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Abstract

Extracting green hydrogen from renewable energy sources is a new concept in the energy industry. As an energy

carrier, hydrogen is well capable of facilitating a strong coupling between various energy sectors, as well as

integration of renewable energy sources. This paper investigates the system-wide technical factors that might

limit the amount of producible hydrogen in a given power system. A non-linear programming formulation is

proposed to quantify the impact of voltage security constraints, the location and size of power to hydrogen

facilities, and finally the wind penetration levels on the harvest-able green hydrogen. The applicability of the

proposed framework is demonstrated on the IEEE 39 bus system.
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1. NOMENCLATURE

The notations and symbols used throughout the paper are stated in this section.
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Abbreviations:

OPF Optimal power flow.

COP Current operation point.

SLP Security limit point.

LM Loading margin.

P2H Power to hydrogen.

WF Wind farm.

RES Renewable energy source.

Sets/Indices:

c Index for operation point (c0 denotes COP, c1 denotes SLP).

b, k Index for electrical network buses.

t Index for operation intervals.

ΩB Set of network all buses.

ΩBG
Set of network buses with generators.

ΩBb
Set of network buses connected to bus b.

ΩBW
Set of network buses connected to WFs.

ΩBP2H
Set of network buses connected to P2H units.

ΩT Set of time intervals.

Variables:

TH Total hydrogen extracted in the entire interval, (kg).
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Hb,t Hydrogen extracted from the electrolyser connected to bus b at time t, (kg/h).

(PW/QW )b,t Active/reactive power of WF in bus b at time t, (pu).

(PG/QG)b,t,c Active/reactive power generation in node b at time t and operation point c, (pu).

(PD/QD)b,t,c Active/reactive demand in bus b at time t and operation point c, (pu).

(PH/QH)b,t,c Active/reactive power demand of P2H unit in bus b at time t, (pu).

QG
L1/L2

b,t,c Reactive power limit corresponding to stator/field current limit in bus b, time t and

operation point c, (pu)

(QG/QG)b,t,c Upper/lower limit of reactive power generation in bus b, time t and operation point

c, (pu).

(y/z)b,t Auxiliary variables for modeling active and reactive power limits of generators.

v
up/dn
b,t Auxiliary variables for modelling the voltage difference of COP and SLP as a result

of reactive power limit activation.

λ Loading parameter.

Sbk,t,c Apparent power flowing through bk-th line at time t and operation point c, (pu).

(V/θ)b,t,c Voltage magnitude/angle of bus b at time t and operation point c, (pu/rad).

Parameters:

K
P/Q
b Active/reactive power demand increment factor at bus b.

KG
b Active power generation increment factor at bus b.

Ybk/γbk Magnitude/angle of bk-th element of system admittance matrix.

ηb,t Efficiency factor of the electrolyser supplied from bus b at time t, kg/MWh.

Eb,t,c Internal voltage of the generator connected to bus b, time t and operation point c,

(pu).

Xsb Synchronous reactance of the generator connected to bus b.

δb Upper limit on angular separation of stator and rotor fields of the generator connected

to bus b, (rad).

IGb Upper limit on the stator current of the generator connected to bus b, (pu)

M1/2,b Big-M constants for reactive/active power generation limits modelling at bus b.

X/X Upper/lower bound of variable X

2. Introduction

2.1. Background and Motivations

Hydrogen produced through renewable energy sources (RESs), known as green hydrogen, can provide clean

energy to the main economy sectors such as industry, buildings, and transport [1, 2]. In this way, the goal of 40%

share of electricity as the dominant energy carrier in 2050 would be realized and hence, the decarbonised energy

world envisaged by the Paris Agreement will likely be reachable [3]. An example of green hydrogen impact on

carbon intensity reduction in industry sector is reported by [4]. Power systems, as the main infrastructure of

large-scale electricity generation and transmission, are forced to be operated even closer to their security limits

due to the increasing demand, market pressures, public and decarbonization concerns.

