
1

Policy Gradient for Continuing Tasks in
Non-stationary Markov Decision Processes

Santiago Paternain†, Juan Andrés Bazerque∗ and Alejandro Ribeiro‡

Abstract—Reinforcement learning considers the problem of
finding policies that maximize an expected cumulative reward in
a Markov decision process with unknown transition probabilities.
In this paper we consider the problem of finding optimal policies
assuming that they belong to a reproducing kernel Hilbert space
(RKHS). To that end we compute unbiased stochastic gradients
of the value function which we use as ascent directions to update
the policy. A major drawback of policy gradient-type algorithms
is that they are limited to episodic tasks unless stationarity
assumptions are imposed. Hence preventing these algorithms to
be fully implemented online, which is a desirable property for
systems that need to adapt to new tasks and/or environments
in deployment. The main requirement for a policy gradient
algorithm to work is that the estimate of the gradient at any
point in time is an ascent direction for the initial value function.
In this work we establish that indeed this is the case which enables
to show the convergence of the online algorithm to the critical
points of the initial value function. A numerical example shows
the ability of our online algorithm to learn to solve a navigation
and surveillance problem, in which an agent must loop between to
goal locations. This example corroborates our theoretical findings
about the ascent directions of subsequent stochastic gradients. It
also shows how the agent running our online algorithm succeeds
in learning to navigate, following a continuing cyclic trajectory
that does not comply with the standard stationarity assumptions
in the literature for non episodic training.

I. INTRODUCTION

Reinforcement learning (RL) problems–which is the interest
in this paper–are a special setting for the analysis of Markov
decision processes (MDPs) in which both the transition proba-
bilities are unknown. The agent interacts with the environment
and observes samples of a reward random variable associated
to a given state and action pair [1]. These rewards samples
are used to update the policy of the agent so as to maximize
the Q- function, defined as the expected cumulative reward
conditioned to the current state and action. The solutions to
RL problems are divided in two main approaches. On one
hand, those approaches that aim to learn the Q-function to
then choose the action that for the current state maximizes
said function. Among these algorithms the standard solution is
Q-learning [2], whose earlier formulations were applicable in
scenarios where the state and the action are discrete. The afore-
mentioned algorithms suffer from the curse of dimensionality,
with complexity growing exponentially with the number of
actions and states [3]. This is of particular concern in problems
where the state and the actions are continuous spaces, and
thus, any reasonable discretization leads to a large number of

Work supported by ARL DCIST CRA W911NF-17-2-0181. † Dept. of Elec-
trical and System Engineering, Univ. of Pennsylvania. Email: {spater,aribeiro}
@seas.upenn.edu. ∗Univ. de la República. Email:jbazerque@fing.edu.uy

states and possible actions. A common approach to overcome
this difficulty is to assume that the Q-function admits a finite
parameterization that can be linear [4], rely on a nonlinear
basis expansion [5], or be given by a neural network [6]. Al-
ternatively one can assume that the Q-function [7], [8] belongs
to a reproducing kernel Hilbert space. However, in these cases,
maximizing the Q-function to select the best possible action is
computationally challenging. Moreover, when using function
approximations Q-learning may diverge [9].

This motivates the development of another class of algo-
rithms that attempts to learn the optimal policy by running
stochastic gradient ascent on the Q-function with respect
to the policy parameters [10]–[12] or with respect to the
policy itself in the case of non-parametric representations [13],
[14]. These gradients involve the computation of expectations
which requires knowledge of the underlying probabilistic
model. With the goal of learning from data only, they pro-
vide unbiased estimates of the gradients which are used for
stochastic approximation [15]. One of the classic examples
of estimates of the gradients used in discrete state-action
spaces is REINFORCE [10]. Similar estimates can also be
computed in the case of parametric [16] and non-parametric
function approximations [14]. Once these unbiased estimates
have been computed convergence to the critical points can
be established under a diminishing step-size as in the case in
parametric optimization [17]. A drawback of said estimators
is that they have high variance and therefore they suffer from
slow convergence. This issue can be mitigated using Actor-
Critic methods [18]–[20] to estimate the policy gradients.
To compute these estimates however, one is required to re-
initialize the system for every new iteration. Hence, limiting
its application to episodic tasks [10], [14].

A common workaround to this hurdle is to modify the value
function so to consider the average rate of reward instead
of the cumulative reward [1, Chapter 13]. This formulation
also requires that under every policy the MDP converges to a
steady state distribution that is independent of the initial state.
The convergence to a stationary distribution is restrictive in
many cases, as we discus in Section II, since it prevents the
agents from considering policies that result in cyclic behaviors
for instance. Not being able to reproduce these behaviors is
a drawback for problems like surveillance where the policy
that the agent should follow is one that visits different points
of interest. Moreover, even for problems where the target is
a specific state, and thus the convergence to the stationary
distribution is a reasonable assumption, the average reward
formulation may modify the optimal policies in the sense that
it is a formulation that ignores transient behaviors. We discuss

ar
X

iv
:2

01
0.

08
44

3v
1

 [
cs

.L
G

]
 1

6
O

ct
 2

02
0

2

this issue in more detail also in Section II.
Given the offline policy gradient algorithm in [14], we aim

to avoid the reinitialization requirement while keeping the
cumulative reward as value function. In particular, we compute
stochastic gradients as in [14] which are guaranteed to be
unbiased estimates of the gradient of the value function at the
state that systems finds itself at the beginning of the iteration.
Because this estimation requires rollouts at each iteration, the
agent is in fact computing estimates of the gradients of value
functions at different states.

Building on our preliminary results [21], we establish in
Theorem 1 that the gradients of the value function at any state
are also ascent directions of the value function at the initial
state. Leveraging this result we address the convergence of
the online policy gradient algorithm to a neighborhood of the
critical points in Theorem 2, hence dropping the assumption
of the convergence to—and existence of—the stationary distri-
bution over states for every intermediate policy. These results
are backed by Proposition 3, which establishes that a critical
point of the value function conditioned at the initial state is
also a critical point for the value functions conditioned at states
in the future, suggesting that the landscape of different value
functions is still very similar. Finally, as an accessory compu-
tational refinement, we add a compression step to the online
algorithm to reduce the number of kernels by trading-off a dis-
cretionary convergence error. This refinement uses Orthogonal
Kernel Matching Pursuit [22]. Other than concluding remarks
the paper ends with numerical experiments where we consider
an agent whose goal is to surveil a region of the space while
having to visit often enough a charging station. The cyclic
nature of this problem evidences the ability of our algorithm to
operate in a non stationary setup and carry the task by training
in a fully online fashion, without the need of episodic restarts.
The experiment is also useful to corroborate our theoretical
findings about the ascending direction properties of stochastic
gradients computed at different points of the trajectory.

II. PROBLEM FORMULATION

In this work we are interested in the problem of finding
a policy that maximizes the expected discounted cumulative
reward of an agent that chooses actions sequentially. Formally,
let us denote the time by t ∈ {{0},N} and let S ⊂ Rn
be a compact set denoting the state space of the agent,
and A = Rp be its action space. The transition dynamics
are governed by a conditional probability P atst→st+1

(s) :=
p(st+1 = s|(st, at) ∈ S ×A) satisfying the Markov property,
i.e., p(st+1 = s

∣∣(su, au) ∈ S × A,∀u ≤ t) = p(st+1 =
s|(st, at) ∈ S ×A). The policy of the agent is a multivariate
Gaussian distribution with mean h : S → A. The later map
is assumed to be a vector-valued function in a vector-valued
RKHS H. We formally define this notion next, with comments
ensuing.

Definition 1. A vector valued RKHS H is a Hilbert space of
functions h : S → Rp such that for all c ∈ Rp and s ∈ S, the
following reproducing property holds

< h(·), κ(s, ·)c >H= h(s)>c. (1)

where κ(s, s′) is a symmetric matrix-valued function that
renders a positive definite matrix when evaluated at any
s, s′ ∈ S.

If κ(s, s′) is a diagonal matrix-valued function with diago-
nal elements κ(s, s′)ii, and c is the i-th canonical vector in Rp,
then (1) reduces to the standard one-dimensional reproducing
property per coordinate hi(s) =< hi(·), κ(s, ·)ii > . With
the above definitions the policy of the agent is the following
conditional probability of the action πh(a|s) : S × A → R+,
with

πh(a|s) =
1√

det(2πΣ)
e−

(a−h(s))>Σ−1(a−h(s))
2 . (2)

The latter means that given a function h ∈ H and the current
state s ∈ S, the agent selects an action a ∈ A from a
multivariate normal distribution N (h(s),Σ). The choice of a
random policy over a deterministic policy a = h(s) makes the
problem tractable both theoretically and numerically as it is
explained in [14]. The actions selected by the agent result in
a reward defined by a function r : S ×A → R.

The objective is then to find a policy h? ∈ H such that it
maximizes the expected discounted reward

h? := argmax
h∈H

Us0(h) = argmax
h∈H

E

[∞∑
t=0

γtr(st, at)
∣∣∣h, s0

]
,

(3)
where the expectation is taken with respect to all states except
s0, i.e., s1, . . . and all actions a0, a1, . . . ,. The parameter
γ ∈ (0, 1) is a discount factor that gives relative weights
to the reward at different times. Values of γ close to one
imply that current rewards are as important as future rewards,
whereas smaller values of γ give origin to myopic policies that
prioritize maximizing immediate rewards. It is also noticeable
that Us0(h) is indeed a function of the policy h, since policies
affect the trajectories {st, at}∞t=0.

