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Abstract. Many complex disordered systems in statistical mechanics are characterized by intri-
cate energy landscapes. The ground state, the configuration with lowest energy, lies at the base of
the deepest valley. In important examples, such as Gaussian polymers and spin glass models, the
landscape has many valleys and the abundance of near-ground states (at the base of valleys) indi-
cates the phenomenon of chaos, under which the ground state alters profoundly when the disorder
of the model is slightly perturbed. In this article, we compute the critical exponent that governs
the onset of chaos in a dynamic manifestation of a canonical model in the Kardar-Parisi-Zhang
[KPZ] universality class, Brownian last passage percolation [LPP]. In this model in its static form,
semi-discrete polymers advance through Brownian noise, their energy given by the integral of the
white noise encountered along their journey. A ground state is a geodesic, of extremal energy given
its endpoints. We perturb Brownian LPP by evolving the disorder under an Ornstein-Uhlenbeck
flow. We prove that, for polymers of length n, a sharp phase transition marking the onset of chaos
is witnessed at the critical time n−1/3. Indeed, the overlap between the geodesics at times zero and
t > 0 that travel a given distance of order n will be shown to be of order n when t ≪ n−1/3; and to
be of smaller order when t ≫ n−1/3. We expect this exponent to be universal across a wide range
of interface models. The present work thus sheds light on the dynamical aspect of the KPZ class;
it builds on several recent advances. These include Chatterjee’s harmonic analytic theory [Cha14]
of equivalence of superconcentration and chaos in Gaussian spaces; a refined understanding of the
static landscape geometry of Brownian LPP developed in the companion paper [GH20a]; and, un-
derlying the latter, strong comparison estimates of the geodesic energy profile to Brownian motion
in [CHH19].

Figure 1. Last passage percolation with uniform U [0, 1] weights is dynamically
updated according to independent unit Poisson processes at each vertex. Depicted
are snapshots at times 0.07 and 0.3 of a given dynamical simulation. The geodesic,
blue at time zero, evolves to its present red state in each case. Since 1000−1/3 = 0.1,
the left sketch depicts a subcritical scenario and the right sketch a supercritical one,
with the transition from high to low overlap evident in the images.
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1. Introduction

A real-valued Hamiltonian H on a finite set X specifies a probability measure that charges x ∈ X
with weight proportional to e−H(x). In a viewpoint that is profitable for studying many complex
systems in statistical mechanics, we may view the function H as an energy specified over the
landscape X. In disordered systems, such as Sherrington-Kirkpatrick spin glasses, and polymer
models, in which a route is randomly forged through a random medium, the energy landscape has
a rich structure of local valleys and connecting pathways.

In such systems, the ground state, namely the value x ∈ X that minimizes H, may be joined in
the landscape by a host of near ground states, resting at the bases of various local valleys, at more
or less removed locations. The presence of multiple competing near-minimizers has significance in
problems concerning the response of the system to perturbations of its law suffered by changes in
parameters such as temperature or in the realization of the disorder. A guiding principle, on which
we will elaborate, asserts that, when many valleys are present, chaos reins: the system is fragile,
with small perturbations causing profound changes in the form of the ground state.

The random disorder in a statistical mechanical model may take a discrete or a continuous form. A
discrete white noise field comprised of independent Bernoulli-1/2 random variables and a Gaussian
field are canonical examples of these types. In critical percolation—bond percolation on the Eu-
clidean lattice Z2, or face percolation on the honeycomb lattice—edges or faces are independently
declared open with probability one-half, and the large-scale structure of open connected components
is investigated. On the continuous side, the level sets of Gaussian processes on Z2 or R2 such as
the Gaussian free field [She07] or Gaussian analytic functions [BG17] offer a counterpart model of
random geometry. Each type of randomness, discrete or Gaussian, may be perturbed in a canonical
fashion. In the Boolean case, the open bits may be independently updated at the ring-times of
independent Poisson process of rate one. A Gaussian field may be construed as a certain limit of a
Boolean one; the discrete update dynamics passes in this limit to yield the Ornstein-Uhlenbeck [OU]
dynamics, which holds invariant the continuous field. This continuous dynamics is a natural one,
and may be viewed [JKO98] profitably for the study of optimal transport problems [Vil03] as the
gradient flow of a functional of the relative entropy on the space of probability measures equipped
with a Wasserstein metric.

The last two decades have seen exciting progress in the rigorous study of chaos and the companion
notion of noise sensitivity, wherein is investigated the degree of perturbation needed for an observable
of interest to substantially lose correlation with its initial value. The influential work [BKS99]
developed a general theory of noise sensitivity for Boolean functions by connecting their study
to the theory of harmonic analysis on the discrete hypercube. When such a function f is noise
sensitive, Fourier modes of high frequency are charged by a natural spectral measure attached to f .
Concentration of measure tools such as hypercontractivity were allied with this theory to generate
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beautiful applications, including the study of weighted majority functions, which are indicators of
hyperplanes, proving them to be the canonical class of noise stable functions; and a demonstration
that the event of crossing a large region in critical bond percolation on Z2 is sensitive to a small
uniform perturbation in the open or closed status of edges.

A quantified assertion of the sensitivity of planar critical percolation to perturbation by noise was
obtained by exploiting the same discrete Fourier analytic approach via a randomized algorithm
in [SS10]. Schramm and Steif’s technique has been applied to a dynamical OU perturbation of
Bargmann-Fock percolation (a Gaussian analytic function) in [GV19], to prove that this model is
noise sensitive under perturbations that are polynomially small in the system diameter. A further
breakthrough for planar critical percolation was made in [GPS10], when a refined understanding of
this problem was obtained, again by Fourier analytic means, with the value of exponents governing
the onset of chaos being rigorously obtained in terms of putatively universal exponents describing
fractal properties of critical percolation on the hexagonal lattice.

The rigorous derivation of physically predicted critical percolation exponents [SW01] via Schramm-
Loewner evolution [SLE] methods [Sch00] provided a theoretical underpinning for the noise sensi-
tivity study in [GPS10] and indeed for the construction of the scaling limit for dynamical critical
percolation in [GPS18] via [GPS13].

Analytic tools have enabled important advances in the study of the transition to chaos in random
matrix theory. The real-valued quadratic form of any given n × n Hermitian matrix is an energy
landscape on the n-dimensional sphere. The eigenvector associated to the highest eigenvalue is the
ground state in the landscape; it is a natural observable to monitor as the static model becomes
dynamic. A canonical dynamics on n × n matrices first randomly selects a matrix according to
the Gaussian unitary ensemble [GUE] and perturbs this initial condition by running OU dynamics
independently in each Gaussian entry. Chatterjee [Cha14] found that the onset of chaos—the time
beyond which the eigenvectors become almost orthogonal to each other—has occurred by any time
much exceeding n−1/3. Recently, Bordenave, Lugosi and Zhivotovskiy [BLZ20] studied a discrete
dynamics, in which k random entries in a random n × n Wigner matrix are updated. They used
resolvent analysis to prove that the counterpart to Chatterjee’s bound is sharp: when k ≪ n5/3, the
top eigenvector is highly correlated with its initial form; when k ≫ n5/3, the two vectors are almost
orthogonal. Returning to continuous dynamics, we mention that perturbing for short times the
entries of a matrix along an OU flow has also been a central technique in the proofs of universality
of spectral statistics and quantum ergodicity for Wigner matrices [ESY11, ESYY12].

The OU dynamics on GUE induces a form of Dyson’s Brownian motion [Dys62] on the eigenvalues.
In fact this can be used to also prove the value of the highest eigenvalue starts de-correlating at
the same time scale of n−1/3. This Dyson process of mutually avoiding Brownian motions is a
leading player [OY02] in the study of a class of statistical mechanical models that has attracted
massive mathematical interest since the 1990s. This is the 1 + 1 dimensional Kardar-Parisi-Zhang
[KPZ] universality class, whose members include many models of local random growth; (in this
way, a bridge runs from random matrix theory into KPZ). The object of study in KPZ is the
scaled behaviour, on a large spatial scale and at advanced time, of a wide range of interface models
suspended over a one-dimensional domain, in which growth in a direction normal to the surface
competes with a smoothening surface tension in the presence of a local randomizing force that
roughens the surface. In this article, we study the problem of stability and sensitivity under noise for
a canonical model in this class. Random matrix theory, equipped with Gaussian models and powerful
analytical tools including linear algebraic formulas, has often formed a testbed for positing and
proving conjectures also valid for geometrically complex models in the KPZ class. For example, the
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GUE Tracy-Widom law, which identifies the limiting point-to-point last passage percolation geodesic
energy fluctuation (a notion we will recall later), was derived [TW94] by asymptotic determinantal
analysis of large GUE matrices. In this vein, the attractive spectral theory available for random
matrices, including resolvent methods, has led [BLZ20] to the discovery and rigorous derivation of
the exponent of −1/3 governing onset of chaos; our purpose is to demonstrate that this scale heralds
chaos in the geometrically rich setting of dynamic KPZ.

Last passage percolation [LPP], an important model for local random growth, is a zero temperature
polymer model in which oriented paths in Z2 or R2 progress through independent disorder and
accrue a random weight as the integral of the noise encountered on their journey. The KPZ class is
expected to contain many LPP models, a few of which have integrable features that have permitted
rigorous demonstration of their KPZ characteristics when viewed in suitably scaled coordinates. Re-
cently, integrable analysis has been allied with probabilistic and geometric inquiry in order to give
detailed quantified understanding of how certain scaled LPP models behave. The Brownian Gibbs
property [CH14] is a probabilistic resampling technique concerning the Airy line ensemble, which
encodes scaled information about the energy of sets of disjoint geodesics emerging from a given
point in LPP. It has permitted detailed quantified comparison of curves in the Airy line ensemble
with Brownian motion, with the recently released [Dau23b] providing Radon-Nikodym derivative
estimates that refine estimates proved in [Ham22, CHH19]. The construction of the directed land-
scape [DOV22], a rich expression of universal scaled LPP structure, relies on estimates on the bulk
behaviour [DV21] of the Airy line ensemble arising via Brownian Gibbs analysis. Such probabilistic
ideas in the setting of general line ensembles feature in [DM21, BCD23]. The study of fractal geome-
try and Hausdorff dimension of exceptional sets in the Airy line ensemble and the directed landscape
has been enabled by robust probabilistic tools: [BGH21, BGH22, GZ22] studied exceptional sets
involving the existence of pairs of disjoint geodesics; [Dau22] proved conjectures of [CHHM23] con-
cerning Hausdorff dimension values for exceptional times in the KPZ fixed point [MQR21] at which
several maximizers exist; [Bha22, Bha23, BB23] study the interlocking of the primal and dual geo-
desic trees in the directed landscape; and [Dau23a] provides a full classification for the topological
possibilities for geodesic networks in the landscape. Other aspects of fractal behavior such as the
multi-fractal spectrum associated to the laws of iterated logarithm for the KPZ equation or the
KPZ fixed point have also received significant attention with detailed investigations carried out in
[DG21, DGL22].

The field has achieved a degree of development that permits a robust range of aspects to be fruit-
fully addressed. In particular, static understanding of a certain model, Brownian last passage
percolation—whose disorder is standard Gaussian white noise—is now advanced enough (in part
because it is this prelimiting model that perfectly satisfies the Brownian Gibbs property) that an
inquiry into its dynamical perturbation may be undertaken.

Several physicists have adopted numerical and heuristic approaches to the study of dynamical per-
turbations of lattice Gaussian polymer models since the 1980s. Their work shares certain ideas and
themes with ours: it often addresses, as ours does, disorder chaos; but also temperature chaos, in
which a small disturbance to the positive temperature of a model of randomly weighted paths has
the effect of introducing new randomness. Zhang [Zha87] considers clustering of near maximizers
and how perturbation causes the ground state to jump from one cluster to the other; while Mézard
[Méz90] studies positive temperature models and properties of samples with interactions penalizing
overlap between them. Entropy of valleys with bearing on the underlying Gibbs measure is investi-
gated in Fisher and Huse [FH91]. A more recent work by da Silveira and Bouchaud [dSB04] studies
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temperature and disorder chaos both for the ground state and positive temperature polymers in
low dimensions.

Chatterjee’s monograph [Cha14] offers a pertinent rigorous advance that will form an important
tool in our treatment. In a unified treatment that includes Gaussian polymer models—and, fortu-
itously for our purpose, Brownian LPP—he developed an equivalence between superconcentration
of observables and chaos. The later articles [DEZ15] and [CHL18] prove stronger lower bounds
on the number of peaks in the energy landscape of superconcentrated Gaussian fields; these works
establish chaos for the ground state in the Sherrington-Kirkpatrick spin glass, with [CHL18] also
addressing all mixed p-spin models with p even. Recently, in [Eld20], Eldan employed a different
approach using analysis of Gaussian spaces to extend the results of [CHL18] to all mixed p-spin
models with p ≥ 2.

In the rest of the introduction, we review the KPZ scaling of LPP; specify Brownian LPP, the
integrable model of our choice, and its dynamical perturbation; and state our main result, regarding
this dynamics, pinning down the transition from stability to chaos of the geodesic.

1.1. The KPZ scaling characteristics of LPP. In LPP, the geodesic from (0, 0) to (n, n), is
the path between them with the maximum energy. For a large class of LPP models, the energy of
the geodesic grows linearly in n, with standard deviation expected to be of order n1/3. Further, the
geodesic is predicted to fluctuate from the linear interpolation of the endpoints by an order of n2/3.
These assertions capture a sense of the (1/3, 2/3) exponent pair characteristic of KPZ. However, the
integrable structure available in just a few LPP models has permitted rigorous sense to be made of
the assertions. The seminal work of Baik, Deift and Johansson [BDJ99] rigorously established the
one-third exponent, as well as obtained the GUE Tracy-Widom distributional limit, for Poissonian
LPP. Johansson [Joh00] derived the transversal fluctuation of two-thirds for this model.

We now move on to formally defining Brownian LPP, and its dynamical perturbation.

1.2. Brownian last passage percolation [LPP]. On a probability space carrying a law la-
belled P, let B : R × Z → R denote an ensemble of independent two-sided standard Brownian
motions B(·, k) : R → R, k ∈ Z. The indexing of the domain in the form R × Z is unusual, with
the other choice Z × R being more conventional. The choice of R × Z is made because it permits
us to visualize this index set for the ensemble B’s curves as a subset of R2 with the usual Cartesian
coordinate order being respected by the notation.

Let i, j ∈ Z with i ≤ j. We denote the integer interval {i, · · · , j} by Ji, jK. Further let x, y ∈ R with
x ≤ y. Consider the collection of non-decreasing lists

{
zk : k ∈ Ji+1, jK

}
of values zk ∈ [x, y]. With

the convention that zi = x and zj+1 = y, we associate an energy
∑j

k=i

(
B(zk+1, k) − B(zk, k)

)
to

any such list. We then define the maximum energy

M
[
(x, i) → (y, j)

]
= sup

{ j∑
k=i

(
B(zk+1, k)−B(zk, k)

)}
, (1)

where the supremum is taken over all such lists. The random processM
[
(0, 1) → (·, n)

]
: [0,∞) → R

was introduced by [GW91] and further studied in [OY02].

1.2.1. Staircases. Set N = {0, 1, · · · }. For i, j ∈ N with i ≤ j, and x, y ∈ R with x ≤ y, an
energy has been ascribed to any non-decreasing list

{
zk : k ∈ Ji + 1, jK

}
of values zk ∈ [x, y]. In

order to emphasise the geometric aspects of this definition, we associate to each list a subset of
[x, y]× [i, j] ⊂ R2, which will be the range of a piecewise affine path, that we call a staircase.



DYNAMICAL LAST PASSAGE PERCOLATION 7

To define the staircase associated to
{
zk : k ∈ Ji + 1, jK

}
, we again adopt the convention that

zi = x and zj+1 = y. The staircase is specified as the union of the horizontal segments of the form
[zk, zk+1]× {k} for k ∈ Ji, jK as well as the vertical planar line segment of unit length interpolating
the right and left endpoints of each consecutive pair of horizontal segments.

The resulting staircase may be depicted as the range of an alternately rightward and upward moving
path from starting point (x, i) to ending point (y, j). The set of such staircases will be denoted
by SC

[
(x, i) → (y, j)

]
. Such staircases are in bijection with the collection of non-decreasing lists

already considered. Thus, any staircase ϕ ∈ SC
[
(x, i) → (y, j)

]
is assigned an energy E(ϕ) =∑j

k=i

(
B(zk+1, k)−B(zk, k)

)
via the associated z-list.

1.2.2. Energy maximizing staircases are called geodesics. A staircase ϕ ∈ SC
[
(x, i) → (y, j)

]
whose

energy attains the maximum value M
[
(x, i) → (y, j)

]
is called a geodesic from (x, i) to (y, j). It is

a simple consequence of the continuity of the constituent Brownian paths B(·, k) that this geodesic
exists for all choices of x, y ∈ R with x ≤ y. For any given such choice of the pair (x, y), there is
by [Ham19b, Lemma A.1], an almost surely unique geodesic from (x, i) to (y, j). We denote it by
Γ
[
(x, i) → (y, j)

]
.

We next specify the details of the dynamics.

1.3. Dynamical Brownian LPP. An Ornstein-Uhlenbeck [OU] process is a simple stochastic
process whose invariant measure is Gaussian. The stationary standard one-dimensional OU process
X : [0,∞) → R is a stationary process that solves the stochastic differential equation

dX(t) = −X(t)dt+ 21/2dW (t) (2)

where W : [0,∞) → R is standard Brownian motion.

It is sometimes useful to note that X may be coupled to a further standard Brownian motion
W ′ : [0,∞) → R, which is independent of the value X(0), in such a way that, for t ≥ 0,

X(t) = e−tX(0) + e−tW ′(e2t − 1
)
;

incidentally, the processes W and W ′ are not equal. For given t ≥ 0, we may thus represent

X(t)
d
= e−tX(0) +

(
1− e−2t

)1/2
X ′ , (3)

where X(0) and X ′ are independent standard Gaussian random variables. It readily follows that
the correlation Corr(X(0), X(t)) equals e−t; so that X(t) offers a perturbation of X(0) that is slight
when t ≥ 0 is small.

Now suppose given a Gaussian process X : I → R whose domain I is an arbitrary set. The
Ornstein-Uhlenbeck dynamics whose invariant measure is the law of X is the Gaussian process
X : I × [0,∞) → R such that, for t ≥ 0,(

X(·, 0),X(·, t)
) d
=

(
X(·, 0) , e−tX(·, 0) +

(
1− e−2t

)1/2
X′(·)

)
, (4)

where X(·, 0) and X′(·) are independent random variables that share the law of X : I → R. Note
that the above information is sufficient to determine the covariance structure of X.

As we noted in Section 1.2, Brownian LPP is specified by an ensemble of independent two-sided
Brownian motions denoted by B : R × Z → R. This ensemble will be called the static noise
environment as we turn to specify its dynamical enhancement.
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Our dynamical model will be denoted by B : R×Z× [0,∞) → R. The third argument t ∈ [0,∞) is
the time parameter for our dynamics which will keep the underlying noise environment stationary.
The reuse of the symbol B is an abuse, but explicit references to the dynamical model or to the
static noise environment will be occasional, and the context will clarify what is meant.

Definition 1.1. The dynamical model B : R×Z× [0,∞) → R is specified by the process X in (4)
in the case that I = R × Z, where the Gaussian process X : I → R is the product over Z of
independent standard two-sided Brownian motions mapping R to R.

To present an explicit construction of the dynamical model, a little notation is needed. A dyadic
interval of scale j ∈ Z is a closed interval whose endpoints are consecutive elements in the set 2−jZ.
The midpoint of such an interval is a dyadic rational of scale j+1. Thus, for example, odd integers
are dyadic rationals of scale zero, and half-integers—elements of 2−1Z \ Z—are dyadic rationals of
scale one.

Let Dj denote the set of dyadic intervals of scale j ∈ Z, and set D = ∪j∈ZDj . For I ∈ Dj of the
form [x, x + 2−j ], set I− = [x, x + 2−j−1] and I+ = [x + 2−j−1, x + 2−j ]. Let hI : R → R equal

2j/2 on I−; −2j/2 on I+; and zero otherwise. Let fI : R → R denote the definite integral of hI .
This function takes the form of a tent map, taking the value zero outside I, equalling 2−j/2−1 at
x+ 2−j−1, and having an affine form on I− and I+.

Lemma 1.2. (1) Let
{
ξI : I ∈ D

}
denote an independent collection of standard Gaussian

random variables. The random process Z : R → R given by Z(x) =
∑

I∈D ξIfI(x) is
standard two-sided Brownian motion.

(2) The Ornstein-Uhlenbeck dynamics whose invariant measure is standard two-sided Brownian
motion is the random process W : R × [0,∞) → R given by W (x, t) =

∑
I∈D ζI(t)fI(x),

where ζI : [0,∞) → R indexed by I ∈ D denote independent standard Ornstein-Uhlenbeck
processes.

Proof: (1). This is similar to Lévy’s construction of Brownian motion as given in the proof
of [MP10, Theorem 1.3]. The present construction has doubly infinite indexing, however, so it is an
exercise to adapt the proof.
(2). We wish to verify that W and X coincide, where X satisfies (4) in the case that I = R and
X : I → R is standard Brownian motion. Since W and X are stationary Gaussian processes, it
is enough to confirm that Cov

(
W (x1, 0),W (x2, t)

)
= Cov

(
X(x1, 0),X(x2, t)

)
for x1, x2 ∈ R and

t ≥ 0. Note first that Cov
(
X(x1, 0),X(x2, t)

)
equals e−tmin

{
|x1|, |x2|

}
· 1x1x2>0 by (4) and the

covariance formula for standard Brownian motion. Next note that Cov
(
ζI(0), ζI(t)

)
= e−t and

Cov
(
ζI(0), ζI(0)

)
= 1 for I ∈ D. Thus,

Cov
(
W (x1, 0),W (x2, t)

)
=

∑
I∈D

Cov
(
ζI(0), ζI(t)

)
fI(x1)fI(x2)

= e−t
∑
I∈D

Cov
(
ζI(0), ζI(0)

)
fI(x1)fI(x2)

= e−tCov
(
W (x1, 0),W (x2, 0)

)
= e−tmin

{
|x1|, |x2|

}
· 1x1x2>0 .

The desired coincidence of covariances has thus been shown. □
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Thus our dynamical model B : R×Z× [0,∞) → R satisfying Definition 1.1 may be constructed by
applying Lemma 1.2(2) to specify each marginal B(·, j, ·) : R× [0,∞) → R for j ∈ Z independently.

1.3.1. Notation for the dynamical model. Since the random model B : R× Z× [0,∞) → R couples
copies of the static noise environment indexed by its third coordinate t ≥ 0, we will use a superscript
t to indicate a random variable designated by the corresponding static noise. For example, for
i, j ∈ Z, i ≤ j, and x, y ∈ R, x ≤ y, M t

[
(x, i) → (y, j)

]
denotes the maximum energy of a staircase

from (x, i) to (y, j) in the noise environment B(·, ·, t); and similarly, Γt
[
(x, i) → (y, j)

]
denotes,

the almost surely unique geodesic in the same environment. When no superscript appears in such
notation, it is understood that a given static noise environment is involved.

1.4. Main result. We now formally state our main result. Let S1 and S2 denote two staircases.
The set S1 ∩ S2 ∩ (R × Z) is the intersection of the union of the horizontal segments of S1 with
the counterpart union for S2. The overlap O(S1, S2) between S1 and S2 is the one-dimensional
Lebesgue measure of this set. For two staircases beginning at (0, 0) and ending at (n, n), the
overlap lies in [0, n].

For n ∈ N and t ≥ 0, let On(t) = O
(
Γ0([0, 0] → [n, n]),Γt([0, 0] → [n, n])

)
denote the overlap

between the geodesics at times zero and t. Note that when t = 0, On(t) = n.

Theorem 1.3.

(1) There exist d ∈ (0, 1) and n0 ∈ N such that, for λ > 0, we may find h > 0 for which

t ∈
[
0, n−1/3 exp

{
− h(log log n)68

}]
and n ≥ n0 imply that

P
(
n−1On(t) ≥ d

)
≥ 1− 2(log n)−λ .

(2) There exists a constant D > 0 such that, for n−1/3 < t ≤ 1,

P
(
n−1On(t) ≤ Dτ−1/2

)
≥ 1− τ−1/2 ,

where t = n−1/3τ .

The bound for t = 1, namely P
(
n−1On(t) ≤ Dn−1/6

)
≥ 1 − n−1/6, continues to hold when t > 1.

Indeed, our proof will show that

E(n−1On(t)) ≤
{

Dτ−1 for n−1/3 < t ≤ 1 ,

Dn−1/3 for t > 1 ,
(5)

from which the just noted bound follows from Markov’s inequality. In fact, it may be expected that
n−1On(t) decreases in mean until it reaches an equilibrium value of order n−2/3.

The order of the scale for the onset of chaos in planar LPP has been anticipated by da Silveira and
Bouchaud [dSB04]: we will discuss their prediction after developing a heuristic for the exponent
value −1/3 in Section 2.1.
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The second author thanks Milind Hegde and Gábor Pete for useful discussions. He is supported by
NSF grant DMS-1512908 and a Miller Professorship from the Miller Institute for Basic Research in
Science.
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2. Chaos onset heuristics, and scaled coordinates

Brownian LPP is our model of study because it is the unique integrable LPP model for which the
scaled energy profile has been shown to closely resemble Brownian motion and to which Chatterjee’s
theory of superconcentration and chaos applies. In four subsections, we present a heuristic argu-
ment for the scale of transition demonstrated in Theorem 1.3; and an alternative heuristic for this
conclusion, via discrete harmonic analysis; offer a summary of the principal elements of Chatterjee’s
work on harmonic analysis of Gaussian spaces; and indicate roughly how we will need Brownian
resemblance for energy profiles, and how such results arise from recent probabilistic and geometric
research in KPZ (via the Brownian Gibbs resampling technique). The second of these subsections
is specific to this arXiv release.

2.1. The time-scale of the onset of chaos explained via dynamical Bernoulli LPP. In
Bernoulli LPP, independent Bernoulli(1/2) variables are assigned to the elements of Z2. For each
n ∈ N, nearest-neighbour upright paths that begin at (0, 0), travel to the right or upwards at each
step, and end at (n, n) accrue energy equal to the number of one values encountered along the
path. In a model we call dynamical Bernoulli LPP, independent Poisson clocks renew the Bernoulli
randomness at each vertex at unit rates. As in Brownian LPP, the time-zero geodesic energy M0

n is
equal to the maximum energy over all such paths, with the optimizing path called a geodesic and
denoted by Γ0

n. Since it is discrete, the geodesic is typically not unique. But it is straightforward
to see that there exists a geodesic that is uppermost—and also leftmost—in the natural sense, and,
for definiteness, it is this geodesic that Γ0

n denotes.

In this section, we present in terms of dynamical Bernoulli LPP a heuristic argument for the time-
scale of transition from stability to chaos (which our method of proof does not follow). While no
integrable properties of Bernoulli LPP are known, it is predicted to lie in the Kardar-Parisi-Zhang
universality class, and thus it is expected that

M0
n = an+Wnn

1/3 , (6)

where a ∈ (0,∞) is a first-order growth coefficient, and
{
Wn : n ∈ N

}
converges to a constant

multiple of the Gaussian unitary ensemble [GUE] Tracy-Widom distribution. The path Γ0
n contains

2n vertices, so that a ≤ 2. On the other hand, although the weights are independent Bernoulli(1/2),
it is not hard to see that Γ0

n is populated by one-values at a rate uniformly higher than one-half, so
that a strictly exceeds one. KPZ considerations also predict the fluctuations of Γ0

n, implying that,
at the midway height y = n/2, the distance of Γ0

n from (n/2, n/2) is of order n2/3.

Incidentally, it is not hard to see that, by passing suitably to the limit, the dynamics in this
discrete model converges to Ornstein-Uhlenbeck dynamics with invariant measure given by standard
Brownian motion. Regarding notation: as in the Brownian case, the time-t energy (for t ≥ 0) in
dynamical Bernoulli LPP ascribed to any upright path Φ will be denoted Et(Φ); the time-tmaximum
energy is M t

n; and the time-t geodesic is Γt
n.

In a heuristic counterpart to our main result Theorem 1.3, we ask: why does the stability-chaos
transition occur at time of of order n−1/3?

In answer, first consider the dynamical changes suffered by the time-zero geodesic Γ0
n by a given

time t > 0. At this time, roughly (1 − e−t) · 2n (or 2tn for small t) vertices on the path Γ0
n have

been resampled. These vertices were more likely one than zero (with odds a/2 versus 1− a/2). But
now they are equally likely zero or one. Thus, the time-t energy Et(Γ0

n) of the initial geodesic Γ0
n

experiences a precipitous decline after time zero, dropping at a rate of order n from its initial value
of an, until unit-order values of t with the value approaching n for high t.
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We next want to understand how the maximum energy difference M t
n −M0

n = Et
(
Γt
n

)
− E0

(
Γ0
n

)
evolves between times zero and t for t = Θ(1)n−1/3. Note that

M t
n −M0

n = −
(
E0

(
Γ0
n

)
− Et

(
Γ0
n

))
+
(
Et

(
Γt
n

)
− Et

(
Γ0
n

))
. (7)

On a shorter time-scale, when t = Θ(1)n−2/3, the number of vertices on the initial geodesic that

have been resampled is to first order given by 2tn = Θ(1)n1/3; so that the time-t energy Et
(
Γ0
n

)
has dropped from its initial value E0

(
Γ0
n

)
by an order of n1/3—which, by (6), is the same as the

order of fluctuations of E0(Γ0
n). Thus, on any even slightly shorter time-scale, t = o(1)n−2/3, Γ0

n

remains a near-geodesic, whose time-t energy differs from the maximum M t
n by at most o(n1/3).

But when t ≫ n−2/3, the initial geodesic Γ0
n has become hopelessly uncompetitive. Despite this,

as Theorem 1.3 attests, the transition from stability to chaos occurs only at the much greater
time-scale when t = Θ(1)n−1/3. Towards this, note that our stability result claims only that the

geodesics Γt
n and Γ0

n have significant overlap for t ≪ n−1/3, and asserts nothing about Et(Γ0
n).

Indeed, even on the longer time-scale t = Θ(1)n−1/3, dynamic updates along Γ0
n are sparse—they

number n2/3 in total, with a typical distance from one to the next of order n1/3. Such separation
suggests that the energetic changes thus suffered resemble an independent and identically distributed
sequence of small changes; a central limit theorem would thus dictate the combined energetic loss
Et(Γ0

n)−E0(Γ0
n) takes the form of a dominant non-random drift effect of order nt = Θ(1)n2/3 and

a Gaussian fluctuation of order (nt)1/2 = Θ(1)n1/3.

However, since dynamical Bernoulli LPP is in equilibrium, it is reasonable to expect that this effect
of negative drift will be complemented by an opposing force once one considers the maximum energy
of all paths that run close to Γ0

n—at distance smaller than n2/3, say. Moreover, the form of (7)
suggests that this equation’s latter right-hand term represents this restorative process. That is,
when updates occur to vertices that lie off but close to Γ0

n, an assignation of the value of one may
create opportunities for a path of greater time-t energy than Γ0

n by a local rewiring that visits the
newly updated vertex. This ought to lead to an exact cancellation of the drift term, leading to
the overall conclusion that Et

(
Γt
n

)
− E0

(
Γ0
n

)
≈ (nt)1/2. Thus, from time zero up until the short

time-scale t = Θ(1)n−2/3, the original geodesic Γ0
n remains competitive. Beyond this, it becomes

less and less so. But until the much longer time-scale t = o(1)n−1/3, the present energetic maximum
t→M t

n is in essence unchanged from its original value, differing from it by an insignificant error of
the form o(n1/3).

On scales greater than t = Θ(1)n−1/3, this mechanism of Gaussian energetic fluctuation cannot
continue to hold since the system is in equilibrium and hence by (6) the energetic change between

any pair of times cannot exceed order n1/3. Thus, the Gaussian effect presumably dominates on
scales t = o(1)n−1/3 while it competes on an equal basis with static energetic fluctuation on the

scale t = Θ(1)n−1/3. This heuristically justifies why is it that the time-scale t = Θ(1)n−1/3 heralds
the transition from stability to chaos in dynamical Bernoulli last passage percolation.

Remark. Following the statement of Theorem 1.3, we had mentioned that da Silveira and Bouchaud
[dSB04] anticipated the n−1/3 scale for the onset of chaos. We discuss their argument in the language
of Brownian LPP. The perturbation considered adds noise, so that a standard Brownian noise
environment B becomes B +B′ where, in each vertical coordinate, B′ =W (ε·) for an independent

Brownian motion W . (The parameter ε > 0 equals n−1/3 on the critical scale.) da Silveira and
Bouchaud argue that the time zero geodesic suffers a mean zero, Gaussian-order, change as time
evolves until this change reaches the level of GUE fluctuation. Thus, they obtain the accurate n−1/3
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prediction. The reasoning appears imperfect, however, because, this form of perturbation is not
stationary, and hence the variance of the Brownian noise environment rises with time causing the
geodesic energy to rise linearly. As we have indicated, Gaussian fluctuation is indeed the correct
local mechanism dictating dynamic change, but the maximizer is a local perturbation of the initial
geodesic before the critical time, rather than being the initial geodesic itself.

The principle that the scale on which Gaussian and GUE fluctuation meet heralds the onset of
chaos also serves to explain the −1/3 exponent in random matrix dynamics observed in [Cha14]
and [BLZ20]. The uppermost curve D(1, ·) in Dyson’s Brownian motion D : J1, nK × [0,∞) → R
has dominantly Brownian increments on [n, n + Θ(n2/3)] since D(1, ·) − D(2, ·) = Θ(n1/3) on this

scale. These scale n1/3 increments are comparable to GUE fluctuation. The domain increment
n→ n+ n2/3 corresponds to the order n−1/3 evolution of the OU flow on n× n GUE matrices.

2.2. The harmonic analysis of last passage percolation. The direct goal of this section is to
present an alternative, and also non-rigorous, argument for the stability of geodesic energy on time-
scales shorter than t = Θ(1)n−1/3. We will argue that the energy maximum [0,∞) → R : t → M t

n

satisfies the two-point bound that, for any t ≥ 0,

E
(
M0

n −M t
n

)2 ≤ Dtn , (8)

for a given large constant D > 0. Although the present discussion is not rigorous, a vital element
in our proofs will be a Brownian counterpart of (8)—namely, Proposition 4.2 in Section 4.

We see by taking t = τn−1/3 in the last display that this mean-squared energy difference is at most
Dτn2/3, which indicates that the typical energy differenceM0

n−M t
n is smaller than the typical static

energetic fluctuation Θ(1)n1/3 when τ ≪ 1 is small. So, indeed, (8) yields subcritical t ≪ n−1/3

energetic stability.

The claim that equality holds in (8) up to a unit-order factor is consistent with the view, advanced
in the preceding section, that the energetic fluctuation between time zero and any given subcritical
time t ≪ n−1/3 is Gaussian (asymptotically in high n). We will not comment further on the lower
bound counterpart to (8), however.

In order to argue in favour of (8), we will discuss the fundamental role of the tool of harmonic analysis
in the study of dynamical Bernoulli LPP. A counterpart of this tool for dynamical Brownian LPP
will play an essential role in proving our principal result Theorem 1.3. In fact, the broader goal of
the present section is to introduce or reacquaint the reader with tools of discrete harmonic analysis,
in order that our later presentation of the pertinent rigorous techniques for dynamical Brownian
LPP may be adequately motivated. As we have discussed, harmonic analytic tools also form the
technical backbone in the study of dynamical critical percolation in [GPS10].

Setting Λn = J0, nK2, the geodesic energy in Bernoulli LPP may be viewed as a functionMn mapping
{0, 1}Λn to N, assigning to ω ∈ {0, 1}Λn the maximum of the sum of ω-values lying along any upright
path between (0, 0) and (n, n).

To each subset S ⊆ Λn, we may associate the map χS : {0, 1}Λn → {−1, 1}, given by χS(ω) =
Πx∈S

(
2ω(x) − 1

)
; the convention that χ∅ = 1 is adopted. The collection of functions χS indexed

by subsets S ⊆ Λn is an orthonormal basis for the L2-space of functions mapping {0, 1}Λn to the
real line. As such, any such function f has a resulting Fourier-Walsh decomposition, which we will
study in the case that f =Mn. Indeed, we may write

Mn(ω) =
∑
S⊆Λn

α(S)χS(ω) , (9)
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where note that α(ϕ) = EMn and that, according to Parseval’s formula, the system of coefficients{
α(S) : S ⊆ Λn

}
satisfies

Var(Mn) =
∑
S ̸=∅

α(S)2 .

Here and henceforth, the condition that the summand S is a subset of Λn is understood. This
identity permits us to introduce the spectral sample, a random variable S distributed according
to a probability measure—to be labelled Q—that is thus canonically associated to the function
Mn : {0, 1}Λn → R. The definition specifies that, for any given S ⊆ Λn,

Q
(
S = S

)
=

α(S)2

Var(Mn)
. (10)

The next proposition indicates the fundamental role of the spectral sample in the study of dynamics.
Recall that, in dynamical Bernoulli LPP, we have specified a random process, which we now denote
by λ, that maps time t ∈ [0,∞) to an element λt in the configuration space {0, 1}Λn . For any
function f : {0, 1}Λn → R, we set f t(λ) = f(λt). We adopt the shorthand χt

S for (χS)
t.