Green hydrogen energy carrier facilitates large amounts of renewable energy to be directed from the power

systems into the end-use sectors such as transport, buildings and industry, as shown in Fig. 1. Green hydrogen

is extracted from water through an electrolyser consuming electric energy [5]. Hence, integration of RESs and

large-scale energy storage in mid and long-term intervals could be accomplished via green hydrogen. The future

carbon-less energy chain via green hydrogen can be obtained by the following means:
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• By production of green hydrogen, the need for blue hydrogen (i.e. the hydrogen extracted from natural

gas through the process of steam methane reforming) and hence the CO2 generation will be reduced.

• The generated green hydrogen could be injected to natural gas network (as shown in Fig. 1) up to a

specific percentage. By this ability, the amount of natural gas consumption will be decreased with respect

to the case of no green hydrogen.

• Green hydrogen could be stored and used in marine, aviation and other transportation systems through

the hydrogen supply chain.

Electrolysers technology has been matured in past decades and their scale-up in near future can increase

the share of green hydrogen in the decarbonised energy chain, worldwide. Cost-benefit analyses done on this

technology reveal that it will be a competitive energy carrier in the near future [6, 7, 8]. Electrolysers, as the

integral part of green hydrogen technology, offer a flexible load to the power systems that can easily provide

ancillary services such as grid balancing services (upwards and downwards frequency regulation) at the same

time operating at optimal capacity to meet demand for hydrogen from other downstream hydrogen energy

sectors (such as industry, buildings and transport). Hence, introducing the green hydrogen (as a new flexible

load) to the future power systems has different positive and negative aspects. On the positive side, reduction

in wind curtailment (stored as hydrogen), enhancing the decarbonisation strategies can be observed. However,

the level of stress will be higher since the green hydrogen will be treated as a new electric load. This new load

will further limit the available power transfer capacity (ATC) of transmission networks.

The ATC is constrained by voltage security to avoid the voltage collapse in heavy loading circumstances or

contingencies. It is desirable to operate the system with a sufficient loading margin (LM) such that the system

can survive the collapse under heavy loading conditions as well as any significant single or multi-component

outages. Green hydrogen, i.e. the hydrogen that is produced from RESs could be extracted via an electrolysis

process that takes place in electrolyzers. This power to hydrogen (P2H) energy conversion path could facilitate

the integration of high levels of RESs into the emerging energy system. It can also provide grid balancing services

and long-term storage to manage the variation in power supply from intermittent RESs [9, 10, 11].

2.2. Contributions

Large-scale green hydrogen extraction from emerging power systems with high penetration of RESs, can

pose various impacts on the planning and operation of such networks, which can be considered as a research

gap. As an example, incurring a large amount of electricity via P2H electrolyzers can push the system closer to

its security boundaries. Hence, in this paper, the main factors affecting the harvestable hydrogen from electric

power systems with high penetration of RESs, are discussed. Particularly, the focus of this research will be on

investigating the impact of the following factors on the exploitable green hydrogen:

• Allocation of large-scale P2H facilities (including their size and location) in the transmission system.

• Considering the steady-state voltage security constraints.
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Figure 1: The link between various energy sectors via green hydrogen.

• Considering high penetration levels of RESs.

2.3. Paper organization

The remainder of this paper is organized as follows: Section 3 describes the proposed model for hydrogen

harnessing from RESs by considering the voltage security constraints. Section 4 shows the simulation results.

Finally, the paper concludes in Section 5.

3. Problem statement

3.1. Conceptual interpretation

Increasing the system demand beyond its ATC, as well as the inability of the system to meet reactive

demand are recognized as the main factors jeopardizing the voltage security of power systems [12]. In order to

characterize the loadability, as well as the voltage security, the concept of LM is employed. LM is the amount of

load increase not arousing the voltage collapse or violation of critical operational constraints (such as voltage,

reactive power and line flow limits). By preserving a proper level of LM, i.e. the distance between the current

operation point (COP) and the security limit point (SLP), the voltage security of system will be ensured [13].

