16) and (17) will not impact the objective when d = 0. Furthermore, the entropy and the variance are unable
to quantify the impact of d on the objective, since they will only be affected by ∆ and not by d.

3.3 Case-3

Finally, we consider the case when α1, α2, β1, β2 are uncertain and uniformly distributed in [0, c], γ1 = δ1 = 0,
and γ2, δ2 are uncertain and uniformly distributed in [0, d]. From the results in Sec. 3.1, we already know how the
uncertainty regarding γ2, δ2 ∈ [0, d] affects the objectives. Similarly, results in Sec. 3.2 show how the uncertainty
α1, α2, β1, β2 ∈ [0, c] would impact the objectives. While measures such as the entropy and variance are unable to
quantify the impact of uncertainty on the objectives, the proposed multi-objective MOCU can effectively quantify the
operational cost increase resulting from the uncertainty present in the objective functions. Figure 4 shows the estimated
MOCU as a function of c and d for 1 ≤ c ≤ 5 and 0 ≤ d ≤ 5.

4 Quantifying the Multi-Objective Cost of Intervention in Uncertain Gene Regulatory
Networks

In this section, we provide a real-world example based on the Mammalian Cell Cycle pathway [16] that demonstrates
how the proposed multi-objective MOCU can be utilized for objective-based uncertainty quantification of complex
systems when there are multiple operational objectives. The gene regulatory network model for the Mammalian
Cell Cycle pathway [16] consists of ten genes – CycD, Rb, p27, E2F, CycE, CycA, Cdc20, Cdh1, UbcH10, and
CycB – whose regulatory relationships (i.e., activating or suppressing) are illustrated in Figure 5. As in [1], a
Boolean Network with perturbation (BNp) [17] is adopted to model the gene expression dynamics, denoted by
x(t) = [x1(t), x2(t), · · · , x10(t)] in the aforementioned order of ten genes. Based on the majority voting rule with the
regulatory relationships between these genes, the gene expression will be turned on (xi = 1) or off (0) depending on
whether the majority of the expressed regulators are activators or suppressors. In this BNp model, we set the random
perturbation probability to p = 0.01 so that each gene has a small probability of p to have a randomly flipped gene
expression state at each time point.

Mammalian cell division is controlled via extra-cellular signals and it is coordinated with overall cellular growth. The
positive signals, or growth factors, instigate CycD. The cyclins inhibit Rb by phosphorylation. The gene p27 can stop

7
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the uncontrolled cell cycle as it blocks the action of CycE or CycA and thereafter Rb can also be expressed, even in the
presence of CycE or CycA. When CycD, Rb, and p27 are simultaneously down-regulated (i.e., x1 = x2 = x3 = 0),
the cell cycles can continue indefinitely even in the absence of any growth factor, representing cancerous phenotypes.
Therefore, we define such network states as undesirable states U = {x|x1 = x2 = x3 = 0}. The aim of therapeutic
intervention is then to reduce the probability of entering into these undesirable states in U . In particular, we focus on
the class of structural intervention strategies [18, 19] that block the regulatory action between any pair of genes in
the given network in Figure 5. Here in our experiments, we are constrained to block only one regulation while more
flexible intervention can be derived in a straightforward manner as detailed in [18, 19]. The intervention objective is to
minimize the steady-state mass of these undesirable states:

min{πU =
∑
∀x∈U

πx}, (18)

where πx denotes the steady-state probability of the corresponding network state x. This is our primary objective
for deriving the optimal robust intervention, typically referred to as the IBR (intrinsically Bayesian robust) structural
intervention [1].