Proposition 2.1. For any t ≥ 0,

(1) the covariance of geodesic energies at times zero and t satisfies

Cov
(
M0

n,M
t
n

)
=

∑
S ̸=∅

α(S)2e−t|S| ;

(2) and the associated correlation is given by

Corr
(
M0

n,M
t
n

)
= EQ

[
e−t|S |] .

Proof: (1). The quantity Cov
(
M0

n,M
t
n

)
equals E

(
M0

n − EM0
n

)(
M t

n − EM t
n

)
. Expanding M0

n and

M t
n via (9), we see that this quantity equals

E
∑

S1,S2 ̸=∅

α(S1)α(S2)χ
0
S1
χt
S2
. (11)

Taking the mean E when S1 ̸= S2 returns zero because any bit in the symmetric difference S1∆S2
contributes a factor of −1 or 1 to χ0

S1
χt
S2

with equal probability. On the other hand, Eχ0
Sχ

t
S = e−t|S|,

because the mean reports zero if a bit in S updates during [0, t], and otherwise reports the value

one. Thus the diagonal contribution to (11) is seen to equal
∑

S ̸=∅ α(S)
2e−t|S|, and the first part of

the proposition is proved.

(2). The correlation of two random variables of equal variance is equal to the ratio of their covariance
and their shared variance. Thus Proposition 2.1(2) follows from the first part of the proposition
and the definition (10) of the spectral sample. □

Our next claim is an expression for the mean cardinality of the spectral sample. By EQ, we denote
the expectation with respect to the law Q.

For ω ∈ {0, 1}Λn and v ∈ Λn, we write ω[v] for the element of {0, 1}Λn that differs from ω at v but
that coincides with ω at arguments other than v. For f : {0, 1}Λn → R, we set f [v] : {0, 1}Λn → R
according to f [v](ω) = f(ω[v]).
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Lemma 2.2.

EQ|S | = 1

4Var(Mn)

∑
v∈Λn

E
(
Mn −Mn[v]

)2
.

Proof. The value EQ|S | equals
∑

v∈Λn
Q
(
v ∈ S

)
. By (10), it further equals

1

Var(Mn)

∑
v∈Λn

∑
S:v∈S

α(S)2 .

Thus the task of proving Lemma 2.2 will be accomplished if we prove that, for any v ∈ Λn,

E
(
Mn −Mn[v]

)2
= 4

∑
S:v∈S

α(S)2 . (12)

We have that Mn =
∑

S α(S)χS and Mn[v] =
∑

S α(S)χS [v]. The left-hand side of (12) is thus seen
to equal A−B, where A = 2

∑
S α(S)

2 and B = 2E
∑
α(S)2χSχS [v]. Note that B equals the sum

of −2
∑

S:v∈S α(S)
2 and 2

∑
S:v ̸∈S α(S)

2, so that A−B is seen to equal the right-hand side of (12).

Thus is (12) shown and the proof of the lemma completed. □

Our upper bound (8) on mean-squared energetic difference may be derived from the rigorous Propo-
sition 2.1 and Lemma 2.2 via the next two-part claim, for which we argue in a merely heuristic way.
We state the claim, close out the derivation of (8), and then present our case for the claim.

Claim: 1. The variance Var(Mn) is Θ(1)n2/3. 2. The sum
∑

v∈Λn
E
(
Mn −Mn[v]

)2
is Θ(1)n.

Notably, the two parts of the claim alongside Lemma 2.2 yield the order of the cardinality of the
spectral sample:

EQ|S | = Θ(1)n1/3 . (13)

Note now that E
(
M0

n −M t
n

)2
equals 2Var(Mn)− 2Cov(M0

n,M
t
n), so that Proposition 2.1(2) implies

that

E
(
M0

n −M t
n

)2
= 2Var(Mn)

(
1− EQe

−t|S|) .
By Jensen’s inequality, EQe

−t|S| ≥ e−tEQ|S |, whose right-hand side equals e−Θ(1)tn1/3
in view of (13).

We see then that

E
(
M0

n −M t
n

)2 ≤ 2Var(Mn)
(
1− e−Θ(1)tn1/3)

.

In the subcritical regime, where t = o(1)n−1/3, this right-hand side is 2Var(Mn)Θ(1)tn1/3. By
Claim 1, this is Θ(1)tn.

With the claim admitted, we have derived (8); it remains to offer some justification of the claim.
The first part is the assertion of energy fluctuation consistent with the belief that the static Bernoulli
LPP model is a member of the KPZ universality class. Regarding the second, it is useful to consider
the geodesic Γn from (0, 0) to (n, n), whose energy attains the value Mn. Any vertex v on Γn that
is assigned the value zero by the static environment ω necessarily satisfies Mn −Mn[v] = −1; since
such v number Θ(1)n, we see the lower bound in Claim 2. To argue for the upper bound, we should
establish that vertices v that do not lie on Γn make no more than a comparable contribution to
the sum in Claim 2 than do those v that reside on Γn. In fact, if v ∈ Λn has horizontal distance

to Γn equal to k ∈ J1, nK, we claim non-rigorously that E
(
Mn −Mn[v]

)2
has order k−3/2. Suppose

further for simplicity and in essence without loss of generality that v has a given coordinate along
the diagonal y = x such as the midway value 2−1/2n. We may consider the routed geodesic energy
profile Z, namely the function Z(z) of the second, anti-diagonal, coordinate z that reports the
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0zmax z

k

0

n

n/2

Γn

zmaxzmax zz 00

a vertical shift of − Z↙n,n

Z↗0,0

Z

Figure 2. In the left sketch, the lattice Z2 has been rotated counterclockwise by
forty-five degrees, and contracted by a factor of 21/2. The geodesic thus passes
from (0, 0) to (0, n). The formerly anti-diagonal midlife line y = n/2 witnesses
the geodesic’s passage at location zmax. In the middle sketch, the inverted profile

−Z↙
n,n has been translated vertically so as to touch, but not to cross, the profile

Z↗
0,0. Horizontal coordinates of contact between the two graphs are locations of

passage for geodesics through the midlife line y = n/2. The two profiles make jumps
valued in {−1, 0, 1} and resemble random walk, in a similiar fashion to Bernoulli-p
measure being invariant for the totally asymmetric simple exclusion process. The
routed weight profile Z is depicted in the right sketch: its maximizers are the same
locations of passage.

maximum energy among upright paths that pass—are routed—through coordinate z on reaching

the diagonal coordinate 2−1/2n. This function takes the form Z = Z↗
(0,0)(z) + Z↙

(n,n)(z), where

Z↗
(0,0)(z) =M

[
(0, 0) → (n/2 + z, n/2− z)

]
and Z↙

(n,n)(z) =M
[
(n/2 + z, n/2− z) → (n, n)

]
;

the summands are energy profiles with one endpoint fixed, the variable endpoint being either ad-
vanced ↗ or retarded ↙ along the diagonal relative to the fixed endpoint. The profile Z achieves
its maximum at the location zmax of passage of the geodesic Γn through the anti-diagonal indexed
by 2−1/2n. In a heuristical view that is advanced in Figure 2, the profile Z about zmax resembles
a random walk around its maximum value. The quantity Mn −Mn[v] is either zero or minus one,
since the present choice of v does not belong to Γn. If this quantity is not zero, the random walk
profile Z returns to its maximum Z(zmax) at exactly k steps from zmax—an occurrence depicted
for k = 3 in Figure 2. It is an exercise that a simple random walk on a domain of length much
exceeding k makes a return to its maximum value at distance exactly k from its maximizer with

probability of order k−3/2. We have thus argued that, indeed, the order of E
(
Mn−Mn[v]

)2
is k−3/2.

Since
∑

k≥1 k
−3/2 is finite, we see that off-geodesic v collectively contribute order n to the sum with

which Claim 2 is concerned. This is the same order as the contribution offered by their on-geodesic
cousins; the case of Claim 2 rests here.
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2.3. Dynamical formula for variance in Gaussian LPP. The harmonic analytic tool that
we will use was developed by Chatterjee [Cha14] in the context of another discrete LPP model
whose noise variables are independent standard Gaussians. While we will eventually extend them
to Brownian LPP, our model of choice, by suitably passing to the limit, momentarily we state the
versions of basic inputs we will be relying on in the setting of the discrete Gaussian model.

In this case, the independent standard Gaussians which form the time-zero noise environment are
updated independently according to Ornstein-Uhlenbeck dynamics (2). Denoting the time-t geodesic
Γt
n and its energy M t

n, just as we did for other models, the overlap O(Γ0
n,Γ

t
n) is defined to be the

cardinality of the vertices in Z2 that lie in both Γ0
n and Γt

n.

We now come to a critical formula, namely the following dynamical formula for variance:

Var(Mn) = 2

∫ ∞

0
e−tEO(Γ0

n,Γ
t
n) dt . (14)

Further, it is known that the mean overlap function [0,∞) → R : t→ EO(Γ0
n,Γ

t
n) is non-increasing.

Two important consequences follow from this formula. They will be stated and proved in Section 4;
here, we briefly indicate them.

Low supercritical overlap: On the basis of the KPZ-inspired scaling Var(Mn) = Θ(1)n2/3,
alongside (14) and the decrease in mean overlap, it follows that there is a constant D > 0 such that
for any t ≥ 0,

te−tEO(Γ0
n,Γ

t
n) ≤ Dn2/3 (15)

which along with Markov’s inequality suffices to show low supercritical overlap.

Subcritical energy stability: A generalization of (14) further implies

E(M0
n −M t

n)
2 = 2

∫ t

0
e−sEO(Γ0

n,Γ
s
n) ds = O(nt) , (16)

which in the subcritical case implies that, except with small probability, |M0
n −M t

n| = o(n1/3) =
o
(
|M0

n − EM0
n)|

)
, or Corr(M0

n,M
t
n) = 1− o(1).

There are thus two natural order parameters by which we may seek to verify the transition in
dynamical Brownian LPP at time-scale t = Θ(1)n−1/3. These involve energy and overlap. Given
the above, one may term subcritical energy stability in (16) or supercritical low overlap in (15) as
the “easy directions”, with establishing any form of dynamical transition requiring the proof of one
of the “hard directions”, namely, subcritical-high-overlap or supercritical-energy-decorrelation.

We pursue the former and prove O(Γ0
n,Γ

t
n) ≥ dn when t ≪ n−1/3 (for some constant d > 0), and

thereby establish the overlap transition. The other hard direction, i.e., proving Corr(M0
n,M

t
n) = o(1)

when t≫ n−1/3 remains an attractive open problem that may require significant new ideas.

A recent preprint [ADS23] studies dynamical versions of more general first and last passage perco-
lation models, in which each variable is refreshed at rate one as in dynamical Bernoulli LPP from
Section 2.1. Chatterjee [Cha14] also considered this type of update, calling it independent flip dy-
namics. Deriving a version of the dynamical formula for variance (14), [ADS23] proves counterparts
of (15) and (16) for the models it examines. The hard-directions continue to remain open beyond
the results of this paper, except, as already mentioned, in the case of random matrices in [BLZ20]
where the availability of a much richer class of tools facilitates the proof of universality of this
dynamical transition.
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2.4. Geometric and random LPP tools. We finish this section with a brief overview of the
remaining tools we will be relying on to implement the central idea in the paper. As will be
elaborated shortly in Section 3.3, the key innovation in this paper seeks to capture the energetic
and geometric shadow that the geodesic Γn(t) casts at time zero by a proxy construction. More

precisely, when t ≪ n−1/3, relying on the stability input in (16), we will build a path—a proxy for
the time-t geodesic Γn(t)—that mimics rather closely the route of Γn(t) along with the property
that its time-zero energy is close to the time-t energy of Γn(t). This technique will substantially
transport time t geodesic geometry and energy data into the time zero model and will permit results
about dynamics to be characterized in terms of the time-zero copy of static Brownian LPP. The need
then arises to show that certain static events for Brownian LPP are suitably rare. A particularly
important event will be the existence of well separated peaks that are close rivals in height in the
LPP energy landscape. Strong quantitative assertions concerning the geodesic energy profiles will be
needed for Brownian LPP to obtain probability bounds for the above event. These assertions have
become available in recent years due to an important geometric and probabilistic tool for the study
of KPZ universality: the Brownian Gibbs resampling technique. For n ∈ N and x ≥ 0, let Mn(x)
denote the geodesic energy for the route (0, 0) → (x, n). The energy profile [0,∞) → R : x→Mn(x)
may, by the Robinson-Schensted-Knuth correspondence, be embedded as the uppermost curve in
an (n + 1)-curve system of mutually avoiding Brownian motions. This system thus satisfies an
attractive Brownian Gibbs resampling property that expresses the law of a curve fragment given
the ensemble remainder in terms of Brownian bridge conditioned on suitable avoidance. On passing
to the limit of high n one obtains the parabolic Airy line ensemble [PS02] exhibiting a similar
resampling property shown in [CH14]. However for our purposes, we will be making important
use of the recent work [CHH19] where Brownian Gibbs analysis has yielded strongly quantified
comparisons between scaled energy profiles in Brownian LPP and Brownian motion.

This study also relies on several aspects of the geometry of near-ground states in Brownian LPP.
These have been developed in a companion paper, [GH20a]. Viewed under KPZ scaling, geodesics
have modulus of continuity with Hölder exponent 2/3−. The results that we rely on from [GH20a]
include a robust, all-scale, assertion to this effect, and a counterpart concerning energy. Other novel
geometric inputs needed from [GH20a] include a bound on the typical energetic shortfall incurred
by a path that mimics a geodesic route while making lengthy but slender excursions away from it;
and a quantitative claim that the geodesic advances in a regular fashion, even microscopically.

3. The scaled version of the main result and a sketch of the proof ideas

The previously mentioned Brownian Gibbs analysis as well other inputs, say those developed in
[GH20a], are naturally suited to a scaled coordinate system. We will thus be primarily working in
these coordinates as well even though the main result Theorem 1.3 is most naturally expressed in
unscaled language. We develop the scaled notation in a first subsection. The proxy construction
mooted in Section 2.4, the technical backbone of the proof of our main result, Theorem 1.3, is
delicate and involves several steps and we expand on that as well as other ideas involved in the
proof of Theorem 1.3 next. We will then indicate several main tools that we will need. The section
ends with a guide to where these tools will be proved and to the structure of the rest of the paper.

3.1. Brownian LPP in scaled coordinates. Recalling the KPZ scaling from Section 1.1 note
that the one-third exponent governs the energetic fluctuation of the geodesic between (0, 0) and
(n, n): indeed, recalling the definition (1), if we write

M
[
(0, 0) → (n, n)

]
= 2n+ n1/3Wgt

[
(0, 0) → (n, n)

]
, (17)
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then the term Wgt
[
(0, 0) → (n, n)

]
is a random but unit-order quantity, tight in n1. This is

the scaled geodesic energy, which we will call weight. When geodesic energy [0,∞) → R : x →
M

[
(0, 0) → (x, n)

]
is varied from x = n, it is changes of order n2/3 in x that result in non-trivial

correlation. Regarding notation, note that we are presently discussing aspects of the static Brownian
LPP model; our notation carries no superscripts—we refer to M , not M t—in accordance with the
usage set out in Subsection 1.3.1.

We will specify scaled coordinates under which the journey between (0, 0) and (n, n) corresponds
to the unit vertical journey between (0, 0) and (0, 1), and for which horizontal perturbation of

the endpoint (n, n) by magnitude n2/3 corresponds to unit-order scaled horizontal perturbation.
Moreover, we will associate a scaled energy, or weight, to the image of any path in scaled coordinates.
In the next paragraphs, we specify the scaling map Rn : R2 → R2 whose range specifies scaled
coordinates; introduce notation for scaled paths; specify the form of scaled energy; and discuss
notation for the dynamical version of the scaled model.

3.1.1. The scaling map. For n ∈ N, the n-indexed scaling map Rn : R2 → R2 is given by

Rn

(
v1, v2

)
=

(
2−1n−2/3(v1 − v2) , v2/n

)
. (18)

The scaling map acts on subsets C of R2 with Rn(C) =
{
Rn(x) : x ∈ C

}
.

3.1.2. Scaling transforms staircases to zigzags. The image of any staircase under Rn will be called
an n-zigzag. The starting and ending points of an n-zigzag Z are defined to be the image under Rn

of the corresponding points for the staircase S such that Z = Rn(S).

Observe that the set of horizontal lines is invariant under Rn, while vertical lines are mapped to
lines of gradient −2n−1/3. Thus, an n-zigzag is the range of a piecewise affine path from the starting
point to the ending point which alternately moves rightwards along horizontal line segments and
northwesterly along sloping line segments of gradient −2n−1/3.

Note for example that, for given real choices of x and y, a journey which in the original coordinates
occurs between (2n2/3x, 0) and (n + 2n2/3y, n) takes place in scaled coordinates between (x, 0)
and (y, 1). We may view the first coordinate as space and the second as time, though the latter
interpretation should not be confused with dynamic time t; with this view in mind, the journey at
hand is between x and y over the unit lifetime [0, 1].

3.1.3. Compatible triples. Let (n, s1, s2) ∈ N× R2
≤, where we write R2

≤ =
{
(s1, s2) ∈ R2 : s1 ≤ s2

}
.

Taking x, y ∈ R, does there exist an n-zigzag from (x, s1) and (y, s2)? Two conditions must be
satisfied if there is to be.

First: as far as the data (n, s1, s2) is concerned, such an n-zigzag may exist only if

s1 and s2 are integer multiplies of n−1 . (19)

We say that data (n, s1, s2) ∈ N× R2
≤ is a compatible triple if it verifies the last condition. We will

consistently impose this condition, whenever we seek to study n-zigzags whose lifetime is [s1, s2].
The use of compatible triples should be considered to be a fairly minor detail. As the index n
increases, the n−1-mesh becomes finer, so that the space of n- zigzags better approximates a field
of functions, defined on arbitrary finite intervals of the vertical coordinate, and taking values in the
horizontal coordinate.

1That the leading order term grows as 2n follows from that M
[
(0, 0) → (n, n)

]
is distributed as the leading eigenvalue

of an n×n GUE ensemble (which follows from [Bar01, GTW01] and [Gra99]) and the well known asymptotic behavior
of the latter (see e.g. [TW94] or [Led07, Aub05] for tail estimates).
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ns2 + 2n2/3x ns2 + 2n2/3y

ns1 + 2n2/3x

s1
x

y
s2

Figure 3. Let (n, s1, s2) be a compatible triple and let x, y ∈ R. The endpoints of
the geodesic in the left sketch are such that, when the scaling map Rn is applied
to produce the right sketch, the result is the n-polymer ρn

[
(x, s1) → (y, s2)

]
from

(x, s1) to (y, s2).

Associated to a compatible triple is the notation s1,2, which will denote the difference s2 − s1. The
law of the underlying Brownian ensemble B : R × Z → R is invariant under integer shifts in the
latter, curve indexing, coordinate. This translates to an invariance in law of scaled objects under
vertical shifts by multiples of n−1, something that makes the parameter s1,2 of far greater relevance
than the individual values s1 or s2.

Returning to the above posed question, the second needed condition is that the horizontal coordinate
of the unscaled counterpart of the latter endpoint must be at least the former, which translates into
requiring,

y − x ≥ −2−1n1/3s1,2 . (20)

3.1.4. Zigzag subpaths. Let ϕ denote an n-zigzag between elements (x, s1) and (y, s2) in R× n−1Z.
Let (u, s3) and (v, s4) be elements in ϕ ∩

(
R × [s1, s2] ∩ n−1Z

)
. Suppose that s3 ≤ s4 (and that

u ≤ v if equality here holds), so that (u, s3) is encountered before (v, s4) in the journey along ϕ.
The removal of (u, s3) and (v, s4) from ϕ results in three connected components. The closure of one
of these contains contains these two points and this closure will be denoted by ϕ(u,s3)→(v,s4). This
is the zigzag subpath, or sub-zigzag, of ϕ between (u, s3) and (v, s4).

3.1.5. Staircase energy scales to zigzag weight. Let n ∈ N and i, j ∈ N satisfy i < j. Any n-
zigzag Z from (x, i/n) to (y, j/n) is ascribed a scaled energy, which we will refer to as its weight,
Wgt(Z) = Wgtn(Z), given by

Wgt(Z) = 2−1/2n−1/3
(
E(S)− 2(j − i)− 2n2/3(y − x)

)
(21)

where Z is the image under Rn of the staircase S.

3.1.6. Maximum weight. Let n ∈ N. The quantity Wgtn
[
(0, 0) → (0, 1)

]
specified in (17) is simply

the maximum weight ascribed to any n-zigzag from (0, 0) to (0, 1).
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Let (n, s1, s2) ∈ N× R2
≤ be a compatible triple. Suppose that x, y ∈ R satisfy y ≥ x− 2−1n1/3s1,2.

We now define Wgtn
[
(x, s1) → (y, s2)

]
such that this quantity equals the maximum weight of any

n-zigzag from (x, s1) to (y, s2). We must set

Wgtn
[
(x, s1) → (y, s2)

]
(22)

= 2−1/2n−1/3
(
M

[
(ns1 + 2n2/3x, ns1) → (ns2 + 2n2/3y, ns2)

]
− 2ns1,2 − 2n2/3(y − x)

)
.

The quantity Wgtn
[
(x, s1) → (y, s2)

]
may be expected to be, for given real choices of x and y that

differ by order s
2/3
1,2 , a unit-order random quantity; this collection of random variables is tight in the

scaling parameter n ∈ N and in such choices of s1, s2 ∈ n−1Z and x, y ∈ R.

3.1.7. Highest weight zigzags are called polymers. An n-zigzag that attains the maximum weight
given its endpoints will be called an n-polymer, or, usually, simply a polymer. Thus, geodesics map
to polymers under the scaling map. As we recalled in Subsection 1.2.2, the geodesic with any given
pair of endpoints is almost surely unique. For x, y ∈ R and (n, s1, s2) ∈ N×R2

≤ a compatible triple,

we will write ρn
[
(x, s1) → (y, s2)

]
for the almost surely unique n-polymer from (x, s1) to (y, s2); see

Figure 3.

Though not standard, since the term ‘polymer’ is often used to refer to typical realizations of the
path measure in LPP models at positive temperature, the above usage of the term ‘polymer’ for
‘scaled geodesic’ is apt for our study, owing to the central role played by these objects.

3.1.8. Zigzags as near functions of the vertical coordinate. Suppose again that ϕ is an n-zigzag
between points (x, s1) and (y, s2) in R × n−1Z. For s ∈ [s1, s2] ∩ n−1Z, we will write ϕ(s) for the
supremum of values x ∈ R for which (x, s) ∈ ϕ. This abuse of notation permits ϕ(s) to denote the
horizontal coordinate of the point of departure from vertical coordinate s in the journey along ϕ
from (x, s1) to (y, s2). This convention is adopted partly because it captures the notion that the
typical zigzags ϕ we will consider—polymers or concatenations thereof—are closely approximable
by a real-valued function of the vertical coordinate s ∈ [s1, s2], at least when n is high—indeed, the
maximum length of the horizontal line segments in an n-polymer is readily seen to decay to zero
in n with high probability. (Corollary 8.1, a result proved in [GH20a], quantifies this assertion.)

3.1.9. Dynamical Brownian LPP in scaled notation. We have introduced notation for several aspects
of static Brownian LPP in scaled coordinates. Notation for the dynamical model is inherited via the
convention laid out in Subsection 1.3.1. Thus, ρtn

[
(x, s1) → (u, s2)

]
is the n-polymer from (x, s1)

to (y, s2) in the copy of Brownian LPP offered by the marginal noise environment B(·, ·, t). This
polymer has weight Wgttn

[
(x, s1) → (u, s2)

]
according to that noise environment. We make two

comments about this notation.

First, notation that includes the superscript is not fully scaled, in the sense that the dynamic time
parameter t ≥ 0 is unscaled. A fully scaled notation would write ρτn in place of ρtn, where τ = tn1/3

is scaled time. Indeed, an inviting prospect is the study of the dynamical KPZ scaling limit formally
specified by the random fields Wgtτ∞ and ρτ∞ indexed by pairs of planar points (with unequal vertical
coordinates) as τ ≥ 0 varies. Theorem 1.3 may represent a significant first step in this study.

Second, we mention a source of confusion regarding notation specific to the study of dynamical LPP
models to which we alluded briefly in Subsection 3.1.2. In static Brownian LPP, it is sometimes
natural to regard the vertical planar coordinate as time, and, for example, to speak of the lifetime
[s1, s2] of the polymer ρn

[
(x, s1) → (y, s2)

]
. This usage may however conflict with reference to

dynamic time t. In order to alleviate confusion, we reserve the letter s for reference to the vertical
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coordinate, and t for dynamic time. We make occasional reference to the vertical coordinate in the
temporal sense. These usages are limited to the term ‘lifetime’ in the above sense; to the ‘duration’
s1,2 = s2−s1 of such a lifetime; and to the coordinate s of a planar point (x, s), which we sometimes
call the ‘moment’ s.

For the ease of readability, we restate our principal conclusion Theorem 1.3 in scaled language next.

3.2. The main result scaled. Indeed, let ρ and ϕ denote two n-zigzags. The set ρ∩ ϕ∩
(
R×n−1Z

)
is the intersection of the union of the horizontal segments of ρ with the counterpart union for ϕ.
Define the scaled overlap On(ρ, ϕ) ∈ [0,∞) to be the product of 2n−1/3 and the one-dimensional
Lebesgue measure of the set ρ ∩ ϕ ∩

(
R× n−1Z

)
. Note from the form (18) of the scaling map Rn

that this scaled overlap is equal to n−1O
(
R−1

n (ρ), R−1
n (ϕ)

)
; namely, it is the (1/n)th multiple of the

overlap of the preimage staircases R−1
n (ρ) and R−1

n (ϕ) specified in Section 1.4. Thus, for example,
On(ρ, ρ) = 1 for any n-zigzag ρ from (0, 0) to (0, 1).

For t ≥ 0, the time-t polymer ρtn
[
(0, 0) → (0, 1)

]
will be denoted by the shorthand notation ρtn.

(The unscaled journey is from (0, 0) to (n, n), so that this shorthand is consistent with the usage
made in Section 2.1.) The dynamic scaled overlap function is specified to be [0,∞) → [0,∞) : t→
On

(
ρ0n, ρ

t
n

)
.

Theorem 3.1.

(1) There exist d ∈ (0, 1) and n0 ∈ N such that, for λ > 0, we may find h > 0 for which

t ∈
[
0, n−1/3 exp

{
− h(log log n)68

}]
and n ≥ n0 imply that

P
(
On

(
ρ0n, ρ

t
n

)
≥ d

)
≥ 1− (log n)−λ .

(2) There exists a constant D > 0 such that, for n−1/3 < t ≤ 1,

P
(
On

(
ρ0n, ρ

t
n

)
≤ Dτ−1/2

)
≥ 1− τ−1/2 ,

where τ ∈ (1, n1/3] is specified by t = n−1/3τ .

3.3. Concepts for proving high subcritical overlap via proxy construction. As indicated
in Section 2.3, by far the most substantial technical contribution of this article is the proof of
Theorem 3.1(1) which is an assertion of high subcritical overlap. In this section, we provide a
detailed overview of the proof.

During the overview, we naturally fix time t = τn−1/3 at a subcritical value, so that the scaled
time parameter τ satisfies τ ≪ 1. Recall the two inputs discussed in more or less precise terms in
Sections 2.3 and 2.4:

(1) Subcritical weight stability: a weight such as Wgtt
′
n

[
(x, 0) → (y, 1)

]
for given unit-order

x, y ∈ R typically varies little relative to its initial value between times t′ = 0 and t′ = t.
Indeed, (16) indicates that the mean squared difference between these t′ = 0 and t′ = t

weights is at most Θ(1)tn1/3. That is,

Wgttn
[
(x, 0) → (y, 1)

]
and Wgt0n

[
(x, 0) → (y, 1)

]
typically differ by order τ1/2. (23)

(2) Brownian resemblance for routed polymer weight profiles: for any given a ∈ n−1Z ∩ (0, 1),
the random function

x→ Zn(x, a) = Wgtn
[
(0, 0) → (x, a)

]
+Wgtn

[
(x, a) → (0, 1)

]
(24)
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bears a strong resemblance to Brownian motion. Thus, so is the profile specified by this
formula with the replacement Wgtn → Wgttn for any given time t ≥ 0.

As indicated rather quickly in Section 2.4, the broad approach in our arguments is to track the
shadow of a time-t event at time zero. Namely, we will demonstrate that the event of low subcritical
overlap—that On

(
ρ0n, ρ

t
n

)
is at most one-hundredth, say—typically forces the occurrence of a static

event, at time zero, which we show to be rare.

Our proof will classify the event of low subcritical overlap according to several cases for the geometric
relationship between the polymers ρ0n and ρtn; in different cases, different rare time-zero events will
be shown to be forced. These time-zero events share a certain feature, however—that there exists a
zigzag whose geometry is substantially different from that of ρ0n but which is a near polymer at time
zero, in the sense that its time-zero weight differs from ρ0n’s by an insignificant margin of error. We
now expand more on this overarching theme. First, we will indicate more precisely the form of the
time-zero event that we will utilise, and explain why it is a rare event. Then we will indicate two
important cases for the relative geometry of ρ0n and ρtn in the event that these polymers experience
low overlap and how that forces a rare time-zero event.

3.3.1. The static rarity of a near polymer that significantly escapes the polymer’s route. The location
of time-zero polymer ρ0n between (0, 0) and (0, 1) at the mid-life time 1/2 is a unit-order quantity
which for convenience we suppose here to exceed the value one; that is, we suppose that (x, 1/2) ∈ ρ0n
for some x ≥ 1. A time-zero near polymer is a zigzag ϕ between (0, 0) and (0, 1) whose weight is
close to that of ρ0n, characterized by the condition that Wgt0(ϕ) ≥ Wgt0n− error, where error = o(1)
is a given small quantity. What is the probability that such a near polymer exists whose geometry
differs substantially from ρ0n’s? While delicate geometric possibilities need to be analyzed in the
proof, as a warm up, let us consider a vanilla version: what is the probability of the existence
of a near polymer ϕ that visits (−∞,−1] at the mid-life time; i.e., that such ϕ exists for which
(y, 1/2) ∈ ϕ for some y ≤ −1?

Brownian resemblance for the routed polymer weight profile provides an answer to this question. In
the event under discussion, the routed weight profile Z = Zn(·, 1/2) : R → R in (24) is maximized at
the value x ≥ 1. But it is also nearly maximized at the value y ≤ −1, since Z(y) = Z(x)− error =
Z(x) − o(1). Our mooted tool of Brownian resemblance indicates that the probability of this twin
peaks circumstance is accurately modelled by the probability that Brownian motion B : [−2, 2] → R
satisfies the condition that the suprema of B on the intervals [−2,−1] and [1, 2] differ by at most
a small quantity error = o(1). (The process B has been restricted to the interval [−2, 2] because

the profile Z : R → R globally tracks a parabola of the form −23/2x2; thus, the possibility that it is
nearly maximized at a value outside a compact set may be neglected.) This Brownian probability
of near coincidence of suprema is readily seen to have the form Θ(1) · error.

Thus we see that the tool of Brownian resemblance indicates that the probability of a static near
polymer, of weight deficit error = o(1), with substantial mid-life deviation from the route of the
polymer, is at most Θ(1) · error = o(1).

3.3.2. Low subcritical overlap: the case of one long excursion. Take the event of low overlap to be
On

(
ρ0n, ρ

t
n

)
≤ 1/2, say. We here consider a simple and instructive special case (or subevent) of

low overlap: that the time-zero polymer ρ0n adopts a globally rightward trajectory, intersecting the
planar interval [1,∞)×{1/2}; and that its time-t counterpart ρtn instead moves leftward, intersecting
the interval (−∞,−1]×{1/2}. In essence, this event captures the case that low overlap is accounted
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for by a single interval of excursion of ρtn away (and to the left of) ρ0n whose duration takes the form
of a macroscopic subinterval of [0, 1] (that contains the time one-half): see Figure 4(left).

We want to argue that this scenario typically forces a rare time zero event of the twin peaks kind
whose probability has just been bounded above. The most direct means of seeking to verify this is
simply to consider the time-t polymer as a candidate for a near polymer at time zero. The discussion
in Section 2.1 is pertinent for evaluating how viable this approach is. We argued there that, up
to t ≪ n−2/3, a typical initial polymer will suffer no significant weight change. For such choices
of t, ρtn is thus plausibly a time-zero near polymer, so that the event of a substantially separated
near-maximizer in the routed weight profile Z = Zn

(
·, 1/2

)
is indeed forced.

However for a given time t on the longer subcritical scale t≪ n−1/3, the above reasoning fails, since
as we indicated in Section 2.1, beyond the shorter scale t = O(1)n−2/3, the time-zero weight of ρtn
will be hopelessly uncompetitive. Nonetheless, despite the naive strategy failing at this point, one
of the key innovations in this article is the development of an approach to resolve this difficulty.

The main input that we employ is the subcritical weight stability estimate (23). In particular,
writing (y, 1/2) with y ≤ −1 for an element of ρtn, it seems to follow from three applications of (23)
that

Wgtt
′
n

[
(0, 0) → (0, 1)

]
, Wgtt

′
n

[
(0, 0) → (y, 1/2)

]
and Wgtt

′
n

[
(y, 1/2) → (0, 1)

]
typically vary between t′ = 0 and t′ = t by order τ1/2.

There is a flaw in this reasoning: (y, 1/2) is a special planar point, selected to lie on ρtn, so one of
the endpoints in (16) is not given in two of the applications. Handling this precisely will lead to a
deteriorated bound of the form τα for some α < 1/2, but we will not address this difficulty here.

We will exploit the displayed stability effect to construct a zigzag whose geometry mimics ρtn’s but
whose time-zero weight is close to the maximizer ρ0n’s. We label this construct ρt→0

n and call it
the time-zero proxy of ρtn; see Figure 4(left). The proxy is the zigzag between (0, 0) and (0, 1) that
has maximum weight at time zero subject to passing through (y, 1/2). As such, ρt→0

n equals the
union of ρ0n

[
(0, 0) → (y, 1/2)

]
and ρ0n

[
(y, 1/2) → (0, 1)

]
. The proxy mimics the pertinent geometric

discrepancy of ρtn from ρ0n by passing through the leftward location y at the midlife time one-half.
But it also accurately mimics in its time-zero weight the time-zero maximum weight Wgt0n for the
journey from (0, 0) to (0, 1). Indeed, we claim that, on the last displayed typical event,

Wgt0n
(
ρt→0
n

)
−Wgt0n

[
(0, 0) → (0, 1)

]
has order τ1/2. (25)

This claim is confirmed by noting that, on the same typical event,

Wgt0n
(
ρt→0
n

)
= Wgt0n

[
(0, 0) → (y, 1/2)

]
+Wgt0n

[
(y, 1/2) → (0, 1)

]
= Wgttn

[
(0, 0) → (y, 1/2)

]
+Wgttn

[
(y, 1/2) → (0, 1)

]
+Θ(τ1/2)

= Wgttn(ρ
t
n) + Θ(τ1/2) = Wgttn

[
(0, 0) → (0, 1)

]
+Θ(τ1/2)

= Wgt0n
[
(0, 0) → (0, 1)

]
+Θ(τ1/2) ,

where weight stability along each of the three journeys addressed by the typical event has been
invoked.

We see then how the proxy ρt→0
n lives as a near polymer—with weight deficit of order τ1/2—

alongside ρ0n at time zero. We are considering the case that ρ0n intersects [1,∞)× {1/2}, and that
ρtn intersects (−∞,−1] × {1/2}; but the latter intersection is maintained by ρt→0

n in light of the
proxy’s construction. Thus (25) implies the twin peaks event that the routed profile Z = Zn

(
·, 1/2

)
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n

ρt→0
n

ρtn

x→ Wgt[(x, 1/2) → (0, 1)]

x→ Wgt[(0, 0) → (x, 1/2)]

vertical translate of

the routed weight profile

x→ Zn(x, 1/2)

Θ(τ 1/2)

ρtn(1/2)
ρ0n(1/2)
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ρ0
n

ρtn

h

x

Figure 4. In the left sketch, there is one long excursion between the red polymer
at time zero and the blue polymer at time t, so that the brown proxy ρt→0

n (which
merges at both ends with the red curve) is composed of two time-zero polymers that
abut an element (marked with a small square) of ρtn at height one-half. The middle
sketch illustrates behaviour for certain weight profiles that is typically consistent
with the left sketch: above, near touch, namely a close encounter between the in-
dicated transformations of narrow weight profiles routed at (0, 0) or (0, 1); below,
and equivalently, twin peaks, namely a value at ρtn(1/2) for the time-zero routed
weight profile x → Z0

n(x, 1/2) rivalling the peak at ρ0n(1/2) to a height of the order

τ1/2 seen in (25). The right sketch indicates the polymers at time zero and time t
in the case of several excursions of roughly equal duration that is the subject of
Subsection 3.3.3. The three vertical double-arrowed intervals illustrate excursions of
duration of order 2−ℓ. The proxy ρt→0

n is not drawn, but it interpolates by means
of time-zero polymers the various small crosses. Let h denote the y-coordinate of
one of the displayed dotted horizontal intervals I; and let x denote the horizontal
coordinate of the cross that lies on I. Associated to I is a shortfall in weight of the
proxy relative to the time-zero polymer ρ0n, since the value Z0

n(x, h) lies below the
supremum of the routed weight profile Z0

n(·, h).

from (24) has suprema on the intervals (−∞,−1] and [1,∞) that differ by order τ1/2. It is not hard

to show that with probability Θ(1)τ1/2 Brownian motion of rate two on say [−2, 2] has suprema



DYNAMICAL LAST PASSAGE PERCOLATION 25

on [−2,−1] and [1, 2] that differ in this manner. But given the strong Brownian resemblance of
the routed weight profile indicated around (24), this inference in essence transmits to the profile Z.
Thus a special case of low overlap between ρ0n and ρtn has heuristically been shown to be rare. We
may summarise the obtained inference by the informally expressed bound

P
(
On

(
ρ0n, ρ

t
n

)
≤ 1/2 , ρtn avoids ρ0n for a unit-order duration around time 1/2

)
≤ Θ(τ1/2) .