As it is aforementioned, integration of large-scale P2H demand to generate green hydrogen, can be interpreted

as the stressing the system toward its SLP. This issue is conceptually demonstrated in Fig. 2, where the loci of

steady state operation points of the system with/without P2H demands are compared. It can be observed that

the COP and SLP are initially A0 and B0, with a LM equals to LM0. Integration of P2H demand changes the

COP and SLP to A1 and B1, respectively, with the corresponding security margin of LM1.
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Figure 2: P-V curve to characterize the impact of P2H demand.

3.2. Formulation of green hydrogen harvesting problem

The aim is to maximize the total extracted hydrogen (TH) via P2H units at the entire operating horizon

(e.g. 24 hours), as follows.

max
DV

TH =
∑

t

∑

b∈ΩBP2H

Hb,t (1)

Subject to : (2) to (27)

The efficiency of electrolyser depends on its loading level, such that in lower loading levels, the efficiency is

higher. Thus, the extractable hydrogen (in kgH2 per MWh of input electricity) is a function of electrolyser’s

loading level. This functionality can be expressed as follows at the COP of the system.

Hb,t = f (PHb,t,c1) ∀b ∈ ΩBP2H
(2)

where f(.) is a nonlinear function [3]. The existing electrolyser technologies, i.e. alkaline and proton exchange

membrane, have almost a constant efficiency when operating near their nominal capacity [3]. Since it is assumed

that the electrolysers are connected to the network and sufficient downstream hydrogen demand as well as

hydrogen storage capacity exist, assuming that the electrolysers are operated near their nominal values is

rational. Hence, one can consider a constant conversion ratio between its output hydrogen and input electric

energy as follows.

Hb,t = ηb,tPHb,t,c1 ∀b ∈ ΩBP2H
(3)

where ηb,t in (3) is the efficiency factor of the electrolyser (in kg/MWh), supplied from bus b at time t.

The AC power flow equations are considered for COP and SLP, simultaneously. Also, since the reactive

power support by generators plays a crucial role in voltage security, in this paper, a detailed model of capability

curve of generators is considered by including the field current, armature current and under excitation limits.
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Besides, without loss generality, the wind power is considered as the available RES at the system.

PGb,t,c + PWb,t,c − PDb,t,c − PHb,t,c =
∑

k∈ΩBb

Vb,t,cVk,t,cYbkcos (θb,t,c − θk,t,c − γbk)∀b ∈ ΩB (4)

QGb,t,c −QDb,t,c −QWb,t,c −QHb,t,c =
∑

k∈ΩBb

Vb,t,cVk,t,cYbksin (θb,t,c − θk,t,c − γbk)∀b ∈ ΩB (5)

where (4) and (5) are hourly nodal active and reactive power balances in COP and SLP. Active and reactive

power demands of electrolyser, i.e. P2Hb,t,c and Q2Hb,t,c, are included in these equations.

In order to preserve the adequacy of network, the reserve constraint is considered as follows.

∑

k6=b∈ΩBG

(PGk − PGk,t,c1) ≥ PGb,t,c1 ∀b ∈ ΩBG
(6)

where (6) is the hourly reserve constraint, that ensures an available generation capacity greater than power

output of the largest running generating unit.

Despite of various positive impacts of RESs (such as wind energy), their penetration level is usually limited

due to stability issues. This limit is considered as follows, as a percentage of the hourly demand.

∑

b∈ΩBW

PWb,t,c1 ≤ α×
∑

b∈ΩB

PDb,t,c1 (7)

The hourly wind power penetration in (7) can be regulated by 0 ≤ α ≤ 1.

Also, since a multi-period optimal power flow model is developed in this paper, the ramp-rate constraints of

the generators should be considered as follows.

−RDb ≤ (PGb,t,c − PGb,t−1,c) ≤ RUb ∀b ∈ ΩBG
(8)

Voltage security of the network is highly depends on the reactive power generation capability of generators.