As discussed in Section I problem (3) can be tackled
using methods of the policy gradient type [1, Chapter 13].
These methods have been extended as well to non-parametric
scenarios as we consider here [13], [14]. A drawback of
these methods is that they require restarts which prevents
them from a fully online implementation. To better explain
this claim let us write down the expression of the gradient
of the objective in (3) with respect to h. Before doing so,
we are required to define the discounted long-run probability
distribution ρs0(s, a)

ρs0(s, a) := (1− γ)

∞∑
t=0

γtp(st = s, at = a|s0), (4)

where p(st = s, at = a|s0) is the distribution of the MDP
under a policy h

p(st = s, at = a|s0) =

πh(at|st)
∫ t−1∏

u=0

p(su+1|su, au)πh(au|su) dst−1dat−1,
(5)

with dst−1 = (ds1, . . . dst−1) and dat−1 = (da0, . . . dat−1).
We also require to define Q(s, a;h), the expected discounted

3

reward for a policy h that at state s selects action a. Formally
this is

Q(s, a;h) := E

[∞∑
t=0

γtr(st, at)
∣∣∣h, s0 = s, a0 = a

]
. (6)

With these functions defined, the gradient of the discounted
rewards with respect to h yields [11], [13]

∇hUs0(h, ·) = (7)
1

1− γ
E(s,a)∼ρs0 (s,a)

[
Q(s, a;h)κ(s, ·)Σ−1 (a− h(s))

∣∣∣h] ,
where the gradient of Us0(h) with respect to the continuous
function h is defined in the sense of Frechet, rendering
a function in H. This is represented by the notation in
∇hUs0(h, ·), where the dot substitutes the second variable
of the kernel, belonging to S, which is omitted to simplify
notation. Observe that the expectation with respect to the
distribution ρs0(s, a) is an integral of an infinite sum over a
continuous space. Although this could have a tractable solution
in some specific cases, this would require the system transition
density p(st+1|st, at) which is unknown in the context of RL.
Thus, computing (7) in closed form becomes impractical. In
fact, a large number of samples might be needed to obtain
an accurate Monte Carlo approximation even if p(st+1|st, at)
were known. In [14] an offline stochastic gradient ascent
algorithm is proposed to overcome these difficulties and it
is shown to converge to a critical point of the functional
Us0 . Notice that to compute stochastic approximations of the
gradient (7) on is required to sample from the distribution
ρs0 which depends on the initial condition. This dependency
results in a fundamental limitation for online implementation.
We present in Section III-A the algorithm and a summary of
the main results in [14] since it serves as the basis for a fully
online algorithm and to understanding the aforementioned
difficulties associated to the online problem in detail. Before
doing so we discuss a common workout to the continuing task
problem—or the problem of avoiding restarts.

A. Reinforcement learning in continuous tasks

When considering continuing tasks it is customary to mod-
ify the objective (3) and instead attempt to maximize the
undiscounted objective [23, Chapter 13]

U ′s0(h) = lim
T→∞

1

T

T∑
t=1

E
[
r(st, at)

∣∣∣s0

]
. (8)

Consider a steady state distribution ρ′(s) that is ergodic and
independent of the starting point, this is, a distribution that
satisfies

ρ′(s′) =

∫
ρ′(s)πh(a|s)p(s′|s, a) dsda, (9)

for all s′ ∈ S . Under the assumptions that such distribution
exists and that the distribution of the MDP converges to it, the
limit in (8) is finite. Then, using Stolz-Cesaro’s Lemma (see
e.g. [24, pp. 85-88]), then (8) reduces to

U ′s0(h) = lim
t→∞

E
[
r(st, at)

∣∣∣s0

]
, (10)

where the expectation is with respect to the stationary distri-
bution (9). Thus, we can rewrite the previous expression as

U ′s0(h) = Es∼ρ′,a∼πh [r(s, a)] . (11)

The advantage of this formulation is that the objective function
is now independent of the initial state and therefore estimates
of the gradient can be computed without requiring the reini-
tialization of the trajectory.

The convergence to a stationary distribution however, pre-
vent us from achieving cyclical behaviors, for the most part. In
particular, a sufficient condition for the convergence is that the
Markov chain is aperiodic [25, Theorem 6.6.4]. Which hints to
the fact that in some situations cycles are not achievable under
these conditions. Let us consider the following scenario as an
example. An agent is required to visit three different locations
denoted by states s1, s2 and s3 and there is a charging station
s0. In this scenario is not surprising that the optimal policy is
such that it cycles in the different locations and the charging
station. Consider that the resulting Markov Chain is such
that with probability one we transition from si to si+1 for
i = 0, . . . , 2 and from s3 to s0. In this scenario there exists a
stationary distribution that places equal mass in every state, i.e
= ρ(si) = 1/4 for all i = 0, . . . 3. However, the convergence
to this distribution is only guaranteed if the initial distribution
is the stationary one. This assumption may not be realistic
for this scenario since the agent is most likely to start in the
charging station than in the other locations for instance.

Even if a stationary distribution is not attainable for the
cyclic example just described, the return (8) is still well
defined. Thus, we could attempt to extend the theory for
continuing tasks starting from (8) and avoiding (11), without
relying on a stationary distribution. However, we argue that
the discounted formulation in (3) may be the preferred choice
when transient behaviors are deemed important. Consider for
instance the following MDP where the states are defined as
S = {0, 1, . . . , 10} and the actions are A = {−1, 1}. The
transition dynamics are such that for all s ∈ S \ {0, 10} we
have that st+1 = st+at, in the case of of st = 0 we have that
st+1 = st + at1(at > 0) and in the case of st = 10 we have
st+1 = st regardless of the action selected. All the states yield
zero rewards except for st = 10 whose reward is 1. Notice
that under any random policy, as long as P (at = 1) > 0,
the state converges to 10 and thus the average return (8) takes
the value one. This is the same value as that of choosing the
action at = 1 for any state. The discounted formulation (3)
allows us to distinguish between these two policies since the
larger the average time to reach the state s = 10 the smaller
the value function.

Having argue the practical importance of considering prob-
lems of the form (3) for continuing tasks we proceed to
describe a policy gradient based solution.

III. ONLINE POLICY GRADIENT

A. Stochastic Gradient Ascent

In order to compute a stochastic approximation of
∇hUs0(h) given in (7) we need to sample from the distribution
ρs0(s, a) defined in (4). The intuition behind ρs0(s, a) is

4

that it weights by (1 − γ)γt the probability of the system
being at a specific state-action pair (s, a) at time t. Notice
that the weight (1 − γ)/γt is equal to the probability of a
geometric random variable of parameter γ to take the value
t. Thus, one can interpret the distribution ρs0(s, a) as the
probability of reaching the state-action pair (s, a) after running
the system for T steps, with T randomly drawn from a
geometric distribution of parameter γ, and starting at state
s0. The geometric sampling transforms the discounted infinite
horizon problem into an undiscounted episodic problem with
random horizon (see e.g. [26, pp.39-40]). This supports steps
2-7 in Algorithm 1 which describes how to obtain a sample
(sT , aT) ∼ ρs0(s, a). Then to compute an unbiased estimate
of ∇hUs0(h) (cf., Proposition 1) one can substitute the sample
(sT , aT) in the stochastic gradient expression

∇̂hUs0(h, ·) =
1

1− γ
Q̂(sT , aT ;h)κ(sT , ·)Σ−1(aT − h(sT)),

(12)
with Q̂(sT , aT ;h) being an unbiased estimate of Q(sT , aT ;h).
Algorithm 1 summarizes the steps to compute the stochastic
approximation in (12). We claim that it is unbiased in Propo-
sition 1 as long as the rewards are bounded. We formalize this
assumption next as long with some other technical conditions
required along the paper.

Assumption 1. There exists Br > 0 such that ∀(s, a) ∈ S×A,
the reward function r(s, a) satisfies |r(s, a)| ≤ Br. In addition
r(s, a) has bounded first and second derivatives, with bounds
|∂r(s, a)/∂s| ≤ Lrs and |∂r(s, a)/∂a| ≤ Lra.

Notice that these assumptions are on the reward which is
user defined, as such they do not impose a hard requirement
on the problem.

Algorithm 1 StochasticGradient
Input: h, s0

1: Draw an integer T form a geometric distribution with
parameter γ, P (T = t) = (1− γ)γt

2: Select action a0 ∼ πh(a|s)
3: for t = 0, 1, . . . T − 1 do
4: Advance system st+1 ∼ P atst→st+1

5: Select action at+1 ∼ πh(a|st+1)
6: end for
7: Get estimate of Q(sT , aT ;h)
8: Compute the stochastic gradient ∇̂hU(h, ·) as in (12)

return ∇̂hU(h, ·)

Proposition 1 ((Proposition 3 [14])). The output ∇̂hUs0(h, ·)
of Algorithm 1 is an unbiased estimate of ∇hUs0(h, ·) in (7).

An unbiased estimate of Q(sT , aT) can be computed con-
sidering the cumulative reward from t = T until a randomly
distributed horizon TQ ∼ geom(γ) (cf., Proposition 2 [14]).
The variance of this estimate may be high resulting on a
slow convergence of the policy gradient algorithm (Algorithm
1). For these reasons, the literature on RL includes several
practical improvements. Variance can be reduced by including
batch versions of the gradient method, in which several
stochastic gradients are averaged before performing the update

in (12). One particular case of a batch gradient iteration in
[14], averages two gradients sharing the same state si with
stochastic actions. Other approaches include the inclusion of
baselines [10] and actor critic methods [18]–[20]. Irrespective
of the form selected to estimate the Q function with the
estimate (12) one could update the policy iteratively running
stochastic gradient ascent

hk+1 = hk + ηk∇̂hUs0(hk, ·), (13)

where ηk > 0 is the step size of the algorithm. Under
proper conditions stochastic gradient ascent methods can be
shown to converge with probability one to the local maxima
[27]. This approach has been widely used to solve parametric
optimization problems where the decision variables are vectors
in Rn and in [14] these results are extended to non-parametric
problems in RKHSs. Observe however, that in order to provide
an estimate of ∇Us0(hk, ·), Algorithm 1 requires s0 as the
initial state. Hence, it is not possible to get estimates of the
gradient without resetting the system to the initial state s0,
preventing a fully online implementation. As discussed in
Section II-A, this is a common challenge in continuing task
RL problems and in general the alternative is to modify the
objective the function and to assume the existence of a steady-
state distribution to which the MDP converges (see e.g., [1,
Chapter 13] or [20]), to make the problem independent of the
initial state. In this work we choose to keep the objective (3)
since the ergodicity assumption is not necessarily guaranteed
in practice and the alternative formulation makes transient
behaviors irrelevant, as it was also discussed in Section II-A.
Notice that, without loss of generality, Algorithm 1 can be
initialized at state sk and its output becomes an unbiased
estimate of ∇Usk(hk, ·). The main contribution of this work is
to show that the gradient of Usk(h) is also an ascent direction
for Us0(h) (cf., Theorem 1) and thus, these estimates can
be used to maximize Us0(h) hence allowing a fully online
implementation. We describe the algorithm in the next section.

B. Online Implementation

As suggested in the previous section it is possible to com-
pute unbiased estimates of ∇hUsk(hk) by running Algorithm
1 with inputs hk and sk. The state sk is defined for all k ≥ 1
as the state resulting from running the Algorithm 1 with inputs
hk−1 and sk−1. This is, at each step of the online algorithm
—which we summarize under Algorithm 2—the system starts
from state sk and transits to a state sTk following steps 3–6 of
Algorithm 1. Then, it advances from sTk to sk+1 to perform
the estimation of the Q-function, one that admits an online
implementation, for instance by adding the rewards of the
next TQ steps with TQ being a geometric random variable.
The state sk+1 is the initial state for the next iteration of
Algorithm 2. Notice that the update (13) —step 5 in Algorithm
2 —requires the introduction of a new element κ(sTk , ·)
in the kernel dictionary at each iteration, thus resulting in
memory explosion. To overcome this limitation we modify
the stochastic gradient ascent by introducing a projection over
a RKHS of lower dimension as long as the induced error
remains below a given compression budget. This algorithm,

5

Algorithm 2 Online Stochastic Policy Gradient Ascent
Input: step size η0

1: Initialize: h0 = 0, and draw initial state s0

2: for k = 0 . . . do
3: Compute the stochastic gradient and next state:
4:
(
∇̂hU(hk, ·), sk+1

)
= StochasticGradient(hk, sk)

5: Stochastic gradient ascent step

h̃k+1 = hk + ηk∇̂hU(hk, ·)

6: Reduce model order hk+1 = KOMP(h̃k+1, εK)
7: end for

which runs once after each gradient iteration, prunes the kernel
expansion that describes the policy h to remove the kernels
that are redundant up to an admissible error level εk > 0. The
subroutine is known as Kernel Orthogonal Match and Pursuit
(KOMP) [28] —step 6 in Algorithm 2.