3.3.3. Low subcritical overlap: the case of several excursions of roughly equal duration. Low overlap
may occur in the form of not merely one long excursion of ρtn relative to ρ0n but of several such
excursions. We next offer an argument treating the case of several excursions of roughly equal
duration. This duration will have scale 2−ℓ for a dyadic scale parameter ℓ ∈ N that is supposed
to satisfy 2−ℓ ≫ n−1, in order to ensure that excursion duration is greater than the microscopic
vertical scale. Indeed in the actual proof, we will choose a scale ℓ of excursions that dominate
the low-overlap and hence one can think of the preceding case of one single excursions as simply
corresponding to ℓ = O(1). (The name ‘long excursion’ may thus seem to be a misnomer, because
the argument will treat excursions much shorter than the single excursion already discussed. But
the names ‘long’ and ‘short’ are convenient monikers for the two cases that drive our analysis with
the latter reserved for the case of microscopic excursions of size comparable to 1/n.) The latter case
where a macroscopic fraction of the vertical interval [0, 1] is populated by excursions between ρ0n
and ρtn whose durations barely exceed the microscopic scale n−1, will be treated separately.

It is useful to now provide a more precise specification of excursions—the actual prescription, which
entails some further detail, appears in Definition 7.1. The symmetric difference ρ0n∆ρ

t
n consists of

sub-zigzags of ρ0n and ρtn that may be paired up when the starting and ending points are shared.
The closure of the union of paths in a pair forms a connected set—and this is what we call an
excursion. (See the left sketch in Figure 4, and Figure 6, for illustrations.) The height, or duration,
of an excursion is the length of the interval of vertical coordinates that it occupies. Consider an
event of low overlap, that On

(
ρ0n, ρ

t
n

)
is at most one-half, say. For a dyadic scale parameter ℓ ∈ N,

we will consider an event under which such low overlap is largely due to excursions whose height
lies in [2−ℓ−1, 2−ℓ]; to be specific, the event that the summed height of such excursions is at least
one-quarter, say. In practice, non-overlap may occur due to excursions populating several different
dyadic scales, and by pigeonhole principle, some scale contributes a 1/ log n fraction (which will
suffice for our argument) but presently we work in the more extreme case.

Consider given ℓ ∈ N for which 2ℓ ≪ n; in our later rigorous argument, this hypothesis will essentially
take the form that

2−ℓn grows faster than any power of log n . (26)

The precise condition appears in (56). We construct a proxy ρt→0
n to the time-t polymer ρtn that

mimics geometry at vertical scale 2−ℓ (note that ℓ in the application will be random). To do so, we
mark points along ρtn at vertical separation given by a small constant multiple of 2−ℓ. (In fact, in the
rigorous implementation, the separation will be taken to be o(2−ℓ) to ensure that the geometry is
mimicked with high probability; a detail we ignore here for the sake of exposition.) The proxy ρt→0

n

is defined to be the union of the time-zero polymers between consecutive pairs of marked points.

The proxy will demonstrate the rarity of the event of low overlap via the dominant mechanism of
scale-ℓ excursions if we argue in favour of two bounds: first, an assertion of weight mimicry of the
time-t polymer on the part of the proxy; namely, for a positive exponent a,∣∣Wgt0n

(
ρt→0
n

)
−Wgttn

(
ρtn

)∣∣ typically has order at most 22ℓ/3τa . (27)
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Second, that the proxy’s time-zero weight is far below the maximum:

Wgt0n
(
ρt→0
n

)
−Wgt0n

(
ρ0n

)
is typically negative and of order at least 22ℓ/3 . (28)

For all but rather small ℓ ∈ N, the weight mimicry (27) of the proxy is not strong enough to render
the proxy a near polymer at time-zero as its counterpart was in the case of one long excursion.
However, since τ ≪ 1, this mimicry is adequate when allied with (28) to force the proxy’s weight
to be much closer to Wgttn

(
ρtn

)
than to Wgt0n

(
ρtn

)
. Consequently, when the two displayed bounds

hold,

Wgttn(ρ
t
n)−Wgt0n(ρ

0
n) ≥ Θ(1)22ℓ/3 . (29)

Why is this improbable? The concerned weights are unit-order random quantities with tails governed
by the GUE Tracy-Widom distribution, so we have an answer unless ℓ ∈ N is low. But we want to
include the case of low ℓ. We thus instead invoke subcritical weight stability (23) with x = y = 0 to

find that Wgttn(ρ
t
n)−Wgt0n(ρ

0
n) is typically at most of order τ1/2. Since τ ≪ 1, this is inconsistent

with (29), so we have a conclusion of the desired form.

We have reduced then to explaining why (27) and (28) hold. Regarding (27), we will present
an argument with some aspects fallacious which nonetheless capture the key ideas. Note that∣∣Wgt0n

(
ρt→0
n

)
− Wgttn

(
ρtn

)∣∣ is bounded above by a sum of order 2ℓ terms, each of which has the

form ωi =
∣∣Wgt0n

[
(xi, si) → (xi+1, si+1)

]
− Wgttn

[
(xi, si) → (xi+1, si+1)

]∣∣ where the planar points
(xi, si) and (xi+1, si+1) are a consecutive pair used in the interpolative construction of the proxy.
Thus, |si+1 − si| has order 2−ℓ. It would seem that the typical value of ωi can be inferred from
the assertion of subcritical weight stability, which was used crucially in the preceding subsection.
In (23), we indicated the order of the typical weight difference of time-zero and time-t polymers
between shared endpoints at unit vertical distance. The typical value of ωt is such a weight difference
where now the vertical separation of the shared endpoints has order 2−ℓ. Replacing n by n2−ℓ in

(16), we obtain E
(
M0

2−ℓn
−M t

2−ℓn

)2 ≤ Θ(1)tn2−ℓ. Recalling the definition of polymer weight from

Subsection 3.1.6, and that τ denotes tn1/3, we find that, for x, y ∈ R with |x− y| = 2−2ℓ/3,∣∣∣Wgt0n
[
(x, 0) → (y, 2−ℓ)

]
−Wgttn

[
(x, 0) → (y, 2−ℓ)

]∣∣∣2 = Θ(1)τ2−ℓ .

Thus, it would seem that
∣∣Wgt0n

[
(x, 0) → (y, 2−ℓ)

]
−Wgttn

[
(x, 0) → (y, 2−ℓ)

]∣∣ typically has order at

most τ1/22−ℓ/2. We find then that the summand ωi is typically of order τ1/22−ℓ/2. Since the number
of summands ωi has order 2

ℓ, we obtain a strengthened form of (27) with right-hand side 2ℓ/2τ1/2.
Our argument is flawed because the endpoint pairs to which we have applied (23) are potentially
exceptional. We will develop and utilise robust counterparts to (23) that are capable of handling
such pairs; the outcome will be a bound of the form (27) for a small but explicit value of a > 0.

We now explain why (28) holds. As Figure 4(right) suggests, the mimicry at vertical scale 2−ℓ of
the polymer ρtn by the proxy ρt→0

n has the consequence that to each excursion between ρ0n and ρtn
of height of order 2−ℓ will correspond an excursion between ρ0n and ρt→0

n whose geometry, including
height, is not significantly different. As such, the symmetric difference ρt→0

n ∆ρ0n is a disjoint union of
components, which includes an order of 2ℓ excursions between the proxy and the time-zero polymer
of height of order 2−ℓ. The reader may glance ahead to Figure 7 which illustrates this aspect of
the construction. Any such excursion E is a union Et→0 ∪ E0, where Et→0 and E0 are n-zigzags
with a common pair of endpoints that are respective subpaths of ρt→0

n and ρ0n. Define the time-zero
excursion weight difference ∆(E) to be Wgt0(Et→0) −Wgt0(E0). It is not difficult to see that the



DYNAMICAL LAST PASSAGE PERCOLATION 27

weight difference in (28) is what we may call excursion additive. Namely,

Wgt0n
(
ρt→0
n

)
−Wgt0n

(
ρ0n

)
=

∑
E

∆(E) , (30)

where the right-hand sum is over the just identified excursions E between ρ0n and ρt→0
n .

We will now seek to bound below the preceding right-hand side. At this point, we rely on another
assertion that an excursion E of height of order 2−ℓ have the geometric feature that the two paths
E0 and Et→0 are horizontally typically at order 2−2ℓ/3 from each other at the mid-point height
h = h(E) of E. This is a consequence of the KPZ characteristic exponent of two-thirds that governs
transversal fluctuations; but the consequence isn’t trivial (see the upcoming point (1)).

We hence assume that this typical behaviour holds for a positive fraction of the order 2ℓ excursions.
Fixing such an excursion E, let (y, h) and (x, h) be respective elements of Et→0 and E0. As we will
see (in Section 9.1), we may express ∆(E) in terms of the routed profile Z = Zn

(
·, h(E)

)
from (24)

as ∆(E) ≤ Z(y)−Z(x). Since x is a maximizer of Z, ∆(E) is seen to be at most zero; and we may

determine its typical order by invoking Brownian similarity for Z alongside |y − x| = Θ(2−2ℓ/3),

indicating that the negative quantity ∆(E) has order 2−ℓ/3 (see e.g. Figure 4 (middle,lower) for an
illustration of the Brownianity in a different case).

The expression (30) is thus seen to be negative and of order at least 2ℓ ·2−ℓ/3 = 22ℓ/3. This completes
our argument in favour of (28); and our discussion of low overlap via scale-ℓ excursions. In the actual
proof, we will apply a union bound over all possible O(log n) many scales.

3.4. Key remaining ingredients. We conclude this overview by highlighting some points of in-
completeness in our discussion.

(1) In arguing for the bound (28), we invoked the typical geometric feature that the two paths

that constitute an excursion of scale 2−ℓ would have horizontal separation of order 2−2ℓ/3

at typical vertical coordinates. If many excursions are slender, with ρtn consistently running
closer than the characteristic displacement for much of the lifetime of excursions of this
polymer from ρ0n, the argument for (28) breaks down. We will present a separate argument
that slender excursions between the two polymers ρ0n and ρtn are a rarity.

(2) We have mentioned that the several excursions’ argument in Subsection 3.3.3 will run into
difficulty when 2ℓ is close to n—when low overlap is due to many excursions whose duration
barely exceeds the microscopic scale n−1 (the short excursions case). This case will require
a separate analysis that does not employ the proxy.

3.5. Structure of the rest of the paper. Several tools must be developed or recalled in order
to carry out the plan for proving Theorem 3.1 that we have indicated. Four main techniques may
be highlighted, to which the next four sections are devoted in turn.

(1) The use of Fourier theory for deriving low supercritical overlap, namely Theorem 3.1(2), as
well as for proving an assertion, Proposition 4.2, of subcritical weight stability, which we
have seen to be a cornerstone of our proposed proof approach to proving the high subcritical
overlap. As already alluded to in Section 2.3, this necessitates the extension of the tools
from Chatterjee’s theory of chaos and superconcentration to the setting of Brownian LPP.

(2) Static Brownian LPP results, presented in Section 5. Needed assertions about the static
model take two forms. First, statements about the geometry and weight of polymers uni-
formly as the endpoint pair of the static polymer is permitted to vary over a suitably scaled
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region, and have been developed in [GH20a]. Second, the resemblance to Brownian motion
of the routed profile weight profile (24). This result has been obtained in [GH20a] relying
on the Brownian resemblance of geodesic weight profile results from [CHH19].

(3) Proposition 4.2 asserts that the weight of a polymer with given endpoints typically changes

little under time increments of the form t ≪ n−1/3. A more robust assertion of subcritical
weight stability makes a comparable claim uniformly as the endpoint pair of the polymer is
varied suitably. Theorem 6.1 and Proposition 6.2 are such assertions; their proofs harness
the tools recalled in Section 5.

(4) In Theorem 7.2, the construction and main properties of the proxy ρt→0
n that captures time-t

polymer geometry with competitive time-zero weight. The construction employs the three
preceding sets of tools.

The verification that Proposition 6.2’s hypotheses are sufficient to permit use of the elements needed
for its proof occupies a few paragraphs. We present this verification in Appendix A.

With the indicated tools developed, the proof of Theorem 3.1(1) is derived in the final three sections
of the paper. Section 8 begins with an overview of how the cases of long and short excursions will be
analysed, and reduces the proof to statements concerning the two. Section 9 treats long excursions
and the rarity of slender excursions. Section 10 provides the analysis for the short excursions’ case.

4. Deductions from harmonic analysis:
the transition from weight stability to low overlap

Here, we develop the approximation theory needed to prove (15) and (16) for Brownian LPP. The
form of the expressions stay exactly the same which we record next in the interests of clarity.

Theorem 4.1. Dynamical Brownian LPP satisfies two properties.

(1) It enjoys a dynamical formula for variance:

Var(Mn) =

∫ ∞

0
e−tEO(Γ0

n,Γ
t
n) dt .

(2) The mean overlap function [0,∞) → R : t→ EO(Γ0
n,Γ

t
n) is non-increasing.

Note that the result is stated in terms of geodesic energy Mn and unscaled overlap O; this unscaled
expression is more natural for this result, despite our overall preference for scaled coordinates.

We next turn to subcritical energetic stability.

Proposition 4.2.

(1) Unscaled stability. For i, j ∈ N and x, y ∈ R with i ≤ j and x ≤ y, and for t ≥ 0,

E
∣∣∣M t

[
(x, i) → (y, j)

]
−M0

[
(x, i) → (y, j)

] ∣∣∣2 ≤ 2|x− y|t .

(2) Scaled stability. For (n, s1, s2) ∈ N× R2
≤ a compatible triple; x, y ∈ R that satisfy |y − x| ≤

2−1n1/3s1,2; and t ≥ 0 written in the form t = n−1/3τ ,

s
−2/3
1,2 E

∣∣∣Wgt0n
[
(x, s1) → (y, s2)

]
−Wgttn

[
(x, s1) → (y, s2)

] ∣∣∣2 ≤ 2s
1/3
1,2 τ .
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In the next section we recall aspects of Chatterjee’s monograph [Cha14] needed to prove the above
statements for discretely indexed Gaussian random variables, which will then yield the Brownian
LPP versions on passing to the limit.

4.1. Some general tools for Markovian dynamics. The monograph [Cha14] examines Markov-
ian dynamics, exploring relations between chaotic behaviour; the presence of many near-minima in
the energy landscape specified by the Markov chain’s equilibrium measure; and the phenomenon of
superconcentration, under which observables have variance significantly below the scaling compati-
ble with a central limit theorem. In this section, we specify certain general elements of the theory
as Lemmas 4.3 and 4.4, with a view to specializing them to prove Theorem 4.1 in the following one.

First, we specify the general apparatus for the inputs needed from [Cha14]. Let X = (Xt)t≥0 :
[0,∞) → K be a Markov process, valued in a set K. For our applications, K will be an Euclidean
space, so we will not worry about the topological properties of K; for the moment, assume that it is
a Polish space, equipped with the Borel σ-algebra. Assume also that X has an equilibrium measure,
which is a probability measure µ on K. Specify an inner product ⟨f, g⟩ =

∫
fg dµ for functions

f, g : K → R in the space L2(µ). Suppose that each element in the semigroup of operators
{
Pt :

t ≥ 0
}
is well-defined in its action on any f ∈ L2(µ) via the formula (Ptf)(x) = E

(
f(Xt)

∣∣X0 = x
)

for x ∈ K. The semigroup’s generator L acts on such f via Lf = limt↘0(Ptf − f)/t = ∂tPtf
∣∣
t=0

,
assuming that the right-hand side is well defined. In a simple consequence of the definition of L
and the semigroup property of P , the heat equation takes the form ∂tPt = LPt.

The Dirichlet form of the Markov semigroup Pt is specified via the inner product ⟨·, ·⟩:

E(f, g) := −⟨f, Lg⟩ = −
∫
fLg dµ . (31)

Lemma 4.3 (Dynamical formula for covariance). For f, g ∈ L2(µ),

Cov(f, g) := ⟨fg⟩ − ⟨f⟩⟨g⟩ =
∫ ∞

0
E
(
f, Pt(g)

)
dt .

In particular, we have the dynamical formula for variance:

Var(f) := ⟨f2⟩ − ⟨f⟩2 =
∫ ∞

0
E
(
f, Pt(f)

)
dt .

Proof. Note that Cov(f, g) = −
∫∞
0 ∂t⟨f, Ptg⟩dt. By the heat equation ∂tPt(g) = LPt(g), we have

∂t⟨f, Ptg⟩ = −E
(
f, Ptg

)
, (32)

so that the former assertion is obtained. The latter follows trivially. □

Towards specializing to the particular case of the Ornstein-Uhlenbeck semigroup, we assume that
the Markov process X is reversible and the generator L is self-adjoint, and negative semidefinite
with a discrete spectrum (it is well known that the Ornstein-Uhlenbeck semigroup satisfies these
properties. for instance, ). Note that zero is always an eigenvalue because L1 = 0. Consequently
the eigenvalues of −L may be ordered as a non-decreasing sequence

{
λn : n ∈ N

}
, with λ0 = 0, and

the corresponding sequence
{
un : n ∈ N

}
of eigenfunctions, where u0 = 1, is a complete orthogonal

basis for L2(µ).

Here is the second general tool that we will need.
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Lemma 4.4. The function [0,∞) → R : t → eλ1tE
(
f, Pt(f)

)
is decreasing. Consequently, so is

[0,∞) → R : t→ E
(
f, Pt(f)

)
.

Proof. From the heat equation follows the semigroup expression Pt = etL. Apply −LPt via this
representation to the decomposition f =

∑
k⟨f, uk⟩uk to learn that −LPtf =

∑
k λke

−λkt⟨f, uk⟩uk.
Applying (31), we find that E

(
f, Pt(f)

)
=

∑
k λke

−λkt⟨f, uk⟩2. The lemma’s first assertion then
follows from λk ≥ λ1 for k ≥ 1; its second assertion follows trivially. □

4.2. The dynamical formula for variance: proving Theorem 4.1.

4.2.1. Introducing approximating Gaussian models. As already indicated, to prove Theorem 4.1, we
must adapt results from [Cha14] that treat discrete Gaussians so that they apply to our continuous
Gaussian dynamic setting given by dynamical Brownian LPP.

To do this, we will need approximating discrete counterparts. It is easy enough to specify them,
indexed by m ∈ N+ = N \ {0}, with dynamical Brownian LPP formally obtained by taking m = ∞.
Recall the noise environment B : R× Z → R of static Brownian LPP (under a law labelled P). We
will consider these curves’ increments on a grid of intervals of length m−1.

For m ≥ 1, i ∈ Z and u ∈ m−1J0, nm − 1K, set X[m](u, i) = B(u + m−1, i) − B(u, i). Under P,{
X[m](u, i) : (u, i) ∈ m−1J0, nm−1K×Z

}
is an independent collection of Gaussian random variables

of mean zero and variance m−1. The variable name u is intended to suggest a real variable, in
view of our interest in the high m limit; but we specify a discrete Gaussian model via the noise
environment X[m]. It is convenient to think of the Gaussian variable X[m](u, i) as being attached
to the horizontal edge connecting (u, i) and (u+m−1, i). For given m ∈ N+, an east-north path from
(0, 0) to (n, n) is a path between these endpoints in the m-indexed lattice m−1J0, nmK × Z each of
whose steps is either an easterly movement along a horizontal edge between adjacent lattice points,
with displacement (m−1, 0), or a northerly movement, one level up with displacement (0, 1). Any
such path γ is ascribed an energy E[m](γ) as the sum of the X[m]-assigned values on the horizontal
edges that it encounters. There is rather trivially, almost surely, only one such path that attains
the maximum energy Mn[m]; this is the geodesic, to be called Γn[m].

The field X[m] is a coarsening of the white noise field dB attached to the Z-indexed system of lines.
In a formal sense, the static Brownian LPP geodesic Γn equals Γn[∞].

We next extend our static coupling of Brownian LPP and its approximants to the dynamical version.
Recall the notational abuse by which B : R×Z× [0,∞) → R denotes the dynamical Brownian LPP
noise environment; so that B(x, i, t) denotes the time-t value at x ∈ R of the i-indexed Brownian
motion. We simply specify X[m] : m−1J1, nmK × Z× R → R via

X[m](u, i, t) = B(u+m−1, i, t)−B(u, i, t) .

Natural notational extensions such asM t
n[m] and Γt

n[m] result. The overlap of two east-north paths
in the m-indexed lattice is said to be the product of m−1 and the cardinality of the set of horizontal
edges visited by both paths.

In order to apply the stated Markovian dynamics tools to the approximants X[m], we begin by
discussing the one-dimensional dynamics of the components X[m](u, i, ·) : [0,∞) → R. The sto-
chastic differential equation (2) is one-dimensional Ornstein-Uhlenbeck dynamics whose invariant
measure is a standard Gaussian law. Each component X[m](u, i, ·) : [0,∞) → R evolves according
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to OU dynamics with invariant measure equal to a Gaussian of mean zero and variance m−1 whose
corresponding SDE is obtained from (2) by a simple scaling:

dX(t) = −X(t)dt+
(
2m−1

)1/2
dW (t),

where W : [0,∞) → R is standard Brownian motion.

We now record the properties of these dynamics that we will need.

4.2.2. The Gaussian Ornstein-Uhlenbeck dynamics. Let ν0,σ2 denote the Gaussian law on R of mean

zero and variance σ2. Next we state two well-known facts about the resulting Ornstein-Uhlenbeck
semigroup on L2

(
ν0,σ2

)
and the natural generalization to the d-dimensional product space generated

by independent and identically distributed copies of this Gaussian law, where each coordinate evolves
independently. For σ = 1, these facts can be found in, for example, [Cha14, Chapter 2, Section 2].
Note however that, by scaling properties of Gaussian distributions, f(·) → f( 1σ ·) is an isometry from

L2
(
ν0,1

)
to L2

(
ν0,σ2

)
which preserves the indicated Dirichlet form and hence also the spectrum (the

analogous statement holds in any dimensions). Thus, the statements are valid for any positive σ.

(1) Dirichlet form. For any d ≥ 1, the Dirichlet form is given by

E(f, g) = σ2E⟨∇f,∇g⟩ . (33)

where ∇ denotes the gradient vector in d dimensions.

(2) Ornstein-Uhlenbeck coupling. Let t ≥ 0. Consistently with (3), there exists a t-determined
collection

{
Zt[m](u, i) : (u, i) ∈ m−1J1, nmK×Z

}
of random variables that is distributed as,

while being independent of, the collection X[m](·, ·, 0), such that

X[m](u, i, t) = e−tX[m](u, i, 0) +
(
1− e−2t

)1/2
Zt[m](u, i) .

4.2.3. Dynamical variance formula and mean overlap decrease for the approximating models. Next
is the manifestation of the general tools Lemmas 4.3 and 4.4 for the discrete Gaussian LPP models.

Lemma 4.5. Let Γ0
n[m]∩ Γt

n[m] be the set of horizontal edges e(u,i) :=
(
(u, i), (u+m−1, i)

)
, where

(u, i) ∈ m−1J0, nm− 1K × Z, that are shared by the geodesics Γ0
n[m] and Γt

n[m].

(1) The variance of geodesic energy is given by

Var
(
Mn[m]

)
= m−1

∫ ∞

0
e−tE

∣∣Γ0
n[m] ∩ Γt

n[m]
∣∣dt .

(2) The mean overlap function [0,∞) → [0,∞) : t→ m−1E
∣∣Γ0

n[m] ∩ Γt
n[m]

∣∣ is non-increasing.

Proof. (1). For convenience of expression in this argument, we record X[m][·, ·, t] in the form
Xt[m], a notation that runs in parallel with the usage Zt[m].

The Ornstein-Uhlenbeck coupling indicated a few moments ago implies that, for any f belonging to

L2
(
ν
⊗m−1J0,nm−1K×Z
0, 1

m

)
, namely to the L2-space of the product space generated by all the Gaussian

variables {X[m](u, i, 0) : (u, i) ∈ m−1J0, nm− 1K × Z},

Pt(f)(X
0[m]) = EZt[m]f

(
e−tX0[m] + (1− e−2t)1/2Zt[m]

)
,
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where the expectation is taken over Zt[m]. Since the geodesic energy Mn[m] is a piecewise linear
function of the variables X[m](u, i), it is absolutely continuous with the component-wise gradient,
almost surely, given by

∇u,iMn[m](X0[m]) = 1e(u,i)∈Γ0
n[m] .

By exchanging expectation and differentiation in the above expression for the Dirichlet form, we
find that, with f =Mn[m], E

(
Mn[m], PtMn[m]

)
equals

m−1EX0[m]EZt[m]

∑
u,i

∂X0[m](u,i)f(X
0[m])∂X0[m](u,i)f

(
e−tX0[m] + (1− e−2t)1/2Zt[m]

)
= m−1EX0[m]EZt[m]

∑
u,i

1e(u,i)∈Γ0
n[m]e

−t1e(u,i)∈Γt
n[m] = m−1e−tE

∣∣Γ0
n[m] ∩ Γt

n[m]
∣∣ . (34)

Thus, Lemma 4.3 yields Lemma 4.5(1).

(2). This is due to the above expression for E
(
Mn[m], PtMn[m]

)
, Lemma 4.4 and λ1 equalling one

for the OU dynamics (see [Cha14, Chapter 2, Section 4]). □

4.2.4. Convergence of the discrete Gaussian approximants.

Proposition 4.6. Let n,m ∈ N. The geodesic energy Mn[m] in the mth approximating model is at
most its limiting counterpart Mn. Regarding the opposing bound, we have that

P
(
Mn −Mn[m] ≥ 8n

( logm
logn + 1

)1/2
m−1/2(log n)1/2

)
≤ 27/2π−1/2(logm)−1/2m−1 .

Proof. To any east-north path γ between (0, 0) and (n, n), we consider the naturally associated
staircase S(γ) ⊂ R2 that is the range of a motion from (0, 0) to (n, n) that alternates between
rightward and upward movement by associating to each horizontal edge of γ, the horizontal planar
line segment with the same endpoints as the edge. Then S(γ) is defined to be the union of the
planar sets associated to the steps made by γ. Clearly, for any such path γ, the energy that is
assigned to S(γ) by the Brownian LPP noise environment is nothing other than the energy E[m](γ)
ascribed to γ by the field X[m]. Thus, Mn ≥Mn[m].

To prove an opposing inequality, recall that the geodesic Γn ⊂ R2 is a staircase from (0, 0) to (n, n).
We will associate to it an m-indexed lattice approximant Γn[m]. This will be an east-north path
between (0, 0) and (n, n) in the m-lattice m−1J0, nmK×Z. Informally, Γn[m] will be the east-north
path lying to the right of Γn, and being the leftmost in this set. Note that the above set is non-empty
since the lattice path which passes through the points (0, 0), (n, 0), (n, n) is in the set.

We need a little notation to give a formulaic specification of Γn[m]. For i ∈ J0, nK, we write zi
for the supremum of x ∈ [0, n] for which (x, i) ∈ Γn, and z−1 = 0. Likewise, if, for m ∈ N+, we
specify zi[m] = sup

{
x ∈ m−1J0, nmK : (x, i) ∈ Γn[m]

}
, then the task of specifying Γn[m] guided by

the above informal description is a matter of defining zi[m] for i ∈ J0, n − 1K—and we define this
quantity to be the smallest element in the set m−1J0, nmK which is greater equal to zi. And we set
z−1[m] = 0. Note that, since the zi-sequence is non-decreasing, so is the zi[m]-sequence.

Clearly, for all i,
0 ≤ zi[m]− zi ≤ 1/m . (35)

Note that the intersections of S
(
Γn[m]

)
and Γn with the level i are the intervals [zi−1, zi] and

Jzi−1[m], zi[m]K respectively. Thus the symmetric difference S
(
Γn[m]

)
∆Γn contains numerous hor-

izontal segments; these number at most 2(n − 1) + 2 = 2n, since there are at most two at each
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vertical level in J1, n− 1K, and one from the levels indexed by zero and n. By (35), each segment is
a planar interval contained in a horizontal planar interval of length 1/m, delimited by consecutive
m-lattice points.

To S
(
Γn[m]

)
, the Brownian LPP environment assigns energy E

(
S
(
Γn[m]

))
; but the latter quantity

equals E[m]
(
Γn[m]

)
, which is at mostMn[m]. Thus, we see thatMn−Mn[m] ≤Mn−E

(
S
(
Γn[m]

))
;

the right-hand side here is at most the sum of the absolute values of the increments of the Brownian
motions in the Brownian LPP noise environment indexed by the numerous horizontal segments of
which S

(
Γn[m]

)
∆Γn is comprised. We find then that Mn−Mn[m] is at most the product of 2n and

the quantity Oscn[m], which measures the maximum oscillation witnessed by the Brownian motions
B(·, i) on the intervals of length m−1 delimited by consecutive m-lattice points. Namely,

Oscn[m] = sup
{∣∣B(u+ η1, i)−B(u+ η2, i)

∣∣ : u ∈ m−1J0, nm− 1K , i ∈ J0, nK , η1, η2 ∈ [0,m−1]
}
.

Control on this oscillation is offered next.

Lemma 4.7. For κ > 0,

P
(
Oscn[m] ≥ κm−1/2(log n)1/2

)
≤ m · 27/2π−1/2κ−1

(
log n

)−1/2
n2−κ2/8 .

Proof. Writing B for the law of standard Brownian motion B, we find from Brownian symmetry,
the reflection principle, Brownian scaling and a Gaussian tail bound stated in [Wil91, Section 12.4]
that, for h ≥ 0,

P
(

sup
0≤x,y≤m−1

∣∣B(i, x)−B(i, y)
∣∣ ≥ h

)
≤ 2B

(
sup

0≤x≤m−1

B(x) ≥ h/2
)

= 4ν0,m−1(h/2,∞) = 4ν0,1
(
2−1m1/2h,∞

)
≤ 25/2π−1/2m−1/2h−1 exp

{
− 8−1mh2

}
.

The random variable Oscn[m] is the maximum of (n+ 1)nm such random quantities; using n ≥ 1,

Lemma 4.7 thus follows from a union bound with h = κm−1/2(log n)1/2. □

Taking κ = 4
( logm
logn + 1

)1/2
renders n2−κ2/8 equal to m−2. Since Mn −Mn[m] ≤ 2nOscn[m], we

apply Lemma 4.7 with this choice of κ to obtain the latter assertion of Proposition 4.6. □

The discrete geodesic converges almost surely to its continuum counterpart.

Lemma 4.8. Let i ∈ J0, nK. Almost surely, zi[m] → zi as m→ ∞.

Proof. Note that Mn[m] = E[m]
(
Γn[m]

)
= E

(
S(Γn[m])

)
, where the notation S(Γn[m]) has been

specified at the outset of the ongoing proof of Proposition 4.6. Let
{
z′i : i ∈ J0, nK

}
denote a

subsequential limit point in m of
{
zi[m] : i ∈ J0, nK

}
, and let S′ denote the staircase associated to

the non-decreasing list z′ in the sense of Subsection 1.2.1. By Proposition 4.6, after possibly the
extraction of a further subsequence

{
mj : j ∈ N

}
, we have the almost sure convergence of Mn[mj ]

to Mn. But this sequence converges to E(S′), while Mn equals E(Γn). Since the geodesic Γn is
almost surely unique by [Ham19b, Lemma B.1] with this lemma’s parameter ℓ set equal to one, we
have that S′ equals Γn almost surely. Thus, the list z′ equals

{
zi : i ∈ J0, nK

}
almost surely. □
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4.2.5. Proof of Theorem 4.1. (1). We aim to take the high m limit in Lemma 4.5(1). To do so,
we need to establish first the left-hand convergence VarMn[m] → VarMn along a subsequence of
m ∈ N. This follows from the almost sure subsequential convergence of Mn[m] to Mn, which is due
to Proposition 4.6, alongside Mn[m] ≤ Mn (which is also due to this proposition) and EM2

n < ∞.
The convergence of the right-hand integrals to the limit in the theorem will follow from

m−1E
∣∣Γ0

n[m] ∩ Γt
n[m]

∣∣ → EO
(
Γ0
n,Γ

t
n

)
(36)

as m→ ∞ for each t ≥ 0, since the integrands are uniformly bounded and the integrals over [0,∞)
are approximable, uniformly in m, by counterpart integrals over compact intervals. Since

m−1
∣∣Γ0

n[m] ∩ Γt
n[m]

∣∣ =
n∑

i=0

∣∣∣[z0i−1[m], z0i [m]
]
∩
[
zti−1[m], zti [m]

]∣∣∣ ,
the indicated convergence of means follows from the almost sure convergence of the bounded se-
quences

{
zt

′
i [m] : m ∈ N

}
for t′ ∈ {0, t}—a convergence that is implied by Lemma 4.8.

(2). The just noted convergence of means permits the high m limit of Lemma 4.5(2) to be taken.
The sought assertion is the outcome of doing so. □

4.3. Low supercritical overlap: the proof of Theorem 1.3(2). We must establish, for a

suitably high choice of D > 0, that P
(
O(Γ0

n,Γ
t
n) ≥ Dnτ−1/2

)
≤ τ−1/2 provided that t ≤ 1. But this

bound is (15) in Section 2.3, where it was proved on the assumptions that Var(Mn) = O(n2/3) and

that the conclusions of Theorem 4.1 hold. That Var(Mn) = O(n2/3) holds for Brownian LPP is due
to [LR10, Corollary 3]; and [Bar01] or [GTW01, Remark 4]. Indeed, these results respectively state
the bound, in scaled units, on variance for the uppermost GUE eigenvalue; and assert that Mn has
the law of this eigenvalue. Thus do we obtain Theorem 1.3(2). □

4.4. Subcritical weight stability: the proof of Proposition 4.2. (1). We adopt the shorthand

M t = M t
[
(x, i) → (y, j)

]
for t ≥ 0 with a view to bounding E

∣∣M t −M0
∣∣2. Via the notational

device of Subsection 1.3.1, M , without superscript, denotes this random variable as determined by
the static noise environment.

By an east-north path in them-lattice from (x, i) to (y, j), we mean a path valued inm−1J0, nmK×Z
that begins at the first lattice point encountered at or to the right of (x, i) at height i; that ends
at the lattice point similarly at or to the right of (y, j); and each of whose steps is an easterly or
northerly movement in the sense of Subsection 4.2.1. Any such path is ascribed an energy at any
given time t ≥ 0 as the sum of the quantities X[m](u, i, t) attached to the horizontal edges e(u,i)
that it visits.

We extend the shorthand notation by setting M t[m] equal to the maximum energy thus ascribed
at time t to paths over the route (x, i) → (y, j); and we will also use the static notation M [m].

It is readily seen that

E
(
M t[m]−M0[m]

)2
= 2

(
Var

(
M [m]

)
− Cov

(
M [m], Pt

(
M [m]

)))
. (37)

The right-hand side above is −2
∫ t
0

d
dsCov

(
M [m], Ps(M [m])

)
ds. Now, by (32),

d

ds
Cov

(
M [m], Ps(M [m])

)
= −E

(
M [m], Ps(M [m])

)
.
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By versions of (34) and (36) where (0, 0) and (n, n) are replaced by (x, i) and (y, j) respectively, we
see that

0 ≤ lim
m→∞

∫ t

0
E
(
M [m], Ps(M [m])ds =

∫ t

0
e−sE

∣∣Γs
[
(x, i) → (y, j)

]
∩ Γ0

[
(x, i) → (y, j)

]∣∣ds
≤ |x− y|(1− e−t) ≤ |x− y|t ,

where in the last inequality we use the trivial bound
∣∣Γs

[
(x, i) → (y, j)

]
∩Γ0

[
(x, i) → (y, j)

]∣∣ ≤ |x−y|.
To obtain Proposition 4.2(1), we reason as in Subsection 4.2.5. Namely, by Proposition 4.6, and a
simple application of the Borel-Cantelli lemma, M t[m] → M t almost surely along the subsequence
of powers of two. Fatou’s lemma now finishes the argument.

(2). In (22), the weight Wgtn
[
(x, s1) → (y, s2)

]
is expressed in unscaled energetic units. The

relevant application of Proposition 4.2(1), namely that

E
(
M t

[
(ns1+2n2/3x, ns1) → (ns2+2n2/3y, ns2)

]
−M0

[
(ns1+2n2/3x, ns1) → (ns2+2n2/3y, ns2)

])2

is at most 2
(
ns1,2 + 2n2/3|y − x|

)
t, thus yields

E
(
Wgttn

[
(x, s1) → (y, s2)

]
−Wgt0n

[
(x, s1) → (y, s2)

])2
≤ n−2/3

(
ns1,2 + 2n2/3|y − x|

)
t .