Hence, for the sake of accurate characterisation of voltage security, accurate model of generators capability

curve is necessary. In this paper the capability curves are modeled via (9)-(12), which express respectively the

armature current, field current and under excitation limits, respectively. It is worth to note that the maximum
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reactive power supply by each generator for a given active power generation (PGb,t,c), is determined from (12).

(PGb,t,c)
2
+
(

QGL1

b,t,c

)2

=
(

Vb,t,cIGb

)2

(9)

(PGb,t,c)
2
+

(

QGL2

b,t,c +
V 2

b,t,c

Xsb

)2

=

(

Vb,t,cEb,t,c

Xsb

)2

(10)

QG
b,t,c

= PGb,t,ccot(δb)−
V 2

b,t,c

Xsb

(11)

QGb,t,c = min
(

QGL1

b,t,c, QGL2

b,t,c

)

(12)

Also, (13)-(20) are the upper/lower limits of active/reactive power generations, voltages,WFs’ active/reactive

power injections, P2H active/reactive power demand and apparent power flowing through lines, respectively.

PGb ≤ PGb,t,c ≤ PGb ∀b ∈ ΩBG
(13)

QG
b,t,c

≤ QGb,t,c ≤ QGb,t,c ∀b ∈ ΩBG
(14)

V b ≤ Vb,t,c ≤ V b ∀b ∈ ΩB (15)

0 ≤ PWb,t,c ≤ PW b,t ∀b ∈ ΩBW
(16)

QW
b,t

≤ QWb,t,c ≤ QW b,t ∀b ∈ ΩBW
(17)

PHb ≤ PHb,t,c ≤ PHb ∀b ∈ ΩBP2H
(18)

QH
b
≤ QHb,t,c ≤ QHb ∀b ∈ ΩBP2H

(19)

Sbk ≤ Sbk,t,c ≤ Sbk ∀b ∈ ΩB, ∀k ∈ ΩBb
(20)

As it is aforementioned, in order to characterise voltage security issue, loading parameter (i.e. λ ) is used

to scale the demands and generations from COP to SLP (denoted by c1 and c2, respectively). The relationship

between COP and SLP is expressed by (21)-(23).

PDb,t,c2 =
(

1 +KP
b λ
)

× PDb,t,c1 ∀b ∈ ΩB (21)

QDb,t,c2 =
(

1 +KQ
b λ
)

×QDb,t,c1 ∀b ∈ ΩB (22)

PGb,t,c2 = min((1 +KG
b λ) × PGb,t,c1 , PGb)∀b ∈ ΩBG

(23)

Also, (24)-(27) indicate that for generators that reach their reactive power limits, voltage magnitude at the

corresponding bus is not equal in COP and SLP. It is worth to note that QGb,t,c2 and QG
b,t,c2

in (25) and (26)
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are defined in (11) and (12), respectively.

Vb,t,c2 = Vb,t,c1 + vdnb,t − vupb,t (24)

(QGb,t,c2 −QGb,t,c2)× vupb,t ≤ 0 (25)

(QGb,t,c2 −QG
b,t,c2

)× vdnb,t ≤ 0 (26)

vdnb,t , v
up
b,t ≥ 0 (27)

3.3. Reformulation of complicated constraints

It is evident from (12) and (23) that the min operator is a non-differentiable function resulting a mixed

integer NLP (MINLP) optimization model. In order to avoid dealing with such an MINLP model, the equation

(12) is replaced by (28)-(33), and (23) is substituted by (34)-(39).

QGb,t,c2 ≤ QGL1

b,t,c1
(28)

QGb,t,c2 ≤ QGL2

b,t,c1
(29)

QGb,t,c2 ≥ QGL1

b,t,c1
−M1,b × yb,t (30)

QGb,t,c2 ≥ QGL2

b,t,c1
−M1,b × (1− yb,t) (31)

yb,t = (yb,t)
2

(32)

0 ≤ yb,t ≤ 1 (33)

PGb,t,c2 ≤ (1 +KG
b λ)× PG

b,t,c1 (34)

PGb,t,c2 ≤ PGb (35)

PGb,t,c2 ≥ (1 +KG
b λ)× PGb,t,c1 −M2,b × zb,t (36)

PGb,t,c2 ≥ PGb −M2,b × (1− zb,t) (37)

zb,t = (zb,t)
2 (38)

0 ≤ zb,t ≤ 1 (39)

3.4. Decision variables

The sets of decision variables (DV ) of the proposed optimisation model is as follows.

