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Abstract

This paper describes a simplified formulation of the Backward/Forward (BW/FW)

Sweep Power Flow applied to radial distribution systems with distributed generation

under positive sequence modelling. Proposed formulation was applied in an illustrative

test system.
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1 Introduction

Several Backward/Forward (BW/FW) sweep algorithms have been discussed in literature.

In 1967, Berg presented a paper which can be considered as the source for the all variants

of BW/FW sweep methods [1]. Later, a similar approach was presented in [2] based on

ladder network theory. The BW/FW Sweep algorithms use the Kirchhoff laws. Different

formulations can be found [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 14]. BW/FW sweep methods

typically present a slow convergence rate but computationally efficient at each iteration.

Using these methods, power flow solution for a distribution network can be obtained without

solving any set of simultaneous equations. In this work, the standard BW/FW sweep power

flow is reformulated in convenient form. An illustrative four-bus example is solved.
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Figure 1: Branch and node numbering of a radial distribution network

2 The Method

The input data of this algorithm is given by node-branch oriented data used by most utilities.

Basic data required is: active and reactive powers, nomenclature for sending and receiving

nodes, and positive sequence impedance model for all branches.

In the following, the standard BW/FW sweep power flow method is written in matrix

notation using complex variables. Branch impedances are stated as a vector Z corresponding

to a distribution line model containing a series positive sequence impedance for line or

transformer. Shunt impedances are not considered in this first approach. Fig. 1 shows a

radial distribution network with n + 1 nodes, and n branches and a single voltage source

at the root node 0. Branches are organized according to an appropriate numbering scheme

(list), which details are provided in [3].

Z =
[

Z01 ... Z ij ... Zmn

]

(1)

where,

Z ij = Rij + jXij i, j = 1, ..., n i 6= j (2)

Bus data is given by
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(3)
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where net nodal active and reactive powers are given by generated and demanded powers:

Pi = PGi − PDi (4)

Qi = QGi −QDi (5)

The numbering of branches in one layer begins only after all the branches in the previous

layer have been numbered. Considering that initial voltages are known: voltage at substation

is set V 0 = V ref and an initial voltage vector is given by:

V0 =
[

V
0

1 ... V
0

i ... V
0

n

]

(6)

The state of the system is reached solving two steps iteratively.

2.1 Step 1 - Backward Sweep

For each iteration k, branch currents are aggregated from loads to origin:

Jk = −T · Ik (7)

The relationship between nodal currents Ik and branch currents Jk is set through an upper

triangular matrix T accomplishing the Kirchhoff Current Laws (KCL). Each element I
k

i of

Ik associated to node i is calculated as function of injected powers Si and its voltage profile

V
k

i as shown below:

I
k

i =
S
∗

i

V
k∗

i

i = 1, ..., n (8)

2.2 Step 2 - Forward Sweep

Nodal voltage vector V is updated from the origin to loads according the Kirchhoff Voltage

Laws (KVL), using previously calculated branch currents vector J, branch impedances vector

Z:

Vk+1 = V0 −TT ·DZ · Jk (9)

where V0 is a n-elements vector with all entries set at voltage at origin (swing node) V 0 and

branch impedances DZ is the diagonal matrix of vector Z:

Using Eq. 7

Vk+1 = V0 +TT ·DZ ·T · Ik (10)
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Updated voltages can be updated using only one equation:

Vk+1 = V0 +TRX · Ik (11)

where TRX = TT ·DZ ·T

2.3 Convergence

Updated voltages are compared with previous voltages in order to perform convergence check

in.

ε ≤ |V
k+1

i − V
k

i | i = 1, ..., n (12)

3 Illustrative Example: Simply 4-node Network

To illustrate the proposed methodology, it is used the 4-node example shown in Fig. 2.

Length of all sections is 1 mile. Load demand at nodes 2 and 3 are 2MW with cosϕ = 1.0.

Figure 2: 4-Node Network Topology

Using the following bases SB =10MW and VB=12.47kV, data and results are given in per

unit. Loads are 0.2 in nodes 2 and 3. Reference voltage at node 0 is V 0 = 1+ j0 and initial

voltages are set V0 =
[

1 + 0j 1 + 0j 1 + 0j
]

.

Branches are represented by:

Z = R+ jX =





.0296

.0296

.0296



+ j





.0683

.0683

.0683





Network topology is represented through a 3x3 upper triangular matrix T.

4



A Simplified Formulation for the Backward/Forward Sweep Power Flow

T =





1 1 1

0 1 0

0 0 1





Then, DZ is:

DZ =





.0296 + j.0683 .0 0

0 .0296 + j.0683 0

0 0 .0296 + j.0683





Solution reached at iteration 3 for ε = 10−4 and displayed in Table 1. Results are presented

in per unit and degrees.

Table 1: 4 Node State of the System - balanced Approach

V0 θ0 V1 θ1 V2 θ2 V3 θ3

1.000 0.00 0.987 -1.59 0.981 -2.40 0.981 -2.40

4 Conclusion

This paper describes a convenient formulation of the Backward/Forward (BW/FW) Sweep

Power Flow applied to radial distribution systems with distributed generation. Proposed

formulation was applied in an illustrative test system.

5 Nomencalture

List of Symbols

DZ Diagonal matrix of branch impedance vector Z

R Diagonal matrix of branch resistance vector ℜeZ

X Diagonal matrix of branch reactance vector ImZ

ε Convergence criteria

I Current vector

J Branch Current vector J

n Number of nodes, excluding origin
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P Active Power Injected vector

Q Reactive Power Injected vector

Pj Active Power Injected at node j

Qj Reactive Power Injected at node j

PDj Active Power Demanded at node j

QDj Reactive Power Demanded at node j

PGj Active Power Generated at node j

QGj Active Power Generated at node j

Rij Resistance between node i and node j

SDj Apparent Power Demanded at node j

SGj Apparent Power Generated at node j

T Triangular matrix

V Voltage vector

Xij Reactance between node i and node j

Z Branch Impedance vector Z

Z
ij

Branch Impedance between node i and node j

Zij Impedance matrix between node i and node j

Operators

T Transpose Matrix

D Diagonal Matrix

∗ Conjugate of a complex number

Sub-Indexes

i Associated to node i

j Associated to node j

k Associated to iteration k
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