The fundamental reason to do this pruning projection over
a smaller subspace is that it allow us to control the model
order of the policy hk, as it is shown in Theorem 2. However,
the induced error translates into a bias on the estimate of
∇hUsk(h, ·). We formalize this claim in the next proposition.

Proposition 2. The update of Algorithm 2 is equivalent to
running biased stochastic gradient ascent

hk+1 = hk + η∇̂hUsk(h, ·) + bk, (14)

with bias bounded by the compression budget εK for all k,
i.e., ‖bk‖H < εK .

Proof. The proof is identical to that in [14, Proposition 5]. �

As stated by the previous proposition the effect of intro-
ducing the KOMP algorithm is that of updating the policy by
running gradient ascent, where now the estimate is biased. The
later will prevent the algorithm to converge to a critical point
of the value function. However, we will be able to establish
convergence to a neighborhood of the critical point as long
as the compression is such that the error introduced is not
too large. A difference between the online algorithm and the
offline one presented in [14] is that even for a compression
error of εK = 0 we cannot achieve exact convergence to the
critical points, because the directions that are being used to
ascend in the function Us0(h) are in fact estimates of the
gradients of Usk(h). In the next section we discuss this in more
detail and we establish that the inner product of gradients of
Usk(h) and Us0(h) is positive when h belongs to a properly
selected Gaussian RKHS (Theorem 1).

IV. ALL GRADIENTS ARE ASCENT DIRECTIONS

As we stated in the previous section, the main difference
when comparing the online —continuing task —with the
offline setting [14] —episodic task —is in the gradient of
the value function that we estimate. In the online setting, we
have access to estimates of the gradient of the value function
conditioned on the state sk, that is ∇Usk(hk, ·), where sk
changes from one iteration to another. On the other hand, in
the offline setting we can restart the system to its original state

s0 or redraw it from a given distribution P (s0), so that we
can compute estimates of ∇Us0(hk, ·) at each iteration. Thus,
in the offline case we perform ascent steps over the same
function Us0 , whereas in the online setting would perform
gradient steps over functions Usk which are different for each
k. This main difference is as well a fundamental challenge
since in principle we are not guaranteed that the gradients
that can be computed are ascent directions of the function
of interest Us0(h). Moreover, a second question is whether
finding the maximum of the value function conditioned at s0

is a problem of interest or not after we reach a new state sk.
We answer the second question in Proposition 3 by showing
that if h is a critical point of Usk(h) it will also be a critical
point of Usl(h) for all l ≥ k. The latter can be interpreted
in the following way, having a policy that is optimal at a
given time, makes it optimal for the future. An in that sense,
maximizing the initial objective function is a valid problem,
since finding a maximum for that function means that we had
found one for all Usk(h). To formalize this result, we analyze
the critical points of Usk(h). To do so write ∇hUsk(h, ·) (cf.,
(7)) as the following integral

∇hUsk(h, ·) =

1

1− γ

∫
Q(s, a;h)k(s, ·)Σ−1(a− h(s))ρsk(s, a) dsda,

(15)

where ρsk(s, a) is the distribution defined in (4). We work next
towards writing ρsk as a product of a distribution of states and
a distribution of actions. To that end, write the MPD transition
distribution p(st = s, at = a|sk) for any t ≥ k as

p(st = s, at = a|sk) = p(st = s|sk)πh(at = a|st, sk)

= p(st = s|sk)πh(at = a|st),
(16)

where the last equality follows from the fact that the action
depends only on the current state conditional on the pol-
icy (cf.,(2)). By substituting the previous expression in (4),
ρsk(s, a) reduces to

ρsk(s, a) = (1− γ)

∞∑
t=k

γtπh(at = a|st = s)p(st = s|sk).

(17)
Notice that the density πh(at = a|st = s) is independent of t
and thus, the previous expression yields

ρsk(s, a) = πh(a|s)(1− γ)

∞∑
t=k

γtp(st = s|sk). (18)

Hence, defining ρsk(s) := (1 − γ)
∑∞
t=k γ

tp(st = s|sk),
it follows that ρsk(s, a) = ρsk(s)πh(a|s). Having ρsk(s, a)
written as a product of a function depending on the states
only and a function depending on the action only, allows us
to reduce the expression in (15) to

∇hUsk(h, ·) =
1

1− γ

∫
D(s)ρsk(s)κ(s, ·) ds, (19)

where the function D(s) is the result of the integration of all
the terms that depend on the action

D(s) =

∫
Q(s, a;h)Σ−1 (a− h(s))πh(a|s) da. (20)

6

Writing the gradient as in (19), allows us to split the integrands
in the product of a term ρsk(s) that depends on the state at time
k and a term D(s)κ(s, ·) that do not depend on sk. Hence,
if a policy h is such that D(s) is zero for all s, then h is a
critical point for all value functions. This idea suggests that the
quantity D(s) is of fundamental importance in the problem.
Indeed, D(s) is an approximation of the derivative of the Q-
function with respect to a. To see why this is the case, observe
that because πh(a|s) is Gaussian, then Σ−1(a−h(s))πh(a|s)
is the derivative of πh(a|s) with respect to a. Hence, D(s)
can be written as

D(s) =

∫
Q(s, a;h)

∂πh(a|s)
∂a

da. (21)

Notice that as the covariance matrix of πh(a|s) approaches the
null matrix, the distribution πh(a|s) approaches a Dirac delta
centered at h(s). That being the case, D(s) yields

D(s) '
∫
Q(s, a;h)δ′(a− h(s)) da =

∂Q(s, a;h)

∂a

∣∣∣
a=h(s)

.

(22)
In this case, the fact that D(s) is identically zero means
that we have found a policy h that makes every action a
stationary point of the Q-function. The previous observation
relates to Bellman’s optimality condition, that establishes that
a policy is optimal if it is such that it selects the actions
that maximize the Q-function. When Σ is different than the
null matrix, D(s) is an approximation of the derivative. In
[29] the aforementioned Gaussian smoothing is used as an
approximation of the stochastic gradient in the context of
zero-order optimization, and is formally established that it
approximates the derivative with an error that depends linearly
on the norm of the covariance matrix. The insights provided
in the previous paragraphs regarding the importance of the
function D(s) are not enough to fully characterize the critical
points of Usk(h) since according to (19) its gradient depends
as well on the long run discounted distribution ρsk(s). The
fact that this distribution might take the value zero at different
states for different sk does not allow us to say that a policy
can be a critical point of every value function. However, we
will be able to prove that if a policy is a critical point for
Usk(h) it is also a critical point for Usl(h) for every l ≥ k.
To formalize the previous statement we require the following
auxiliary result.

Lemma 1. Let S0 be the following set

S0 = {s ∈ S : ∃ t ≥ 0, p(st = s|s0) > 0} . (23)

For all s′, s ∈ S0 and s′′ ∈ S \ S0 we have that

ρs0(s) > 0 and ρs′(s
′′) = 0. (24)

Proof. See appendix A. �

The set S0 contains the states for which the probability
measure conditioned on the policy and on the initial state s0

is strictly positive. We term S0 the set of reachable states from
s0. The previous result, ensures that for all reachable states
s ∈ S0, the probability measure ρs0(s) is strictly positive.
The latter is not surprising, since intuitively, the distribution
ρs0(s) is a weighted sum of the distributions of reaching the

state s starting from s0 at different times. Moreover, and along
the same lines, we establish that if a point cannot be reached
starting from s0, it cannot be reached starting from any other
point that is reachable from s0. The previous result can be
summarized by saying that set of reachable points does not
increase as the system evolves, i.e., Sk ⊆ S0 for all k ≥ 0.
Building on the previous result we show that the set of critical
points of Usk(h) can only increase with the iterations. This
means that a critical point of the functional Usk(h) is also a
critical point of the functional conditioned at any state visited
in the future. Without loss of generality we state the result for
k = 0 and with the dimension of the action space p = 1 .

Proposition 3. If h ∈ H is a critical point of Us0(h), then it
is also a critical point for Usl(h) for all l ≥ 0, with sl ∈ S0.

Proof. Let us start by writing the square of norm of ∇hUs0(·)
according to (19) as

‖∇hUs0(h, ·)‖2 =

∫ ∫
D(s)ρs0(s)κ(s, s′)D(s′)ρs0(s′) dsds′.

(25)
From Mercer’s Theorem (cf., [30]) there exists λi > 0 and
orthornormal basis ei(s) of L2(S) such that

κ(s, s′) =

∞∑
i=1

λiei(s)ei(s
′). (26)

Using the previous result, we can decompose the expression
in (25) as the following sum of squares

‖∇hUs0(h, ·)‖2 =

∞∑
i=1

λi

[∫
D(s)ρs0(s)ei(s) ds

]2

. (27)

Notice that the previous expression can take the value zero if
and only if for all i = 1. . . . we have that∫

D(s)ρs0(s)ei(s)ds = 0. (28)

Because ei(s) with i = 1 . . . form an orthogonal basis of
L2(S) it means that (28) holds if and only if D(s)ρs0(s) ≡
0. To complete the proof, we are left to show that if
D(s)ρs0(s) ≡ 0 then it holds that D(s)ρsl(s) ≡ 0 for all
l ≥ 0. The latter can be established by showing that for any
s ∈ S such that ρs0(s) = 0 we also have that ρsl(s) = 0
which follows by virtue of Lemma 1. �

The previous result formalizes the idea that if we find
an optimal policy at given time, then it is optimal for all
future states. Moreover, the latter is true for every critical
point, which suggests, that the value functions conditioned
at different initial states should be similar. We formalize this
intuition in Theorem 1 where we show that ∇hUsk(h) is
an ascent direction for Us0(h) if the distribution ρsk(s) is
bounded above and bounded away from zero. We also require
some smoothness assumptions on the transition probability
which we formalize next.