DV =







Vb,t,c, (PG/QG)b,t,c, (PW/QW )b,t,c

P2Hb,t,c, QG
L1/L2

b,t,c , λ, yb,t, zb,t







(40)

4. Numerical Studies

4.1. Data

In order to study the influencing factors on large-scale green hydrogen extraction via power systems, the

aforementioned model is implemented on the IEEE 39-bus standard system. The one-line diagram of this network

9



is depicted in Fig. 3. Also, the network data is given in [14]. The internal voltage and synchronous reactance

of all generators are assumed to be 2.574pu and 1.912pu on each generator’s rated power basis, respectively.

Besides, M1/2,b are assumed to be twice the PGb.

It is assumed that 6×500MW wind farms are available at the network, installed at buses B2, B4, B5, B14, B22

and B24. Also, a 24 hours operation horizon is considered and the hourly electricity demand and available wind

power data are provided in Table 1. The nodal distribution of hourly active and reactive power demands is

the same with the base data given in [14]. Also, the same profile is assumed for all WFs as given in Table

1. Without loss of generality, it is assumed that WFs and P2H electrolyzers are operating with unity power

factor in the entire horizon. Besides, it is assumed that demand and generation increment patterns from COP

to SLP are through K
P/Q
b = 1 for all loads (i.e. with constant power factor) and KG

b = 1 for all generators,

except the slack bus generator (i.e. generator G2 at bus B31), which is free to increase its active power output

in the interval defined in (13), for providing an hourly balance between total generation and load as well as to

compensate the network loss increase. The proposed model which is a non-linear programming (NLP) problem,

is implemented in the general algebraic modeling system (GAMS) [15] and solved by KNITRO [16] solver. ηb,t

in (3) is assumed to be 13.90kg/MWh by taking into account the electrolyzer and hydrogen compressor unit

energy consumption.

Figure 3: Single-line diagram of the studied network.

4.2. Results and discussions

The impact of three main factors are studied on green hydrogen harvest, namely the optimal allocation of

P2H, hourly wind power penetration, and the system LM levels.
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Table 1: Hourly power demands and available wind power.
Time Active power demand Reactive power demand WF’s Available power

(MW ) (MVAr) (MW )

t1 5022 1114 253

t2 4678 1038 263

t3 4472 992 295

t4 4018 891 299

t5 3770 836 331

t6 4087 906 348

t7 4541 1007 367

t8 5091 1129 349

t9 5160 1144 406

t10 5917 1312 455

t11 6260 1388 468

t12 6604 1465 498

t13 6329 1404 490

t14 5710 1266 473

t15 5504 1221 441

t16 5641 1251 404

t17 5848 1297 372

t18 6192 1373 402

t19 6467 1434 409

t20 6549 1453 417

t21 6673 1480 446

t22 6880 1526 500

t23 6260 1388 461

t24 5710 1266 418

At first, the problem of optimal allocation of P2H units in the network, including determination of their

location and size, is solved by considering all load buses of the studied system as the potential candidates,

namely ΩBP2H
= {B1−29}. For this aim, the location and size of P2H demands are obtained for different wind

penetration and LM levels. As it is also depicted in Fig. 4, by increasing α from 30% to 70%, the optimal location

of P2H units are determined, and by varying the LM from 10% to 30%, the size of P2H units is obtained.
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Figure 4: Optimal P2H allocation for wind penetration (α) and LM levels.