As discussed in [20], in addition to reducing the undesirable steady-state mass πU , it is also critical to make sure that the
intervention applied to the network does not incur unforeseen collateral damage. Hence, when designing intervention
strategies for gene regulatory network models, we may want to further constrain the shifted steady-state mass to network
states that are known to be “safe” and do not correspond to pathological phenotypes. In order to achieve this goal, we
can further incorporate prior knowledge and strive to minimize the steady-state mass of phenotypically constrained
states P . In this set of experiments, we define P = {x|x7 = 1} \ U , where \ denote the set difference operator. In
fact, x7 = 1 denotes the network states with expressed Cdc20, whose overexpression has been reported in breast, lung,
gastric, and pancreatic cancers [21]. Therefore, our second objective for deriving the IBR structural intervention is

min{πP =
∑
∀x∈P

πx}. (19)

CycDRb

E2F CycE

p27 Cdh1 Cdc20

CycB

UbcH10CycA

activating suppressing

Figure 5: Illustration of the mammalian cell cycle network. The operational goal is to desirably change the network
dynamics via robust structural intervention in the presence of model uncertainty. The first objective is to minimize the
steady-state probability mass in undesirable states (that belong to the set U ), where the genes CycD, Rb, p27 (shown in
light blue) are simultaneously down-regulated. The second objective is to minimize the steady-state probability mass of
potentially pathological states (that belong to the set P ), in which Cdc20 (shown in light red) is up-regulated.
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Figure 6: Average multi-objective MOCU is shown as a function of the number of unknown regulatory relationships
based on 500 random runs in the mammalian cell cycle network. The shaded region shows the range of corresponding
multi-objective MOCU values from the minimum to the mean+1 std (standard deviation) for these 500 runs. We note
that the size of the uncertainty class increases exponentially with the number of uncertain edges. For example, the
size of the uncertainty class with 7 uncertain edges is

(
35
7

)
as there are 35 edges in the mammalian cell cycle BNp.

Therefore it may need a significantly higher number of runs to have more smooth curves without significant fluctuation.

To illustrate the effectiveness of objective-based uncertainty quantification using multi-objective MOCU proposed
in this paper, we assume that the regulatory information (either activating or suppressing) is unknown for some of
the edges in Figure 5, which gives rise to an uncertainty class of possible network models. We vary the amount of
uncertainty in the mammalian cell cycle network model by varying the number of unknown edges from 1 to 8 and
randomly sample the corresponding number of edges to form the uncertainty class Θ. This uncertainty class Θ contains
the network models with all possible combinations of regulatory relationships for the set of corresponding edges (i.e.,
edges with unknown regulatory relationships). We compute the multi-objective MOCU based on (9) for this uncertainty
class to investigate how the quantified multi-objective uncertainty changes as a function of the number of edges in the
network with unknown regulatory relationships.

Figure 6 shows the minimum, median, mean, and mean+1 std (standard deviation values) of multi-objective MOCU
in (9) from 500 randomly sampled uncertainty classes (with replacement) based on the mammalian cell cyle network
represented by BNp. It is clear that our multi-objective MOCU faithfully captures the increasing uncertainty affecting
the performance of the derived structural intervention as the number of uncertain edges increases. It also confirms that it
is critical to capture the “objective-based” uncertainty using the proposed multi-objective MOCU when the intervention
objectives are of the ultimate importance, as clearly shown in the figure, the range of multi-objective MOCU also
increases with the number of unknown edges. In fact, the median multi-objective MOCU values are consistently below
the mean values. This implies that there are certain edges whose regulatory information is more critical, and as a result,
the missing information regarding such edges may degrade the intervention performance more significantly than the
others. Hence, with limited resource and time, it is more desirable and also more promising to design experiments to
understand these regulatory actions for the purpose of deriving effective therapeutic intervention strategies.

5 Discussions

In this paper, we introduced the definition of multi-objective MOCU, which extends the original single-objective MOCU
proposed in [1] and enables objective-based quantification of model uncertainty in applications with multiple objectives.
As entropy and variance play critical roles in various learning and inference problems, MOCU provides the foundation
for optimal design of experiments and robust operators for complex uncertain systems. The proposed multi-objective
MOCU enables optimal experimental design for various real-world applications–such as drug design and material

9
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discovery–that involve modeling complex systems with substantial uncertainty and multi-objective optimization based
on the uncertain model.