Using t = τn−1/3 and the hypothesis that 2n2/3|y − x| ≤ ns1,2, we find that the latter right-hand

side is at most 2s1,2τ . Dividing the resulting bound by s
2/3
1,2 yields Proposition 4.2(2). □

5. Inputs concerning the geometry and weight of the static polymer

Here, we record the main inputs that we will need. Most of these have been derived in the companion
article [GH20a]. There are three subsections. The first treats some rather basic aspects, and a
notational convention. The second records a series of results from [GH20a] concerning geometry
of polymers ρn

[
(x, s1) → (y, s2)

]
and their weights Wgtn

[
(x, s1) → (y, s2)

]
. The third presents a

further important input, an assertion that the twin peaks’ event is a rarity for the routed polymer
weight profile. This result is also derived in [GH20a] relying on Brownian regularity theorems
in [Ham22] and [CHH19].

5.1. The scaling principle and basic polymer properties.

5.1.1. The scaling principle. Write R2
< =

{
(x, y) ∈ R2 : x < y

}
. Let (n, s1, s2) ∈ N × R2

< be a
compatible triple. The quantity ns1,2 is a positive integer, in view of the defining property (19).
The scaling map Rk : R2 → R2 has been defined whenever k ∈ N+, and thus we may speak
of Rn and Rns1,2 . The map Rn is the composition of Rns1,2 and the transform Ss−1

1,2
given by

R2 → R2 : (a, b) →
(
as

−2/3
1,2 , bs−1

1,2

)
. That is, the system of ns1,2-zigzags is transformed into the

system of n-zigzags by an application of Ss−1
1,2
. Note that Wgt

(y,s2)
n;(x,s1)

= s
1/3
1,2 Wgt

(ys
−2/3
1,2 ,κ+1)

ns1,2;(xs
−2/3
1,2 ,κ)

, where

κ = s1s
−1
1,2; indeed this weight transformation law is valid for all zigzags, rather than just polymers,

in view of (21).

We may summarise these inferences by saying that the system of ns1,2-zigzags, including their
weight data, is transformed into the n-zigzag system, and its accompanying weight data, by the

transformation
(
a, b, c

)
→

(
as

−1/3
1,2 , bs

−2/3
1,2 , cs−1

1,2

)
, where the coordinates refer to the changes suffered

in weight, and horizontal and vertical coordinates. This fact leads us to what we call the scaling
principle.
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The scaling principle. Let (n, s1, s2) ∈ N × R2
< be a compatible triple. Any statement concerning

the system of n-zigzags, including weight information, is equivalent to the corresponding statement
concerning the system of ns1,2-zigzags, provided that the following changes are made:

• the index n is replaced by ns1,2;

• any time is multiplied by s−1
1,2;

• any weight is multiplied by s
1/3
1,2 ;

• and any horizontal distance is multiplied by s
−2/3
1,2 .

5.1.2. Polymer uniqueness and ordering. A polymer with given endpoints is almost surely unique.

Lemma 5.1 (Lemma 4.6(1), [Ham19b]). Let x, y ∈ R. There exists an n-zigzag from (x, 0) to (y, 1)

if and only if y ≥ x − n1/3/2. When the last condition is satisfied, there is almost surely a unique
n-polymer from (x, 0) to (y, 1).

A rather simple sandwiching fact about polymers will also be needed. Let (x1, x2), (y1, y2) ∈ R2 and
consider a zigzag Z1 from (x1, s1) to (y1, s2) and another Z2 from (x2, s1) to (y2, s2). We declare
that Z1 ⪯ Z2 if ‘Z2 lies on or to the right of Z1’: formally, if Z2 is contained in the union of the
closed horizontal planar line segments whose left endpoints lie in Z1.

Lemma 5.2 (Lemma 5.7, [Ham20]). Let (n, s1, s2) be a compatible triple, and let (x1, x2) and
(y1, y2) belong to R2

≤. Suppose that there is a unique n-polymer from (xi, s1) to (yi, s2), both when

i = 1 and i = 2. (This circumstance occurs almost surely, and the resulting polymers have been
labelled ρn

[
(x1, s1) → (y1, s2)

]
and ρn

[
(x2, s1) → (y2, s2)

]
.) Now let ρ denote any n-polymer that

begins in [x1, x2]× {s1} and ends in [y1, y2]× {s2}. Then

ρn
[
(x1, s1) → (y1, s2)

]
⪯ ρ ⪯ ρn

[
(x2, s1) → (y2, s2)

]
.

5.1.3. Operations on polymers: splitting and concatenation. A polymer may be split into two pieces.
Let (n, s1, s2) ∈ N×R2

≤ be a compatible triple, and let (x, y) ∈ R2 satisfy y ≥ x− 2−1n1/3s1,2. Let

s ∈ (s1, s2) ∩ n−1Z. Suppose that the almost sure event that ρn
[
(x, s1) → (y, s2)

]
is well defined

occurs. Select any element (z, s) ∈ ρn
[
(x, s1) → (y, s2)

]
. The removal of (z, s) from ρn

[
(x, s1) →

(y, s2)
]
creates two connected components. Taking the closure of each of these amounts to adding

the point (z, s) to each of them. The resulting sets are n-zigzags from (x, s1) to (z, s), and from
(z, s) to (y, s2); indeed, it is straightforward to see that these are the unique n-polymers given their
endpoints. We use a concatenation notation ◦ to represent this splitting. In summary, ρn

[
(x, s1) →

(y, s2)
]
= ρn

[
(x, s1) → (z, s)

]
◦ ρn

[
(z, s) → (y, s2)

]
. Naturally, we also have Wgtn

[
(x, s1) →

(y, s2)
]
= Wgtn

[
(x, s1) → (z, s)

]
+Wgtn

[
(z, s) → (y, s2)

]
. Indeed, the concatenation operation may

be applied to any two n-zigzags for which the ending point of the first equals the starting point of
the second. Since the zigzags are subsets of R2, it is nothing other than the operation of union. The
weight is additive for the operation.

We end with a notational convention.
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5.1.4. Boldface notation for parameters in statement applications. The various results that we recall
in the present section come equipped with parameters that must be set in any given application.
When such applications are made later in the article, we employ a boldface notation to indicate the
parameter labels of the results being applied. This device permits occasional reuse of symbols and
disarms notational conflict.

5.2. Geometric and weight fluctuations of the polymer.

5.2.1. Inputs on tail bounds on one-point polymer weight. We will have need for control on the
upper and lower tail of the weight of a polymer with given endpoints.

Lemma 5.3. There exist constants C ∈ [1,∞) and c ∈ (0, 1], and n0 ∈ N, such that the following

holds. Let n ∈ N and x, y ∈ R satisfy n ≥ n0 and |x− y| ≤ cn1/9.

(1) For t ≥ 0,

P
(
Wgtn

[
(x, 0) → (y, 1)

]
+ 2−1/2(y − x)2 ≥ t

)
≤ C exp

{
− ct3/2

}
.

(2) For t ≥ 0,

P
(
Wgtn

[
(x, 0) → (y, 1)

]
+ 2−1/2(y − x)2 ≤ −t

)
≤ C exp

{
− ct3/2

}
.

Proof. This result follows from [CHH19, Proposition 3.6] and translation invariance of Brownian
LPP. □

5.2.2. The tail of polymer fluctuation at given height. We now specify a measure of the fluctuation
of the polymer ρn

[
(x, s1) → (y, s2)

]
at the intermediate moment h ∈ [s1, s2] ∩ n−1Z, measuring the

horizontal distance between the polymer at this height h relative to the height-h location s2−h
s1,2

x+
h−s1
s1,2

y of the line that interpolates (x, s1) and (y, s2). We set

Flucn
[
(x, s1) → (y, s2);h

]
= sup

{∣∣u− s2−h
s1,2

x− h−s1
s1,2

y
∣∣ : u ∈ R , (u, h) ∈ ρn

[
(x, s1) → (y, s2)

]}
.

The typical order of this quantity is λ2/3, where λ equals (h − s1) ∧ (s2 − h), with ∧ denoting
minimum.

Proposition 5.4 (Theorem 1.7, [GH20a]). There exists r0 > 0 such that, for any H0 > 0, we
may choose D > 0 so that the following holds. Let K > 0, r ≥ r0, a ∈ (0, 1/4], n ∈ N and

s1, s2 ∈ n−1Z ∩ [0, 1] satisfy s1 ≤ s2; ns1,2a and ns1,2(1 − a) are at least D; Ka1/3 ≤ H0 and

|K| ≤ (ns1,2)
2/3. Then

P
(
supFlucn

[
(x, h1) → (y, h2);h

]
≥ r(as1,2)

2/3
(
log a−1

)1/3) ≤ DK2a−10/3adr
3
, (38)

where the supremum is taken over x, y ∈ [−K,K] · s2/31,2 , h1 ∈ n−1Z ∩ [s1, s1 + s1,2/3], h2 ∈ n−1Z ∩
[s2 − s1,2/3, s2] and h ∈ n−1Z such that h−h1

h1,2
∈ [a, 2a] ∪ [1− 2a, 1− a].

Here, we have written h1,2 = h2 − h1, in an extension of the notation s1,2 from Subsection 3.1.3.

The next result delivers a control on the fluctuation properties of polymers uniformly as it traverses
across different height levels.
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5.2.3. Control on polymer fluctuation uniform across heights.

Proposition 5.5 (Theorem 1.4, [GH20a]).

(1) There exist positive H, h and r0, and n0 ∈ N, such that, when n ∈ N satisfies n ≥ n0,

k ∈ N satisfies 2k ≤ hn and r ∈ R satisfies r0 ≤ r ≤ n1/10, it is with probability at least
1 − H exp

{
− hr3k

}
that the following event occurs. Let x, y ∈ R be of absolute value at

most r. Let h1, h2 ∈ n−1Z ∩ [0, 1] satisfy h1,2 ∈ (2−k−1, 2−k] and let u, v ∈ R be such that
(u, h1) and (v, h2) belong to ρn

[
(x, 0) → (y, 1)

]
. Then∣∣v − u

∣∣ ≤ Hh
2/3
1,2

(
log(1 + h−1

1,2)
)1/3

r .

(2) There exist positive G, H, h and r0, and n0 ∈ N, such that, when n ∈ N satisfies n ≥ n0,

and r ∈ R satisfies r0 ≤ r ≤ n1/10, it is with probability at least 1−Hn−hr3 that the following
event occurs. As above, let x, y ∈ R be of absolute value at most r, and let u, v ∈ R be such
that (u, h1) and (v, h2) belong to ρn

[
(x, 0) → (y, 1)

]
. Consider any h1, h2 ∈ n−1Z ∩ [0, 1]

that satisfy h1,2 < Hn−1. Then∣∣v − u
∣∣ ≤ Gn−2/3(log n)1/3r .

This result will allow us to gain control on the maximum fluctuation of such polymers.

5.2.4. The tail of maximum polymer fluctuation. The probability of lateral movement of polymers
to distance r decays as exp

{
−Θ(1)r3

}
.

Proposition 5.6 (Corollary 1.5, [GH20a]). There exist positive H, h and r0, and n0 ∈ N, such

that, when n ∈ N satisfies n ≥ n0, and r ∈ R satisfies r0 ≤ r ≤ n1/10, it is with probability at
least 1 − H exp

{
− hr3

}
that the following holds. Let x, y ∈ R be of absolute value at most r. If

(u, h′) ∈ R×
(
n−1Z ∩ [0, 1]

)
lies in ρn

[
(x, 0) → (y, 1)

]
, then |u| ≤ Hr.

We express a corollary in terms of MaxFlucn
[
(x, s1) → (y, s2)

]
, the maximum horizontal fluctuation

of a point on ρn
[
(x, s1) → (y, s2)

]
from the linear interpolation of this polymer’s endpoints, namely

sup
{ ∣∣u− s2−h

s1,2
x− h−s1

s1,2
y
∣∣ : u ∈ R , h ∈ [s1, s2] ∩ n−1Z , (u, h) ∈ ρn

[
(x, s1) → (y, s2)

] }
.

Proposition 5.7. There exist positive h, d and R0, and n0 ∈ N, such that, when n ∈ N, s1, s2 ∈
n−1Z, s1 ≤ s2, satisfy ns1,2 ≥ n0, R ∈ R satisfies R0 ≤ R ≤ (ns1,2)

1/10, and z ∈ R, we have that

P
(
s
−2/3
1,2 supMaxFlucn

[
(x, s1) → (y, s2)

]
≥ R

)
≤ exp

{
− dR3

}
,

where the supremum is taken over x, y ∈ R for which |x− z| and |y − z| are at most hRs
2/3
1,2 .

Proof. The result follows by taking z = 0 by translation invariance, and s1,2 = 1 by the scaling
principle from Subsection 5.1.1, and applying Proposition 5.6. Using the boldface notation of
Section 5.1.4, we set the proposition’s parameter r equal to hR for this application; the constant h
we seek is then equal to H−1. □
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5.2.5. Gaining control on the weight of polymers. Uniformly over compact variation of both end-
points, polymer weight differs from parabolic curvature by more than r with a probability that
decays as exp

{
−Θ(1)r3/2

}
.

Proposition 5.8 (Proposition 3.15, [GH20a]). There exist H1, h,R0 ∈ (0,∞) and n0 ∈ N such

that, for n ≥ n0, R0 ≤ R ≤ n1/30 and 0 < K ≤ n1/46,

P

 sup
(x,h1)∈[−K,K]×[−3,−1]
(y,h2)∈[−K,K]×[1,3]

∣∣∣∣Wgtn
[
(x, h1) → (y, h2)

]
+ 2−1/2 (x− y)2

h1,2

∣∣∣∣ ≥ R

 ≤ H1K
2 exp

{
−hR3/2

}
.

The next result offers control on the weight of sub-paths of polymers.

Proposition 5.9 (Theorem 1.6(1),[GH20a]). There exist positive H, h and r0, and n0 ∈ N, such
that, when n ∈ N satisfies n ≥ n0; k ∈ N satisfies 2k ≤ hn; and r ∈ R satisfies r ≥ r0, it is with
probability at least 1−H exp

{
− hr3k

}
that the following occurs. Let h1, h2 ∈ n−1Z ∩ [0, 1] satisfy

h1,2 ∈ (2−k−1, 2−k] and r ≤ (nh1,2)
1/64; let x, y ∈ R be of absolute value at most r; and let u, v ∈ R

be such that (u, h1) and (v, h2) belong to ρn
[
(x, 0) → (y, 1)

]
. Then∣∣Wgtn

[
(u, h1) → (v, h2)

]∣∣ ≤ H2r2 · h1/31,2

(
log h−1

1,2

)2/3
.

5.2.6. Modulus of continuity for the static polymer. Viewed as a rough function of its vertical coor-
dinate, the polymer has Hölder exponent 2/3−, with a logarithmic power correction of 1/3.

Definition 5.10. Let ϕ be an n-zigzag from (0, 0) to (0, 1). Let the parameters κ ∈ (0, e−1) and
R > 0 be given. The zigzag ϕ is said to be (κ,R)-regular if, whenever a pair (x, s1) and (y, s2) of
elements of ϕ ∩

(
R× n−1Z

)
satisfy s1,2 = s2 − s1 ∈ [0, 6κ], we have that∣∣y − x

∣∣ ≤ Rκ2/3
(
log κ−1

)1/3
. (39)

Proposition 5.11. There exist positive d, K0 and R0 such that, for κ ∈
(
K0n

−1, e−1
)
and R ≥ R0,

P
(
ρn

[
(0, 0) → (0, 1)

]
is not (κ,R)-regular

)
≤ κdR

3
.

Proof. It is enough to prove the result with the notion of (κ,R)-regular modified so that the
stronger condition s1,2 ∈ [3κ, 6κ] holds, because the case where s1,2 < 3κ may be then treated by
the triangle inequality.

The altered form of the result is obtained by applying Proposition 5.5(1) with r = d0R, where
d0 > 0 is a suitably small constant, and with the dyadic scale k ∈ N ranging over two consecutive
values in order that [3κ, 6κ] be contained in the union of the intervals (2−k−1, 2−k]. □

5.3. Twin peaks via Brownian regularity. Our proof overview in Section 3.3 indicated that
Brownianity of the routed weight profile introduced in (24) would be a vital technical component
of our analysis. In this section, we develop the needed apparatus.

Let n ∈ N and a ∈ (0, 1) ∩ n−1Z. The routed weight profile x → Zn(x, a), as specified in (24),
reports the maximum weight of an n-zigzag from (0, 0) to (0, 1) which passes through (x, a). We
would be troubled by an awkwardness in this definition were we to adopt it for rigorous analysis:
the two weights on the right-hand side of (24) may be viewed as functions of x for given a; but they
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then lack independence, because the randomness in the scaled noise environment indexed by level a
contributes to both of these weight profiles. The definition of Zn(·, a) that we in fact adopt avoids
this problem. Polymers whose weight supremum equals Zn(x, a) not only visit (x, a) but depart
from level a at x.

Definition 5.12. Let n ∈ N, a ∈ (0, 1) ∩ n−1Z and x ∈ R. Let Zn(x, a) denote the supremum of
the weights of n-zigzags that begin at (0, 0); end at (0, 1); and contain the point (x, a) but no point
of the form (x+ u, a) for u > 0.

The next result indicates how the routed weight profile R → R : x→ Zn(x, a) as specified here is a
slight perturbation of its informal cousin (24).

Lemma 5.13. Set a+ = a+ n−1 and x− = x− 2−1n−2/3.

(1) The routed weight profile is given by

Zn(x, a) = Wgtn
[
(0, 0) → (x, a)

]
+ Wgtn

[
(x−, a+) → (0, 1)

]
. (40)

(2) Almost surely, the maximizer of Zn(·, a), namely the value of x ∈ R for which Zn(x, a) equals
the supremum of Zn(z, a) over z ∈ R, is unique and equals ρn(a).

Proof: (1). Let ψ denote an n-zigzag that begins at (0, 0), ends at (0, 1), and for which x =
sup

{
z ∈ R : (z, a) ∈ ψ

}
. Let ψ− denote the initial zigzag of ψ that ends at (x, a). Note that ψ

reaches R×{a+n−1} at (x−, a+). Let ψ
+ denote the final sub-zigzag of ψ that begins at (x−, a+).

Thus, Wgtn(ψ) = Wgtn(ψ
−)+Wgtn(ψ

+). By definition, Zn(x, a) equals the supremum of Wgtn(ψ)
over such ψ. We see that Zn(x, a) is at most the right-hand side of (40). But equality may be
obtained by varying (ψ−, ψ+) subject to the endpoint constraints that specify this pair.
(2). The polymer ρn is almost surely unique by [Ham19b, Lemma 4.6(1)]. Since ρn(a) is by
definition the location of departure of the polymer ρn from R×{a}, we see that it is the maximizer
of x→ Zn(x, a). □

The notation a+ and x− is adopted henceforth. It reflects the two denoted quantities being merely
microscopically perturbed copies of a and x.

Next we ask: what is the probability of twin peaks, namely that there exists x ∈ R such that
Zn(x, a) rivals the maximum value of Zn(·, a), with Zn(x, a) being less than this maximum by a

small multiple σ of the square-root distance
(
x − ρn(a)

)1/2
? Our answer is obtained in [GH20a],

underpinned by the Brownian weight profile regularity result [CHH19, Theorem 3.11], which itself
harnesses technique from [Ham22]2: twin peaks are a rarity, with such probabilities being bounded

above by the product of σ and a lower-order correction exp
{
Θ(1)

(
log σ−1

)5/6}
. This is the im-

plication of the next result when the parameter R is set to equal zero, which is the choice that

we will make in applications; when R is non-zero, the factor e−Θ(1)R2ℓ represents a penalty for the
maximizer being far from the origin.

Theorem 5.14 (Theorem 1.3,[GH20a]). For K any compact interval of (0, 1), there exist positive
constants H = H(K) and h = h(K) and an integer n0 = n0(K) such that the following holds. Let

2The recent preprint [Dau23b] strengthens [CHH19, Theorem 3.11], and it would be natural that it offer the role of
underlying input here. The implications of this modification for the present article are minor however, and we prefer
to rely verbatim on the result in the published companion article [GH20a].
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n ∈ N, R ∈ R, ℓ ≥ 1, ℓ′ > 0, a ∈ n−1Z ∩K, σ > 0 and ε > 0. Suppose that n ≥ n0, |R| ≤ hn1/9,

ℓ ∈ (3ε, hn1/1370) and ℓ′ ∈ (3ε, ℓ]. Denoting σ ∧ 1 by σ∗, we have that

P
(
M ∈ [R− ℓ/3, R+ ℓ/3] , sup

x∈R:x−M∈[ε,ℓ′/3]

(
Zn(x, a) + σ(x−M)1/2

)
≥ Zn(M,a)

)
≤ log

(
ℓ′ε−1

)
max

{
σ∗ · exp

{
− hR2ℓ+Hℓ19

(
1 +R2 + log σ−1

∗
)5/6}

, exp
{
− hn1/12

}}
,

where M denotes ρn(a), the almost surely unique maximizer of x→ Zn(x, a).

The parameters R, ε, ℓ′, ℓ and σ must be set in any given application. For example: to gauge the
probability of a scenario that is illustrated by Figure 4(middle,lower), in which the routed weight

profile maximum on [−2, 2] is attained at some M but rivalled to order τ1/2 at some x ∈ [−2, 2]

with |x−M | ∈ [1, 2], we would set R = 0; ℓ′ = ℓ = 6; ε = 1; and σ = Θ(τ1/2). We learn that such

twin peaks arise with probability at most τ1/2 exp
{
Θ(1)(log τ−1)5/6

}
, uniformly in high n.

6. Subcritical weight stability, uniformly in the endpoint pair

Our applications require assertions of weight stability under increments t in dynamic time of the form
t ≪ n−1/3 that are more robust than Proposition 4.2, which concerns changes in polymer weight
with a fixed endpoint pair. Theorem 6.1 is a suitably robust tool, en route to whose derivation
Proposition 6.2 is a useful halfway house.

Let n ∈ N, x, y ∈ R and h1, h2 ∈ n−1Z. Define the weight difference

∆0,t
[
(x, h1) → (y, h2)

]
= Wgttn

[
(x, h1) → (y, h2)

]
−Wgt0n

[
(x, h1) → (y, h2)

]
, (41)

and recall that t = n−1/3τ .

Theorem 6.1. (Planar stability) There is a universal constant a > 0, such that for all 0 < τ̂ < a,

with t ∈ [0, τ̂n−1/3], τ = tn1/3, the following holds. Let n ∈ N, D ≥ 1 satisfy n ≥ H · D18(ℓ +

1)182ℓτ̂−1/5 for a suitably high constant H > 0; let ℓ ∈ N and s1, s2 ∈ n−1Z satisfy 2−ℓ−1 ≤ s1,2 ≤
2−ℓ; and let I ⊂ R be an interval of length D 2−2ℓ/3(ℓ+ 1)1/3. Then

P
(
sup h

−1/3
1,2

∣∣∣∆0,t
[
(x, h1) → (y, h2)

]∣∣∣ ≥ (ℓ+ 1)Dτ̂2/1001
)

≤ D22−ℓ/7τ̂1/12 , (42)

where h1,2 = h2 − h1, and where the supremum is taken over x, y ∈ I; h1 in the first-third interval
[s1, s1 + s1,2/3]; and h2 in the final-third interval [s2 − s1,2/3, s2].

On account of the desired uniformity, the quality of the bound deteriorates from the estimate
provided by Proposition 4.2(2). Further, while one expects such a bound to improve as t tends to
zero, our purpose is served by the presented τ̂ -determined bound that is uniform in 0 ≤ τ ≤ τ̂ .

The halfway house assertion is uniform in the endpoints merely under horizontal perturbation. The
constants C and c in its statement arise from Lemma 5.3.

Proposition 6.2. (Horizontal stability) There is a universal constant a > 0, such that, for all

0 < τ̂ < a, the following holds. Let n ∈ N, D ≥ 1 and t ∈ [0, τ̂n−1/3], with τ = tn1/3, satisfy

n ≥ 1029D18c−9(ℓ + 1)182ℓ
(
log τ̂−1

)9
; let ℓ ∈ N, and s1, s2 ∈ n−1Z satisfy 2−ℓ−1 ≤ s1,2 ≤ 2−ℓ; and
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let I and J be intervals of length D 2−2ℓ/3(ℓ+1)1/3 whose left-hand endpoints differ in absolute value

by at most 2−33−1c(ns1,2)
1/18. Then

P
(
s
−1/3
1,2 sup

x∈I,y∈J

∣∣∣∆0,t
[
(x, s1) → (y, s2)

]∣∣∣ ≥ (ℓ+ 1) · 3000c−1/2
(
log τ̂−1

)1/2
τ̂1/500

)
is at most 108D2C2−ℓ/6τ̂49/100.

We derive Proposition 6.2 and then prove Theorem 6.1 as a consequence.

6.1. Horizontally uniform weight stability: proving Proposition 6.2. The result that we
seek to demonstrate is a strengthening of Proposition 4.2(2), which asserts a companion claim in the
case that the endpoint pair

{
(x, s1), (y, s2)

}
for the time zero and time-t polymers is fixed. We will

derive Proposition 6.2 from this precursor by invoking the latter as x and y vary over suitably fine
meshes in I and J . An accompanying tool is then needed to treat the remaining (x, y) ∈ I × J : an
understanding that the weight function I × J → R : (x, y) → Wgtn

[
(x, s1) → (y, s2)

]
has a degree

of regularity in response to variation of the arguments x and y. Hölder regularity with an exponent
of 1/2− may be expected due to the locally Brownian form of polymer weight profiles. We begin
by stating a suitable version, Proposition 6.3, of this weight profile regularity tool. The basic input
driving this result is [Ham19a, Theorem 1.1].

Let (x1, x2) and (y1, y2) belong to R2
≤. It is useful to define the parabolically adjusted weight difference

∆∪Wgtn
[
({x1, x2}, s1) → ({y1, y2}, s2)

]
(43)

to equal(
Wgtn

[
(x2, s1) → (y2, s2)

]
+ 2−1/2 (y2 − x2)

2

s2 − s1

)
−

(
Wgtn

[
(x1, s1) → (y1, s2)

]
+ 2−1/2 (y1 − x1)

2

s2 − s1

)
,

since a slope arising from differences in the globally parabolic form of weight profiles is eliminated
by working with ∆∪Wgtn in place of a difference of weights Wgtn; this permits much higher choices
of |x− y| in our assertion of square-root weight fluctuation under horizontal endpoint perturbation.

Proposition 6.3. Let C and c be the positive constants furnished by Lemma 5.3, and let a ∈ (0, 2−4].
Let (n, s1, s2) ∈ N × R2

≤ be a compatible triple for which ns1,2 ≥ 1032c−18 and let x, y ∈ R satisfy∣∣x− y
∣∣s−2/3

1,2 ≤ 2−23−1c(ns1,2)
1/18. Let K ∈

[
104 , 103(ns1,2)

1/18
]
. Then

P

 sup
x1,x2∈[x,x+as

2/3
1,2 ] , x1<x2

y1,y2∈[y,y+as
2/3
1,2 ] , y1<y2

∣∣∣∆∪Wgt0n
[
({x1, x2}, s1) → ({y1, y2}, s2)

]∣∣∣ ≥ Ka1/2s
1/3
1,2


is at most 10032C exp

{
− c2−24K2

}
.

Proof. The special case that s1 = 0 and s2 = 1 is implied by [Ham19a, Theorem 1.1]. (The upper

bound in the latter result is 10032C exp
{
−c12−21R3/2

}
. But c1 = 2−5/2c∧1/8, where the constant

c > 0 is at most one, so that we obtain the upper bound in Proposition 6.3.) The scaling principle
from Section 5.1.1 then yields the proposition from this special case. □

Equipped with this tool, we may indeed give the next proof.
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Proof of Proposition 6.2. Write the interval I in the form [u, v]. For η > 0, let Iη denote the
discrete mesh Iη = [u, v] ∩

(
u + ηN

)
, so that the leftmost element of Iη is u. Similarly, we write

J = [u′, v′] and set Jη = [u′, v′] ∩
(
u′ + ηN

)
.

Let x ∈ I and y ∈ J be given; and let xη and yη denote the respective elements of Iη and Jη that
are encountered at or directly to the left of x and y.

Recall (41), and adopt the shorthand ∆0,t[x→ y] for ∆0,t
[
(x, s1) → (y, s2)

]
. Note that

∆0,t[x→ y]−∆0,t[xη → yη] =
(
Wgt0n

[
(xη, s1) → (yη, s2)

]
−Wgt0n

[
(x, s1) → (y, s2)

] )
−
(
Wgttn

[
(xη, s1) → (yη, s2)

]
− Wgttn

[
(x, s1) → (y, s2)

] )
.

Adding the term 2−1/2 (xη−yη)2

s1,2
− 2−1/2 (x−y)2

s1,2
inside the two sets of parentheses, we obtain

∆0,t
[
x→ y

]
−∆0,t

[
xη → yη

]
= ∆∪Wgt0n

[
({xη, x}, s1) → ({yη, y}, s2)

]
− ∆∪Wgttn

[
({xη, x}, s1) → ({yη, y}, s2)

]
. (44)

We seek an upper bound on the tail of the random variable supx,y∈I
∣∣∆0,t[x→ y]

∣∣. Fixed endpoints’
weight stability Proposition 4.2(2) and a union bound over endpoint pairs lying in the mesh Iη will
lead to control on the term ∆0,t[xη → yη]. The pair of parabolically adjusted given-time weight
differences in (44) will then be controlled by means of Proposition 6.3.

Two claims correspond with these steps. First, for any r > 0, we claim that

P
(

sup
x′∈Iη ,y′∈Jη

∣∣∆0,t[x′ → y′]
∣∣ ≥ s

1/2
1,2 τ̂

1/2r

)
≤

√
2
(
(v − u)η−1 + 1

)2
r−1 . (45)

Indeed, by τ ≤ τ̂ , the Cauchy-Schwarz inequality and Proposition 4.2(2) with x = x′ and y = y′, we

find that E
∣∣∆0,t[x′ → y′]

∣∣ ≤ √
2s

1/2
1,2 τ̂

1/2, so that Markov’s inequality and a union bound that uses

that |Iη| and |Jη| are at most (v−u)η−1+1 yields (45). Here, we make further use of the notational
convention indicated in Section 5.1.4, whereby a boldface font is used to indicate the settings for the
parameters of an input result. Note that the above application of Proposition 4.2(2) with x = x′

and y = y′ necessitates verifying that the hypotheses on the latter in fact hold in this case. This
leads to certain mundane computations that are deferred to Appendix A.

Next, gather the hypotheses on parameters n ∈ N, η > 0, s1, s2 ∈ n−1Z, x, y ∈ R and K > 0 that

ηs
−2/3
1,2 ∈ (0, 2−4]; that ns1,2 ≥ 1032c−18; that D2−2ℓ/3(ℓ+1)1/3s

−2/3
1,2 ≤ 2−23−1c(ns1,2)

1/18; and that

K ∈
[
104 , 103(ns1,2)

1/18
]
. Our second claim is that, when these hypotheses hold,

P
(

sup
x∈I,y∈J

∣∣∣∆∪Wgtn
[
({xη, x}, s1) → ({yη, y}, s2)

]∣∣∣ ≥ Kη1/2
)

(46)

≤
(
(v − u)η−1 + 1

)2
· 10032C exp

{
− c 2−24K2

}
.

The bound follows from Proposition 6.3 with parameter settings a = ηs
−2/3
1,2 , x = xη and y = yη;

and by a union bound over pairs (xη, yη) valued in Iη × Jη (again, the verification of hypotheses is
carried out in Appendix A).
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Revisiting (44) equipped with the two claims—the latter applied at times zero and t—we learn that,
for r > 0 and for K and η satisfying the hypothesised constraints,

P
(
s
−1/3
1,2 sup

x∈I,y∈J

∣∣∆0,t[x→ y]
∣∣ ≥ s

1/6
1,2 τ̂

1/2r + 2Kη1/2s
−1/3
1,2

)
≤

(
(v − u)η−1 + 1

)2(
21/2r−1 + 2 · 10032C exp

{
− c 2−24K2

})
.

We now select the parameters r, K and η. Setting s
1/6
1,2 τ̂

1/2r = 2Kη1/2s
−1/3
1,2 , we may eliminate r

from the displayed bound; if we further insist that η ≤ v − u, we obtain

P
(
s
−1/3
1,2 sup

x∈I,y∈J

∣∣∆0,t[x→ y]
∣∣ ≥ 4Kη1/2s

−1/3
1,2

)
≤ 4(v − u)2η−2

(
s
1/2
1,2 τ̂

1/22−1/2K−1η−1/2 + 2 · 10032C exp
{
− c2−24K2

})
.

Recall from before (46) that we must impose η ≤ 2−4s
2/3
1,2 , and from Proposition 6.2 that 2−ℓ−1 ≤

s1,2 ≤ 2−ℓ. We may thus set η = 2−52−2ℓ/3ϕ—where ϕ ≤ 1 remains to be selected. Recall further

that v − u = |I| = D 2−2ℓ/3(ℓ+ 1)1/3. Again using 2−ℓ ≥ s1,2 ≥ 2−ℓ−1, we see then that

P
(
s
−1/3
1,2 sup

x∈I,y∈J

∣∣∆0,t(x, y)
∣∣ ≥ 2−1/6Kϕ1/2

)
≤ D2(ℓ+ 1)2/3ϕ−2

(
2−ℓ/6τ̂1/2K−1214ϕ−1/2 + 213 · 10032C exp

{
− c2−24K2

})
.

We now choose ϕ so that ϕ−5/2 = τ̂−1/100. That is, we set ϕ = τ̂1/250. We obtain

P
(
s
−1/3
1,2 sup

x∈I,y∈J

∣∣∆0,t(x, y)
∣∣ ≥ 2−1/6Kτ̂1/500

)
≤ D2(ℓ+ 1)2/3

(
2−ℓ/6214τ̂1/2−1/100K−1 + 213 · 10032 τ̂−1/125C exp

{
− c2−24K2

})
.

We now set K = (ℓ + 1)c−1/2212(1/2 + 1/125)1/2
(
log τ̂−1

)1/2
. Note that, since ℓ ≥ 0, e−c2−24K2 ≤

τ̂ (ℓ+1)2(1/125+1/2) ≤ τ̂1/125+(ℓ+1)2/2. We find that

P
(
s
−1/3
1,2 sup

x∈I,y∈J

∣∣∆0,t(x, y)
∣∣ ≥ (ℓ+ 1)c−1/2212(127/250)1/2

(
log τ̂−1

)1/2
τ̂1/500

)
≤ D2(ℓ+ 1)2/3

(
2−ℓ/6(ℓ+ 1)−122τ̂49/100c1/2(250/127)1/2

(
log τ̂−1

)−1/2
+ 213 · 10032Cτ̂ (ℓ+1)2/2

)
.

We may suppose that τ̂ ≤ e−1. Using this alongside c ≤ 1, C ≥ 1 and 212(127/250)1/2 ≤ 3000,

213 · 10032 + 4(250/127)1/2 ≤ 108 and that τ̂ (ℓ+1)2/2 is at most τ̂1/22−ℓ/6(ℓ + 1)−2/3 for ℓ ≥ 0 and
τ̂ ≤ 2−1, we arrive at

P
(
s
−1/3
1,2 sup

x∈I,y∈J

∣∣∆0,t(x, y)
∣∣ ≥ (ℓ+ 1) · 3000c−1/2

(
log τ̂−1

)1/2
τ̂1/500

)
≤ 108D2C2−ℓ/6τ̂49/100 ,

and thus complete the proof of Proposition 6.2.

□
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6.2. Weight stability with planar uniformity: the proof of Theorem 6.1. Given is a rec-
tangle I × [s1, s2] of width D 2−2ℓ/3(ℓ + 1)1/3 and height s1,2 ∈ [2−ℓ−1, 2−ℓ]; our task is to bound
the upper tail of the supremum of the absolute value of the difference in weight between times zero
and t of polymers moving from some point (x, h1) in the rectangle’s lower third to a point (y, h2)
in its upper third.

6.2.1. The method of proof in broad brushstrokes. We indicate the method, specifying some artefacts
for now only roughly, and illustrating them in Figure 5. Fix endpoints (x, h1) and (y, h2), and let
l = l

[
(x, h1) → (y, h2)

]
denote the planar line segment that interpolates them. Let η ∈ n−1Z be

a positive parameter that is rather small compared to s1,2. Choose h+1 [η] ∈ [h1 + η, h1 + 2η] ∩ Zη
and h−2 [η] ∈ [h2 − 2η, h2 − η] ∩ Zη. These η-mesh points are early and late moments in the life
of the polymer ρn

[
(x, h1) → (y, h2)

]
, separated from the polymer’s starting and ending moments

by order η. Indeed, the polymer’s lifetime [h1, h2] is composed of three epochs: a lengthy prime[
h+1 [η], h

−
2 [η]

]
bordered on either end by a brief infancy

[
h1, h

+
1 [η]

]
and a brief dotage

[
h−2 [η], h2

]
.