It is observed from Fig. 4 that the optimal buses for P2H units are B2, B10, and B22 for all LM levels. Also

for these locations, the optimal capacity of P2H units will be 805MW , 626MW , and 716MW , respectively. It

is also inferred from this figure that for the wind penetration greater than 50%, the location and size of P2H

units already remain constant. This substantiate the fact that the energy generated by RESs can be converted
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Figure 5: Hourly total P2H demand for different LM levels (α = 0.50).

to green hydrogen only up to a certain level of their penetration and P2H capability will be saturated for higher

levels of RESs penetration. From the security point of view, the size of P2H units has an inverse relation with

LM, such that smaller P2H capacities can be installed for higher LM values.

It can be observed from Fig. 4 that the P2H units are already in the same locations as WFs (at buses B2 and

B22). It means that for this specific network, these units should be installed near the WFs, but some additional

points should be considered for the allocation of P2H units as follows:

• In the event of no available RES power (here, the WFs) in their vicinity (e.g. no wind power in a specific

non-windy day), the P2H units should be supplied via the network, may be by the rest of energy producers

or via energy import from the external grids.

• The electrolyzes are the new flexible electricity demand that their optimal locations as well as size, may

not be the same as the RES generators. By this flexibility, the RES curtailment can be reduced, as well

as the issues raised by the injection of large-scale RESs energy to the grid such as congestion, overload in

case of contingencies and etc.

• The electrolyzes can be considered as a power flow flexibility option. For example, during the high-

wind/low-load condition, their demands help to absorb more RESs power to the grid.

• Transmission of electric power is much faster and easier than hydrogen transportation. For large-scale

applications, it is more convenient to install the electrolyzes near the main hydrogen demands rather that

WFs, as the electric power is readily in hand via the electricity transmission network.
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Also, the impact of LM on the hourly attainable green hydrogen is presented in Fig. 5 for a give value of wind

penetration (i.e. α = 0.50). It is evident from this figure that, for the aforementioned allocation of P2H units, the

total P2H demand of the system is decreasing for higher levels of LM. It is observed from this figure that in the

off-peak periods such as t1− t9, there is no security imposed limitation on the energy consumption of P2H units,

and all three units are operated at their corresponding nominal ratings. But at peak demand periods, such as

the intervals t10 − t14 or t16 − t24, security limit constraints restricted the energy conversion to green hydrogen.

Finally, the total hydrogen extracted for different levels of LM and wind penetration is shown in Fig. 6. It is

observed from this figure that for a given wind penetration level the voltage security constraints are not binding

up to a certain level of LM (here 15%), and the hydrogen extraction is limited by the remaining constraints

such as penetrable wind and the energy flow equations of the network. On the other hand, for LMs higher than

15%, the voltage security constraints are activated such that the attainable green hydrogen decreases. Besides,

for a given value of LM, by decreasing the wind penetration level, the amount of exploitable green hydrogen is

also decreased. Since the P2H units can by supplied through the network and remaining energy sources (such

as thermal generation units), this reduction in P2H demand with respect to decrements of wind penetration,

validates the proper location of P2H units to convert the wind power to green hydrogen.

5. Conclusion

This paper explores the most influential technical factors affecting the large-scale green hydrogen harvest. It

is demonstrated that the optimal location of P2H units, loadability constraints as well as the RESs penetration

can pose considerable impacts on the exploitable green hydrogen. The model is implemented on the IEEE 39-bus
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system and the concluding remarks can be summarized as follows:

• The optimal location of P2Hs mainly depends on penetration level of RESs, whereas the size of P2Hs

plants has an inverse relation with the LM levels.

• For a given size of P2H units, the harness-able green hydrogen decreases in higher levels of LM.

• At higher wind penetration levels more green hydrogen is available, for a give level of LM. Beyond a

certain threshold, LM constraints restrict the exploitable green hydrogen.

Suggestions for future work:

• The impact of hydrogen extraction on gas networks should be investigated. A portion of the electricity

demand will be supplied via thermal power plants. These generators are supplied by gas networks. The

technical and economic set-points of gas networks will be affected.

• A more detailed security constrained AC-OPF can better characterize the impact of hydrogen extraction

in power systems.

• The risk and uncertainty of renewable energy resources should be taken into account to avoid financial

and technical risks [17].
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