Assumption 2. There exists βρ > 0 and Bρ such that for all
sk, s ∈ S0 and for all h ∈ H we have that

Bρ ≥ ρsk(s) ≥ βρ. (29)

7

In addition we have that the transition probability is Lipschitz
with constant Lp, i.e.,

|p(st = s|st−1, at−1)− p(st = s′|st−1, at−1)| ≤ Lp ‖s− s′‖ .
(30)

We require as well the following smoothness properties of the
probability transition

p′(s, a) :=
∂p(st+1|st, at)

∂at

∣∣
st=s,at=a

(31)

to be Lipschitz with constants Lps and Lpa, this is

|p′(s, a)− p′(s′, a′)| ≤ Lps ‖s− s′‖+ Lpa ‖a− a′‖ . (32)

Notice that the lower bound on βρ(s) requires that every
state is reachable. The latter can be achieved with any suf-
ficiently exploratory policy unless there are states that are
attractive. The previous assumptions allow us to establish that
∇hUsk(h) is an ascent direction for the function Us0(h).
Notice that for the latter to hold, we require that

〈∇hUs0(h),∇hUsk(h)〉H ≥ 0. (33)

By writing the gradient as in (19) and using the reproducing
property of the kernel it follows that the previous condition is
equivalent to∫

D(s)>ρs0(s)κ(s, s′)D(s′)ρsk(s′) dsds′ ≥ 0. (34)

where (·)> denotes transpose. Notice that if κ(s, s′) ap-
proaches a Dirac delta, the integral with respect to s′, in the
limit reduces to evaluating D(s′)ρsk(s′) at s′ = s. Thus, the
double integral is an approximation of∫

‖D(s)‖2ρs0(s)ρsk(s) ds (35)

which is always non-negative. To formalize the previous
argument we will consider a Gaussian Kernel and we will
show that if the width of the kernel is small enough, then the
previous result holds (Theorem 1). We require to establish first
that D(s)ρs0(s) is bounded and Lipschitz. This is subject of
the following lemma.

Lemma 2. Let κΣH(s, s′) be a matrix-valued Gaussian kernel
with covariance matrix ΣH � 0, i.e. for all i = 1, . . . , p we
have that

κΣH(s, s′)ii = e−(s−s′)>Σ−1
H (s−s′)/2, (36)

and κ(s, s′; ΣH)ij = 0 for all j = 1 . . . p with j 6= i. Let
Br, Lrs and Lra be the constants defined in Assumption 1.
Likewise, let Bρ, Lp, Lps and Lpa be the constants defined in
Assumption 2. Furthermore, define the following constants

BD :=

√
2Br

1− γ
Γ
(
p+1

2

)
Γ
(
p
2

) , (37)

with Γ(·) being the Gamma function, LQs = Lrs+
Br

1−γLps|S|,
LQa = Lra + Br

1−γLpa|S|,

Lh := ‖h‖λmin(ΣH)−1/2, (38)

and LD := LQs+LQaLh. Then, we have that D(s)ρsk(s) for
any sk ∈ S0 is bounded by B := BρBD and it is Lipschitz
with constant L := BDLp +BρLD.

Proof. See Appendix B. �

As it was previously discussed we require a Gaussian Kernel
whose width is small enough for the inner product of gradients
at different initial states to be positive. We next formalize this
condition. Define the normalization factor Z :=

√
det 2πΣH

and let
√
np

(
1 +

βρ
Bρ

)
‖ΣH‖ZL(h,ΣH)B|S| ≤ ε

2

βρ
Bρ

. (39)

The previous condition in a sense defines the maximum width
of the kernel. Since if the norm of ΣH is large, the previous
condition cannot hold. This intuition is not exact since the
term Z includes the determinant of the matrix ΣH and thus,
it is possible to have a kernel that has some directions being
wide as long as the product of the eigenvalues is small enough.
Likewise the Lipschitz constant in (39) depends on the norm
of the function h, and in that sense it is necessary to ensure
that the norm remains bounded for said condition to hold. We
are now in conditions of establishing the main result in this
work, which states that as long as the norm of ∇hUs0(h) is
large, the gradient of any value function∇hUsk(h) is an ascent
direction for Us0(h). This result will be instrumental also to
the proof of convergence of the online algorithm (Section V).

Theorem 1. Under the hypotheses of Lemma 2, for every
ε > 0 and for every H and h ∈ H satisfying (39) it holds that
if ‖∇hUs0(h, ·)‖2H ≥ ε then we have that for all k ≥ 0

〈∇hUs0(h, ·),∇hUsk(h, ·)〉H >
ε

2

βρ
Bρ

. (40)

Proof. Consider the following integral, with the kernel covari-
ance matrix ΣH as a parameter

IΣH =

∫
D(s)>ρsl(s)κΣH(s, s′)ρsk(s′)D(s′) dsds′, (41)

where κΣH(s, s′) is a kernel of the form (36). Observe that
by writing the gradients of Us0(h) and Usk(h) as in (19),
it follows that IΣH is the inner product in (40). Hence, to
prove the claim, it suffices to show that for all ΣH satisfying
condition (39), IΣH > εβρ/(2Bρ). To do so, apply the change
of variables u = s′ − s, and divide and multiply the previous
expression by Z :=

√
det 2πΣH to write IΣH as

IΣH =

∫
D(s)>ρs0(s)κΣH(s, s+ u)ρsk(s+ u)D(s+ u)dsdu

= Z

∫
D(s)>ρs0(s)g(u; 0,ΣH)ρsk(s+ u)D(s+ u) dsdu.

(42)

where the normalization factor Z was introduced to identify
g(u; 0,ΣH) := κΣH(s, s + u)ii/Z as a Gaussian probability
density function with zero mean and covariance ΣH (cf. (36)).
Then we write the partial integral with respect to u as the
expectation of D(s+ u)ρsk(s+ u),

IΣH= Z

∫
D(s)>ρs0(s)Eu∼N (0,ΣH) [D(s+ u)ρsk(s+ u)] ds.

(43)

8

From Lemma 2 it follows that D(s)ρsk(s) is Lipschitz with
constant L. Then, by virtue of [29, Theorem 1] we have that

‖E [D(s+ u)ρsk(s+ u)]−D(s)ρsk(s)‖ ≤ √np ‖ΣH‖L.
(44)

where again the expectation is taken with respect to the
random variable u ∼ N (0,ΣH). The result in (44) allows
us to lower bound IΣH by

IΣH ≥ Z
∫
‖D(s)‖2ρs0(s)ρsk(s) ds

− Z√np ‖ΣH‖L
∫
‖D(s)ρs0(s)‖ ds

= ĪΣH −
√
np ‖ΣH‖ZL

∫
‖D(s)ρs0(s)‖ ds (45)

where ĪΣH was implicitly defined in (45) as

ĪΣH := Z

∫
‖D(s)‖ ρs0(s)ρsk(s)ds (46)

=
√

det 2πΣH

∫
‖D(s)‖2 ρs0(s)ρsk(s)ds (47)

Let us next define the following integrals, identical to IΣH and
ĪΣH , but for ρs0 substituting ρsk

JΣH :=

∫
D(s)′ρs0(s)κΣH(s, s′)D(s′)ρs0(s′) dsds′ (48)

J̄ΣH := Z

∫
‖D(s)‖2ρ2

s0(s)ds. (49)

and use the bounds on the probability distribution (cf., As-
sumption 2) to write

J̄ΣH ≤ Z
∫
‖D(s)‖2ρs0(s)

Bp
βρ
ρsk(s) ds =

Bp
βρ
ĪΣH . (50)

Hence, we can write (45) as

IΣH ≥
βρ
Bρ

J̄ΣH −
√
np ‖ΣH‖ZL

∫
‖D(s)ρs0(s)‖ ds. (51)

Repeating steps (42)-(45), after substituting ρs0 for ρsk , we
can bound the difference between JΣH and J̄ΣH as we did it
for IΣH and ĪΣH in (45). Specifically, the following inequality
holds

J̄ΣH ≥ JΣH −
√
np ‖ΣH‖ZL

∫
‖D(s)ρs0(s)‖ ds (52)

This allows us to further lower bound IΣH by

IΣH ≥
βρ
Bρ

JΣH−
√
np

(
1 +

βρ
Bρ

)
‖ΣH‖ZL

∫
‖D(s)ρs0(s)‖ ds.

(53)
By virtue of Lemma 2 we have that ‖D(s)ρs0(s)‖ ≤ B.
Defining |S| as the measure of the set S, IΣH can be further
lower bounded by

IΣH ≥
βρ
Bρ

JΣH −
√
np

(
1 +

βρ
Bρ

)
‖ΣH‖ZLB|S|. (54)

Notice that JΣH = ‖∇hUs0(h, ·)‖2 ≥ ε, hence the previous
inequality reduces to

IΣH ≥
βρ
Bρ

ε−√np
(

1 +
βρ
Bρ

)
‖ΣH‖ZLB|S|. (55)

Then, for any ΣH satisfying (39), we can lower bound the right
hand side of the previous expression by εβρ/(2Bρ), obtaining

IΣH ≥
βρ

2Bρ
ε, (56)

which completes the proof of the theorem. �

The previous result establishes that for kernels that satisfy
the condition (39) with h outside of an ε neighborhood of
the critical points, i.e., for h such that ‖∇hUs0(h)‖ > ε, the
inner product between ∇hUsk(h) and ∇hUs0(h) is larger than
a constant that depends on ε. The latter means that for all
state sk ∈ S, ∇hUsk(h) is an ascent direction of the function
Us0(h). In the next section we exploit this idea to show that
the online gradient ascent algorithm proposed in Section III
converges with probability one to a neighborhood of a critical
point of Us0(h).

V. CONVERGENCE ANALYSIS OF ONLINE POLICY
GRADIENT

Let (Ω,F , P) be a probability space and define the follow-
ing sequence of increasing sigma-algebras {∅,Ω} = F0 ⊂
F1 ⊂ . . . ⊂ Fk ⊂ . . . ⊂ F∞ ⊂ F , where for each
k we have that Fk is the sigma algebra generated by the
random variables h0, . . . , hk. For the purpose of constructing
a submartingale that will be used in the proof of convergence,
we provide a lower bound on the expectation of random
variables Us0(hk+1) conditioned to the sigma field Fk in the
next Lemma

Lemma 3. Choosing the compression budget εK = Kη with
K > 0, the sequence of random variables U(hk) satisfies the
following inequality

E [Us0(hk+1)|Fk] ≥ Us0(hk)− η2

Z
C1 −

η3

Z3/2
C2

−‖∇hUs0(hk)‖HKη + η 〈∇hUs0(hk),∇hUsk(hk)〉H ,
(57)

where C1 and C2 are the following positive constants

C1 = L1

(
σ2 + 2Kσ +K2

)
(58)

and
C2 = L2

(
σ2 + 2Kσ +K2

)3/2
, (59)

where L1 and L2 are given by

L1 = Br
(1− γ + p(1 + γ))

λminΣ(1− γ)2
, L2 = Br

(1 + p)
√
p

λmin(Σ)3/2(1− γ)3
,

(60)
and

σ =
(3γ)1/3

λmin(Σ1/2)(1− γ)2

(
4

Γ(2 + p/2)

Γ(p/2)

)1/4

. (61)

Proof. Start by writing the Taylor expansion of Us0(hk+1)
around hk

Us0(hk+1) = Us0(hk) + 〈∇hUs0(fk, ·), hk+1 − hk〉H . (62)

9

where fk = λhk + (1 − λ)hk+1 with λ ∈ [0, 1]. From [14,
Lemma 5] we have that

‖∇hUs0(g)−∇hUs0(h)‖H ≤ L1 ‖g − h‖H + L2 ‖g − h‖2H ,
(63)

with L1 and L2 being the constants in (60). Adding and
subtracting 〈∇hUs0(hk, ·), hk+1 − hk〉H to the previous ex-
pression, using the Cauchy-Schwartz inequality and (63) we
can re write the previous expression as

Us0(hk+1) = Us0(hk) + 〈∇hUs0(hk, ·), hk+1 − hk〉H
+ 〈∇hUs0(fk, ·)−∇hUs0(hk, ·), hk+1 − hk〉H
≥ Us0(hk) + 〈∇hUs0(hk, ·), hk+1 − hk〉H
− L1 ‖hk+1 − hk‖2H − L2 ‖hk+1 − hk‖3H .