Let J ⊂ R be an interval of length a little higher than η2/3 centred at the line l’s location at moment
h+1 [η]; and let K be a similar interval centred at l’s location at moment h−2 [η]. The plan of attack
draws on three elements:

(1) Via the two-thirds exponent for polymer fluctuation, argue that any polymer ρn
[
(x, h1) →

(y, h2)
]
typically passes through J × {h+1 [η]} and K × {h−2 [η]}.

(2) Via the one-third exponent for weight, show that the infancy and dotage contribute a neg-

ligible order of η1/3 to the weight Wgtn
[
(x, h1) → (y, h2)

]
.

(3) Harnessing horizontal stability Proposition 6.2 for the pair of moments (h+1 [η], h
−
2 [η]), we will

see that the weight difference
∣∣Wgttn

[
(u, h+1 [η]) → (v, h−2 [η])

]
−Wgt0n

[
(u, h+1 [η]) → (v, h−2 [η])

]∣∣
is small relative to these weights’ order, for any pair (u, v) ∈ J ×K.

We will quote or derive rigorous renderings of each of these elements. For now, we explain heuris-
tically how to combine them to prove Theorem 6.1. Let u and v denote the locations of pas-
sage of the time-zero polymer ρ0n

[
(x, h1) → (y, h2)

]
at the early and late moments. By (1), we

may neglect the possibility that u ̸∈ J or that v ̸∈ K. In its prime, during
[
h+1 [η], h

−
2 [η]

]
, the

time-zero polymer passes from u to v, and accrues weight Wgt0n
[
(u, h+1 [η]) → (v, h−2 [η])

]
along the

way. Up to two additive terms indexed by the polymer’s infancy and its dotage—terms that are
negligible by (2)—this accrued weight equals the polymer’s total weight Wgt0n

[
(x, h1) → (y, h2)

]
.

But the accrued weight is little affected by the time change 0 → t in view of (3), and the re-
sulting slightly altered weight Wgttn

[
(u, h+1 [η]) → (v, h−2 [η])

]
approximates the maximum time-t

weight of a path from (x, h1) to (y, h2) that is constrained to pass via (u, h+1 [η]) and (v, h−2 [η]),
because the two other contributions are negligible in light of (2). Thus, it is typical that the bound
Wgttn

[
(x, h1) → (y, h2)

]
≥ Wgt0n

[
(x, h1) → (y, h2)

]
holds up to a negligible error. But the opposing

inequality must then also typically hold, because our dynamics is reversible. So the two weights
differ negligibly—this, in outline, is how we will prove Theorem 6.1.

We continue with three subsections that rigorously enact the three displayed steps. A final subsec-
tion completes the derivation of Theorem 6.1 by assembling these elements.

6.2.2. Regular passage at the end of infancy and the start of dotage: implementing Step (1). The
key tool for this step is Proposition 5.4. Recall that (x, h1) ∈ I × (n−1Z × [s1, s1 + s1,2/3]) and
(y, h2) ∈ I×(n−1Z×[s2−s1,2/3, s2]). Let h+1 [η] ∈ [h1+η, h1+2η]∩Zη and h−2 [η] ∈ [h2−2η, h2−η]∩Zη.
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(x, h1)

(y, h2)

η

η

η

η

h+1 [η]

h−2 [η]

infancy

dotage

primeρn[(x, h1)→ (y, h2)]

l

Figure 5. In this instance, as typically, the polymer ρn
[
(x, h1) → (y, h2)

]
visits the

bold horizontal intervals J × {h+1 [η]} and K × {h−2 [η]} at the start and end of its
prime.

Set ϕ = ηs−1
1,2 ∈ (0, 1). We have indicated that η is rather smaller than s1,2; we now quantify this

smallness by setting

ϕ = κD−18(ℓ+ 1)−18τ̂1/5 , (47)

where κ is a suitable positive constant whose value will be guided by smallness requirements of ϕ
throughout the proof below. (The above choice of ϕ does not interact with the previous choice made
in the proof of Proposition 6.2.)

Let Jx,y ⊂ R denote the length 2G0

(
ℓ + 2

)1/3
η2/3

(
log ϕ−1

)1/3
interval centred at

h2−h+
1 [η]

h1,2
x +

h+
1 [η]−h1

h1,2
y, and let Kx,y ⊂ R be the interval of equal length centred at

h2−h−
2 [η]

h1,2
x +

h−
2 [η]−h1

h1,2
y; here,

G0 is a positive constant that will be chosen to be suitably high a little later. Define the moderate
fluctuation event ModFluc0n

[
I × [s1, s2]; η

]
to be the event that Step (1) aims to prove is typical

uniformly in the endpoint-pair index, namely

ModFluc0n
[
I × [s1, s2]; η

]
=

⋂ {
ρ0n

[
(x, h1) → (y, h2)

]
intersects both Jx,y × {h+1 [η]} and Kx,y × {h−2 [η]}

}
,

where the intersection is taken over (x, h1) ∈ I× (n−1Z× [s1, s1+ s1,2/3]) and (y, h2) ∈ I× (n−1Z×
[s2 − s1,2/3, s2]), as well as over all concerned polymers in the case of exceptional endpoint pairs
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where the polymer is not unique. When the superscript 0 is absent in specifying this event, a static
environment is the object of attention, according to the convention of Subsection 1.3.1.

Step (1) is enacted via Proposition 5.4. Indeed, we will now argue that this proposition implies that

P
(
¬ModFlucn

[
I × [s1, s2]; η

])
≤ 2−4/3D3G−2

0 ϕ−10/3+2−3dG3
0(ℓ+2) . (48)

To verify this bound, note that, since h+1 [η] − h1 ∈ η · [1, 2], h1,2 ∈ s1,2 · [1/3, 1] and ϕ = ηs−1
1,2,

we have that
(
h+1 [η] − h1

)
h−1
1,2 ∈ ϕ · [1, 6]. Similarly,

(
h2 − h−1 [η]

)
h−1
1,2 also lies in ϕ · [1, 6]. For this

reason, we will apply Proposition 5.4 three times, taking a ∈ ϕ · {1, 2, 4}, because all possible values
for

(
h+1 [η] − h1

)
h−1
1,2 and

(
h2 − h−1 [η]

)
h−1
1,2 are treated by so doing. In order that every instance of

fluctuation implicated by the non-occurrence of ModFlucn
[
I× [s1, s2]; η

]
be captured by at least one

of the three applications, we impose that Proposition 5.4’s parameter r satisfy

r
(
as1,2

)2/3(
log a−1

)1/3 ≥ G0

(
ℓ+ 2

)1/3
η2/3

(
log ϕ−1

)1/3
where the right-hand side is one-half of the length of the intervals Jx,y and Kx,y. Since the function

z → z2/3
(
log z−1

)1/3
is increasing on z ∈ (0, e−3/4), we see that by ensuring ϕ ≤ 4−1e−3/4 the

preceding display is verified whenever r is at least G0

(
ℓ + 2

)1/3
for a taking values in ϕ · {1, 2, 4}.

Thus, we impose that, for each of the three applications,

r = G0

(
ℓ+ 2

)1/3
.

Proposition 5.4’s parameter K must satisfy the condition that K ≥ 2−1D2−2ℓ/3(ℓ + 1)1/3s
−2/3
1,2 , in

order that 2Ks
1/3
1,2 be at least the length of I; here, the value of D is provided by this proposition.

Since s1,2 ≥ 2−ℓ−1, we may choose

K = 2−1/3D(ℓ+ 1)1/3 ,

The sum of the right-hand sides of the three applications of the proposition is at most

3D
(
2−1/3D(ℓ+ 1)1/3

)2
ϕ−10/3

(
4ϕ

)dG3
0(ℓ+2)

.

It is now convenient to use ϕ2
−1dG3

0(ℓ+2) ≤ (ℓ+1)−2/3, which in view of ϕ ≤ 1/2 may be ensured by

demanding that G0 ≥ 22/33−1/3(log 2)−1/3d−1/3, since log(ℓ + 1) ≤ ℓ + 2. Respecifying the values
of the positive quantities D and d yields the bound (48). Finally, the hypotheses of Proposition 5.4
in all three applications are implied by the bound that r ≥ r0, which is assured by a suitably high
choice of G0, alongside the conditions

2−1/3D(ℓ+ 1)1/3 ≤
(
n2−ℓ−1

)2/3
, 2−1/3D(ℓ+ 1)1/3a1/3 ≤ H0 and n2−ℓ−1

(
a ∧ (1− a)

)
≥ D .

The first of these conditions, n ≥ 21/2D3/22ℓ(ℓ + 1)1/2, is implied by D ≥ 1, c ≤ 1, τ̂ ≤ e−1

and the lower bound on n hypothesised in Theorem 6.1. The second amounts to the demand,
satisfied in view of (47) and τ̂ ≤ 1 ≤ D, that ϕ is at most a constant multiple of (ℓ + 1)−1D−3.
The third imposes on ϕ the condition that n2−ℓϕ exceed the constant 2D. The lower bound on n
hypothesised in Theorem 6.1 takes the form n2−ℓϕ ≥ κH, where H is the parameter in Theorem 6.1;
so the condition in question holds if we take κ ≥ 2DH−1 in (47). Later, we demand a constant
upper bound on κ; the constant H is thus forced to exceed a large constant, but we may make such
a choice in setting the value of H in Theorem 6.1.
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6.2.3. Infancy and dotage little affect weight: implementing Step (2). Here, Proposition 5.8 is the
main input. On the event ModFlucn

[
I × [s1, s2]; η

]
, we may select, for any given (x, h1) ∈ I ×

(n−1Z× [s1, s1+ s1,2/3]) and (y, h2) ∈ I× (n−1Z× [s2− s1,2/3, s2]), u ∈ Jx,y and v ∈ Kx,y such that
a polymer ρ0n

[
(x, h1) → (y, h2)

]
contains (u, h+1 [η]) and (v, h−2 [η]). By the weight additivity noted

in Section 5.1.3, this implies that, on this event,

Wgt0n
[
(x, h1) → (y, h2)

]
(49)

= Wgt0n
[
(x, h1) → (u, h+1 [η])

]
+Wgt0n

[
(u, h+1 [η]) → (v, h−2 [η])

]
+Wgt0n

[
(v, h−2 [η]) → (y, h2)

]
.

Step (2) asserts that typically the infancy and dotage weights Wgtsn
[
(x, h1) → (u, h+1 [η])

]
and

Wgtsn
[
(v, h−2 [η]) → (y, h2)

]
are of roughly order η1/3 for times s = 0 and s = t. Indeed, we set

InfaDot0,tn

(
I × [s1, s2]

)
=

⋂{
these four weights are in absolute value at most E1

(
ℓ+ 2

)2/3
η1/3

(
log ϕ−1

)2/3}
,

where the intersection is again taken over (x, h1) ∈ I × (n−1Z × [s1, s1 + s1,2/3]) and (y, h2) ∈
I × (n−1Z× [s2 − s1,2/3, s2]).

Several applications of Proposition 5.8 will yield

P
(
ModFluc0n

[
I × [s1, s2]; η

]
∩ ¬ InfaDot0,tn

(
I × [s1, s2]

) )
(50)

≤ 256 ·G2
0H1(ℓ+ 2)2/3ϕ−2+h31/2E

3/2
1 (ℓ+2) .

Indeed, by the use of the scaling principle from Section 5.1.1, Proposition 5.8 with

n = 3ηn , K = 28/3G0

(
ℓ+ 2

)1/3(
log ϕ−1

)1/3
and R = 31/3E1

(
ℓ+ 2

)2/3(
log ϕ−1

)2/3
may be applied to rectangles that are translates of[

0, 4G0

(
ℓ+ 2

)1/3
η2/3

(
log ϕ−1

)1/3]× [0, 3η] ;

note that a suitably high choice of the constant E1 that specifies the InfaDot event permits the
parabolic expression in the display in Proposition 5.8 to be absorbed by the weight upper bound in
this event.

In this paragraph, we confirm that the proposition’s hypothesis are verified in the application just
made. The hypothesis 3ηn ≥ n0 is in view of η = ϕs1,2, s1,2 ≥ 2−ℓ−1, ϕ = κD−18(ℓ+ 1)−18τ̂1/5 and
the lower bound on n hypothesised by Theorem 6.1 implied by taking κ = 6n0H

−1. The hypothesis
R ≥ R0 is implied by choosing τ̂ > 0 small enough. To verify the hypothesis R ≤ n1/30, note that
the lower bound on n hypothesised in Theorem 6.1 alongside H and D being at least one implies
that n ≥ τ̂−1/5, so that our specification of R implies that this quantity is at most a constant

multiple of (ℓ+2)2/3
(
log(ℓ+1)+ log n

)2/3
; since 2ℓ ≤ n, the desired upper bound on R thus arises

if we assume that n is high enough (via a suitable choice of H). The hypothesis K ≤ n1/46 holds
when n is high enough for the same reason as does the upper bound on R.

To bound the number of applications of Proposition 5.8 made in deriving (50), it is convenient to

specify the relationship between the parameters D and G0: we set D = 21/2G0. The number of
applications takes the form 2r1r2, where r1, the cardinality of horizontal coordinates, is at most

2−1G−1
0 D2−2ℓ/3(ℓ+ 1)1/3

(ℓ+ 2)1/3η2/3
(
log ϕ−1

)1/3 + 1 ≤ 2
ϕ−2/3(

log ϕ−1
)1/3 , (51)
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where we used G0 ≥ 1 and ϕ ≤ 1/4; and r2 = 3−1s1,2η
−1 + 1 = 3−1ϕ−1 + 1 ≤ ϕ−1, due to ϕ ≤ 2/3.

By a union bound, the upper bound on the probability in (50) thus obtained is

4 · ϕ−5/3(
log ϕ−1

)1/3 · 216/3G2
0(ℓ+ 2)2/3

(
log ϕ−1

)2/3
H1ϕ

h31/2E
3/2
1 (ℓ+2)

= 222/3G2
0H1(ℓ+ 2)2/3

(
log ϕ−1

)1/3
ϕ−5/3+h31/2E

3/2
1 (ℓ+2)

≤ 256 ·G2
0H1(ℓ+ 2)2/3ϕ−2+h31/2E

3/2
1 (ℓ+2) .

Thus we obtain (50).

6.2.4. Stability for the prime weight: implementing Step (3). This step is enacted via horizontal
stability Proposition 6.2. We set

Stable0,tn

(
I, h+1 [η], h

−
2 [η]

)
=

⋂ {∣∣∣Wgttn
[
(u, h+1 [η]) → (v, h−2 [η])

]
−Wgt0n

[
(u, h+1 [η]) → (v, h−2 [η])

]∣∣∣ ≤ (ℓ+ 1)2−ℓ/3τ̂2/1001
}
,

where the intersection is taken over all u ∈ Jx,y and v ∈ Kx,y such that (x, h1) ∈ I×(n−1Z× [s1, s1+
s1,2/3]) and (y, h2) ∈ I × (n−1Z× [s2− s1,2/3, s2]). The intersection is over a broader class of sets if
instead we vary u and v over an interval I ′ that shares its midpoint with I but has twice the length.
This is because any interval of the form Jx,y or Kx,y for concerned pairs (x, y) intersects I and is

of length at most that of I—to wit, 2G0(ℓ + 2)1/3η2/3
(
log ϕ−1

)1/3
is at most G02

−2ℓ/3(ℓ + 1)1/3,

which bound is due to η = ϕs1,2, s1,2 ≤ 2−ℓ, and ϕ2/3
(
log ϕ−1

)1/3
(ℓ + 2)1/3 being at most a small

constant in light of (47). Proposition 6.2 with D = G0 and I = J = I ′ implies that

P
(
¬Stable0,tn

(
I, h+1 [η], h

−
2 [η]

))
≤ ϕ−2 · 108CG2

0 · 2−ℓ/6τ̂49/100 , (52)

whose right-hand factor ϕ−2 = (s1,2η
−1)2 equals the number of concerned level-pairs for

(
h+1 [η], h

−
2 [η]

)
;

the other factor is provided by Proposition 6.2.

6.2.5. Proving Theorem 6.1 after taking these three steps. In view of (49), the occurrence of

ModFlucn
[
I × [s1, s2]; η

]
∩ InfaDot0,tn

(
I × [s1, s2]

)
∩ Stable0,tn

(
I, h+1 [η], h

−
2 [η]

)
entails that

Wgttn
[
(x, h1) → (y, h2)

]
≥ Wgttn

[
(x, h1) → (u, h+1 [η])

]
+Wgttn

[
(u, h+1 [η]) → (v, h−2 [η])

]
+Wgttn

[
(v, h−2 [η]) → (y, h2)

]
≥ Wgt0n

[
(x, h1) → (u, h+1 [η])

]
+Wgt0n

[
(u, h+1 [η]) → (v, h−2 [η])

]
− (ℓ+ 1)2−ℓ/3τ̂2/1001

+ Wgt0n
[
(v, h−2 [η]) → (y, h2)

]
− 2E1(ℓ+ 2)2/3η1/3

(
log ϕ−1

)2/3
≥ Wgt0n

[
(x, h1) → (y, h2)

]
− (ℓ+ 1)2−ℓ/3τ̂2/1001 − 2E1(ℓ+ 2)2/3η1/3

(
log ϕ−1

)2/3
≥ Wgt0n

[
(x, h1) → (y, h2)

]
− 2−ℓ/3

(
(ℓ+ 1)τ̂2/1001 + 2E1(ℓ+ 2)2/3ϕ1/3

(
log ϕ−1

)2/3)
.

The final inequality invokes η1/3 ≤ 2−ℓ/3ϕ1/3, which follows from ϕ = ηs−1
1,2 and s1,2 ≤ 2−ℓ.

Recall (47). Since τ̂ ≤ 1/2, the term being subtracted in the last displayed line is less than

(ℓ+1)21−ℓ/3τ̂2/1001 when the positive constant κ that specifies ϕ is selected to be suitably small but
without dependence on D ≥ 1.
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Consider the probability that there exist (x, h1) ∈ I × (n−1Z × [s1, s1 + s1,2/3]) and (y, h2) ∈
I × (n−1Z× [s2 − s1,2/3, s2]) such that

Wgttn
[
(x, h1) → (y, h2)

]
−Wgt0n

[
(x, h1) → (y, h2)

]
≤ −D(ℓ+ 1) · 21−ℓ/3τ̂2/1001 .

From (48), (50) and (52), we find that this probability is at most

2−4/3D3G−2
0 ϕ−10/3+2−3dG3

0(ℓ+2) + 256 ·G2
0H1(ℓ+ 2)2/3ϕ−2+h31/2E

3/2
1 (ℓ+2)

+ ϕ−2 · 108CG2
0 · 2−ℓ/6τ̂49/100 .

Recall that we have set D = 21/2G0. Owing to this and to the choice made in (47), and with an
increase, if need be, in the values of G0 and E1, the displayed expression is at most a constant
multiple of G2

0 · 2−ℓ/7τ̂1/12.

However, this conclusion may equally be asserted with an interchange of times zero and t, because
the dynamics is reversible. We obtain the variant of Theorem 6.1 in which, in (42), the quantity

Dτ̂2/1001 is replaced by 31/32Dτ̂2/1001 and the right-hand term is 2G2
0 ·2−ℓ/7τ̂1/12. A suitable choice

of the upper bound a ∈ (0, 1] on the value of τ̂ permits us to omit the unwanted factor of 31/32.
Since D2 = 2G2

0, we have completed the proof of this theorem. □

6.3. A weak and general form of weight stability. A simple such result will be needed to
treat the short excursions’ case.

Lemma 6.4. There exists h > 0 such that, when n ∈ N+ and τ ≤ 1, it is with probability at least
1− e−hn that

sup
∣∣Wgttn(ψ)−Wgt0n(ψ)

∣∣ ≤ 4n1/2

where the supremum is taken over all n-zigzags ψ from (0, 0) to (0, 1).

Proof. The unscaled dynamical noise environment B : R × Z × R → R evolves in dynamic time
according to Ornstein-Uhlenbeck dynamics whose invariant measure is static Brownian LPP, namely
the law of B(·, ·, 0) : R× Z → R. Let t ≥ 0. By (4), an independent realization W : R× Z → R of
B(·, ·, 0) may be coupled to B(·, ·, 0) so that

B
(
·, ·, t

)
= e−tB

(
·, ·, 0

)
+
(
1− e−2t

)1/2
W

(
·, ·
)
.

Let Wgt∗n denote the weight determined by the noise environment W . Let ψ be an n-zigzag. Since
t ≤ n−1/3, the preceding display implies that∣∣Wgttn(ψ)−Wgt0n(ψ)

∣∣ ≤ t
∣∣Wgt0n(ψ)

∣∣+ 21/2t1/2
∣∣Wgt∗n(ψ)

∣∣ .
The weights Wgt0n(ψ) and Wgt∗n(ψ) are equal in law. Lemma 5.3(1) with x = y = 0 implies that,
for a suitably small positive h, it is with probability at least 1− e−hn that sup

∣∣Wgt∗n(ψ)
∣∣ is at most

n2/3, where the supremum is taken over all n-zigzags ψ from (0, 0) to (0, 1). This completes the

proof of Lemma 6.4, since t ≤ n−1/3. □

7. The construction and main properties of the proxy

We now specify precisely the time-zero proxy ρt→0
n of the polymer ρtn, the key object in the proof

as described in Section 3.3. The value of t ≥ 0 is fixed throughout this definition, with the scaled
parameter τ ≥ 0 specified via t = n−1/3τ as in Section 2.1. Since the proxy will be employed to
demonstrate high subcritical overlap, τ may be viewed for now as a fixed positive quantity that
is much smaller that one (though shortly we will demand that it tends to zero with high n at a
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modest rate). The proxy has just been called ρt→0
n , in accordance with the usage in the overview of

Section 3.3. We now proceed to making the argument in Subsection 3.3.3 rigorous which demands
the construction mimic the geometry of ρtn at a dyadic scale parameter ℓ ∈ N. This necessitates a
scale-ℓ proxy, to be denoted by ρt→0

n,ℓ whose job will be to mimic the geometry of ρtn by replication

of the excursion structure of ρtn relative to ρ0n on vertical scales of the form 2−ℓ, or, in fact, on a
slightly finer scale.

We start with some definitions that concern this excursion structure.

Definition 7.1. Let n ∈ N, and let γ and ϕ be two n-zigzags. For b, f ∈ n−1Z with b ≤ f ,
and x, y ∈ R, suppose that (x, b) and (y, f) belong to γ ∩ ϕ. Recall zigzag subpath notation from
Subsection 3.1.4. The subpath union set γ(x,b)→(y,f)∪ϕ(x,b)→(y,f) is called a journey of γ and ϕ, and

it is denoted by J
(
γ, ϕ, (x, b) → (y, f)

)
. This journey J ’s duration dur(J) is f − b; its legs are the

two sets γ(x,b)→(y,f) and ϕ(x,b)→(y,f). A journey is said to have scale ℓ ≥ 0 if f − b ∈ (2−ℓ−1, 2−ℓ].

Consider three properties that a journey of γ and ϕ with such endpoints may satisfy. The latter
two are expressed in terms of three parameters: α > 0, χ ∈ (0, 1) and τ0. The latter parameter τ0
will act as an upper bound on τ ; we will shortly impose that it decays gently to zero with n.

(1) The legs γ(x,b)→(y,f) and ϕ(x,b)→(y,f) are disjoint except at their common pair of endpoints.

(2) For a proportion of values h ∈ n−1Z∩ [b, f ] that is at least 1− χ, the departures of the legs

from height h differ horizontally by at least (f − b)2/3τα0 ; that is, for such h, |γ(h)−ϕ(h)| is
at least (f − b)2/3τα0 , where here the notation from Subsection 3.1.8 is used. See Figure 6.

A variation of this property will be needed for technical purposes.

(3) For a proportion of values h ∈ n−1Z ∩ [b, f ] that is at least 1 − χ, these departures differ
horizontally by at least one-half of the preceding lower bound; that is, for such h, we have
|γ(h)− ϕ(h)| ≥ (f − b)2/3τα0 /2.

A journey that satisfies (1) is called an excursion; an excursion is called normal if it satisfies (2) and
slender, or (α, 1− χ)-slender, if it does not. A journey that satisfies (3) is called a weak excursion.
Note that, in a weak excursion, the legs are not constrained to be disjoint, but are merely supposed
to gain a sufficient separation, often enough.

We will employ these definitions in the case that the pair of zigzags is given by the polymers ρ0n
and ρtn at times zero and t. In accordance with the KPZ spatial exponent of two-thirds (whose role
in geodesic energy correlation was indicated after (17)), a journey between these polymers of lifetime

[b, f ] may be expected to experience horizontal displacement between its legs of order (f − b)2/3 at
typical moments in say the middle-third of the lifetime [b, f ]. The positive parameter α will shortly
be fixed, and the subcritical time condition τ ≪ 1 will also soon be expressed more precisely. As
such, most excursions between ρ0n and ρtn may be expected to be normal, and only a few to be
slender. Note further that, in keeping with analytic uses such as ‘weak solution’, a weak excursion
need not be an excursion.

In Subsection 3.3.3, we outlined how to construct the scale-ℓ proxy so that it mimics ρtn at scale ℓ—
at vertical separations of order 2−ℓ: the proxy is formed by marking points along ρtn at consecutive
vertical displacement slightly smaller than 2−ℓ and interpolating these points via time-zero polymers.
We now rigorously perform this construction. The order of the vertical discrepancy between marked
points will take the form 2−m, where m ∈ N is a dyadic scale parameter that slightly exceeds ℓ in
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(f − b)2/3τα0

(y, f)

(x, b)

Figure 6. An excursion between two zigzags γ and ϕ. The leg γ(x,b)→(y,f) is blue
and the leg ϕ(x,b)→(y,f) is red. The vertical double-arrowed line indicates the set of
coordinates—an interval in this instance—at which the leg departures differ by at
least the quantity appearing in the definition of a normal excursion.

a manner that we now specify. Recall that scaled time τ is less than one in the relevant subcritical
phase. Let q > 0 be a parameter to be set later. We henceforth impose the condition that

n1/3t = τ ≤ τ0 :=
(
log n

)−q
. (53)

We further stipulate the relation

2−m = 2−ℓτη0 . (54)

Here, η is a positive parameter that may be viewed as fixed and small, though its precise value
must accommodate the need for m to be an integer. This is in accordance with our practice of using
η to denote a small number as previously in (47).

Three exponents govern our hypotheses: α, which describes excursion geometry; η, which specifies
how geometric mimicry will be realized on a vertical scale that is slightly shorter than 2−ℓ; and q,
which quantifies the smallness of subcritical time (while for some of our results, it will suffice to
take q as a large constant, eventually we will need to allow it to grow with n in a manner made
precise later in (70)). On these exponents, we impose the condition that

2η/3− α− 1
3q > 0 . (55)

We also stipulate a lower bound on n of the form

n ≥ 2ℓH18Θ(1)

((
(ℓ+1)18218+η18q18(log log n)18

)
∨
(
log n

)4∨( log n)64(q(2η/3−α)−1/3
))
τ−η
0

(
log τ−1

0

)9
.

(56)
This hard-to-parse expression may be interpreted in practice by pretending for now that q is a
constant—the right-hand side becomes, in essence, a power of log n, so that, in this guise, (56) is a
concrete manifestation of the indication offered in (26). The role of the parameter H > 0 in (56)
will be addressed shortly.
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The proxy ρt→0
n,ℓ performs two feats of mimicry. We state these now as our principal assertion

regarding the proxy.

Theorem 7.2. Suppose that the bounds and relations (53), (54), (55) and (56) are in force. The
proxy ρt→0

n,ℓ is an n-zigzag from (0, 0) to (0, 1) that typically mimics ρtn in two ways. There exist

n0 ∈ N determined by the value 2η/3− α− 1
3q , and positive parameters d0, d, h0 and G, such that,

when n ≥ n0 and h0τ
−
(
2η/3−α− 1

3q

)
0 ≥ H ≥ 2(log 2)1/3

(
1
12 + 1

21η

)1/3
d−1/3, two properties hold.

(1) Weight mimicry. Except on an event of probability at most

2G exp
{
− 2−1dH3ℓ

}
τ
2−1d(log 2)−1H3η
0 + 15C exp

{
− d0H213ℓ/14τ

1/24−13η/14
0

}
,

we have the bound∣∣∣Wgt0
(
ρt→0
n,ℓ

)
−Wgtt

(
ρtn

)∣∣∣ ≤ H322ℓ/3τ
1/1002−2η/3
0 Ψ ,

where the factor Ψ equals 200(ℓ+ 1)2/3
(
1 + (ℓ+ 1)−1(log 2)−1η log τ−1

0

)2/3
.

(2) Excursion mimicry. For ξ ∈ [0, 1/2), let C denote the collection of scale ℓ excursions between
ρ0n and ρtn whose durations are contained in the interval [ξ, 1− ξ]. For any given such ξ, the
construction may be performed in such a way that, for at least one-half of the elements E
of C, both planar endpoints of E lie in ρt→0

n,ℓ .

Moreover, except on an event of probability at most 14 exp
{
− 2−4dH3ℓ

}
τ
(log 2)−12−4dH3η
0 ,

whenever (x, b), (y, f) ∈ R × n−1Z are the endpoint pair of a normal excursion of scale ℓ
between ρ0n and ρtn as above which are also elements of ρt→0

n,ℓ , they are also the endpoint pair

of a weak excursion between ρ0n and ρt→0
n,ℓ .

If C is empty, then Theorem 7.2(2) is vacuous and the proxy does not perform any geometric mimicry.
If this happens for all ℓ, there must be a large excursion, and a separate but simpler argument will
treat this case.

The proxy ρt→0
n,ℓ will mimic the course of ρtn on the scale 2−m and thereby substantially succeeds in

replicating the geometric structure of the scale-ℓ normal excursions of ρtn. This mimicry is finer for
larger values of ℓ. It comes at the price of a coarser time-zero weight mimicry of ρtn by the proxy.
Indeed, the weight mimicry upper bound has an ℓ-dependent factor dominated by the expression
22ℓ/3, because this factor equals 22ℓ/3Ψ, with the latter term Ψ being in a practical sense insignificant.
The customer who commissions proxy construction may choose the parameter H subject to the two
constraints hypothesised in Theorem 7.2. As n rises, higher choices of H become available in
accordance with (53); if chosen, they lead to outcomes that are more dependable but whose feats
of weight mimicry are less dazzling. The customer also chooses the parameter ξ ∈ (0, 1/2). A small
choice ensures excursion mimicry along a lengthy bulk [ξ, 1− ξ] of the polymer lifetime [0, 1].

It is worth reiterating that excursions will be adequately mimicked only if most scale ℓ excursions
between ρ0n and ρtn are normal. We must show, then, that slender excursions are a rarity. Proposi-
tion 9.2 will provide the needed information.
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7.1. Proxy construction. We turn to the explicit construction of the proxy ρt→0
n,ℓ . Let J ⊂

n−1Z ∩ [0, 1] denote the collection of vertical levels
{
n−1⌊n2−mk⌋ : k ∈ J0, 2mK

}
. Note that J

numbers 2m +1; that 0, 1 ∈ J ; and that the distance between any consecutive pair of elements of J
lies in [2−m − n−1, 2−m + n−1].

A very direct rendering of the plan from Subsection 3.3.3 would mark points on ρtn at each level in J ,
and interpolate them via time-zero polymers in order to form ρt→0

n,ℓ . However, this approach may fail

to preserve the structure of scale-ℓ excursions between ρ0n and ρtn when the latter polymer is replaced
by the proxy ρt→0

n,ℓ . For example, and as the upcoming Figure 7(left) indicates, several consecutive
scale-ℓ excursions may merge; this effect would diminish, in principle without constraint, the number
of scale-ℓ excursions between ρ0n and the proxy. Since the proxy method is vitally dependent on
the lower bound (28), and this bound arises due to excursion additivity for weight (30), we cannot
tolerate the uncontrolled vanishing of excursions when the proxy enters. We are led to revise our
specification of interpolating points with an altered approach that seeks to preserve at least one-half
of scale-ℓ excursions during the exchange of ρtn for ρt→0

n,ℓ .

In order that an excursion survive this exchange, it is natural to seek to insist that its starting and
ending moments be introduced to the set J of interpolating levels used in proxy construction. For
certain excursions, this modification would have the unattractive consequence of introducing into J
consecutive elements at vertical separation much less than 2−m, and we omit them for the purpose
of modifying J . In precise terms, scale-ℓ excursions between ρ0n and ρtn are naturally ordered by
increasing vertical coordinate. Examining them in turn according to this order, each is ascribed a
status of discarded or retained. This construction may be carried out in a manner that will serve
to ensure the first property of excursion mimicry Theorem 7.2(2). Namely, taking ξ ∈ [0, 1/2)
given, and denoting by C the collection of scale ℓ excursions between ρ0n and ρtn whose durations are
contained in the interval [ξ, 1 − ξ], at least one-half of the elements of C will be retained; since all
retained excursion endpoints will lie in the proxy ρt→0

n,ℓ , the first assertion of Theorem 7.2(2) will thus
be ensured. The rule that permits this outcome is to declare that any excursion E ∈ C is discarded
if and only if the last examined excursion E′ ∈ C was retained and the vertical discrepancy between
the starting point of E and the ending point of E′ is at most 2−m. All excursions not lying in C
may be discarded. Since the first element of C is retained, and a retain decision for a new element
of C always follows a discard, the number of elements of C that are retained is indeed at least |C|/2.

We now describe the index set I ⊂ n−1Z∩[0, 1] that is the collection of vertical levels of interpolating
points for our construction of ρt→0

n,ℓ . Each retained scale-ℓ excursion between ρ0n and ρtn has a lifetime,

[b, f ] say. Remove from J the elements {j, j′} of any consecutive pair of members of J for which [j, j′]
contains such a point b or f , namely the starting or ending moment of a retained scale-ℓ excursion
between ρ0n and ρtn. Let J

′ ⊂ n−1Z∩ [0, 1] denote the set of elements of J that are not thus removed.
Then form the subset I by adding into the set J ′ all such starting and ending moments b and f .

By definition this set contains all levels at which a retained scale-ℓ excursion between ρ0n and
ρtn begins and ends. Consecutive elements of I are at distance at least that between some pair of
consecutive elements of J but at most the distance between some pair of elements of J with precisely
one element of J between them; thus, any such distance lies in [2−m − n−1, 21−m + 2n−1].

Let
{
si : i ∈ J0, kK

}
be an increasing list of I’s elements, so that s0 = 0 and sk = 1. Note that the

last condition holds since J and hence J ′ contains 0 and 1 (the removed elements, namely those
in J \ J ′, are contained in the interval [ξ, 1 − ξ]). We define an associated sequence of locations{
ui : i ∈ J0, kK

}
, with a view to

{
(ui, si) : i ∈ J0, kK

}
constituting the sequence of interpolating

points in proxy construction. Certain pairs {si, si+j} (with 0 ≤ i < i+ j ≤ k) are the starting and
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2−` 2−m

ρtn

ρ0n

0
0

1

0
0

1

Figure 7. In the left sketch, a pair (ρ0n, ρ
t
n) with three excursions of scale ℓ whose

durations are indicated by vertical intervals on the left. Spots on ρtn are marked at
vertical coordinates of consecutive separation 2−m. A naive proposal for the form
of the proxy (which is not depicted) would interpolate the consecutive marks by
time-zero polymers. But the result may entail as few as one excursion between the
time-zero polymer and the proxy. The right sketch indicates for the same example the
marked points along ρtn that are interpolated in the actual construction of the proxy.
In interpreting the choice of points, note that the middle of the three excursions
is discarded, and the other two are retained. In the outcome, three suitably long
excursions between the time-zero polymer and the undepicted proxy are secured.

ending heights of retained scale-ℓ excursions between ρ0n and ρtn; any two such pairs are disjoint.
In any such pair, when the excursion has starting point (x, si) and ending point (y, si+j), we set
ui = x and ui+j = y. In the remaining cases, namely when si is not the ending height of any retained
excursion, we set ui equal to ρ

t
n(si), this being the coordinate of departure sup

{
x ∈ R : (x, si) ∈ ρtn

}
of ρtn from level si.

We may now specify the proxy ρt→0
n,ℓ , setting

ρt→0
n,ℓ =

k−1⋃
i=0

ρ0n
[
(ui, si) → (ui+1, si+1)

]
,
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so that indeed the proxy’s set of interpolating points is
{
(ui, si) : i ∈ J0, kK

}
. Weight mimicry

Theorem 7.2(1) will be derived via the basic upper bound on the relevant weight difference:∣∣∣Wgt0
(
ρt→0
n,ℓ

)
−Wgtt

(
ρtn

)∣∣∣ ≤
k−1∑
i=0

∣∣∣Wgt0
[
(ui, si) → (ui+1, si+1)

]
−Wgtt

[
(ui, si) → (ui+1, si+1)

]∣∣∣ .
(57)

Each increment si+1 − si has order 2−m (so that k has order 2m). Subcritical weight stability
Proposition 4.2(2) with s1,2 = Θ(1)2−m would appear to bound above the right-hand summand,

indicating that it typically has order at most 2−m/2τ1/2 ≤ 2−m/2τ
1/2
0 by our assumption (53) on τ .

The weight difference would thus typically be at most 2m/2τ
1/2
0 , so that a form of Theorem 7.2(1)

would be obtained.