The need for robust optimization of controllers, classifiers, estimators, or various other types of operators in the presence
of uncertainty arises frequently in diverse science and engineering problems that deal with complex real-world systems.
While the uncertainty of a model representing the complex system of interest may be described by the probability
distribution of its parameter vector in a Bayesian framework, the potential impact of this model uncertainty may
significantly differ for different operations. For example, if we consider the gene regulatory network (GRN) model for
the mammalian cell cycle network that was presented in Sec. 4, the absence of regulatory knowledge regarding a specific
pair of genes in the network shown in Figure 5 may considerably degrade the structural intervention performance of
minimizing the steady-state mass in U while affecting the intervention performance of minimizing the stead-state mass
in P only marginally. As a result, when quantifying the uncertainty of the model, it is critically important to assess the
operational impact of the uncertainty in a way that takes all operational objectives at hand into account.

Traditional uncertainty measures, such as entropy and variance, cannot serve this purpose as they are operation agnostic,
hence do not inform us of the impact of the model uncertainty on the operations to be performed and the objectives
to be achieved thereby. While the concept of MOCU, originally proposed in [1], provides an effective means of such
objective-based UQ, its original definition in (3) assumed a single objective and could not be used for quantifying
uncertainty when there are multiple – and potentially competing – operational goals. The multi-objective MOCU
proposed in this paper effectively addresses these limitations.

Considering that the multi-objective MOCU provides an effective means of multi-objective UQ, it can be directly used
to extend the existing MOCU-based optimal experimental design (OED) strategies [5, 6, 8] to enable the prediction of
optimal experiment that is expected to enhance the performance of multi-objective robust operators. For example, the
OED strategies in [5, 6] aimed at improving the structural intervention performance in an uncertain gene regulatory
network model to minimize the steady-state probability mass in undesirable states corresponding to a single pathological
phenotype. As demonstrated by the example discussed in Sec. 4, the proposed multi-objective MOCU can extend
the OED strategies for multiple objectives, which may involve minimizing the likelihood of multiple pathological
phenotypes and/or maximizing the shift of the steady-state mass towards more desirable states or states that are not
associated with any known aberrant cell behavior.

Last but not least, we would like to emphasize that both the single-objective MOCU [1] as well as the multi-objective
MOCU proposed in this work are consider the “model uncertainty” with respect to the underlying system. As such,
when MOCU is used for OED [7, 5, 6] or active learning [10, 11], the acquisition of experimental results or data
will be guided by their potential impact on reduction of this model uncertainty. This is fundamentally different from
existing Bayesian optimization (BO) [22, 23, 24] and knowledge gradient (KG) strategies [25, 26] (either single- or
multi-objective problems), as BO and KG probabilistically model the operational objectives using surrogate models
of the “evaluation metrics” – rather than modeling the underlying system and the uncertainty therein – for example
using Gaussian processes (GPs) that are commonly adopted. In this work, we focus on how one can quantify the model
uncertainty directly impacting multiple operational objectives, which cannot be achieved by either BO or KG. One
point that is worth mentioning is that it has been established in [27] that, under certain conditions, MOCU-based OED
becomes equivalent to KG. In the context of multi-objective BO, the optimization goal is to approach an estimated
Pareto front, for which the operational objectives are often approximated by GPs. The proposed multi-objective MOCU
can help measure how model uncertainty may influence the estimation of the Pareto front and thereafter the results
of multi-objective BO. One interesting research question here is that how the OED performance will change with the
number of available training samples for different modeling and OED strategies, which we leave for our future research.

The problem of optimization and robust decision making under uncertainty arises frequently in various science and
engineering domains [28, 29], as many real-world complex systems cannot be accurately modeled or completely
identified in practice [1]. Relevant problems are abundant across diverse disciplines, including the robust intervention in
gene regulatory networks [5, 6], optimization of structural materials [30], robust design and operation of chemical
engineering processes [31], optimization of the economic and life-cycle environmental performance of industrial
processes [32], optimal target selection for metabolic engineering [33, 34], optimal wake steering strategies for reducing
power losses due to aerodynamic interactions between turbines [35], and robust power dispatching in modern power
grid systems [36, 37], just to give a few representative examples. The multi-objective MOCU proposed in this
paper can provide effective means of objective-based quantification of uncertainties in the aforementioned (and other
similar) systems. Furthermore, it can enable optimal experimental design [5, 6, 7] and active learning [10, 11] for
objective-driven uncertainty reduction given multiple operational goals.
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