(64)

Let us consider next the conditional expectation of the ran-
dom variable Us0(hk+1) with respect to the sigma-field Fk.
Combine the monotonicity and the linearity of the expectation
with the fact that hk is measurable with respect to Fk to write

E [Us0(hk+1)|Fk] ≥ Us0(hk)

+ 〈∇hUs0(hk, ·),E [hk+1 − hk|Fk]〉H
−L1E

[
‖hk+1 − hk‖2H |Fk

]
− L2E

[
‖hk+1 − hk‖3H |Fk

]
.

(65)

Using the result of Proposition 2 we can write the expectation
of the quadratic term in the right hand side of (65) as

L1E
[
‖hk+1 − hk‖2H |Fk

]
≤ L1η

2E
[∥∥∥∇̂hUsk(hk, ·)

∥∥∥2

H
|Fk
]

+ L1ε
2
K

+2L1ηεKE
[∥∥∥∇̂hUsk(hk, ·)

∥∥∥
H
|Fk
]
,

(66)

Using the bounds on the moments of the estimate (cf., [14,
Lemma 6]), the previous expression can be upper bounded by

L1E
[
‖hk+1 − hk‖2H |Fk

]
≤ η2L1

(
σ2 + 2

εK
η
σ +

ε2K
η2

)
.

(67)

where σ is the constant in (61). Choosing the compression
budget as εK = Kη and using the definition of C1 in (58) it
follows that

L1E
[
‖hk+1 − hk‖2H |Fk

]
= η2L1

(
σ2 + 2Kσ +K2

)
= η2C1.

(68)
Likewise, we have that

L2E
[
‖hk+1 − hk‖3H |Fk

]
≤ η3L2

(
σ2 + 2

εK
η
σ +

ε2K
η2

)3/2

= η3L2

(
σ2 + 2Kσ +K2

)3/2
= η3C2.

(69)

Replacing the previous two bounds regarding the moments of
‖hk+1 − hk‖ in (65) reduces to

E [U(hk+1)|Fk] ≥ U(hk)− η2C1 − η3C2

+ 〈∇hU(hk),E [hk+1 − hk|Fk]〉H .
(70)

Using the result of Proposition 2 and the fact that ∇̂hUsk(hk)
is unbiased (cf., Proposition 1) we can write the inner product
in the previous equation as

〈∇hUs0(hk),E [hk+1 − hk|Fk]〉H =

η 〈∇hUs0(hk),∇hUsk(hk)〉H + 〈∇hUs0(hk), bk〉H .
(71)

The proof is then completed using the Cauchy-Schwartz
inequality and fact that the norm of the bias is bounded by
εK = Kη (cf., Proposition 2). �

The previous lemma establishes a lower bound on the
expectation of Us0(hk+1) conditioned to the sigma algebra
Fk. This lower bound however, is not enough for Us0(hk) to
be a submartingale, since the sign of the term added to Us0(hk)
in the right hand side of (57) is not necessarily positive. The
origin of this is threefold. The first two reasons stem from
algorithmic reasons. These are that we are using the estimate
of ∇hUsk(hk) to ascend on the functionial Us0(h) – which
does not guarantee the inner product to be always positive – the
bias that results from projecting into a lower dimension via the
KOMP algorithm as stated in Proposition 2. The third reason
comes from the analysis in Lemma 3 where we bounded
the value of the functional using a first order approximation.
To overcome the first limitation we will use the result from
Theorem 1 that guarantees that the inner product in the right
hand side of (57) is lower bounded by εβρ/(2Bρ) as long as
‖∇hUs0(h)‖2 > ε. The latter suggests that the definition of
the following stopping time is necessary for the analysis

N = min
k≥0

{
‖∇hUs0(hk, ·)‖2H ≤ ε

}
. (72)

We will show that by choosing the compression factor εK and
the step size sufficiently small we can overcome the other two
limitations and establish that Us0(hk) is a submartingale as
long as k < N . To be able to use the result of Theorem 1 we
require, condition (39) to be satisfied. As previously explained,
this requires the norm of h not to grow unbounded, yet due to
the stochastic nature of the update there is no guarantees that
this will be the case. We assume, however, that policies with
infinite norm are poor policies which leads to the conclusion
that if the norm of the gradient is not too small, then it has
to be the case that the norm of h is bounded. We formalize
these ideas next.

Assumption 3. For every H it follows that
lim‖h‖→∞ Us0(h) = minh∈H Us0(h).

Lemma 4. For every ε > 0 there exists a constant Bh(ε) such
that if ‖∇hUs0(h)‖2 ≥ ε then ‖h‖ ≤ Bh(ε).

Proof. Since the function Us0(h) is bounded (cf., [14, Lemma
1]), Assumption 3 implies that lim‖h‖→∞∇hUs0(h) = 0 and
therefore for every ε > 0 there exists Bh(ε) > 0 such that if
‖h‖ > Bh(ε) then ‖∇hUs0(h)‖ < ε. Hence it has to be the
case that if ‖∇hUs0(h)‖2 ≥ ε, then ‖h‖ ≤ Bh(ε). �

As previously discussed to guarantee that Us0(hk) is a
submartingale we need to choose the compression budget εK
and the step-size η small enough. In particular observe that
the compression budget multiplies a term that depends on the
norm of the gradient in (57). Hence, to be able to guarantee

10

that reducing the compression budget is enough to have a
submartingale we require that the norm of the gradient of the
value function is bounded. This is the subject of the following
lemma.

Lemma 5. The norm of the gradient of ∇hUs0(h) is bounded
by B∇ where

B∇ :=

√
pBr

(1− γ)2λminΣ1/2
. (73)

Proof. Use (7), the fact that |Q(s, a;h)| ≤ Br/(1 − γ) (cf.,
[14, Lemma 1]) and that ‖κ(s, ·)‖ = 1 to upper bound the
norm of ∇hUs0(h) by

‖∇hUs0(h)‖2 ≤ B2
r

(1− γ)4
E
[∥∥Σ−1(a− h(s))

∥∥2 |h
]
. (74)

Since the action a is drawn from a normal distribution
with mean h(s) and covariance matrix Σ it follows that∥∥Σ−1/2(a− h(s))

∥∥2
is a χ2 distribution and thus its ex-

pectation is p. Hence, the above expectation is bounded by
pλmin(Σ)−1. This completes the proof of the result. �

We are now in conditions of introducing the convergence of
the online policy gradient algorithm presented in Section III
to a neighborhood of the critical points of the value functional
Us0(h). In addition, the update is such that it guarantees that
the model order remains bounded for all iterations.

Theorem 2. Let Assumptions 1–3 hold. For any ε > 0 chose
K such that

K <
ε

2B∇

βρ
Bρ

, (75)

algorithm step-size η > 0 such that

η ≤

√
C2

1 + 4C2

(
εβρ
2Bρ
−B∇K

)
− C1

2C2
. (76)

and compression budget of the form εK = Kη. Under the
hypotheses of Lemma 2, and for any kernel such that ΣH
verifies (39), the sequence of policies that arise from Algorithm
2 satisfy that lim infk→∞ ‖∇hUs0(hk)‖2 < ε. In addition, let
Mk be the model order of hk, i.e., the number of kernels which
expand hk after the pruning step KOMP. Then, there exists a
finite upper bound M∞ such that, for all k ≥ 0, the model
order is always bounded as Mk ≤M∞.

Proof. Define the following sequence of random variables

Vk = (U(h?)− U(hk))1(k ≤ N), (77)

with 1(·) being the indicator function and N the stopping
time defined in (72). We next work towards showing that Vk
is a non-negative submartingale. Because U(h?) maximizes
U(h), Vk is always non-negative. In addition Vk ∈ Fk since
U(hk) ∈ Fk and 1(k ≤ N) ∈ Fk. Thus, it remains to be
shown that E[Vk+1|Fk] ≤ Vk. Notice that for any k > N
it follows that 1(k ≤ N) = 0 and hence Vk = 0. Thus we
have that Vk+1 = Vk for all k ≥ N . We are left to show that

E[Vk+1|Fk] ≤ Vk for k ≤ N . Using the result of Lemma 3
we can upper bound E[Vk+1|Fk] as

E[Vk+1|Fk] ≤ Vk + η2C1 + η3C2 +Kη ‖∇hUs0(hk)‖
−η 〈∇hUs0(hk),∇hUsk(hk)〉H .

(78)

Since we have that ‖∇hUs0(hk)‖2 ≥ ε by virtue of Assump-
tion 3 it follows that ‖h‖H ≤ Bh(ε). Therefore, there exists
some Hilbert Space for which condition (39) holds and the
result of Theorem 1 implies that the inner product in the right
hand side of the previous expression is lower bounded by
εβρ/(2Bρ). In addition, the norm of ∇hUs0(hk) is bounded
by virtue of Lemma 5. Hence, the previous expression can be
further upper bounded by

E[Vk+1|Fk] ≤ Vk + η2C1 + η3C2 + ηKB∇ − η
ε

2

βρ
Bρ

= Vk + ηα(K, η),

(79)

where we define α(K, η) as

α(K, η) := KB∇ −
ε

2

βρ
Bρ

+ ηC1 + η2C2. (80)

With the condition for the compression factor satisfying (75)
we guarantee that the sum of the first two terms on the
right hand side of (80) is negative. The latter is sufficient to
guarantee that the expression is negative for all η satisfying
(76). This completes the proof that Vk is a non-negative
submartingale. Thus, Vk converges to random variable V such
that E[V] ≤ E[V0] (see e.g., [25, Theorem 5.29]). Then, by
unrolling (79) we obtain the following upper bound for the
expectation of Vk+1

E [Vk+1] ≤ V0 + αηEN. (81)

Since Vk+1 is bounded the Dominated Convergence Theorem
holds and we have that

E[V] = lim
k→∞

E [Vk+1] ≤ V0 + αηEN. (82)

Since α < 0, rearranging the terms in the previous expression
we can upper bound EN by

EN ≤ EV − V0

ηα
. (83)

Therefore it must be case that P (N =∞) = 0. Which implies
that the event ‖∇hUs0(hk)‖ < ε occurs infinitely often. Thus
completing the proof of the result. It remains to be shown that
the model order of the representation is bounded for all k. The
proof of this result is identical to that in [22, Theorem 3].