This reasoning is flawed owing to an issue mentioned briefly in the overview offered in Subsec-
tion 3.3.2. Given the value si, the location ui is not deterministic, but is selected so that (ui, si)
lies on ρtn. The second problem is that, in those cases where (ui, si) is chosen to be a starting
or ending point of an excursion, even the quantity si is not deterministic. The argument may be
corrected if we are able to replace the use of the fixed-endpoint-pair Proposition 4.2(2) with a more
robust tool, in which weight stability is asserted uniformly over a class of endpoint pairs for each of
whose members both coordinates are permitted to vary rather freely. Theorem 6.1 is exactly such
an assertion.

7.2. Weight stability along much of the proxy. We continue on the journey to the derivation
of Theorem 7.2 by stating and proving Proposition 7.3. This result asserts that, when the given
time polymer ρtn is divided into pieces of lifetime of scale 2−m, most of the pieces verify a form of
subcritical weight stability. Theorem 6.1 will play an important role in the proof of this proposition.

Let ϕ be an n-zigzag between (0, 0) and (0, 1). To formalize an already used notion, a set of
interpolating points for ϕ is a collection

{
(xi, si) : i ∈ J0, kK

}
of elements of ϕ with (x0, s0) = (0, 0)

and (xk, sk) = (0, 1) such that si+1 − si belongs to [2−m − n−1, 21−m +2n−1] for each i ∈ J0, k− 1K.
Note that the set

{
(ui, si) : i ∈ J0, kK

}
used in proxy construction is a set of interpolating points

for ρtn (and also for ρt→0
n,ℓ ).

Proposition 7.3. Suppose that m ≥ 4; that (56) holds; and that H ≥ 2(log 2)1/3
(

1
12 +

1
21η

)1/3
d−1/3,

where Proposition 5.7 furnishes the constant d > 0. It is with probability at most

exp
{
− d log 2 ·H3m

}
+ 15C exp

{
− d0H213m/14τ

1/24
0

}
that there exists a set

{
(xi, si) : i ∈ J0, kK

}
of interpolating points for ρtn

[
(0, 0) → (0, 1)

]
such that

the cardinality of the set of i ∈ J0, k − 1K for which

s
−1/3
i,i+1

∣∣∣Wgttn
[
(xi, si) → (xi+1, si+1)

]
−Wgt0n

[
(xi, si) → (xi+1, si+1)

]∣∣∣ ≥ 3Hτ
1/501
0

is at least 180H213m/14τ
1/24
0 .

Here are the basic steps of the proof.

(1) Recall from (57) that we are seeking to bound above the right-hand side in∣∣∣Wgt0
(
ρt→0
n,ℓ

)
−Wgtt

(
ρtn

)∣∣∣ ≤
k−1∑
i=0

∣∣∣Wgt0
[
(ui, si) → (ui+1, si+1)

]
−Wgtt

[
(ui, si) → (ui+1, si+1)

]∣∣∣ .
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(2) We tesselate the space into overlapping translates of a box of a certain carefully chosen size.

(3) Lemma 7.4 records a consequence of Theorem 6.1: most such boxes are stable in the sense
that, uniformly over a class of endpoint pairs that vary rather freely near the base and
top of the box, the weight of the interpolating polymer changes little between times zero
and t. The boxes’ aspect ratio will be such that, with high probability, polymers starting
and ending in the bottom middle and the top middle of a box do not exit the box. If a box
satisfies both of these typical properties, we will call it ‘good’ in this overview; otherwise,
we will call it ‘bad’.

(4) Now note that, if the segments of ρtn and ρ0n between points (ui, si) and (ui+1, si+1) pass
through a good box, then the corresponding last-displayed summand is small. Thus, we
bound the number of bad boxes that ρtn passes through. Indeed, finding such an upper bound
is a coarse last passage percolation problem with Bernoulli weights—each box becomes a
vertex, with weight one if it is bad and weight zero if it is good. The boxes overlap and
these assignations are not independent, but this problem is minor and may be addressed
by decomposing the system of boxes into suitable disjoint sets. Further, Bernoulli LPP is
not integrable, but its Bernoulli variables may be dominated with a Poisson cloud of points,
so that a suitably sharp tail bound is offered by the integrable Poissonian LPP model: see
Lemma 7.8.

(5) We conclude then that no zigzag between (0, 0) and (0, 1)—in particular ρtn—passes through
too many bad boxes. For such a bad box, we bound the corresponding summand by a crude
uniform upper bound on the point-to-point weight between two elements in the box. Since
the number of such summands is low, the cumulative resulting error is manageable, and we

obtain the sought upper bound on
∣∣∣Wgt0

(
ρt→0
n,ℓ

)
−Wgtt

(
ρtn

)∣∣∣.
We start implementing our plan with some simple definitions including the dimensions of the boxes.

For H > 0 as in Proposition 7.3, set

a = H · 2−2m/3m1/3 and b = n−1⌊n2−m⌋ . (58)

Note that, when n ≥ 2m+1, 2−m−1 ≤ b ≤ 2−m. The dimensions of a box of width b2/3 and height b
are governed by the two-thirds spatial KPZ scaling exponent. The box [0, a]× [0, b] is a little wider

than this, by a factor of Hm1/3 = Θ(1)H
(
log b−1

)1/3
. This factor is chosen so that a bound may be

provided on the probability that a polymer entering and leaving such a box via the middle-thirds
of its horizontal sides escapes the box through its vertical sides. Indeed, the maximum fluctuation
Proposition 5.7 indicates that this probability is bounded above by exp

{
− Θ(1)H3 log b−1

}
=

exp
{
−Θ(1)H3m

}
.

A basic box is a translate of [0, a]× [0, b] by a vector in (Za,Zb). A rectangle of scale m is a translate
of [0, 5a]× [0, 3b] by a vector of the same form. Such a rectangle R is a union of fifteen basic boxes
arranged in a five-by-three pattern; thus, it is naturally divided into a lower, central and an upper
third. The lower middle box in R is the third of its five lower basic boxes. The upper middle corridor
of R is the union of its second, third and fourth upper basic boxes. See Figure 8.

Suppose given a rectangle R of scale m and two elements of R of the form (x, s1), (y, s2) ∈ R×n−1Z
with s1 < s2. The internal weight between this pair of points is the quantity, to be recorded
Wgtn

[
(x, s1) → (y, s2);R

]
, given by the supremum of the weights of n-zigzags that travel between

(x, s1) and (y, s2) without leaving R.
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(0,−1)
(0, 0)

(0, 3K)

(0, 3K + 1)

> 45◦

a

b

Figure 8. In the left sketch, a crossing polymer for a rectangle R of scale m begins
in R’s lower middle box and ends in its upper middle corridor. The right sketch illus-
trates the upcoming Lemma 7.9. A grid is formed of unit boxes centred at elements
of Z × 3Z. Three boxes that are open in the Bernoulli-p percolation environment
each contain a scattered Poisson point; since the boxes lie on a three-way-up path
in the Z × Z index space, the interpolating dotted path makes an angle of at most
forty-five degress with the vertical axis.

Recall that t ≥ 0 denotes dynamic time. The rectangle R is called internally stable if

sup s
−1/3
1,2

∣∣∣Wgttn
[
(x, s1) → (y, s2);R

]
−Wgt0n

[
(x, s1) → (y, s2);R

]∣∣∣ ≤ 3Hτ
1/501
0 ,

where the supremum is taken over (x, s1) in the lower middle box of R and (y, s2) in its upper
middle corridor. We will also need to define the notion of a crossing polymer at time t for the
rectangle R which has the form ρtn

[
(z1, h1) → (z2, h2)

]
, where (z1, h1) lies in the lower middle box

of R and (z2, h2) in its upper middle corridor (as Figure 8(left) depicts).

Lemma 7.4. Suppose that H ≥ 2(log 2)1/3
(
1
7 +

1
12η

)1/3
d−1/3, where d ∈ (0, 1] is specified by Propo-

sition 5.7. Then the probability that a given rectangle of scale m is not internally stable is at

most 18H22−m/7τ
1/12
0 .
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Proof. We will establish an upper bound on the concerned probability of the form 9H22−m/7τ
1/12
0 +

4 exp
{
−2−3dH3m

}
. This will suffice, because the condition 4 exp

{
−2−3dH3m

}
≤ 9H22−m/7τ

1/12
0 ,

being implied by

exp
{
−
(
2−3dH3 −

(
1
7 + 1

12η

)
log 2

)
m
}
≤ 9

4H
2

in view of the consequence 2m ≥ τ−η
0 of (54), is also implied by the hypothesis that H be at least

2(log 2)1/3
(
1
7 + 1

12η

)1/3
d−1/3 alongside the weaker bound H2 ≥ 4/9.

To begin demonstrating the just stated bound, suppose harmlessly that the given rectangle has the
label and form R = [0, 5a]× [0, 3b]. This rectangle will be called standard at time t0 ≥ 0 if

ρt0n
[
(a/2, 0) → (a/2, 3b)

]
⊂ [0, a]× [0, 3b] and ρt0n

[
(5a−a/2, 0) → (5a−a/2, 3b)

]
⊂ [4a, 5a]× [0, 3b] .

(59)

By polymer ordering Lemma 5.2, R being standard at time t0 entails that

every crossing polymer for R at time t0 is contained in R . (60)

In a shorthand convention, the rectangle R will be called standard if it is standard at times zero
and t. Note that, when R is standard, Wgtt0n

[
(x, s1) → (y, s2);R

]
equals Wgtt0n

[
(x, s1) → (y, s2)

]
for t0 ∈ {0, t} and for all those pairs (x, s1) in the lower middle box of R and (y, s2) in its upper
middle corridor. Note then that

P
(
R is not internally stable

)
≤ P

(
R is not standard

)
+ P

(
sup s

−1/3
1,2

∣∣∣Wgttn
[
(x, s1) → (y, s2)

]
−Wgt0n

[
(x, s1) → (y, s2)

]∣∣∣ ≥ 3Hτ
1/501
0

)
, (61)

where the supremum in the latter event is taken over (x, s1) in the lower middle box of R and (y, s2)
over its upper middle corridor. If R is not standard, then one or other of the polymers indicated
in (59) has maximum fluctuation greater than a/2 either at time t0 = 0 or at time t0 = t. Indeed,

four applications of Proposition 5.7 with n = n, s1 = 0, s2 = 3b, and R = 2−1Hm1/3 yield

P
(
R is not standard

)
≤ 4 exp

{
− 2−3dH3m

}
(62)

in view of a = H · 2−2m/3m1/3 and b ≤ 2−m. Note that (62) is a rigorous rendering of the

discussion after (58). The hypothesis of Proposition 5.7 that R ≤ (n · s1,2)1/10 is implied by

2−1Hm1/3 ≤ (3bn)1/10; and, since 2m ≤ n, the latter condition is implied by 2−mn ≥
(
log n

)4
provided that n is high enough. Note however this bound is implied by (56).

It is uniform stability Theorem 6.1 with parameter settings ℓ = m− 2, s1,2 = 3b and D = 3H and
τ̂ = τ0, that permits us to bound above the probability in line (61). This is because, if we choose

q to be a large enough constant in (53), the term (ℓ + 1)τ
2/1001
0 in Theorem 6.1 is at most τ

1/501
0 ,

since ℓ is at most log n. Making this choice, and also in view of the just stated information about

a and b, we find that the concerned probability is at most 9H22−m/7τ
1/12
0 . We must verify that

Theorem 6.1’s hypotheses are verified in this application. The hypothesis that 3b ∈ [21−m, 22−m] is
met because b ≥ 2/3 · 2−m is ensured by n ≥ 3 ·2m in view of (58). In order to verify the hypothesis

n ≥ HD18(m − 1)182m−2τ̂−1/5, recall (54), whence m = ℓ + (log 2)−1η log τ−1
0 . From (53), we see
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that log τ−1
0 = q log log n. Thus, trivially, (m− 1)18 is at most

(m+ 1)18 = (ℓ+ 1)18
(
1 + (ℓ+ 1)−1(log 2)−1ηq log logn

)18
≤ (ℓ+ 1)18218

(
1 + (ℓ+ 1)−18(log 2)−18η18q18(log log n)18

)
= (ℓ+ 1)18218 + (log 2)−18η18q18(log log n)18 .

In light of this, the needed lower bound on n is seen to follow from the hypothesis (56) because
the parameter τ̂ is taken to be τ0. This choice is permitted because, if we insist that n be at least
a large constant, then τ0, as specified by (53), will drop below the value a given by Theorem 6.1.
Theorem 6.1’s hypothesis D ≥ 1 amounts to H ≥ 1/3. The lower bound on H in Theorem 7.2
implies this, since d ≤ 1.

We thus learn that

P
(
R is not internally stable

)
≤ 9H22−m/7τ

1/12
0 + 4 exp

{
− 2−3dH3m

}
.

This is the bound to which we reduced the proof of Lemma 7.4 in the proof’s first paragraph. Thus
is this proof complete. □

Let ϕ denote an n-zigzag between (0, 0) and (0, 1); and let
{
(xi, si) : i ∈ J0, kK

}
be a set of

interpolating points for ϕ. A pair of consecutive indices (i, i + 1), with i ∈ J0, k − 1K, is called
internally unsteady if there exists a rectangle R of scale m whose lower middle box and upper
middle corridor respectively contain (xi, si) and (xi+1, si+1) and for which

s
−1/3
1,2

∣∣∣Wgttn
[
(xi, si) → (xi+1, si+1);R

]
−Wgt0n

[
(xi, si) → (xi+1, si+1);R

]∣∣∣ ≥ 3Hτ
1/501
0 .

The unsteadiness energy UE(ϕ) of ϕ is defined to be the maximum cardinality of the set of internally
unsteady index pairs (i, i+1) as the set

{
(xi, si) : i ∈ J0, kK

}
ranges over sets of interpolating points

for ϕ. The term ‘energy’ is reminiscent of last passage percolation; and indeed, we will bound above
the unsteadiness energy by a coupling with a suitable LPP model.

Recall from Definition 5.10 the notion that an n-zigzag between (0, 0) and (0, 1) is (κ,R)-regular
for given positive parameters κ and R. Here we adopt the shorthand of referring to such a zigzag
as regular when it is (b,H)-regular, where b appears in (58)

The maximum regular unsteadiness energy MaxRegUE
[
(0, 0) → (0, 1)

]
∈ N is the maximum of

UE(ϕ) as ϕ ranges over regular zigzags between (0, 0) and (0, 1). An argument that couples to LPP
will lead to the next result, which is integral to obtaining Proposition 7.3.

Proposition 7.5. Suppose that m ≥ 4 and that (56) holds. There exists a positive constant d0 such
that

P
(
MaxRegUE

[
(0, 0) → (0, 1)

]
≥ 180H213m/14τ

1/24
0

)
≤ 15 exp

{
− d0H213m/14τ

1/24
0

}
.

Rectangles of scale m may be classified into fifteen types, indexed by I5,3 := J0, 4K × J0, 2K. Indeed,
any such rectangle R may be translated by a vector in the lattice (5aZ, 3bZ) so that its lower-left
corner lies in [0, 5a) × [0, 3b). The position of this translated corner will have the form (k1a, k2b),
where (k1, k2) ∈ I5,3. The rectangle’s type is (k1, k2).

Let (j, k) belong to the index set I5,3, and let ϕ be a regular zigzag from (0, 0) to (0, 1). The
(j, k)-unsteadiness energy UEj,k(ϕ) of ϕ is defined to be the maximum cardinality of the set of
internally unsteady index pairs (i, i+1) for which the associated rectangle Ri has type (j, k), where
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the maximum is taken by permitting the set
{
(xi, si) : i ∈ J0, kK

}
to range over sets of interpolating

points for ϕ.

Further define the (j, k)-maximum regular unsteadiness energy MaxRegUEj,k

[
(0, 0) → (0, 1)

]
∈ N

to be the maximum of UEj,k(ϕ) as ϕ ranges over the set of regular zigzags between (0, 0) and (0, 1).

Note that, for any given regular zigzag ϕ from (0, 0) to (0, 1),

UE(ϕ) ≤
∑

(j,k)∈I5,3

UEj,k(ϕ) .

By taking suprema over such ϕ, we find that

MaxRegUE
[
(0, 0) → (0, 1)

]
≤

∑
(j,k)∈I5,3

MaxRegUEj,k

[
(0, 0) → (0, 1)

]
. (63)

Proposition 7.5 will be proved by harnessing (63). Our task is to bound the upper tail of the
random variable MaxRegUE

[
(0, 0) → (0, 1)

]
; and this task reduces to understanding this tail for

MaxRegUEj,k

[
(0, 0) → (0, 1)

]
, where the index (j, k) ∈ I5,3 is given. The latter task we now

attempt.

For given (j, k) ∈ I5,3, the quantity MaxRegUEj,k

[
(0, 0) → (0, 1)

]
will be stochastically dominated

by the point-to-point geodesic energy in a suitably specified LPP. In order to make such a compar-
sion, we consider a simple discrete LPP model.

Definition 7.6. Attach to the lattice Z2 a directed graph structure—the three-way-up structure—
under which three outgoing edges emanate from any given vertex v. These three edges point to
v + (−1, 1), v + (0, 1) and v + (1, 1). A directed path is a lattice path each of whose edges is such
a directed edge. Bernoulli LPP on this lattice has a noise environment specified by a parameter
p ∈ (0, 1). Each vertex independently receives a value of one or zero, with respective probabilities
p and 1 − p. For K ∈ N, let M three

K,p denote the maximum energy attached to any directed path

between (0, 0) and (0,K).

Let (j, k) ∈ I5,3 be given. The collection of rectangles of scale m and of type (j, k) is naturally
indexed by Z2. For definiteness, the label (0, 0) ∈ Z2 may be attached to the rectangle whose
lower-left corner lies in [0, 5a)× [0, 3b). The next lemma shows that the set of rectangles a regular-n
zigzag intersects is reasonably smooth.

Lemma 7.7. Suppose that m ≥ 1 and n ≥ 2m+1. Let ϕ be a regular n-zigzag from (0, 0) to (0, 1).
Suppose that ϕ intersects two rectangles R1 and R2 of scale m and of given type (j, k) ∈ J0, 4K×J0, 2K.
Let (u1, v1) and (u2, v2) denote the values in Z2 that index R1 and R2.

(1) Suppose that v2 > v1. Then |u1 − u2| ≤ |v1 − v2|.

(2) Suppose that v1 = v2. Suppose further that ϕ intersects the lower middle box of R1. Then
u1 = u2; which is to say, R1 = R2.

Proof: (1). If the assertion fails, then we may find indices (u1, v1) and (u2, v2) for rectangles visited
by ϕ that satisfy v2 = v1 + 1 and |u1 − u2| ≥ 2. We may relabel R1 and R2 to be the rectangles so
indexed. Let (x, s1) ∈ ϕ ∩ R1 and (y, s2) ∈ ϕ ∩ R2. Note that s1,2 ∈ [0, 6b], and that |y − x| ≥ 5a.
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Here, however, a contradiction arises: indeed, since ϕ is (b,H)-regular (for the definition, see (39))
and, as noted after (58), 2−m−1 ≤ b ≤ 2−m, we find that

|y − x| ≤ H · b2/3
(
log b−1

)1/3 ≤ H · 2−2m/3
(
(m+ 1) log 2

)1/3
< 2H2−2m/3m1/3 = 2a ,

where the latter inequality holds since m ≥ 1, because this condition ensures that the quantity

(log 2)1/3
(
1 +m−1

)1/3
is less than two.

(2). Suppose that v1 = v2. Let (x, s1) ∈ ϕ lie in the lower middle box of R1, and let (y, s2) lie in
ϕ∩R2. Then |y−x| ≥ 2a, while |s1,2| ≤ 3b. However, the preceding display shows that |y−x| < 2a.
This contradiction establishes the second claim. □

We specify a Bernoulli noise environment in the Z2-index space by declaring a vertex to be open
when the associated rectangle of scale m and type (j, k) is not internally stable. Note that the

p-value of this noise environment is at most 18H22−m/7τ
1/12
0 by Lemma 7.4. Note also that the

noise environment is indeed Bernoulli, because the assignations made to differing indices in Z2 are
independent.

Lemma 7.8. Suppose that m ≥ 4 and n ≥ 6 · 2m and recall M three
K,p from Definition 7.6. Let

(j, k) ∈ I5,3 be given. The random variable MaxRegUEj,k

[
(0, 0) → (0, 1)

]
is stochastically dominated

by M three
K,p , where the two parameters satisfy K ∈

[
3−12m, 2m−1

]
and p = 18H22−m/7τ

1/12
0 .

Remark. The hypothesis n ≥ 6 · 2m is implied by (56) in view of the paragraph after (62).

Proof of Lemma 7.8. Let ϕ be a regular zigzag from (0, 0) to (0, 1), and let
{
(xi, si) : i ∈ J0, kK

}
be a set of interpolating points for ϕ. Denote by R the set of rectangles of type (j, k) each of whose
members contains, for some i ∈ J0, k − 1K, (xi, si) in its lower middle box and (xi+1, si+1) in its
upper middle corridor. A choice of ϕ and its set of interpolating points may be made so that the
cardinality of R is equal to MaxRegUEj,k

[
(0, 0) → (0, 1)

]
. By Lemma 7.7, we may denote by P a

directed three-way-up path in Z2 that starts at the rectangle of type (j, k) that contains (0, 0); that
ends at the rectangle of this type that contains (0, 1); and that visits every element in R. Viewed
as a path in Z2, P travels between (0, 0) and (0,K), where K = ⌈(3b)−1⌉. Since b = n−1⌊2−mn⌋,
we have that 3−12m ≤ (3b)−1 ≤ 3−1(2−m − n−1)−1. Using 2m ≥ 10 and 2mn−1 ≤ 6−1, we confirm
that 3−12m ≤ ⌈(3b)−1⌉ ≤ 2m−1. Since every element in R is identified with a vertex in Z2 that is
open in the Bernoulli noise environment, we obtain Lemma 7.8 in light of the upper bound on the
environment’s p-value noted before this proof. □

Our next task is to comprehend the upper tail of the three-way-up geodesic energyM three
K,p for K ∈ N

and p ∈ (0, 1). The concerned LPP model is not integrable, and, in this principal case, our approach
couples this LPP model to an integrable one, namely Poissonian LPP, so that the integrable energy
dominates its three-way-up counterpart.

In the mentioned coupling, we will replace vertices in Z2 by unit boxes and dominate the Bernoulli
variable associated to a vertex by a Poisson cloud of points in the corresponding box. In analysing
Poissonian LPP, we will consider oriented paths whose angle with the vertical axis at any point is
at most π/4. Since the Poisson points are arbitrarily located inside the boxes, we need to separate
the boxes a little to ensure that this constraint is satisfied.

To implement this approach, we begin by introducing empty horizontal slices of width two between
every horizontal line in Z2. Indeed, to any assignation of the Bernoulli-p noise environment to Z2,
we associate a counterpart noise to Z× 3Z, where the assignation originally made to (m1,m2) ∈ Z2
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is now made to (m1, 3m2) ∈ Z × 3Z. Picture elements (m1, 3m2) ∈ Z × 3Z as the centres of unit
boxes (m1, 3m2) + [−1/2, 1/2]2. Note that, if an arbitrary point is selected in each such unit box,
then a three-way-up directed path P in Z2 will correspond to a directed path in R2, if we associate
to P the planar path given by line segments that interpolate the chosen points in the unit boxes
corresponding to the vertices visited by P ; here, by a directed path in R2, we mean a piecewise
affine curve each of whose line segments makes an angle with the vertical axis that is at most half
a right-angle.

We now couple the newly specified Bernoulli-p noise environment on Z × 3Z to an environment of
independent Poisson random variables Pm1,3m2 of mean λ := − log(1 − p) indexed by (m1, 3m2) ∈
Z× 3Z. The parameter λ has been selected so that each Poisson random variable has probability p
of being positive. As such, we may insist that, under the coupling, each Poisson random variable is
at least its Bernoulli counterpart. For each (m1, 3m2) ∈ Z× 3Z, we independently scatter Pm1,3m2

uniform points in the unit box (m1, 3m2) + [−1/2, 1/2]2. The set of points so scattered is a Poisson
process of intensity λ in the planar region R of points at distance at most one-half from the set
R× 3Z. We further independently scatter Poisson points at intensity λ in R2 \R. The collection P
of all scattered points is a planar Poisson process of intensity λ. The associated geodesic energy
between (0,−1) and (0, 3K + 1)—a pair of points at Euclidean distance 3K + 2—is the maximum
number of points in P that may be collected on a directed path in R2 between this pair of endpoints.
This energy we will denote by MP

3K+2,λ.

Lemma 7.9. Under the just specified coupling, M three
K,p ≤MP

3K+2,λ.

Proof. Let P denote a directed three-way-up path between (0, 0) and (0,K) that visits M three
K,p

vertices in Z2 that are open in the Bernoulli-p environment. For each thus open vertex (m1,m2)
on P , let q denote a Poisson point in the box (m1, 3m2)+ [−1/2, 1/2]2. The piecewise affine path Q
that begins at the lowest q-point and ends at the highest one is a directed path in R2, as we
noted in the penultimate paragraph that precedes this proof—and as Figure 8(right) illustrated.
We append to Q the line segment between (0,−1) and the starting point of Q; and the segment
between the ending point of Q and the point (0, 3K+1). The two added segments are readily seen to
make an angle of at most forty-five degrees with the vertical axis: this inference is straightforward
in view of P being a directed three-way-up path between (0, 0) and (0,K); and of (0,−1) and
(0, 3K +1) respectively lying at distance at least one-half from the unit boxes centred at (0, 0) and
(0, 3K). The extended path collects M three

K,p Poisson points and demonstrates the bound asserted by
Lemma 7.9. □

The central elements have been assembled for the next proof.

Proof of Proposition 7.5. Let (j, k) ∈ I5,3 be given. In light of the preceding two lemmas, the
key constituent task of proving an upper tail bound on MaxRegUEj,k

[
(0, 0) → (0, 1)

]
has been

reduced to finding a suitable tail bound on MP
3K+2,λ, where recall that λ = − log(1− p) and where

the parameters K and p are specified by Lemma 7.8.

The Poisson cloud P has intensity λ. We prefer to examine a Poisson cloud of unit intensity, and
we obtain one from P by applying to it the contraction R2 → R2 : (x, y) → λ1/2(x, y). We learn
by so doing that MP

3K+2,λ is equal in law to MP
(3K+2)λ1/2,1

. Thus, for any R ≥ 0,

P
(
MaxRegUEj,k

[
(0, 0) → (0, 1)

]
≥ R

)
≤ P

(
MP

(3K+2)λ1/2,1
≥ R

)
.
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Since K ≥ 2 (which is due to m ≥ 3), λ ≤ 2p (due to p ≤ 1/2) and K ≤ 2m−1, we find that

P
(
MaxRegUEj,k

[
(0, 0) → (0, 1)

]
≥ R

)
≤ P

(
MP

23/22mp1/2,1
≥ R

)
. (64)

Seppäläinen [Sep98] identified the rate function I for the upper tail of MP
h,1 in the regime of large

deviations. He proved that, for x ≥ 2, limh→∞ h−1 logP
(
MP

h,1 ≥ hx
)
= −I(x), where I(x) equals

2x cosh−1(x/2)− 2
(
x2 − 4

)1/2
, which, by standard super-multiplicative properties of such probabil-

ities, implies that, for any finite h, logP
(
MP

h,1 ≥ hx
)
≤ −I(x).

Recalling that (j, k) ∈ I5,3 is given, we learn from (64) and this large deviation bound with h =

23/2+mp1/2 and x = 3 that

P
(
MaxRegUEj,k

[
(0, 0) → (0, 1)

]
≥ 3 · 23/2+mp1/2

)
≤ exp

{
− 23/2+mp1/2I(3)

}
.

Armed with this bound, we revisit (63), noting that the latter implies that

P
(
MaxRegUE

[
(0, 0) → (0, 1)

]
≥ R

)
≤

∑
(j,k)∈I5,3

P
(
MaxRegUEj,k

[
(0, 0) → (0, 1)

]
≥ R/15

)
for any R > 0. Taking R = 15 · 23/2+mp1/2 and using p = 18H22−m/7τ

1/12
0 , we find that the

conclusion of Proposition 7.5 holds with d0 equal to say 21/23I(3). □

Proof of Proposition 7.3. Here we are supposing that the hypothesis of Proposition 7.5 holds.
A set

{
(xi, si) : i ∈ J0, kK

}
of interpolating points for the polymer ρtn

[
(0, 0) → (0, 1)

]
may be said

to be M -unstable if the cardinality of the set of i ∈ J0, k − 1K that satisfy

s
−1/3
i,i+1

∣∣∣Wgttn
[
(xi, si) → (xi+1, si+1)

]
−Wgt0n

[
(xi, si) → (xi+1, si+1)

]∣∣∣ ≥ 3Hτ
1/501
0

is at least M ∈ N. Note that the probability that an M -unstable interpolating set exists is bounded
above by

P
(
ρn

[
(0, 0) → (0, 1)

]
is not regular

)
+ P

(
MaxRegUE

[
(0, 0) → (0, 1)

]
≥M

)
. (65)

Indeed, if ρtn
[
(0, 0) → (0, 1)

]
is regular, then MaxRegUE

[
(0, 0) → (0, 1)

]
by definition offers an

upper bound on the values of M ∈ N for which an M -unstable interpolating set exists; since ρtn has
the law of the static copy ρn, the above displayed bound is obtained.

We now select M = 180H213m/14τ
1/24
0 and apply Proposition 7.5 to bound the right-hand term

in (65). We bound the left-hand term by invoking Proposition 5.11 with κ = b = n−1⌊n2−m⌋ ≤ 2−m

and R = H. Note that (54) and (56) imply that the hypothesis κ ≥ K0n
−1 is satisfied for high n.

We thus find that the expression (65) is at most

exp
{
− d log 2 ·H3m

}
+ 15C exp

{
− d0H213m/14τ

1/24
0

}
,

as we need to do to prove Proposition 7.3. □

7.3. Transversal fluctuations of the proxy. Here we present and prove a result that will be
needed to demonstrate the excursion mimicry aspect of Theorem 7.2.

Definition 7.10. Let ϕ and ψ be n-zigzags between (0, 0) and (0, 1). Let MaxDist
(
ϕ, ψ

)
denote the

maximum distance between two points (a, h), (b, h) ∈ R × n−1Z that share their height h ∈ [0, 1]
and for which (a, h) ∈ ϕ and (b, h) ∈ ψ.
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The next result states that ρt→0
n,ℓ sticks quite close to ρtn and thereby is indeed a good proxy for the

latter.

Proposition 7.11. Suppose that H ≥ 3d−1/3 where d > 0 denotes the minimum value of this
constant in Propositions 5.7 and 5.11. Then

P
(
MaxDist

(
ρt→0
n,ℓ , ρ

t
n

)
> 10H2−2m/3m1/3

)
≤ 14 exp

{
− 2−4dH3m

}
.

Proof. Let I = IH,m denote the interval
[
− Hm1/3, Hm1/3

]
. The entirely standard event

EntireStandn is said to occur when every rectangle of scale m that intersects I × [0, 1] is stan-
dard, in the sense of this term specified in the proof of Lemma 7.4—which is to say, standard at
times zero and t (see the paragraph following (60)).

Suppose that the event G :=
{
ρtn is regular

}
∩ EntireStandn ∩

{
ρtn ⊂ 2−1I × [0, 1]

}
occurs. Here, as

in the preceding section, by ‘regular’, we mean (b,H)-regular in the sense of (39) where b is defined
in (58).

Let
{
(ui, si) : i ∈ J0, kK

}
⊂ ρtn be the set of interpolating points for the proxy ρt→0

n,ℓ specified in the

paragraphs that follow Theorem 7.2. Recall that (u0, s0) = (0, 0); that (uk, sk) = (0, 1); and that
si+1 − si ∈ [2−m, 21−m] for each i ∈ J0, k − 1K.

For each i ∈ J0, k−1K, let Ri denote a rectangle of scale m whose lower middle box contains (ui, si).
Directly from the definition of ρtn being regular, it follows that the upper middle corridor of Ri

contains (ui+1, si+1). Thus, by definition, ρ0n
[
(ui, si) → (ui+1, si+1)

]
and ρtn

[
(ui, si) → (ui+1, si+1)

]
are crossing polymers for Ri (see Figure 8(left) and the discussion preceding it) at times 0 and t
respectively. Further, on the event G, and since

{
ρtn ⊂ 2−1I × [0, 1]

}
, the rectangle Ri is standard

at times 0 and t.

Now, for a compact set A ⊂ R2, define widthA to be the difference between the maximum and
minimum x-coordinates adopted by elements of A.

We claim that

max
{
width ρtn

[
(ui, si) → (ui+1, si+1)

]
,width ρt→0

n,ℓ

[
(ui, si) → (ui+1, si+1)

]}
≤ 5H2−2m/3m1/3 .

(66)
Since ρtn

[
(ui, si) → (ui+1, si+1)

]
is a crossing polymer for Ri at time t, and Ri is standard at this

time, this polymer is contained in Ri by (60); and hence its width is no more than that of Ri, namely

5H2−2m/3m1/3. The above argument also yields the same bound for ρt→0
n,ℓ

[
(ui, si) → (ui+1, si+1)

]
when we observe that the latter equals ρ0n

[
(ui, si) → (ui+1, si+1)

]
.

From (66), and the common memberships by (ui, si) and (ui+1, si+1) of ρ
t
n

[
(ui, si) → (ui+1, si+1)

]
and ρt→0

n,ℓ

[
(ui, si) → (ui+1, si+1)

]
, we see that

width
(
ρtn

[
(ui, si) → (ui+1, si+1)

]
∪ ρt→0

n,ℓ

[
(ui, si) → (ui+1, si+1)

])
≤ 10H2−2m/3m1/3 .

Thus, for any given i ∈ J0, k−1K, the width of the cross-section of this union set at any given height
in n−1Z∩[si, si+1] satisfies the same bound. Since any height in n−1Z∩[0, 1] lies in [si, si+1] for some
such i, we learn that the event G forces the geometric assertion contained in Proposition 7.11. To
complete the proof of the proposition, it thus suffices to argue that P(Gc) ≤ 14 exp

{
− 2−4dH3m

}
.
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(ui, si)

(ui+1, si+1)

Ri

(a/2, 3b) (5a− a/2, 3b)

(a/2, 0) (5a− a/2, 0)

Figure 9. Illustrating the argument for (66), we depict the inside of the scale m
rectangle Ri. The dotted polymer ρtn

[
(ui, si) → (ui+1, si+1)

]
shares its endpoints

with the solid polymer ρ0n
[
(ui, si) → (ui+1, si+1)

]
. Since Ri is standard, the two paths

are contained in this rectangle. Indeed, the polymers with routes (a/2, 0) → (a/2, 3b)
and (5a − a/2, 0) → (5a − a/2, 3b) are, at time zero—depicted—and at time t,
contained in the respective strips [0, a] × [0, 3b] and [4a, 5a] × [0, 3b], so that the
dotted and solid paths are sandwiched into Ri.

To this end, note that P
(
ρtn is not regular

)
≤ exp

{
−d log 2·mH3

}
by Proposition 5.11 andK0n

−1 ≤
b ≤ 2−m. We have that

P
(
¬EntireStandn

)
≤

(
2m1/322m/3H−1m−1/3 + 1

)
2m · 4 exp

{
− 2−3dmH3

}
≤ 12 exp

{
− 2−4dmH3

}
where the first factor in the middle expression is a bound on the number of rectangles of scale m
that intersect I × [0, 1], and where the second factor is the upper bound on the probability that a
given such rectangle is not standard that is provided by (62). The latter bound holds because, in

view of H ≥ 3d−1/3, we have that 25m/3 ≤ exp
{
2−4H3dm

}
.

Note that P
(
ρtn ̸⊂ 2−1I×[0, 1]

)
≤ exp

{
−d 2−3H3m

}
by a similar application of Proposition 5.7 as in

the derivation of (62); see the text following (62) for an explanation of why this result’s hypotheses
are satisfied.

Thus, we find that

P
(
Gc

)
≤ exp

{
−d log 2·mH3

}
+12 exp

{
−2−4dmH3

}
+exp

{
−d 2−3H3m

}
≤ 14 exp

{
−2−4dH3m

}
.

This completes the proof of Proposition 7.11. □

7.4. Proof of Theorem 7.2.
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7.4.1. Weight mimicry. Let MostlyStable denote the event that a set
{
(xi, si) : i ∈ J0, kK

}
of in-

terpolating points for the polymer ρtn
[
(0, 0) → (0, 1)

]
exists such that the cardinality of the set of

i ∈ J0, k − 1K for which

s
−1/3
i,i+1

∣∣∣Wgttn
[
(xi, si) → (xi+1, si+1)

]
−Wgt0n

[
(xi, si) → (xi+1, si+1)

]∣∣∣ ≥ 3Hτ
1/501
0

is at most 180H213m/14τ
1/24
0 . Thus, Proposition 7.3 asserts that

P
(
¬MostlyStable

)
≤ exp

{
− d log 2 ·H3m

}
+ 15C exp

{
− d0H213m/14τ

1/24
0

}
.

In deriving weight mimicry Theorem 7.2(1), we seek an upper bound on the right-hand sum in (57).
The occurrence of MostlyStable, as well as the bound si+1 − si ≤ 21−m, furnishes an upper bound
on the summand ∣∣∣Wgttn

[
(xi, si) → (xi+1, si+1)

]
−Wgt0n

[
(xi, si) → (xi+1, si+1)

] ∣∣∣
for most choices of the index i ∈ J0, k − 1K.