�

The previous result establishes the convergence to a neigh-
borhood of the critical points of Us0(h) of the online gradient
ascent algorithm presented in Section III. For such result
to hold, we require that the kernel width, the compression
budget and the step size to be small enough. In addition, the
compression introduced by KOMP guarantees that the model
order of the function hk remains bounded for all k ≥ 0. In the
next section we explore the implications of these theoretical
results in a cyclic navigation problem.

11

VI. NUMERICAL EXPERIMENTS

Next we test the performance of our non-epsodic RL method
in a suvelliance and navigation task. The setup includes an area
in R2 with a point to be surveilled located at xg = [−1,−5]
and a battery charger located at xb = [−1, 5]. These points are
depicted in green and red, respectively, in Figure 1. An agent
starts moving from its initial point at x0 = [3, 0], depicted in
blue in figures 1 and 2, towards its goal at xg . The agent model
consist in second order point mass acceleration dynamics, with
position x ∈ R2 and velocity v ∈ R2 as state variables. It
also includes second order battery charging and discharging
equations with state variables b ∈ R modeling the remaining
charge of the battery, and d ∈ R representing the difference
between charge levels at two consecutive time instants. The
battery charges at a constant rate ∆B if the agent is located
within a neighborhood of the battery charger, and discharges at
the same rate ∆B otherwise. Vector s = (x, v, b, d) collects
all the state variables of this model. The reward is shaped
so that the agent is stimulated to move towards the goal xg
when b is grater than or equal to 40% of its full capacity
and it is discharging d < 0. And towards the battery charger
xc if b is lower than 40% and discharging d < 0, or if b is
lower than 90% and charging d > 0. The use of a second
order model for the battery allow us to leave room for some
hysteresis on the charging and discharging loop, so that the
battery does not start discharging as soon as b surpasses the
40% level. Instead, it keeps charging until it reaches 90% of its
capacity before moving back towards the goal. A logarithmic
barrier is added to the reward for helping the agent to avoid
an elliptic obstacle centered at x0 = [0, 0] with horizontal and
vertical axes of length 1.8 and 0.9, respectively Under these
dynamics, the agent decides its acceleration ak ∈ R2 using the
randomized Gaussian policy ak ∼ πhk(.|sk) where the mean
of ak ∼ πhk(.|sk) is the kernel expansion hk(sk) updated via
(13). The Q-function in step 7 of Algorithm 1 is estimated
as the sum of TQ consecutive rewards with TQ drawn from a
geometric distribution of parameter γ. The Gaussian noise nk
that is added to hk(sk) in step 2 of Algorithm 1 is selected at
random when k is even, and equal to nk = −nk−1 when k is
odd. This is a practical trick to improve the ascending direction
of the stochastic gradient without adding bias or violating the
Gaussian model for the randomized policy πh(a|s), see [14]
for more details.

Figure 1 shows the trajectory of the agent, with its color
changing gradually from blue to red as it starts from x0 and
loops between xg and xb. The four stages of this looping
trajectory are detailed in Figure 2, with Figure 2 (left) showing
the trace from x0 to the neighborhood of xg which includes
some initial exploring swings. Then the trajectory in 2 (center
left) starts when the agent’s battery crosses the threshold of
40%. In this case the agent is rewarded for moving towards
the charger and staying in its neighborhood until b reaches
90%. The next stage in Figure 2 (center right) starts when the
battery level reaches 90% and the agent moves back to the
goal. And finally the trace in Figure 2 (right) starts when the
battery discharges under the safety level of 40%, moving back
towards the charger and closing the loop.

Fig. 1. Online cycling trajectory of an agent starting at x0 = [3, 0] with the
goal of surveilling the location represented by a green point at xb = [−1,−5].
The agent needs to recharge its battery when it discharges below 40% of its
maximum capacity, at the charger location xb = [−1, 5] represented by the
red point. When navigating towards xb the agent must avoid the ellipsoidal
obstacle centered at [−1, 0].

This coherence between the battery level and the agent
trajectories is further illustrated in figures 3 and 4. Figure 3
depicts the battery level across iterations in time, alongside the
vertical position of the agent. The vertical position shows an
oscillating step-response like behavior, as the agent reaches
the neighborhood of the goal and the charger sequentially
and hovers around them. The battery level shows the desired
hysteresis, transitioning according to the thresholds at 40%
and 90% and depending on the charging slope.

Such a loop is further evidenced in Figure 4, which rep-
resents the agent’s vertical position versus its battery level.
The horizontal dashed lines represent the full charge and low
battery thresholds, and the vertical dashed lines correspond to
the positions of the goal and the charger. This figure shows
how starting from x0 the agent moves towards xg until it
reaches the 40% level, and then towards the charger hovering
around it until the battery charge is 90%. Then it closes the
loop by moving towards the goal and the charger sequentially
while its battery charges and discharges.

Figure 5 is included to corroborate the theoretical findings
of Section IV. More specifically, it depicts the evolution of
Us(hk) as a function of the online iteration index k. The
starting point s in Us(hk) is the same for all k, and it is
selected as the state when the battery level crosses the line
of 40% for the first time. It corresponds to the location near
xg where the stage 2 starts in Figure 2(b). For completeness
s = [x, v, b, d] with x = [−0.72,−4.58], v = [−0.092, 0.049],
b = 39.99, and d = 3 × 10−4. The value function Us(hk)
is estimated using rewards obtained by an episodic agent that
starts at s and runs N = 100 sample trajectories of length T
selecting actions according to the policy hk, which is kept
constant during the T state transitions. These rewards are

12

Fig. 2. Detail of the four stages of the online trajectory in Figure 1. Trace from x0 to the neighborhood of xg (left). Trace when the agent’s battery crosses
the threshold of 40% (center left). Trace when the battery level reaches 90% and the agent moves back to the goal (center right). Trace when the battery
discharges under the safety level of 40% (right).

Fig. 3. Vertical position and battery charge as a function of the online gradient
update index k. The horizontal dashed lines correspond to the positions of the
goal and the charger, and to the battery safety and fully charged thresholds.
The vertical dashed lines mark the transitions when the agent is directed to
move to the charger or to the goal.

Fig. 4. Cyclic evolution of the agent’s vertical position versus the battery
charge. Horizontal dashed lines correspond to the positions of the goal and
the charger, and vertical dashed lines represent the battery safety and fully
charged thresholds.

averaged according to

Ûs(hk) =
1

N

N∑
i=1

Rik (84)

where Rik =
∑T
t=0 γ

tritk and ritk is the instantaneous reward
obtained by the episodic agent at time t, using policy hk, over
the sample trajectory i. These episodic trajectories are carried
out for assessing performance of a fixed hk, but the algorithm
for updating these policies is non-episodic, as it evolves in the
fully online fashion of (13).

The horizon T = 100 for these episodes was selected so
that that the discarded tail of the geometric series becomes
negligible, with γT ' 2 × 10−5 staying under the noise
deviation. It is remarkable that when the online agent travels
through s on its online journey of Figure 1, the policy figures
out how to increase the reward. And such a reward will not
decrease when the policy is updated in the future. This is
coherent with our theoretical findings in Theorem 1, which
states that gradients at future states are ascent directions for
the value function at a previous state, that is s in this case.

As stated before, each point on the blue line in Figure 5
represents the mean of rewards in (84), and it is accompanied
by its deviation interval. Notice that, even if the improvement
in reward is relative minor, at 0.3%, it is good enough to direct
the agent towards the battery charger. This can be better seen
in the next figure.

Figure 6 shows five different trajectories starting at the same
point x = [−0.72,−4.58] represented by a blue dot. The
trajectory that passes through the colored dots corresponds
to an agent running our online algorithm, and coincides with
part of the second stage in Figure 2 (center left). Let k0, k1,
k2, and k3 be the iteration indexes when the online agent
reaches the points xk0

= x, xk1
, xk2

, xk3
, represented by

the blue, cyan, green, and purple dots, respectively. At these
iterations the agent produces policies hk0 , hk1 , hk2 , and hk3 .
The blue, cyan, green, and purple lines in Figure 6 represent
the trajectories of an episodic agent starting at x and navigating
with constant policies hk0

, hk1
, hk2

, and hk3
, respectively.

Figure 6 corroborates that the policies improve as the online
agent moves along its trajectory, allowing the episodic agent to
navigate better. Indeed, at first the episodic agent only knows
to go north west on the straight blue line, but eventually
it manages to follow the purple line moving towards the
charger and avoiding the obstacle. This apparent improvement

13

Fig. 5. Evolution of the mean accumulative reward in (84) as a function of
the online iteration step k.

Fig. 6. Trajectories of an episodic agent using four policies that are produced
by the online agent when following the cyclic trajectory of Figure 1. Each
colored point represents a location xk in which the online agent updates policy
to obtain hk . The line of the corresponding color represents the trajectory of
the episodic agent that uses the fixed policy hk to navigate from x towards
the charger.

in Figure 6 is not reflected in a significant step increase in
Figure 5. This is because the forgetting factor γ = 0.9 weights
a few steps of the trajectory in the value function, and the fist
steps are where the trajectories are not significantly separated.

Overall, this numerical example shows that the algorithm
developed in this paper is capable of learning how to navigate
on a loop in between to goal locations, avoiding an obstacle,
and following a cyclic trajectory that does not comply with
the standard stationary assumptions in the literature.

VII. CONCLUSION

We have considered the problem of learning a policy that
belongs to a RKHS in order to maximize the functional defined
by the expected discounted cumulative reward that an agent
receives. In particular, we presented a fully online algorithm
that accumulates at the critical points of the value function and
keeps the model order of the representation of the function

bounded for all iterations. The algorithm uses unbiased esti-
mates of the gradient of the functionals conditioned at the cur-
rent state that can be achieved in finite time. We establish that
these gradients are also ascent directions for the initial value
function for Gaussian kernels with small enough bandwidth.
Therefore, by updating the policy following such gradients the
value of the initial value function is increased in expectation
at each iteration, when the step size and compression budget
are small enough. We tested this algorithm in a navigation
and surveillance problem whose cyclic nature highlights the
ability to operate in a non stationary setup. The surveillance
task is carried out while by training in a fully online fashion,
without the need of episodic restarts. With this experiment we
also corroborated our claim in Theorem 2 regarding the ascent
directions of the stochastic gradients.

APPENDIX

A. Proof of Lemma 1

Proof. Since s ∈ S0 there exists some time t ≥ 0 such that
p(st = s|s0) > 0. Therefore we have that

ρs0(s) = (1− γ)

∞∑
u=0

γup(su = s|s0)

≥ (1− γ)γtp(st = s|s0),

(85)

where the last inequality follows from the fact that γ > 0 and
p(su = s|s0) ≥ 0 for all u ≥ 0. Hence, by assumption it
follows that ρs0(s) > 0. To prove the second claim, start by
writting ρs′(s′′) as

ρs′(s
′′) = (1− γ)

∞∑
t=0

γtp(st = s′′|s0 = s′)

= (1− γ)γ−T
∞∑
u=T

γup(su = s′′|sT = s′),

(86)

where the last equality holds for any T ≥ 0. Using the Markov
property for any u we have that

p(su = s′′|sT = s′) = p(su = s′′|sT = s′, s0). (87)

Since s′ ∈ S0, there exists T ≥ 0 such that p(ST = s′|s0) > 0.
For that specific T , we have that

p(su = s′′|sT = s′, s0) =
p(su = s′′, sT = s′|s0)

p(sT = s′|s0)
. (88)

Notice next that since s′′ ∈ S \ S0 we have that p(su =
s′′|s0) = 0 for all u ≥ 0. Hence, we also have that p(su =
s′′, ST = s′|s0) = 0 for all u ≥ 0 which completes the proof
of the proposition. �

B. Proof of Lemma 2

Without loss of generality, we prove the result for
D(s)ρs0(s). We start by showing that the cumulative weighted
distribution ρs0(s) is Lipschitz with constant Lp.

Lemma 6. Under Assumption 2, the distribution ρs0(s) is
Lipschitz with constant Lp, where Lp is the Lipschitz constant
defined in Assumption 2.

14

Proof. Let us start by writing p(st = s|s0) by marginalizing
it

p(st = s|s0) =

∫
p(st = s, at−1, st−1|s0) dst−1dat−1.

(89)

Using Bayes’ rule and the Markov property of the transition
probability it follows that

p(st = s|s0) =∫
p(st = s|at−1, st−1)πh(at−1|st−1)p(st−1|s0) dst−1dat−1.

(90)

Using the Lipschitz property of the transition
probability (cf., Assumption 2) we can upper bound
|p(st = s|s0)− p(st = s′|s0)| by

|p(st = s|s0)− p(st = s′|s0)| ≤ Lp ‖s− s′‖∫
πh(at−1|st−1)p(st−1|s0) dst−1dat−1

(91)

Since both πh(at−1|st−1)and p(st−1|s0) are probability dis-
tributions they integrate one. Thus we have that

|p(st = s|s0)− p(st = s′|s0)| ≤ Lp ‖s− s′‖ . (92)

Use the definition of ρs0(s) (cf., (4)) to write the difference
|ρs0(s)− ρs0(s′)| as

|ρs0(s)− ρs0(s′)| =

(1− γ)

∣∣∣∣∣
∞∑
t=0

γt (p(st = s|s0)− p(st = s′|s0))

∣∣∣∣∣ . (93)

Use the triangle inequality to upper bound the previous ex-
pression by

|ρs0(s)− ρs0(s′)|

≤ (1− γ)

∞∑
t=0

γt |p(st = s|s0)− p(st = s′|s0)| .

(94)

By virtue of (92), each term can be upper bounded by
γtLp ‖s− s′‖. Thus

|ρs0(s)− ρs0(s′)| ≤ (1− γ)

∞∑
t=0

γtLp ‖s− s′‖ = Lp ‖s− s′‖ .

(95)

This completes the proof of the lemma. �

Lemma 7. Under the Assumptions of Lemma 2 D(s) is
bounded by BD (cf., (37)) and it is Lipschitz, i.e.,

‖D(s)−D(s′)‖ ≤ LD ‖s− s′‖ , (96)

were LD is the constant defined in Lemma 2.

Proof. Let us start by introducing the change of variables ζ =
Σ−1/2(a− h(s)) to compute D(s). Hence we have that

D(s) =

∫
Q(s, h(s) + Σ1/2ζ)

ζ
√

2π
p e
−‖ζ‖2/2 dζ. (97)

Notice that we can define φ(ζ) = e−‖ζ‖
2/2/
√

2π
p

and then,
the previous expression reduces to

D(s) = −
∫
Q(s, h(s) + Σ1/2ζ)∇φ(ζ) dζ. (98)

Thus, integrating each component of D(s) by parts we have
for each i = 1, . . . , n that

D(s)i =

∫
Q(s, h(s) + Σ1/2ζ)φ(ζ)

∣∣∣ζi=∞
ζi−∞

dζ̄i

+

∫
∂Q(s, h(s) + Σ1/2ζ)

∂ζi
φ(ζ) dζ,

(99)

where ζ̄i denotes the integral with respect to all variables in
ζ except for the i-th component. Since Q(s, a) ≤ Br/(1− γ)
[14, Lemma 3] and φ(ζ) is a Multivariate Gaussian density
the first term in the above sum is zero. Next we compute the
derivative of the Q-function with respect to ζ. By the chain
rule we have that

∂Q(s, h(s) + Σ1/2ζ)

∂ζ
= Σ1/2 ∂Q(s, a)

∂a

∣∣∣
a=h(s)+Σ1/2ζ

. (100)

Thus, (99) reduces to

D(s) =

∫
∂Q(s, a)

∂a

∣∣∣
a=h(s)+Σ1/2ζ

φ(ζ) dζ. (101)

We claim that the first term in the above integral

Q′(s) :=
∂Q(s, a)

∂a

∣∣∣
a=h(s)+Σ1/2ζ

(102)

is Lipschitz with constant LD. That being the case, one has
that

‖D(s)−D(s′)‖ ≤
∫
‖Q′(s)−Q′(s′)‖φ(ζ) dζ

≤ LD ‖s− s′‖
∫
φ(ζ) dζ = LD ‖s− s′‖ .

(103)

Thus, to show that D(s) is Lipschitz with constant LD it
remains to be showed that Q′(s) is Lipschitz with the same
constant. To do so, write the Q function as

Q(s, a) = r(s, a)+
∞∑
t=1

γt
∫
r(st, at)p(st|a, s)πh(at|st) dstdat,

(104)
and compute its derivative with respect to a

Q′(s, a) =
∂Q(s, a)

∂a
=
∂r(s, a)

∂a

+

∞∑
t=1

γt
∫
r(st, at)

∂p(st|a, s)
∂a

πh(at|st) dstdat.
(105)

Since ∂r(s, a)/∂a is Lipschitz in both arguments (cf., As-
sumption 1), to show that the derivative of Q is Lipschitz, it
suffices to show that ∂p(st|a, s)/∂a is Lipschitz as well. To
that end, write p(st|s, a) as

p(st|s, a) =∫
p(s1|s, a)

t−1∏
u=1

πh(au|su)p(su+1|su, au) dst−1dat−1,

(106)

15

where dst−1 = (ds1, · · · , dst−1) and dat−1 =
(da1, · · · , dat−1). Let us define

∆pt(s
′, s′′, a′, a′′) :=

∂p(st|s′, a)

∂a

∣∣
a=a′

− ∂p(st|s′′, a)

∂a

∣∣
a=a′′

.

(107)

Using the fact that ∂p(s1|s, a)/∂a is Lipschitz with respect to
s and a with constants Lps and Lpa (cf., Assumption 2) we
have that

‖∆pt(s, s′, a, a′)‖ ≤
∫

(Lps ‖s′ − s′′‖+ Lpa ‖a′ − a′′‖)

t−1∏
u=1

πh(au|su)p(su+1|su, au) dst−1dat−1.

(108)

Using the previous bound and (105), we can upper bound the
norm of the difference Q′(s, a)−Q′(s′, a′) as

‖Q′(s, a)−Q′(s′, a′)‖ ≤ Lrs ‖s− s′‖+ Lra ‖a− a′‖

+
∞∑
t=1

γt
∫
Br ‖∆p(s, s′, a, a′)‖πh(at|st) datdst

(109)

Because p(su+1|su, au) and πh(au|su) in (108) are density
functions they integrate to one. Hence, the integral in the
previous expression can be upper bounded by∫

‖∆pt(s, s′, a, a′)‖πh(at|st) datdst

≤
∫
Lps ‖s− s′‖+ Lpa ‖a− a′‖ ds1

≤ |S| (Lps ‖s− s′‖+ Lpa ‖a− a′‖) ,

(110)

where |S| is the measure of the set S. Then, one can further
upper bound (109) by

‖Q′(s, a)−Q′(s′, a′)‖ ≤ Lrs ‖s− s′‖+ Lra ‖a− a′‖

+

∞∑
t=1

γtBr|S| (Lps ‖s− s′‖+ Lpa ‖a− a′‖) .

(111)

Because the sum of the geometric yields γ/(1−γ), it follows
that Q′(s, a) satisfies

‖Q′(s, a)−Q′(s′, a′)‖ ≤ LQs ‖s− s′‖+ LQa ‖a− a′‖ ,
(112)

with LQs = Lrs + γBr
1−γLps|S| and LQa = Lra + γBr

1−γLpa|S|.
We next show that h is Lipschitz. Using the reproducing
property of the kernel, we can write the difference between
h(s) and h(s′) as

h(s)− h(s′) = 〈h, κ(s, ·)− κ(s′, ·)〉 . (113)

Using the Cauchy-Schwartz inequality we can upper bound
the previous inner product by

‖h(s)− h(s′)‖ ≤ ‖h‖
√
κ(s, s) + κ(s′, s′)− 2κ(s, s′)

(114)
Let us define f(s, s′) =

√
κ(s, s) + κ(s′, s′)− 2κ(s, s′) and

show that it is Lipschitz. To do so, use the following change
of variables u = Σ

−1/2
H (s− s′) and write f(u) as follows

f(u) =
√

2
√

1− e−‖u‖2/2. (115)

Then, the gradient of f(u) yields

∇f(u) =
1√
2

e−‖u‖
2/2u√

1− e−‖u‖2/2
. (116)

Notice that the only point where the function might not be
bounded is when u = 0, since the limit of the denominator is
zero. To show that this is not the case, observe that a second
order Taylor approximation of that term yields

1− e−‖u‖
2/2 =

1

2
‖u‖2 + o(‖u‖2), (117)

where o(‖u‖2) is a function such that
lim‖u‖→0 o(‖u‖

2
)/ ‖u‖2 = 0. Thus we have that

lim
‖u‖→0

‖∇f(u)‖ = lim
‖u‖→0

e−‖u‖
2/2 ‖u‖
‖u‖

= 1 (118)

It can be shown that the gradient of ‖∇f(u)‖ is always dif-
ferentiable except at u = 0 and it never attains the value zero
except for at the limit when ‖u‖ → ∞. This means, that there
are no critical points of ‖∇f(u)‖ except at infinity. On the
other hand it follows from (116) that lim‖u‖→∞ ‖∇f(u)‖ = 0,
so, the critical point at infinity is a minimum. Thus, the
maximum norm of ∇f(u) is attained at u = 0 and it takes
the value 1. Thus f(u) is Lipschitz with constant 1. Use the
fact that f(0) = 0 to bound

|f(u)| ≤ ‖u‖ =
∥∥∥Σ
−1/2
H (s− s′)

∥∥∥
≤ λmin(ΣH)−1/2 ‖s− s′‖ .