We appeal to Proposition 5.9 with k ∈ {m − 1,m} and r a constant multiple of R1/2 in order to
provide an accompanying bound for the remaining indices i ∈ J0, k − 1K. Indeed, since si,i+1 ∈
[2−1−m, 21−m], this result implies that, for Θ(1)

(
n2−m

)1/32 ≥ R ≥ R0 > 0, and except on an event

of probability at most G exp
{
− dR3/2m

}
, it is for all such i that the above i-indexed summand is

at most Rm2/32(1−m)/3.

We find then that, except on an event of probability at most

exp
{
− d log 2 ·H3m

}
+ 15C exp

{
− d0H213m/14τ

1/24
0

}
+ exp

{
− 2−1dR3/2m

}
≤ exp

{
− d log 2 ·H3ℓ

}
τdH

3η
0 + 15C exp

{
− d0H213ℓ/14τ

1/24−13η/14
0

}
+G exp

{
− dR3/2ℓ

}
τ
d(log 2)−1R3/2η
0 ,

the right-hand sum in (57) is at most

Rm2/32(1−m)/3 ·180H213m/14τ
1/1002
0 +

(
2m+1

)
·2(1−m)/33Hτ

1/501
0 ≤ 200RHm2/322m/3τ

1/1002
0 . (67)

Recalling that 2m = 2ℓτ−η
0 and G ≥ 1, and setting R = H2, we obtain the conclusion of Theo-

rem 7.2(1) subject to verifying that

200H3m2/322m/3τ
1/1002
0 = H322ℓ/3τ

1/1002−2η/3
0 200(ℓ+ 1)2/3

(
1 + (ℓ+ 1)−1(log 2)−1η log τ−1

0

)2/3
.

This equality is a consequence of (54). Note finally that the earlier noted constraint that R ≤
Θ(1)

(
n2−m

)1/32
takes the form H ≤ Θ(1)

(
n2−m

)1/64
; it is verified due to the form of τ0 in (53) and

the bound n2−m ≥ (log n)64
(
q(2η/3−α)−1/3

)
which is due to (56).

7.4.2. Excursion mimicry. Two assertions are made in Theorem 7.2(2). In regard to the first,
recall that proxy construction has been performed by consecutively examining the elements of the
collection C of scale-ℓ excursions between ρ0n and ρtn whose durations are contained in [ξ, 1−ξ]. Both
endpoints of any retained excursion lie in ρt→0

n,ℓ . As was noted in specifying the proxy, the proportion
of elements of C that are retained is at least one-half. Thus is the first assertion demonstrated.

We turn to the second. By Definition 7.1, a normal excursion of scale ℓ between ρ0n and ρtn that
begins at (x, b) and ends at (y, f) satisfies f−b ∈ [2−ℓ−1, 2−ℓ]. A proportion of least 1−χ of heights
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h ∈ [b, f ]∩n−1Z are such that the width of ρ0n∪ρtn at height h is at least (b−f)2/3τα0 ≥ 2−2/32−2ℓ/3τα0 .
By Proposition 7.11, it is except on an event of probability at most

14 exp
{
− 2−4dH3m

}
= 14 exp

{
− 2−4dH3ℓ

}
τ
(log 2)−12−4dH3η
0 (68)

that the width of ρt→0
n,ℓ ∪ ρtn at every such height h is at least

2−2/32−2ℓ/3τα0 − 10H2−2m/3m1/3 = 2−2/32−2ℓ/3τα0 − 10H2−2ℓ/3τ
2η/3
0 m1/3 ≥ 2−5/3−2ℓ/3τα0 ,

where the equalities in the two preceding displays depend on (54) and where the latter bound is

contingent on 10Hτ
2η/3
0 m1/3 ≤ 2−5/3τα0 . Recalling that τ0 =

(
log n

)−q
and 2m ≤ n, the needed

bound is seen to be implied by Hτ
2η/3−α−(3q)−1

0 ≤ 10−1(log 2)1/32−5/3. Choosing the positive

parameter h0 in Theorem 7.2 to be at most 10−1(log 2)1/32−5/3, the latter condition is verified.
This completes the proof of the excursion mimicry aspect of Theorem 7.2. □

8. High subcritical overlap: proving Theorem 3.1(1)

Section 3 offered a rough guide to the proof of Theorem 3.1 and ended by indicating four elements
that would be needed to implement the proof plan. Having assembled these elements in the four
preceding sections, we are ready to begin bringing them together to prove Theorem 3.1(1). Indeed,
we may define the event of low overlap between these two polymers: for g > 0,

LowOverlap0,tn (g) =
{
On

(
ρ0n, ρ

t
n

)
≤ g

}
.

Theorem 3.1(1) asserts that, for some g > 0, LowOverlap0,tn (g) is unlikely in the phase t≪ n−1/3.

The argument sketched in Section 3 and summarised in Section 3.4 offers a plan of attack: show
that LowOverlap0,tn (g) entails that the sum of the durations of excursions between ρ0n and ρtn is at
least a given positive constant. As the second comment in Section 3.4 indicates, it may be that
short excursions dominate. We introduce a parameter β ∈ (0, 1) to specify a division between long
and short excursions. An excursion of duration at least nβ−1 is long, and otherwise short. If long
excursions dominate, employ the proxy argument outlined in Subsection 3.3.3, recalling from the
first comment of Section 3.4 the need to demonstrate that these long excursions are not slender. If
short excursions dominate, a separate analysis is needed.

We now begin to implement the plan. The plan first claims, “low overlap entails a high cumulative
duration for excursions”. However, though intuitive, this is not quite correct deterministically. In
fact, a pair ϕ and ψ of n-zigzags from (0, 0) and (0, 1) exists with zero overlap, and with cumulative
excursion duration equal to the tiny quantity n−1. To see this consider two staircases between (0, 0)
and (n, n), the first of which visits (n, 0), and the second of which visits (0, 1) and (n, 1) and let ϕ
and ψ be the corresponding n-zigzags obtained by applying Rn from Subsection 3.1.1.

However, the above scenario is rare and we will establish that “low overlap typically entails a high
cumulative duration for excursions”. In the counterexample, ϕ moves right as far as possible to
begin, and may be viewed as one huge cliff. We will introduce a definition of a zigzag advancing
with steadiness, meaning that it has few cliffs, or, more precisely, that a positive fraction of its n
horizontal intervals have length at least of order n−2/3. In Corollary 8.1, we will assert that the
static polymer ρn is highly likely to advance steadily. We will see in the overlap-excursion dichotomy
Lemma 8.2 that in the typical case that ρ0n advances steadily: if this zigzag has low overlap with ρtn,
then the cumulative excursion duration between these polymers is macroscopic; moreover, the two
polymers enjoy consistent separation, departing from a positive fraction of heights in [0, 1] ∩ n−1Z
with a separation of order n−2/3.
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This allows us now to pursue the analysis of the cases where long or short excursions dominate.
Theorem 8.5 handles the long excursions’ case, relying on Proposition 9.2, which shows that slender
excursions are typically absent. Proposition 8.4 handles the case of short excursions. In light of the
conclusion of the preceding paragraph, we see that, in this case, we may assume not merely that the
total duration of short excursions is at least a given positive constant, but also that these excursions
are not ‘thin’, enjoying separation between their legs of order n−2/3 at a positive fraction of heights
in [0, 1] ∩ n−1Z. This stronger consistent separation assumption makes the analysis of the short
excursions’ case tractable, because it forms a counterpart to the assertion that long excursions are
typically not slender. Proposition 8.4 and the few cliffs Corollary 8.1 are proved in Section 10.

This section continues with a presentation of the overlap-excursion dichotomy including Lemma 8.2.
It finishes by giving the proof of Theorem 3.1(1), invoking the results on the long and short excur-
sions’ cases that we have indicated.

8.1. Overlap-excursion dichotomy. We start by recalling some notation: ρn denotes the static
polymer ρn

[
(0, 0) → (0, 1)

]
. For i ∈ J0, nK, ρn(i/n) equals the supremum of the set

{
x ∈ R :

(x, i/n) ∈ ρn
}
. The sequence

{
ρn(i/n) : i ∈ J0, nK

}
records the horizontal coordinates of departures

of the polymer ρn from the consecutive horizontal intervals that it traverses. Indeed, the projections
to R of the horizontal intervals of ρn take the form [0, ρn(0)] and

[
ρn

(
(i−1)/n

)
−2−1n−2/3, ρn(i/n)

]
for i ∈ J1, nK. Thus, by writing ω0 = ρn(0) and ωi = ρn(i/n) − ρn

(
(i − 1)/n

)
+ 2−1n−2/3 for

i ∈ J1, nK, the lengths of the consecutive horizontal intervals of ρn are recorded in the sequence{
ωi : i ∈ J0, nK

}
. The unscaled preimage R−1

n (ρn) of ρn has endpoints with horizontal coordinates

zero and n, so the form (18) of the scaling map Rn : R2 → R2 implies that
∑n

i=0 ωi = 2−1n1/3.

Let β1 > 0 and β2 ∈ (0, 1). The polymer ρn is said to advance horizontally with (β1, β2)-steadiness if

the cardinality of the set of i ∈ J0, nK for which ωi ≥ β1n
−2/3 is at least β2n. That this circumstance

is highly typical has been proved in [GH20a].

Corollary 8.1. [GH20a, Proposition 5.6] There exist β1 > 0, β2 ∈ (0, 1), h > 0 and n0 ∈ N such
that, for n ≥ n0, the probability that ρn fails to advance horizontally with (β1, β2)-steadiness is at
most e−hn.

Lemma 8.2. Let β1 > 0 and β2 ∈ (0, 1) be furnished by Corollary 8.1, and suppose that ρn advances
horizontally with (β1, β2)-steadiness. Let ϕ denote an arbitrary n-zigzag with starting and ending
points (0, 0) and (0, 1). Set ρ = ρn. Then either

(1) the Lebesgue measure of the overlap O(ρ, ϕ) between ρ and ϕ is at least β1β2

4 n1/3; or

(2) the cardinality of the set of i ∈ J0, nK such that
∣∣ρ(i/n)− ϕ(i/n)

∣∣ ≥ β1

4 n
−2/3 is at least β2

4 n.

Proof. The set of i ∈ J0, nK for which ωi ≥ β1n
−2/3 has cardinality at least β2n. For such i, we

claim that at least one of three conditions must be met. The conditions are

(1)
∣∣ρ((i− 1)/n

)
− ϕ

(
(i− 1)/n

)∣∣ ≥ β1

4 n
−2/3;

(2)
∣∣ρ(i/n)− ϕ(i/n)

∣∣ ≥ β1

4 n
−2/3; and

(3) the overlap of ρ and ϕ at level i/n, namely the one-dimensional Lebesgue measure of the set

ρ ∩ ϕ ∩
(
R× {i/n}

)
, is at least β1

2 n
−2/3.
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Indeed, the latter overlap is at least

min
{
ρ(i/n), ϕ(i/n)

}
− max

{
ρ
(
(i− 1)/n

)
, ϕ

(
(i− 1)/n

)}
+ 2−1n−2/3

≥
[
ρ(i/n)− ρ

(
(i− 1)/n

)
+ 2−1n−2/3

]
−
∣∣ρ((i− 1)/n

)
− ϕ

(
(i− 1)/n

)∣∣− ∣∣ρ(i/n)− ϕ(i/n)
∣∣ .

The first right-hand term equals ωi and thus is at least β1n
−2/3. We see then that the third listed

condition must occur in the case that the first two do not.

Thus, for a set of i ∈ J0, nK of cardinality at least β2n, one of these three conditions obtains. If

the third condition is satisfied for at least β2

2 n such indices, then the former alternative presented
in Lemma 8.2 is forced. If the first or second condition is satisfied for such a set of indices, then
the second condition is satisfied for at least β2

4 n indices, and it is the latter alternative that occurs.
Thus is the proof of Lemma 8.2 complete. □

8.2. High subcritical overlap via results on short and long excursions. The consistent
separation event ConsistSep0,tn occurs when the cardinality of the set of i ∈ J0, nK such that the

bound
∣∣ρtn(i/n)− ρ0n(i/n)

∣∣ ≥ 4−1β1n
−2/3 holds is at least 4−1β2n. Note that, by Corollary 8.1 and

Lemma 8.2,

P
(
LowOverlap(β1β2/4) ∩ ¬ConsistSep0,tn

)
≤ e−hn . (69)

Henceforth, it is understood that the term ‘excursion’ when used without elaboration refers to an
excursion between ρ0n and ρtn. An excursion E of lifetime [b, f ], b, f ∈ n−1Z ∩ [0, 1], is called thin if∣∣ρtn(i/n)− ρ0n(i/n)

∣∣ < 4−1β1n
−2/3 for every i/n ∈ n−1Z ∩ [b, f). Also recall the notions of long and

short excursions defined in the beginning of this section depending on a parameter β.

For d ∈ (0, 1), let ShortNonThin0,tn (d) denote the event that the sum of the durations of short
excursions that are not thin is at least d. Let Long0,tn (d) denote the event that the sum of the
durations of long excursions is at least d.

Lemma 8.3. When ConsistSep0,tn occurs, so does Long0,tn (β2/8) ∪ ShortNonThin0,tn (β2/8).

Proof. When ConsistSep0,tn occurs, at least 4−1β2n levels i/n ∈ n−1Z ∩ [0, 1] satisfy the bound∣∣ρtn(i/n)− ρ0n(i/n)
∣∣ ≥ 4−1β1n

−2/3. The sum of the durations of excursions that are not thin is thus
at least β2/4. If the sum of the durations of long excursions is less than β2/8, then the sum of the
durations of short excursions that are not thin is at least β2/8. □

Our principal inference for the short excursions’ case asserts that it is rare for short excursions that
are not thin to occupy a positive fraction of heights.

Proposition 8.4. For t ≤ n−1/3,

P
(
ShortNonThin0,tn

(
β2/8

))
≤ exp

{
− h(log n)1/68

}
.

The proposition will be proved in Section 10. The next result, treating the long excursions’ case,
operates in the regime where t ≤ τ0n

−1/3 is subcritical, so that τ0 is less than one. Indeed, we have
imposed in (53) that τ0 = (log n)−q, with a notation that suggests that q be treated as a given
positive constant. This usage of q has been adequate for our purpose until now, but we must now
impose on q an assumption that it grows gradually with n. Indeed, we specify

q = qn = h
(
log logn

)67
, where h > 0 is a constant , (70)
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so that τ0 = exp
{
− h(log log n)68

}
. The value of h in (70) is dictated by the next result, with

g = β2/4.

Theorem 8.5. For any g > 0, there exists h > 0 such that

P
(
Long0,tn (g)

)
≤ exp

{
− h

(
log τ−1

0

)1/68}
,

where we suppose that t = τn−1/3 with τ ∈ [0, τ0] and τ0 = (log n)−q for q = qn(h) given by (70).

Before proving the above two results we show how to quickly deduce Theorem 3.1(1) from them.

Proof of Theorem 3.1(1). There exists h > 0 such that

P
(
LowOverlap0,tn

(
β1β2/4

))
≤ P

(
Long0,tn (β2/8)

)
+ P

(
ShortNonThin0,tn (β2/8)

)
+ e−hn

≤ exp
{
− h(log τ−1

0 )1/68
}
+ exp

{
− h(log n)1/68

}
+ e−hn

≤ exp
{
− 2−1h(log τ−1

0 )1/68
}
= exp

{
− 2−1h · h1/68 log log n

}
.

The first bound is due to (69) and Lemma 8.3. The second is due to Theorem 8.5 with g = β2/8 and
to Proposition 8.4. The final inequality is valid for high enough n, and is due to our setting τ0 equal
to exp

{
− h(log log n)68

}
. The final right-hand term takes the form (log n)−χ where χ = 2−1h69/68.

We obtain Theorem 3.1(1) with d = β1β2/4. □

9. The case of long excursions: deriving Theorem 8.5

The backbone of the proof is offered by the heuristic argument in Subsection 3.3.3. An important
component was the excursion weight additivity formula (30). We begin by stating and proving a
rigorous rendering of this, Lemma 9.1. In a second subsection, we give the proof of Theorem 8.5,
stating along the way the crucial assertion Proposition 9.2 about rarity of long slender excursions
which is finally proved in a third subsection.

9.1. Weight excursion additivity. Recall that ρn denotes the n-polymer between (0, 0) and (0, 1)
and that x→ Zn(·, a) as specified in Definition 5.12 denotes the routed weight profile parameterized
by a ∈ (0, 1) ∩ n−1Z.

Lemma 9.1. Let ϕ denote an n-zigzag between (0, 0) and (0, 1). Let
{
Ei : i ∈ J1,KK

}
denote the

excursions between ρn and ϕ, recorded in increasing order of height. For i ∈ J1,KK, let bi, fi ∈
n−1Z ∩ [0, 1] be the starting and ending moments of Ei.

Let yi ∈ n−1Z ∩ [bi, fi) for i ∈ J1,KK. Then

Wgt(ρn)−Wgt(ϕ) ≥
K∑
i=1

(
Zn

(
ρn(yi), yi

)
− Zn

(
ϕ(yi), yi

))
. (71)

Proof. Each excursion Ei is comprised of two legs, one of which is a sub-zigzag of ρn and the other
of which is a sub-zigzag of ϕ. Denote these two legs by ρin and ϕi. Since ρn and ϕ follow a common
course interspersed by K instances where they diverge and then rejoin, and, on the ith of these
diversions, ρn follows the route of ρin, while ϕ follows that of ϕi, we have the formula

Wgt(ρn)−Wgt(ϕ) =
K∑
i=1

(
Wgt

(
ρin

)
−Wgt

(
ϕi
))
. (72)
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0

1

0

1

ρn

φ

0

1

φi

ρin

ρi,+n

ρi,−n

Figure 10. Illustrating the proof of Lemma 9.1. In the left sketch, the polymer ρn
and a zigzag are shown. We next zoom in on a particular excursion with two legs

being ϕi and ρin. The third sketch shows the paths ρi,−n ◦ ρin ◦ ρi,+n and ρn which
have exactly one excursion between them, passing through the points

(
ϕ(yi), yi

)
and

(
ρn(yi), yi

)
respectively. The right sketch shows the geodesic passing through(

ϕ(yi), yi
)
whose weight difference with ρn attains the value(

Zn

(
ρn(yi), yi

)
− Zn

(
ϕ(yi), yi

))
,

which is at most the weight difference between ρin and ϕi.

We may write ρn in the form ρi,−n ◦ρin◦ρ
i,+
n , in the language of Section 5.1.3. Since yi ∈ n−1Z∩[bi, fi),

ρi,−n ◦ ϕi ◦ ρi,+n is a zigzag from (0, 0) to (0, 1) that departs from R× {yi} at
(
ϕ(yi), yi

)
. (73)

See Figure 10.

Note that Wgt
(
ρi,−n

)
+Wgt

(
ρin

)
+Wgt

(
ρi,+n

)
= Wgt

(
ρn

)
= Zn

(
ρn(yi), yi

)
and that Zn

(
ϕ(yi), yi

)
≥

Wgt
(
ρi,−n ◦ ϕi ◦ ρi,+n

)
= Wgt

(
ρi,−n

)
+ Wgt

(
ϕi
)
+ Wgt

(
ρi,+n

)
; the inequality is due to Definition 5.12

and (73). Thus, we find that

Wgt
(
ρin

)
−Wgt

(
ϕi
)
= Wgt

(
ρn

)
−Wgt

(
ρi,−n ◦ ϕi ◦ ρi,+n

)
≥ Zn

(
ρn(yi), yi

)
− Zn

(
ϕ(yi), yi

)
. (74)

Applying this bound to (72) proves Lemma 9.1. □

9.2. Proof of Theorem 8.5. We start with a roadmap.

(1) We divide the analysis of the case of long excursions into two sub-cases, bulk and edge. The
edge case EdgeLong0,tn (·) occurs when a dominant contribution comes from a single excursion
with one endpoint close to (0, 0) or (0, 1); otherwise, it is the bulk case BulkLong0,tn (·) that
occurs. How long excursions force one or other case will be indicated precisely in (75).
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(2) The analysis of the edge case is short and follows from the bulk case by changing certain
parameters, so we focus on the latter. For this, we identify a scale of excursions with
significant cumulative duration (at least of order (log n)−1, since there are at most log n
many scales). To bound below the right-hand side in Lemma 9.1, we will consider merely
excursions of this scale.

(3) Using an input from [GH20a], we will prove in Proposition 9.2 that these excursions are
typically not slender in the sense of Definition 7.1.

(4) In Lemma 9.3, we will further prove that they are not too wide.

(5) Excursions thus typically enjoy favourable geometric features. The key Lemma 9.4 allied
with this typicality proves a lower bound on the summands in (71). The lemma is a conse-
quence of the twin peaks’ rarity result Theorem 5.14.

To begin the thus indicated proof, recalling Definition 7.1, for ℓ ∈ N, consider the excursions E
between ρ0n and ρtn of scale ℓ for which E is contained in the strip R× [g/4, 1− g/4]; such E neither
begin before moment g/4 nor end after moment 1− g/4. Let D(ℓ) =

∑
E dur(E), where the sum is

taken over such excursions E.

In a locally employed notational device, we will write
∑∗

ℓ D(ℓ), where
∑∗

ℓ indicates that the sum is

taken over scales ℓ ∈ J0, ⌈log2 n⌉K that satisfy 2ℓ ≤ n1−β. For s ∈ n−1Z∩[0, 1], let dura(s) denote the
duration of the excursion between ρ0n and ρtn whose lifetime contains s; if no such excursion exists,
set dura(s) = 0. The expression dura(g/4) + dura(1 − g/4) +

∑∗
ℓ D(ℓ) is at least the cumulative

duration of long excursions that intersect the strip R× [g/4, 1− g/4]. As such, the expression is at
least g/2 when Long0,tn (g) occurs.

For κ > 0, let BulkLong0,tn (κ) denote the event that
∑∗

ℓ D(ℓ) ≥ κ. Let EdgeLong0,tn (κ) denote the
event that dura(g/4) + dura(1− g/4) ≥ κ. We see then that

Long0,tn (g) ⊆ BulkLong0,tn (g/4) ∪ EdgeLong0,tn (g/4) . (75)

Thus in order to prove Theorem 8.5, it suffices to derive its conclusion when the event Long0,tn (g)
is replaced by BulkLong0,tn (g/4) or EdgeLong0,tn (g/4). We refer to these two cases by the names bulk
and edge. We first prove Theorem 8.5 in the bulk case. Its derivation in the edge case is merely a
slight perturbation of the bulk case’s, on which we comment after the latter case is treated.

So for the moment we assume that the BulkLong0,tn (g/4) occurs. There may be several indices ℓ
contributing to the sum

∑∗
ℓ for which D(ℓ) attains its maximum value; let L ∈ J0, ⌈log2 n⌉K denote

the smallest of these values ℓ. If also n ≥ 4, then

D(L) =
N∑
i=1

dur(Ei)12−1−L<dur(Ei)≤2−L,Ei⊂R×[g/4,1−g/4] ≥ 8−1 log 2
g

log n
, (76)

where
{
Ei : i ∈ J1, NK

}
is the list of excursions. Indeed, any excursion E satisfies dur(E) ∈ [n−1, 1],

so there are 1 + ⌈log2 n⌉ ≤ 2
(
log 2

)−1
log n admissible scales for excursions. (The displayed bound

is valid due to n ≥ 4.)

The value L, which we call the dominant scale, satisfies 2L ≤ n1−β. Definition 7.1 specified the
notion of an (α, 1 − χ)-slender excursion. Recall that we have indicated that ruling out slender
excursions in an important part of our argument. The following result, whose proof we provide in
the next subsection via an input from [GH20a], provides the needed input in this regard. It sets
the value of the exponent β > 0 that specifies the division between long and short excursions.
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Proposition 9.2. Let Slender(α, β, 1 − χ) denote the event that there exists an (α, 1 − χ)-slender
excursion between ρ0n and ρtn whose scale ℓ satisfies 2ℓ ≤ n1−β. Recall from (53) that τ0 = (log n)−q.
There exist positive α0, χ0 and h such that, for α ≥ α0, and any 0 < β < 1, χ ∈ (0, χ0) and n ≥ n0,

P
(
Slender(α, β, 1− χ)

)
≤ exp

{
− h

(
log n

)qα/2− 1}
,

where n0 is determined by β.

Set NoSlender(α, β, 1− χ) = ¬Slender(α, β, 1− χ).

Let ProxySuccessn(ℓ) denote the event that the scale ℓ proxy ρt→0
n,ℓ validates the two mimicry con-

ditions in proxy construction Theorem 7.2, where, working as we do in the bulk case, we set the
theorem’s parameter ξ equal to g/4. (The value of its parameter H will be set shortly.) Set
ProxySuccessn equal to the intersection of these events over scales ℓ ∈ N that satisfy 2ℓ ∈ [0, n1−β].
Note Theorem 7.2 implies that P

(
¬ProxySuccessn

)
is at most(

(1−β)(log 2)−1 log n+1
)(

2Gτ
2−1d(log 2)−1H3η
0 +15C exp

{
−d0Hτ1/24−13η/14

0

}
+14τ

(log 2)−12−4dH3η
0

)
,

Alongside ξ, the parameter H > 0 is part of the apparatus of Theorem 7.2. By imposing that

1/24− 13η/14 ≤ 0 , i.e., η ≥ 7/156 , (77)

and recalling that τ0 = (log n)−q, we see that, with a suitable decrease in the value of d, there exists
H0 > 0 such that, when H is set at a value that exceeds H0 (and from now on it is), and when n is
at least a level n0 ∈ N determined by H,

P
(
¬ProxySuccessn

)
≤ τdH

3η
0 . (78)

Let C denote the collection of scale L excursions between ρ0n and ρtn that are contained in the strip
R × [g/4, 1 − g/4]; this definition indeed corresponds to the object in Theorem 7.2 with ξ = g/4
(and with scale ℓ equal to L). Suppose that ProxySuccessn occurs. By the proxy’s feat of excursion
mimicry, the subset C′ of C consisting of those E ∈ C for which both endpoints of E lie in ρt→0

n,L

satisfies |C′| ≥ |C|/2. When NoSlender(α, β, 1 − χ) also occurs, every element of C is a normal
excursion between ρ0n and ρtn, so that, for every E ∈ C′, the endpoints of E form the endpoint pair
of a weak excursion between ρ0n and ρt→0

n,L . Let
{
(zi, hi) : i ∈ J0, RK

}
record in increasing order

of height the union of (z0, h0) = (0, 0), (zR, hR) = (0, 1) and the endpoints of elements of C′. Let
J denote the set of starting indices for weak excursions; namely, J contains indices i for which
(zi, hi) and (zi+1, hi+1) form the endpoint pair of a weak excursion between ρ0n and ρt→0

n,L . Then the
elements of J are a finite set, either of consecutive even numbers starting at zero, or of consecutive
odd numbers starting at one.

Note that

Wgt0n
(
ρ0n

)
=

∑
i∈J

Wgt0n
[
(zi, hi) → (zi+1, hi+1)

]
+

∑
i∈J0,R−1K\J

Wgt0n
[
(zi, hi) → (zi+1, hi+1)

]
and that, for each i ∈ J0, R− 1K, Wgt0n

[
(zi, hi) → (zi+1, hi+1)

]
≥ Wgt0n ρ

t→0
n,L

[
(zi, hi) → (zi+1, hi+1)

]
.

Along with the excursion mimicry property of our proxy, we will need the following proximity result,
which rules out wide excursions. In a variation of the notation of Definition 7.10, let i ∈ J and
denote by

MaxDist
(
ρt→0
n,L

[
(zi, hi) → (zi+1, hi+1)

]
, ρ0n

[
(zi, hi) → (zi+1, hi+1)

])
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the maximum distance between two points (a, s), (b, s) ∈ R × n−1Z that share their height s ∈
[hi, hi+1] and for which (a, s) ∈ ρt→0

n,L

[
(zi, hi) → (zi+1, hi+1)

]
and (b, s) ∈ ρ0n

[
(zi, hi) → (zi+1, hi+1)

]
.

In contrast to Proposition 7.11, the next lemma offers an upper bound on the distance between
ρt→0
n,L and ρ0n.

For H > 0, let LocalFluc0,tn (L,H) denote the event that

max
i∈J

MaxDist
(
ρt→0
n,L

[
(zi, hi) → (zi+1, hi+1)

]
, ρ0n

[
(zi, hi) → (zi+1, hi+1)

] )
is at most Hη1/3

(
log τ−1

0

)1/3
2−2L/3(L+ 2)1/3.

Lemma 9.3. For any η0 > 0, there exist positive H0 = H0(η0) and d such that, when η ≥ η0 and
H ≥ H0,

P
(
¬ LocalFluc0,tn (L,H)

)
≤ τdηH

3

0 .

Proof. Again recalling Definition 7.10, and the notion of regularity from (39), consider the event

E =
{
ρ0n and ρtn are

(
2−L−2, Hη1/3(log τ−1

0 )1/3
)
-regular

}
∩
{
MaxDist

(
ρt→0
n,L , ρ

t
n

)
≤ 6H2−2m/3m1/3

}
,

where m ∈ N is specified by 2m = 2Lτ−η
0 , in accordance with (54) when the scale ℓ = L is chosen.

The lemma will follow from two claims: that E ⊆ LocalFluc0,tn (L,H); and that P
(
Ec
)
≤ τdηH

3

0 under
the lemma’s hypotheses.

We begin by deriving the probability bound. Proposition 7.11 asserts that, when H is large enough,
P
(
MaxDist

(
ρt→0
n,ℓ , ρ

t
n

)
> 6H2−2m/3m1/3

)
is at most the quantity in (68). By summing this bound

over ℓ ∈ N such that 2ℓ ≤ n1−β and decreasing the value of d > 0, we find that, for n large enough,

P
(
MaxDist

(
ρt→0
n,L , ρ

t
n

)
> 6H2−2m/3m1/3

)
≤ τdH

3η
0 .

Since 2−L ≥ nβ−1, we find that, by summing the bound in Proposition 5.11 over those ℓ ∈ N, ℓ ≥ 2,
for which 2ℓ ≤ n1−β, after a suitable decrease in the value of d > 0, and for H high enough,

P
(
ρt

′
n is not

(
2−L−2, Hη1/3(log τ−1

0 )1/3
)
-regular

)
≤ τdηH

3

0 for t′ ∈ {0, t} .

The desired bound on P
(
Ec
)
follows from the two preceding displays.

Suppose that the event E occurs, and let (a, s), (b, s) ∈ R× n−1Z satisfy

(a, s) ∈ ρt→0
n,L

[
(zi, hi) → (zi+1, hi+1)

]
and (b, s) ∈ ρ0n

[
(zi, hi) → (zi+1, hi+1)

]
for some i ∈ J . Recall that (zi, hi) ∈ ρ0n ∩ ρtn and that s− hi ∈ [0, 2−ℓ]. Note that∣∣a− b

∣∣ ≤ ∣∣a− ρtn(s)
∣∣+ ∣∣ρtn(s)− zi

∣∣+ ∣∣zi − b
∣∣ .

Note that |a− ρtn(s)| ≤ MaxDist
(
ρt→0
n,L , ρ

t
n

)
; that

|ρtn(s)− zi| ≤ (log 2)1/32−4/3Hη1/3(log τ−1
0 )1/32−2L/3(L+ 2)1/3

when ρtn is
(
2−L−2, Hη1/3(log τ−1

0 )1/3
)
-regular; and that |zi − b| satisfies the same bound when ρ0n

is
(
2−L−2, Hη1/3(log τ−1

0 )1/3
)
-regular. Thus, the occurrence of E entails that∣∣a− b

∣∣ ≤ 6H2−2m/3m1/3 + 2(log 2)1/32−4/3Hη1/3(log τ−1
0 )1/32−2L/3(L+ 2)1/3 .
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Since 2m = 2Lτ−η
0 implies that m ≥ L + 2, we see that the occurrence of E implies that |a − b| ≤

Hη1/3
(
log τ−1

0

)1/3
2−2L/3(L + 2)1/3 after a suitable increase in H > 0 that depends on the lower

bound η0 > 0 on η. The event LocalFluc0,tn (L,H) seen to occur, so that the proof of Lemma 9.3 is
complete. □

Let i belong to the set J of starting indices of weak excursions between ρ0n and ρt→0
n,L whose durations

are contained in the interval [g/4, 1 − g/4]. Let Wi = [hi, hi+1) ∩ n−1Z denote the set of vertical
levels of the excursion of this type associated to the index i. For s ∈ n−1J0, nK, define the deficit
D(s) to equal

Z0
n(M, s)− sup

{
Z0
n(x, s) : x ∈ R , 2−2L/3·2−2/3τα0 ≤ |x−M | ≤ 2−2L/3·Hη1/3

(
log τ−1

0

)1/3
(L+2)1/3

}
(79)

in the case that s ∈ Wi for some i ∈ J and
∣∣ρ0n(s) − ρt→0

n,L (s)
∣∣ ≥ 2−2/32−2L/3τα0 ; for the remaining

values of s, set D(s) = 0. Here, Z0
n(x, s) refers to the value Zn(x, s) of the routed weight profile

specified by the randomness of the time-zero copy of the noise environment; M denotes the max-
imizer of Z0

n(·, s). Choosing yi in Lemma 9.1 to be a maximizer of D(s) among s ∈ Wi for each
i ∈ J , this lemma implies that the occurrence of LocalFluc0,tn (L,H) entails that

Wgt0n
(
ρ0n

)
−Wgt0n

(
ρt→0
n,L

)
≥

∑
i∈J

max
{
D(s) : s ∈Wi

}
. (80)

We will next show that D(s) is reasonably large for most values of s.

Towards this end, for a parameter ζ which will be taken to be a small constant, specify the low

total deficit LowTotDef event by the condition that 0 < D(s) < 2−1/32−L/3τ
α/2+ζ
0 holds for at least

(1−χ)/2 · (n+1)g · 2−5 log 2
(
log n

)−1
values of s ∈ n−1Z∩ [g/4, 1− g/4]. Note that we expect the

above to be a rare event since Brownian fluctuations indicate that D(s), when positive, should be

at least comparable to 2−L/3τ
α/2
0 . This is the claim made by the next result, whose proof is deferred

until after the derivation of Theorem 8.5 is concluded.

Lemma 9.4. Given constants ζ, η as above, for some h = h(η, ζ), the assumption that

exp{−n1/10} ≤ τ0 ≤ exp
{
− h

(
log logn

)68}
implies that

P
(
LowTotDef

)
≤ exp

{
− h

(
log τ−1

0

)1/68}
.

Recall that, in (53), we set τ0 = (log n)−q. The hypothesis on τ0 in Lemma 9.4 requires that q be
treated as a function of n; it is in order to satisfy it that we have stipulated for q the formula (70).

The sum of the durations of elements in the excursion set C′ specified after (78) is at least the
quantity 2−5g log 2(log n)−1, because C′ constitutes a proportion of at least one-half of the excur-
sions contributing to the sum in (76) and all contributing excursions have duration between 2−1−L

and 2−L.

Note that the cardinality of the set of s ∈ n−1Z ∩ [g/4, 1 − g/4] for which s ∈ Wi for some i ∈ J

and
∣∣ρ0n(s)− ρt→0

n,L (s)
∣∣ ≥ 2−2/32−2L/3τα0 is at least (1− χ) · (n+ 1)g · 2−5 log 2

(
log n

)−1
. (Here, we

used the containment of each Wi in [g/4, 1− g/4], profiting from the assumption that the bulk case
event BulkLong0,tn (g/4) occurs.) Thus, when the event LowTotDef fails to occur, there are at least
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(1− χ)/2 · (n+ 1)g · 2−5 log 2
(
log n

)−1
values of s ∈

⋃
i∈J Wi such that D(s) ≥ 2−1/32−L/3τ

α/2+ζ
0 .

The number of indices i ∈ J for which max
{
D(s) : s ∈Wi

}
≥ 2−1/32−L/3τ

α/2+ζ
0 is then seen to be

at least (
n2−L + 1

)−1 · (1− χ) · (n+ 1)g · 2−6 log 2
(
log n

)−1
,

since |Wi| ≤ n2−L + 1 for any such i. Returning to (80) having learnt this, we see that, when

BulkLong0,tn (g/4) ∩ NoSlender(α, β, 1− χ) ∩ ProxySuccessn ∩ LocalFluc0,tn (L,H) ∩ ¬ LowTotDef

occurs,

Wgt0n
(
ρ0n

)
−Wgt0n

(
ρt→0
n,L

)
≥ 2−1/32−L/3τ

α/2+ζ
0 ·

(
n2−L +1

)−1 · (1−χ) · (n+1)g · 2−6 log 2
(
log n

)−1
;

or, more simply,

Wgt0n
(
ρ0n

)
−Wgt0n

(
ρt→0
n,L

)
≥ h(1− χ) · 22L/3τα/2+ζ

0

(
log n

)−1
. (81)

for a suitably small constant h > 0.

On the other hand, by the weight mimicry aspect of Theorem 7.2, the bound∣∣∣Wgt0
(
ρt→0
n,L

)
−Wgtt

(
ρtn

)∣∣∣ ≤ H322L/3τ
1/1002−2η/3
0 Ψ , (82)

holds with Ψ = 200L2/3
(
1 + L−1(log 2)−1η log τ−1

0

)2/3
, since ProxySuccessn occurs. However, as we

will argue shortly,

h(1− χ)/2 · 22L/3τα/2+ζ
0

(
log n

)−1 ≥ H322L/3τ
1/1002−2η/3
0 Ψ , (83)

so that the bounds (81) and (82) imply that

Wgt0n
(
ρ0n

)
−Wgttn

(
ρtn

)
≥ h(1− χ)/2 · 22L/3τα/2+ζ

0

(
log n

)−1
.

By Proposition 4.2(2) with (x, s1) = (0, 0) and (y, s2) = (0, 1), and by Markov’s inequality, it is

with probability at least 1− τ
1/4
0 that∣∣∣Wgt0n

(
ρ0n

)
−Wgttn

(
ρtn

)∣∣∣ < 21/2τ
3/8
0 .

Thus if
h(1− χ)/2 · 22L/3τα/2+ζ

0

(
log n

)−1 ≥ 21/2τ
3/8
0 , (84)

we find that

P
(
BulkLong0,tn (g/4) ∩ NoSlender(α, β, 1− χ) ∩ ProxySuccessn ∩ LocalFluc0,tn (L,H) ∩ ¬ LowTotDef

)
is at most τ

1/4
0 . We learn then that P

(
BulkLong0,tn (g/4)

)
is at most the sum of

P
(
Slender(α, β, 1− χ)

)
+ P

(
¬ProxySuccessn

)
+ P

(
¬ LocalFluc0,tn (L,H)

)
+ P

(
LowTotDef

)
and τ

1/4
0 . By Proposition 9.2, (78), Lemma 9.3 and Lemma 9.4,

P
(
BulkLong0,tn (g/4)

)
≤ A1 +A2 +A3 +A4 +A5 , (85)

where A1 = exp
{
−

(
log n

)qα/2−1}
; A2 = τdH

3η
0 ; A3 = τdηH

3

0 ;

A4 = exp
{
− h

(
log τ−1

0

)1/68}
;

and A5 = τ
1/4
0 . Imposing that qα ≥ 4 to render A1 of rapid decay, Theorem 8.5 in the bulk case is

obtained after a decrease in the value of h > 0.
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To complete the proof of this case of the theorem, it remains to verify (83) and (84). Recalling that
2−m = 2−Lτη0 , 2

L ≤ n and τ0 = (log n)−q, it is enough for the former to hold that

h(1− χ)/2 · τα/2+ζ
0

(
log n

)−1 ≥ H3τ
1/1002−2η/3
0 200(log 2)−2/3

(
log n+ ηq log logn

)2/3
.

If we impose on q and η the condition that ηq ≤ logn
log logn , we see that the displayed bound is implied

by

(log n)−5/3−ετ
α/2+ζ
0 ≥ τ

1/1002−2η/3
0 ,

where ε > 0 is an arbitrarily small positive quantity and it is supposed that n exceeds a value
determined by ε and H.

Since L ≥ 0, (84) is implied by

τ
α/2+ζ
0

(
log n

)−1−ε ≥ τ
3/8
0

provided that n is at least a value determined by an arbitrary choice of ε > 0.

Again using τ0 = (log n)−q, we see that (83) and (84) are implied by the conditions

q
(
1/1002− 2η/3− α/2− ζ

)
≥ 5/3 + ε

and

q
(
3/8− α/2− ζ

)
≥ 1 + ε ,

at least when n is high enough. The former condition is the stronger. Recall that the parameter q was

chosen to be h
(
log log n

)67
in (70)—and recall also that the reason for this choice will become clear

in the deferred proof of Lemma 9.4—so that it grows to infinity as n rises. The two last displayed
conditions are thus satisfied when n is high enough provided that 2η/3+α/2+ ζ < 1/1002. Taking
η = 10−3, we have η < 7/156 in satisfaction of (77). Noting that 1

1002 − 2
3000 = 3.31 · · · × 10−4, we

may set α = ζ = 1
4528 to achieve the desired bound. As we have noted, the further condition qζ ≥ 4

is imposed, to assure the exploited control on the right-hand term A1 in (85). Since q = qn → ∞
as n → ∞, this condition is satisfied for n high enough. This completes the proof of Theorem 8.5
in the bulk case.

We now turn attention to the edge case, in which we instead seek a bound on the probability of
the event EdgeLong0,tn (g/4) that appears on the right-hand side of the inclusion (75). When this
event occurs, either the excursion whose lifetime contains g/4 has duration at least g/8; or the
excursion whose lifetime contains 1− g/4 does. We redefine the dominant scale L to be the smaller
of the scales of these two excursions. Note that 2−L ≥ g/8, so that L is a bounded quantity. The
edge-bulk division parameter ξ in Theorem 7.2 was set to equal g/4 in the bulk case; now, we
simply take it to equal zero. At least one excursion will be retained in proxy construction; and,
because L is bounded, it suffices to analyse a single such. Thus, we take J to be the singleton
set containing the starting index of an arbitrary retained excursion E of scale L; we set W1 =
n−1Z∩ dur(E). Shortly after Lemma 9.4, we noted that, in the bulk case, the cardinality of the set

of s ∈ n−1Z∩ [g/4, 1− g/4] for which s ∈Wi for some i ∈ J and
∣∣ρ0n(s)− ρt→0

n,L (s)
∣∣ ≥ 2−2/32−2L/3τα0

is at least (1 − χ) · (n + 1)g · 2−5 log 2
(
log n

)−1
. Since, in the present case, W1 has cardinality

that exceeds gn/8, and the proportion of elements s of Wi for which D(s) > 0 is at least 1 − χ
(this because our highlighted excursion is successfully mimicked in Theorem 7.2), we see that this
cardinality lower bound is obtained in the edge case also, provided that n is chosen high enough,
and that the interval [g/4, 1− g/4] is replaced by [g/20, 1− g/20] (our choice of twenty is arbitrary
to the degree that any number that exceeds eight would suffice). With this replacement made, the
edge case has been incorporated into the bulk, with the right-hand side of (80) taking the form of a
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single term that is least a constant multiple of τ
α/2+ζ
0 ; making the interval replacement throughout,

we obtain the edge case proof of Theorem 8.5 from its bulk case counterpart. □

We next provide the proof of Lemma 9.4 which will rely on our choice of q.

Proof of Lemma 9.4. For ℓ ∈ N, write D(s, ℓ) for the expression formed from (79) by the

replacement of L by ℓ. For any ℓ ∈ N, we will apply Theorem 5.14 with ε = 2−2ℓ/3 · 2−2/3τα0 ,

ℓ′ = 3 · 2−2ℓ/3 ·Hη1/3
(
log τ−1

0

)1/228
(ℓ+2)1/3, ℓ = 30Hη1/3

(
log τ−1

0

)1/228
and σ = τ ζ0 . According to

the convention stated in Section 5.1.4, we use ℓ, ℓ′ to denote the parameters ℓ, ℓ′ in Theorem 5.14,
while ℓ is used to denote the possible values that L may take.

By this application of Theorem 5.14, we find that, for any R ∈ R with |R| ≤ hn1/9, and for n high
enough,

P
(
D(s, ℓ) ≤ 2−ℓ/3 · 2−1/3τ

α/2
0 · τ ζ0 , |M −R| ≤ 10Hη1/3

(
log τ−1

0

)1/228)
≤ log

(
3 · 22/3τ−α

0 ·Hη1/3
(
log τ−1

0

)1/228
(ℓ+ 2)1/3

)
max

{
(ℓ+ 1)−2τ

ζ/2
0 · exp

{
− hR2 +Hℓ19

(
1 +R2 + log τ−ζ

0

)5/6}
, exp

{
− hn1/12

}}
,

where we used τ ζ0 ≤ (ℓ + 1)−2τ
ζ/2
0 , which is due to 2ℓ ≤ n, τ0 = (log n)−q, ζq > 4, and n being

high enough. (The upper bound ℓ ≤ hn1/1370 needed to apply Theorem 5.14 is satisfied for high n

because we suppose that τ0 ≥ exp{−n1/10}. The assumed upper bound on τ0 similarly ensures that
3ε ≤ ℓ′.)

Setting R = 0, we find that, for 2ℓ ≤ n, with suitable (η, ζ)-determined adjustments to the values
of H and h, and when n is high enough,

P
(
D(s, ℓ) ≤ 2−ℓ/3 · 2−1/3τ

α/2
0 · τ ζ0 , |M | ≤ 10Hη1/3

(
log τ−1

0

)1/228)
≤ max

{
(ℓ+ 1)−2τ

ζ/2
0 exp

{
H
(
log τ−1

0

)11/12}
, exp

{
− hn1/12

}}
.

Summing over ℓ ∈ N, we find that

P
(
D(s, L) ≤ 2−L/3 · 2−1/3τ

α/2
0 · τ ζ0 , |M | ≤ 10Hη1/3

(
log τ−1

0

)1/228)
≤ max

{
τ
ζ/2
0 exp

{
H
(
log τ−1

0

)11/12}
, exp

{
− hn1/12

}}
.

By Proposition 5.7 with R = 10Hη1/3
(
log τ−1

0

)1/228
, n = n and s1,2 = 1,

P
(
|M | > 10Hη1/3

(
log τ−1

0

)1/228) ≤ exp
{
− d103H3η

(
log τ−1

0

)1/68}
.

Note that this proposition’s hypothesis that R ≤ n1/10 is satisfied because we suppose that τ0 is at
least exp{−n1/10} and n is high enough.

Thus, for suitably small h = h(η, ζ) > 0,

P
(
D(s, L) ≤ 2−(L+1)/3τ

α/2+ζ
0

)
≤ exp

{
−H3h

(
log τ−1

0

)1/68}
.

Recall that LowTotDef occurs when 0 < D(s, L) < 2−1/32−L/3τ ζ0 holds for a set of values of s in

n−1Z∩ [g/4, 1− g/4] whose cardinality is at least (1−χ)/2 · (n+1)g · 2−5 log 2
(
log n

)−1
. The proof



DYNAMICAL LAST PASSAGE PERCOLATION 80

will now follow from a simple first moment bound. Let A ∈ [g/4, 1 − g/4] ∩ n−1J0, nK be picked
uniformly at random, independently of other randomness. Then

P
(
0 < D(A,L) < 2−1/32−L/3τ ζ0

∣∣∣ LowTotDef)
≥ (1− χ)/2 · (n+ 1)g · 2−5 log 2

(
log n

)−1 · 1

(n+ 1)(1− g/2)
.

Thus, P
(
LowTotDef

)
is at most

exp
{
−H3h

(
log τ−1

0

)1/68} · 26g−1(1− g/2)(1− χ)−1(log 2)−1 log n .

Our hypothesis on τ0 in (70) permits us to suppose that τ0 ≤ exp
{
−

(
2h−1H−3 log log n

)68}
. We

then obtain that P
(
LowTotDef

)
is at most a constant multiple of exp

{
− 2−1H3h

(
log τ−1

0

)1/68}
.

Relabelling h > 0 completes the proof of Lemma 9.4. □

The next proof is the remaining missing piece in the derivation of Theorem 8.5.

9.3. Slim pickings for slender excursions: deriving Proposition 9.2. The proof of Proposi-
tion 9.2 depends principally on an input [GH20a, Theorem 1.9] that concerns static Brownian LPP.
We will present notation for the dynamic model and indicate shortly the relation to this input.
Recall that ρ0n denotes the time-zero polymer from (0, 0) to (0, 1). Let (x, s1), (y, s2) ∈ n−1Z∩ [0, 1],
s1 < s2, be two points, neither of which necessarily lies in ρ0n. A zigzag ψ from (x, s1) to (y, s2) that
is disjoint from ρ0n will be called a meander, (a word intended to evoke ‘excursion’ which is reserved
in our usage for the case where ψ’s endpoints lie in ρ0n). For σ > 0, a meander ψ from (x, s1) to

(y, s2) is called (ρ0n, σ, 1 − χ)-close if the set of s ∈ [s1, s2] ∩ n−1Z for which |ψ(s) − ρ0n(s)| ≤ s
1/3
1,2 σ

has cardinality at least (1 − χ)
∣∣[s1, s2] ∩ n−1Z

∣∣ and contains the values s1 and s2. For t ≥ 0, the

supremum of the time-t weights of (ρ0n, σ, 1− χ)-close meanders will be denoted by

Wgttn
[
(x, s1) → (y, s2) ; (ρ

0
n, σ, 1− χ)-close

]
.

For ℓ ∈ N and d0 > 0, let LowSlenderWeightt
(
ℓ, σ, 1− χ; ρ0n

)
denote the event that

sup s
−1/3
1,2 Wgttn

[
(x, s1) → (y, s2) ; (ρ

0
n, σ, 1− χ)-close

]
≤ −d0σ−1 ,

where the supremum is taken by varying the points (x, s1), (y, s2) ∈ R × [0, 1] ∩ n−1Z over choices
such that 2−1−ℓ ≤ s1,2 ≤ 2−ℓ. The next result sets the value of d0.

Proposition 9.5. There exist constants d0, C > 0, χ0 ∈ (0, 1), d2 > 0, and n0 ∈ N such that, when

χ ∈ (0, χ0) n ≥ n0, σ
−1/4 > C log n and ℓ ∈ N satisfies 2ℓ ≤ nσ40, then

P
(
¬ LowSlenderWeightt(ℓ, σ, 1− χ; ρ0n)

)
≤ exp

{
− d2σ

−1/2
}
.

When t = 0, this result is [GH20a, Theorem 1.9]. A stochastic comparison involving the dynamical
model will permit us to derive the general t version. In fact, even in [GH20a], Theorem 1.9 was
derived from [GH20a, Theorem 1.10] using a similar stochastic comparison result which we will say
more about after setting up the latter.

Recall that the unscaled dynamical Brownian noise environment is a system B : R × Z × R → R
whose third argument is dynamical time t. This system is Ornstein-Uhlenbeck dynamics in t whose
invariant measure is a product of independent two-sided standard Brownian motions. It is convenient
to introduce counterpart notation that uses scaled coordinates. As such,

{
Ωt : R× n−1Z → R , t ∈
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[0,∞)
}

will denote the scaled dynamical Brownian environment that is the image of the time t

marginal of the B-system under the scaling map Rn from (18). For each t ≥ 0,
{
Ωt(·, s) : s ∈ n−1Z

}
is an independent collection of Brownian motions of rate 2n2/3. The evolution in t of each of these s-
indexed Brownian motions Ωt(·, s) : R → R is an independent Ornstein-Uhlenbeck dynamics (whose

invariant measure is Brownian of rate 2n2/3).

In keeping with the notation, introduced in Subsection 1.3.1, whereby the absence of a time su-
perscript indicates a static object, we write Ω : R × n−1Z → R for the scaled static Brownian
environment, so that Ωt has the law of Ω for any given t ≥ 0.

For given t ≥ 0, the fields Ω and Ωt are random functions sending R × n−1Z to R. Let X and Y
denote any two such random functions. For any subset A of R× n−1Z, Y stochastically dominates
X on A if there exists a coupling of X and Y such that, whenever (j, u, v) ∈ Z×R2 satisfies u < v
and {j/n} × [u, v] ⊂ A, the bound Y (v, j/n)− Y (u, j/n) ≥ X(v, j/n)−X(u, j/n) holds. An event
E is called negative on A if P(Y ∈ A) ≤ P(X ∈ A) whenever Y stochastically dominates X on A.

For a given n-zigzag ϕ, let the exterior Ext(ϕ) of ϕ denote
(
R×n−1Z

)
\ϕ. The next result provides

information about the field Ωt on the exterior of Ext(ρ0n).

Lemma 9.6. In this result, we take a copy of the static Brownian environment Ω independent of the
dynamical collection

{
Ωt : t ≥ 0

}
by declaring Ω to be independent of the latter system. For t ≥ 0,

the law of the restriction of Ωt to Ext(ρ0n) is stochastically dominated by the law of Ω’s restriction
to Ext(ρ0n).

Proof. Suppose first that t = 0. Consider the noise environment that is given by Ω0 on ρ0n and
by Ω on Ext(ρ0n). When this environment is conditioned on the event that there exists no n-zigzag
from (0, 0) to (0, 1) whose weight determined by this environment exceeds that of ρ0n, the result
is a distributional copy of Ω0. The event in the conditioning is negative for Ω on Ext(ρ0n). The
system Ω on Ext(ρ0n) is a countable collection of Brownian motions whose domains are either copies
of the real line or semi-infinite real intervals; indeed, to each height in y ∈ n−1Z are associated one
or two intervals, formed by the sometimes vacuous removal from R × {y} of this set’s intersection
with ρ0n. The FKG inequality for products of independent Brownian motions is implied by [Bar05,
Theorems 3 and 4]. Applying it, we obtain Lemma 9.6 with t = 0.

Before continuing to treat the general case, it is convenient to identify Ext(ρ0n) with R × n−1Z.
Recall that Ext(ρ0n) is comprised of either one or two infinite intervals at every height in n−1Z;
for heights where there are two intervals, we identify the two finite endpoints of these intervals,
contracting to a point the interval of passage of ρ0n to this vertical coordinate, to obtain the desired
identification.

Now suppose that t > 0. By the case where t = 0, and with the above identification in operation,
Ω0 on R × n−1Z is stochastically dominated by Ω on this set. Consider the Ornstein-Uhlenbeck
dynamics mapping R×n−1Z×R to R begun from Ω0 at dynamic time, or third coordinate, t. This
process is Ωt. But it also satisfies (4) with I = R×n−1Z; withX(·, 0) equal in law to Ω0; and withX′

equal in law to Ω. Consider instead the counterpart dynamics begun from Ω. By stationarity, the
time-t slice now has the law of Ω. Moreover, this slice is again given by (4), with the variation that
X(·, 0) is instead equal in law to Ω. Thus we see that (4) implies the stochastic domination of Ωt

on R× n−1Z by Ω on this set. This is the assertion of Lemma 9.6 for t > 0 when we recognize the
presence of a notational abuse arising from the identification of Ext(ρ0n) with R× n−1Z. □
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Proof of Proposition 9.5. The final, three-line, paragraph of [GH20a, Section 4] ends the proof
of [GH20a, Theorem 1.9]. The proof of [GH20a, Theorem 1.9] uses [GH20a, Theorem 1.10] along
with [GH20a, Theorem 4.17] which is simply Lemma 9.6 for the t = 0 case. Replacing the former
by the latter in the proof of [GH20a, Theorem 1.9] yields Proposition 9.5. □

We have just shown that slender meanders typically have low weights. A further ingredient is
needed before we prove Proposition 9.2: no subpath of the polymer ρtn (for fixed t) accrues an
extreme weight.

Let NoLown(D) denote the event that

s
−1/3
1,2 Wgtn

[
(x, s1) → (y, s2)

]
is at least −

(
log n

)D
for all pairs (x, s1), (y, s2) ∈ R×

(
n−1Z ∩ [0, 1]

)
that belong to ρn and satisfy

s1 ≤ s2, and s1,2 ≥ nβ/2−1. Let NoHighn(D) denote the event that the displayed quantity is at most(
log n

)D
for the same set of pairs (x, s1), (y, s2).

The next lemma shows that the events NoLown(D) and NoHighn(D) occur with high probability.
(In fact, for our application, we will only rely on the rarity of ¬NoLown(D).)

Lemma 9.7. There exists D0 > 0 such that, when D ≥ D0,

P
(
NoLown(D) ∪ NoHighn(D)

)
≥ 1−H exp

{
− h

(
log n

)3D/2−1}
.

Proof. The proof follows from Proposition 5.9 with r2(log n)2/3 = O(
(
log n

)D
), so that r is a

constant multiple of
(
log n

)D/2−1/3
, alongside a simple union bound. □

Proof of Proposition 9.2. With the standard usage of superscript t to indicate this event ex-
pressed via the time-t weight Wgttn, and taking σ = τα0 (with τ0 specified in (53)), Proposition 9.5
implies that

P
(
¬ LowSlenderWeightt

(
ℓ, τα0 , 1− χ; ρ0n

))
≤ exp

{
− d2

(
log n

)qα/2}
(86)

for any scale ℓ satisfying 2ℓ ≤ n1−β. The lower bound on σ−1/4 hypothesised in Proposition 9.5 is
valid for high n since αq > 4 for such n. Note that the bound nβ ≥ σ−40, valid for n at least a
β-determined level, serves to ensure that 2ℓ ≤ nσ40.

The occurrence of LowSlenderWeightt
(
ℓ, τα0 , 1 − χ; ρ0n

)
entails that any (α, 1 − χ)-slender excursion

of scale ℓ between ρ0n and ρtn that begins at (x, s1) and ends at (y, s2) satisfies

s
−1/3
1,2 Wgttn

[
(x, s1) → (y, s2)

]
≤ −d0

(
log n

)qα
. (87)

Since the points (x, s1) and (y, s2) lie on the polymer ρtn, we see that an application of Lemma 9.7
with D = qα to the time-t noise field yields that the probability of the occurrence of the bound (87)

is at mostH exp
{
−h

(
log n

)(3qα/2)−1}
. Thus, the probability of the existence of an (α, 1−χ)-slender

excursion of scale ℓ between ρ0n and ρtn is at most

H exp
{
− h

(
log n

)(3qα/2)−1}
+ exp

{
− d2

(
log n

)qα/2}
,

where the two terms provide an upper bound on the probability of the said existence occurring in
tandem with, or alongside the complement of, the event LowSlenderWeightt

(
ℓ, α, 1−χ; ρ0n

)
. We sum
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the obtained bound over scales ℓ ∈ N that satisfy 2ℓ ≤ n1−β to learn that, in the notation used in
Proposition 9.2,

P
(
Slender

(
α, β, 1− χ

))
≤ (1− β)

(
log2 n+ 2

)
· 2 exp

{
− d2

(
log n

)qα/2}
.

Noting that 2
(
log2 n+ 2

)
≤ n for n ≥ 12 completes the proof of this proposition. □

Remark. The hypothesis that the exponent β be positive (which stipulates a lower bound on the
demarcation between short and long excursions), is invoked in the just given argument to secure
the bound nβ ≥ σ−40 that permits us to derive (86). Since σ = (log n)−qα, a sub-power-law growth
rate in n might replace nβ. That is, the division between long and short excursion has been set at
nβ−1 for β > 0 merely for notational convenience; if we wished, rather shorter excursions might be
treated as long.

10. The case of short excursions: deriving Proposition 8.4

The value t ∈ [0, n−1/3] will be fixed throughout this section. Recall that an excursion is short when
its duration is at most nβ−1. We will work with a further positive parameter λ and will impose
conditions on the parameter pair as they are needed; the bounds β+λ < 1/6 and λ > β will however
imply these conditions. Recall also that Proposition 8.4 makes an assertion in terms of two further
parameters β1 > 0 and β2 ∈ (0, 1), whose values are determined by Corollary 8.1. Revising the
definition made in (79), we specify the deficit D(h) at level h ∈ n−1J0, nK so that

D(h) = inf
{
Zn

(
ρ0n(h), h

)
− Zn(x, h) : x ∈ R ,

∣∣x− ρ0n(h)
∣∣ ∈ [

8−1β1n
−2/3, n−2/3+2β/3(log n)1/3

]}
.

Lemma 10.1. Let g ∈ (0, 1/2) and λ ∈ (0, 1). There exist n0 ∈ N and positive H and h such that,

for n ≥ n0, it is with probability at most exp
{
− h(log n)1/68

}
that∣∣∣{i ∈ J0, nK : g ≤ i/n ≤ 1− g , D(i/n) < n−1/3−λ

}∣∣∣ ≥ n1−λ exp
{
H(log n)11/12

}
.

Proof. By Proposition 5.7 with R = (log n)1/228, n = n and s1,2 = 1,

P
(
sup

{
|ρn(a)| : a ∈ n−1Z ∩ (0, 1)

}
> (log n)1/228

)
≤ exp

{
− d(log n)1/68

}
.

Let a ∈ n−1Z ∩ (g, 1 − g). By Theorem 5.14 with R = 0, ε = 8−1β1n
−2/3, σ = 21/2β

−1/2
1 n−λ,

ℓ′ = 3n−2/3+2β/3(log n)1/3 and ℓ = 3(log n)1/228, we find that, for n high enough,

P
(
D(a) ≤ n−1/3−λ , |ρn(a)| ≤ (log n)1/228

)
≤ P

(
|ρn(a)| ≤ (log n)1/228 , sup

x∈R:x−ρn(a)∈[ε,ℓ′/3]

(
Zn(x, a) + σ(x−M)1/2

)
≥ Zn(M,a)

)
≤ log

(
ℓ′ε−1

)
max

{
σ · exp

{
Hℓ19

(
1 + log σ−1

)5/6}
, exp

{
− hn1/12

}}
≤ log n · n−λ exp

{
H2λ5/6(log n)11/12

}
,

where the final inequality is due to a suitable increase if need be in the value of H > 0.

On the event sup
{
|ρn(a)| : a ∈ n−1Z ∩ (0, 1)

}
≤ 3(log n)1/228, the conditional mean number of

indices i ∈ J0, nK, g ≤ i/n ≤ 1− g, such that D(i/n) ≤ n−1/3−λ is thus at most

n log n · n−λ exp
{
H2λ5/6(log n)11/12

}
.
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Markov’s inequality and a relabelling of H > 0 now yield Lemma 10.1. □

To apply this lemma, we need to show the rarity of wide excursions, as we also needed to do in
the long excursions’ case. The width of an excursion E between ρ0n and ρtn equals the infimum of
the widths x2 − x1 of vertical strips [x1, x2] × R that contain E. An excursion is called wide if its

width exceeds Hn−2/3+2β/3
(
log n

)1/3
. Let NoWideExc0,tn denote the event that there exists no wide

excursion between ρ0n and ρtn whose duration is at most nβ−1.

Lemma 10.2. Suppose that β ∈ (0, 1/2] and H > 0. There exists d > 0 such that P
(
NoWideExc0,tn

)
is at least 1− n−dH3

.

Proof. The width of any excursion of duration at most nβ−1 is at most α(0)+α(t), where α(t′) for

t′ ∈ {0, t} denotes the supremum of |y−x| over (x, s1), (y, s2) ∈ ρt
′
n ∩

(
R× (n−1Z∩ [0, 1])

)
such that

s1,2 ∈ [0, nβ−1]. When ρ0n and ρt
′
n are

(
nβ−1, R

)
-regular in the sense of Definition 5.10, the width of

such an excusion is thus at most 2R(1−β)1/3n−2/3+2β/3
(
log n

)1/3
. Proposition 5.11 with κ = nβ−1

and R = H/2 then implies the lemma. □

The value y ∈ n−1Z∩ [2−4β2, 1− 2−4β2] is said to be of low deficit if D(y) < n−1/3−λ. An excursion
is called unlucky if it intersects a horizontal line whose coordinate y is of low deficit and satisfies∣∣ρtn(y)− ρ0n(y)

∣∣ ∈ [
8−1β1n

−2/3, n−2/3+2β/3(log n)1/3
]
. Set

ManyUnlucky0,tn =
{
the number of unlucky excursions exceeds n1−λ exp

{
H(log n)11/12

}}
.

Lemma 10.3. For n high enough, P
(
ManyUnlucky0,tn

)
≤ exp

{
− h

(
log n

)1/68}
.

Proof. The number of unlucky excursions is bounded above by the number of indices of low deficit;
thus, the result follows from Lemma 10.1. □

An excursion E of lifetime [b, f ] is called normal if there exists a value y ∈ n−1Z ∩ [b, f − n−1]
that is not of low deficit and that satisfies y ∈ n−1Z ∩ (2−4β2, 1 − 2−4β2] and

∣∣ρtn(y) − ρ0n(y)
∣∣ ∈[

8−1β1n
−2/3, n−2/3+2β/3(log n)1/3

]
.

Lemma 10.4. Suppose that λ > β. When the event ShortNonThin0,tn (β2/8) ∩ NoWideExc0,tn ∩
¬ManyUnlucky0,tn occurs, and n is high enough, the number of normal short excursions is at least
2−5β2n

1−β.

Proof. Note first that an excursion whose lifetime is contained in (2−4β2, 1− 2−4β2] that is neither
thin, nor wide, nor unlucky, is normal.

Let C denote the set of short excursions that are neither thin nor wide and whose lifetimes are
contained in (2−5β2, 1− 2−5β2]. We claim that, when ShortNonThin0,tn (β2/8)∩NoWideExc0,tn occurs,
and n is high enough, the bound |C| ≥ 2−4β2n

1−β holds.

To verify this claim, first let C0 denote the set counterpart to C for which ‘are contained in’ is
replaced by ‘intersect’. Note that, on the event with which the claim is concerned, the sum of
the durations of short excursions that are neither thin nor wide is at least β2/16. The sum of the
durations of elements of C0 is thus at least 2−4β2. Since a short excursion has duration at most nβ−1,
we see that |C0| ≥ 2−4β2n

1−β. Since |C| ≥ |C0| − 2, the claim follows for n high enough.
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Note further that, since λ > β, the number of unlucky excursions in the event ¬ManyUnlucky0,tn is
at most 2−6β2n

1−β, provided that n is high enough. From this, the lemma follows. □

Lemma 10.5. Suppose that β + λ < 1/6. There exists D > 0 such that, for n high enough,

P
(
there are at least 2−5β2n

1−β normal short excursions
)
≤ D exp

{
− cn1−3(β+λ)/2

}
.

Proof. Suppose that there are at least 2−5β2n
1−β normal short excursions, and denote them by Ei,

with the index rising from i = 1. If Ei has lifetime [bi, fi], denote by yi the value in n−1Z ∩ [bi, fi)
that ensures that Ei is a normal excursion. Applying Lemma 9.1 with this choice of values yi, we
find that

Wgt0(ρ0n)−Wgt0(ρtn) ≥ 2−5β2n
1−β · n−1/3−λ = 2−5β2n

2/3−β−λ ,

since none of the values yi is of low deficit. Let t ∈
[
0, n−1/3

]
be given. By the crude form of

dynamical stability for weight offered by Lemma 6.4, we know that it is with probability at least
1− e−hn that

sup
∣∣∣Wgt0(ρtn)−Wgtt(ρtn)

∣∣∣ ≤ 4n1/2 .

Since β + λ < 1/6, we find then that, when n is high enough,

P
(
there are at least 2−5β2n

1−β normal short excursions
)

≤ P
(
Wgt0(ρ0n)−Wgtt(ρtn) ≥ 2−6β2n

2/3−β−λ
)
+ e−hn .

The random variables Wgt0(ρ0n) and Wgtt(ρtn) share the distribution of Wgtn
[
(0, 0) → (0, n)

]
.

Writing

P
(
Wgt0(ρ0n)−Wgtt(ρtn) ≥ 2−6β2n

2/3−β−λ
)

≤ P
(
Wgt0(ρ0n) ≥ 2−7β2n

2/3−β−λ
)
+ P

(
Wgtt(ρtn) ≤ −2−7β2n

2/3−β−λ
)
,

we may apply Lemma 5.3 to learn that the displayed left-hand side is at most 2C exp
{
−c′n1−3(β+λ)/2

}
with c′ = c 2−21/2β

3/2
2 . Lemma 10.5 follows by a suitable choice of D > 0. □

By Lemma 10.4,

P
(
ShortNonThin0,tn

(
β2/8

))
≤ P

(
¬NoWideExc0,tn

)
+ P

(
ManyUnlucky0,tn

)
+ P

(
the number of normal short excursions is at least 2−5β2n

1−β
)
.

By Lemmas 10.2, 10.3 and 10.5,

P
(
ShortNonThin0,tn

(
β2/8

))
≤ n−dH3

+ exp
{
− h

(
log n

)1/68}
+D exp

{
− cn1−3(β+λ)/2

}
.

Since β + λ < 2/3, this bound implies Proposition 8.4 with a suitable decrease to the value of
h > 0. □
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Appendix A. Hypothesis verification for Proposition 6.2

Here we demonstrate that the hypotheses of Proposition 6.2 are adequate to permit the applications
of results during its proof. There were two such applications: the use of Proposition 4.2(2) to obtain
(45); and the use of Proposition 6.3 to obtain (46).

Derivation of (45). Proposition 4.2(2) is applied with x = x′ and y = y′. The proposition’s

hypothesis that y − x = y′ − x′ is in absolute value at most 2−1(ns1,2)
1/3 holds because x′ and y′

belong to the respective meshes Iη and Jη, and thus to the intervals I and J , each of which has

length D2−2ℓ/3(ℓ + 1)1/3, and whose left endpoints are displaced by at most c(ns1,2)
1/9; and the

thus needed bound,

2−33−1c(ns1,2)
1/18 +D2−2ℓ/3(ℓ+ 1)1/3 ≤ 2−1(ns1,2)

1/3 .

This bound follows from s1,2 ≥ 2−1−ℓ, 2ℓ+1 ≤ n, c ≤ 1 and n ≥ 1029D18. It is hypothesised in

Proposition 6.2 that n ≥ 1029D18c−92ℓ(ℓ + 1)18
(
log τ̂−1

)9
; since D ≥ 1, c ≤ 1 and τ̂ ≤ e−1, we

indeed have n ≥ 2ℓ+1.

Derivation of (46). Recall that the application of Proposition 6.3 to obtain (46) started with the
following hypotheses on the parameters n ∈ N, η > 0, s1, s2 ∈ n−1Z, x, y ∈ R and K > 0: that

ηs
−2/3
1,2 ∈ (0, 2−4]; that ns1,2 ≥ 1032c−18; that D2−2ℓ/3(ℓ+1)1/3s

−2/3
1,2 ≤ 2−23−1c(ns1,2)

1/18; and that

K ∈
[
104 , 103(ns1,2)

1/18
]
.

Thus the application requires the hypotheses

[1] ηs
−2/3
1,2 ∈ (0, 2−4]

[2] ns1,2 ≥ 1032c−18

[3] 2−33−1c(ns1,2)
1/18 +D2−2ℓ/3(ℓ+ 1)1/3s

−2/3
1,2 ≤ 2−23−1c(ns1,2)

1/18

[4] (ℓ+ 1)c−1/2212(127/250)1/2
(
log τ̂−1

)1/2 ≥ 104

[5] (ℓ+ 1)c−1/2212(127/250)1/2
(
log τ̂−1

)1/2 ≤ 103(ns1,2)
1/18 ,

where to obtain the form of [4] and [5], we used K = (ℓ+ 1)c−1/2212(127/250)1/2
(
log τ̂−1

)1/2
.

We also use η ≤ v − u, i.e.,

[6] η ≤ D2−2ℓ/3(ℓ+ 1)1/3 .

That [1] holds is explained in the proof of Proposition 6.2; recall that we set η = 2−52−2ℓ/3ϕ with

ϕ = τ̂1/10, so that [1] follows from τ̂ ≤ 1.

Since s1,2 ≥ 2−ℓ−1, [2] is implied by

[7] n ≥ 1032c−182ℓ+1

Since s1,2 ≥ 2−ℓ−1, [3] is implied by

D2−2ℓ/3(ℓ+ 1)1/3(2−ℓ−1)−2/3 ≤ 2−33−1c(n2−ℓ−1)1/18

or

D(ℓ+ 1)1/32ℓ/1823+2/3+1/183c−1 ≤ n1/18

or

n ≥ 267318D18(ℓ+ 1)62ℓc−18 .
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which is implied by
[8] n ≥ 267318D18(ℓ+ 1)62ℓc−18 .

Introducing
[9] D ≥ 1 ,

and
[10] n ≥ 1029D18(ℓ+ 1)62ℓc−18 ,

note that [9, 10] → [7, 8]. (This notation means ‘[9] and [10] imply [7] and [8]’.) Note also that
[7, 8] → [2, 3]; and that [1, 9] → [6], since s1,2 ≤ 2−ℓ.

Note that [4] is implied by c−1/2212(127/250)1/2
(
log τ̂−1

)1/2 ≥ 104 or log τ̂−1 ≥ c1/21082−24(9/20)−1 .

Since 1082−24(127/250)−1 = 11.733 · · · and c ≤ 1, the last is implied by

[11] τ̂ < exp
{
− 12

}
.

Thus [11] → [4]. Since s1,2 ≥ 2−ℓ−1, [5] is implied by

(ℓ+ 1)2ℓ/18c−1/2212+1/18(127/250)1/2
(
log τ̂−1

)1/2 ≤ 103n1/18

or
n ≥ (ℓ+ 1)182ℓc−910−482217(127/250)9

(
log τ̂−1

)9
.

Since 10−482217(127/250)9 = 4.745 · · · × 1014, the last is implied by

[12] n ≥ 1015c−9(ℓ+ 1)182ℓ
(
log τ̂−1

)9
.

Let
[13] n ≥ 1029D18c−9(ℓ+ 1)182ℓ

(
log τ̂−1

)9
.

Note that [9, 11, 13] → [10, 12] since [11] implies that τ̂ ≤ e−1. Thus, [1, 9, 11, 13] → [2, 3, 4, 5, 6].
Recall that [1] has been confirmed, and that [1, 2, 3, 4, 5, 6] is the set of conditions that permit the
application of Proposition 6.3 in the proof of Proposition 6.2. The other application in this proof
is that of Proposition 4.2(2), for which we have seen that the condition n ≥ 24D3 is sufficient. But
this is implied by [11, 13], since c ≤ 1.

Conclusion. In summary, we have shown that the hypotheses [9, 11, 13] are adequate to derive
Proposition 6.2. Since these conditions are the hypotheses of Proposition 6.2 if we take a = e−12,
we have completed hypothesis verification for Proposition 6.2.
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