(119)

The latter shows that h(s) is Lipschitz with constant Lh :=
‖h‖λmin(ΣH)−1/2. We next use this result to complete the
proof that Q′(s) is Lipschitz. From its definition (cf., (102))
and the fact that its Lipschitz (cf., (112)) we have that

‖Q′(s)−Q′(s′)‖ ≤ LQs ‖s− s′‖+ LQa ‖h(s)− h(s′)‖ .
(120)

Because h(s) is Lipschitz it follows that

‖Q′(s)−Q′(s′)‖ ≤ (LQs + LQaLh) ‖s− s′‖ . (121)

This completes the proof of the first claim of the proposition.
To show that D(s) is bounded consider its norm. Using its
expression in (98) it is possible to uper bound it as

‖D(s)‖ ≤ E
∥∥∥Q(s, h(s) + Σ1/2ζ

)
ζ
∥∥∥ . (122)

Since |Q(s, a)| < Br/(1− γ) (cf., Lemma 3 [14]) it follows
that

‖D(s)‖ ≤ Br
1− γ

E ‖ζ‖ =

√
2Br

1− γ
Γ
(
p+1

2

)
Γ
(
p
2

) , (123)

where Γ is the Gamma function. �

To complete the proof of Lemma 2 observe that we can
write the difference

‖D(s)ρs0(s)−D(s′)ρs0(s′)‖ ≤ ‖D(s)ρs0(s)−D(s)ρs0(s′)‖
+ ‖D(s)ρs0(s′)−D(s′)ρs0(s′)‖ .

(124)

16

Using the Lipschitz continuity and the boundedness of both
D(s) and ρs0(s) it follows that

‖D(s)ρs0(s)−D(s′)ρs0(s′)‖ ≤ BDLp ‖s− s′‖
+BρLD ‖s′ − s‖ .

(125)

This completes the proof of the lemma.

REFERENCES

[1] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction,
vol. 1. MIT press Cambridge, 1998.

[2] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8,
no. 3-4, pp. 279–292, 1992.

[3] J. Friedman, T. Hastie, and R. Tibshirani, The elements of statistical
learning, vol. 1. Springer series in statistics New York, 2001.

[4] R. S. Sutton, H. R. Maei, and C. Szepesvári, “A convergent o(n)
temporal-difference algorithm for off-policy learning with linear function
approximation,” in Advances in neural information processing systems,
pp. 1609–1616, 2009.

[5] S. Bhatnagar, D. Precup, D. Silver, R. S. Sutton, H. R. Maei, and
C. Szepesvári, “Convergent temporal-difference learning with arbitrary
smooth function approximation,” in Advances in Neural Information
Processing Systems, pp. 1204–1212, 2009.

[6] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing atari with deep reinforcement learn-
ing,” arXiv preprint arXiv:1312.5602, 2013.

[7] A. Koppel, G. Warnell, E. Stump, P. Stone, and A. Ribeiro, “Breaking
bellman’s curse of dimensionality: Efficient kernel gradient temporal
difference,” arXiv preprint arXiv:1709.04221, 2017.

[8] E. Tolstaya, A. Koppel, E. Stump, and A. Ribeiro, “Nonparametric
stochastic compositional gradient descent for q-learning in continuous
markov decision problems,”

[9] L. Baird, “Residual algorithms: Reinforcement learning with function
approximation,” in Machine Learning Proceedings 1995, pp. 30–37,
Elsevier, 1995.

[10] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Machine learning, vol. 8, no. 3-4,
pp. 229–256, 1992.

[11] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy gra-
dient methods for reinforcement learning with function approximation,”
in Adv. in neural information proc. sys., pp. 1057–1063, 2000.

[12] M. P. Deisenroth, G. Neumann, J. Peters, et al., “A survey on policy
search for robotics,” Foundations and Trends® in Robotics, vol. 2, no. 1–
2, pp. 1–142, 2013.

[13] G. Lever and R. Stafford, “Modelling policies in mdps in reproducing
kernel hilbert space,” in A. I. and Statistics, pp. 590–598, 2015.

[14] S. Paternain, J. A. Bazerque, A. Small, and A. Ribeiro, “Stochastic
policy gradient ascent in reproducing kernel hilbert spaces,” Transactions
on Automatic Control, vol. 66, p. (To appear), 8 2021.

[15] H. Robbins and S. Monro, “A stochastic approximation method,” The
annals of mathematical statistics, pp. 400–407, 1951.

[16] J. Baxter and P. L. Bartlett, “Infinite-horizon policy-gradient estimation,”
Journal of Artificial Intelligence Research, vol. 15, pp. 319–350, 2001.

[17] D. P. Bertsekas, Nonlinear programming. Athena Sci., Belmont, 1999.
[18] V. R. Konda and J. N. Tsitsiklis, “Actor-critic algorithms,” in Advances

in neural information processing systems, pp. 1008–1014, 2000.
[19] S. Bhatnagar, R. S. Sutton, M. Ghavamzadeh, and M. Lee, “Natural

actor–critic algorithms,” Automatica, vol. 45, no. 11, pp. 2471–2482,
2009.

[20] T. Degris, M. White, and R. S. Sutton, “Off-policy actor-critic,” arXiv
preprint arXiv:1205.4839, 2012.

[21] S. Paternain, J. A. Bazerque, A. Small, and A. Ribeiro, “Policy improve-
ment directions for reinforcement learning in reproducing kernel hilbert
spaces,” in IEEE 58th Conference on Decision and Control (CDC),
pp. pp. 7454–7461, 2019.

[22] A. Koppel, G. Warnell, E. Stump, and A. Ribeiro, “Parsimonious online
learning with kernels via sparse projections in function space,” arXiv
preprint arXiv:1612.04111, 2016.

[23] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction,
vol. 2. MIT press Cambridge, second ed., 2018.

[24] M. Muresan and M. Muresan, A concrete approach to classical analysis,
vol. 14. Springer, 2009.

[25] R. Durrett, Probability: Theory and Examples. Cambridge University
Press, 2010.

[26] D. P. Bertsekas and J. N. Tsitsiklis., Neuro-dynamic programming, vol. 5.
Athena Scientific, MA, 1996.

[27] R. Pemantle, “Nonconvergence to unstable points in urn models and
stochastic approximations,” The Annals of Prob., pp. 698–712, 1990.

[28] P. Vincent and Y. Bengio, “Kernel matching pursuit,” Machine Learning,
vol. 48, no. 1, pp. 165–187, 2002.

[29] Y. Nesterov and V. Spokoiny, “Random gradient-free minimization of
convex functions,” Foundations of Computational Mathematics, vol. 17,
no. 2, pp. 527–566, 2017.

[30] B. J Mercer, “Xvi. functions of positive and negative type, and their
connection the theory of integral equations,” Phil. Trans. R. Soc. Lond.
A, vol. 209, no. 441-458, pp. 415–446, 1909.

Santiago Paternain received the B.Sc. degree
in electrical engineering from Universidad de
la República Oriental del Uruguay, Montevideo,
Uruguay in 2012, the M.Sc. in Statistics from the
Wharton School in 2018 and the Ph.D. in Electrical
and Systems Engineering from the Department of
Electrical and Systems Engineering, the University
of Pennsylvania in 2018. He is currently an Assistant
Professor in the Department of Electrical Computer
and Systems Engineering at the Rensselear Poly-
technic Institute. Prior to joining Rensselear, Dr.

Paternain was a postdoctoral Researcher at the University of Pennsylvania.
His research interests include optimization and control of dynamical systems.
Dr. Paternain was the recipient of the 2017 CDC Best Student Paper Award
and the 2019 Joseph and Rosaline Wolfe Best Doctoral Dissertation Award
from the Electrical and Systems Engineering Department at the University of
Pennsylvania.

Juan Andrés Bazerque received the B.Sc. degree
in electrical engineering from Universidad de la
República (UdelaR), Montevideo, Uruguay, in 2003,
and the M.Sc. and Ph.D. degrees from the De-
partment of Electrical and Computer Engineering,
University of Minnesota (UofM), Minneapolis, in
2010 and 1013 respectively. Since 2015 he is an As-
sistant Professor with the Department of Electrical
Engineering at UdelaR. His current research inter-
ests include stochastic optimization and networked
systems, focusing on reinforcement learning, graph

signal processing, and power systems optimization and control. Dr. Bazerque
is the recipient of the UofM’s Master Thesis Award 2009-2010, and co-
reciepient of the best paper award at the 2nd International Conference on
Cognitive Radio Oriented Wireless Networks and Communication 2007.

Alejandro Ribeiro received the B.Sc. degree in
electrical engineering from the Universidad de la
República Oriental del Uruguay, Montevideo, in
1998 and the M.Sc. and Ph.D. degree in electrical
engineering from the Department of Electrical and
Computer Engineering, the University of Minnesota,
Minneapolis in 2005 and 2007. From 1998 to 2003,
he was a member of the technical staff at Bell-
south Montevideo. After his M.Sc. and Ph.D studies,
in 2008 he joined the University of Pennsylva-
nia (Penn), Philadelphia, where he is currently the

Rosenbluth Associate Professor at the Department of Electrical and Systems
Engineering. His research interests are in the applications of statistical signal
processing to the study of networks and networked phenomena. His focus
is on structured representations of networked data structures, graph signal
processing, network optimization, robot teams, and networked control. Dr.
Ribeiro received the 2014 O. Hugo Schuck best paper award, and paper
awards at the 2016 SSP Workshop, 2016 SAM Workshop, 2015 Asilomar
SSC Conference, ACC 2013, ICASSP 2006, and ICASSP 2005. His teaching
has been recognized with the 2017 Lindback award for distinguished teaching
and the 2012 S. Reid Warren, Jr. Award presented by Penn’s undergraduate
student body for outstanding teaching. Dr. Ribeiro is a Fulbright scholar class
of 2003 and a Penn Fellow class of 2015.

