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Abstract—First-order optimization solvers, such as the Fast Gradient
Method, are increasingly being used to solve Model Predictive Control

problems in resource-constrained environments. Unfortunately, the con-

vergence rate of these solvers is significantly affected by the conditioning

of the problem data, with ill-conditioned problems requiring a large
number of iterations. To reduce the number of iterations required,

we present a simple method for computing a horizon-independent

preconditioning matrix for the Hessian of the condensed problem. The
preconditioner is based on the block Toeplitz structure of the Hessian.

Horizon-independence allows one to use only the predicted system and

cost matrices to compute the preconditioner, instead of the full Hessian.

The proposed preconditioner has equivalent performance to an optimal
preconditioner in numerical examples, producing speedups between 2x

and 9x for the Fast Gradient Method. Additionally, we derive horizon-

independent spectral bounds for the Hessian in terms of the transfer
function of the predicted system, and show how these can be used to

compute a novel horizon-independent bound on the condition number

for the preconditioned Hessian.

Index Terms—model predictive control, optimal control, precondition-

ing, fast gradient method

I. INTRODUCTION

Model Predictive Control (MPC) is an optimal control method that

aims to optimize the closed-loop performance of a controlled system

by solving an optimization problem at each sampling instant to com-

pute the next control input. MPC is swiftly becoming a popular choice

for the control of complicated systems with operational constraints,

due to its explicit handling of constraints and recent advances in real-

time optimization algorithms, allowing it to be deployed on resource-

constrained systems such as internet-of-things devices [1].

A common formulation of MPC is the Constrained Linear

Quadratic Regulator (CLQR), which is an extension of the LQR to

handle state and input constraints for a linear system with a quadratic

objective function. The CLQR formulation gives an optimization

problem that is a convex Quadratic Program (QP), which can then

be solved efficiently using several types of iterative methods, such

as interior-point methods, active-set methods and first-order methods.

These methods are all affected by the conditioning of the problem,

with poorly conditioned problems requiring more iterations to find

the optimal solution. To overcome the problem’s ill-conditioning and

reduce the number of iterations, implementations utilize precondi-

tioning techniques on the problem data for interior-point methods

[2], active-set methods [3], and first-order methods [4], [5].

We focus on first-order methods, which commonly use precondi-

tioners generated by solving semidefinite programs (SDPs). One such

SDP formulation is [5], which minimizes the maximal eigenvalue of

the preconditioned matrix by embedding the Hessian into a linear

matrix inequality constraint. This SDP is readily solvable, but em-

bedding the full Hessian into the constraints means the preconditioner
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must be recomputed if the horizon length changes and that the SDP

problem size grows with the horizon length — making the SDP

preconditioner time consuming to compute for systems with long

horizons and slowing down the control design process.

In this work, we present a new preconditioner for the condensed

CLQR formulation, and show its ability to speed up convergence of

the Fast Gradient Method (FGM) by up to 9x. This preconditioner

is horizon-independent and is computed using only matrices with

the number of states and inputs as their dimensions, but requires

the terminal penalty matrix P to be either the solution to the

discrete Lyapunov equation for Schur-stable systems, or the discrete

Ricatti equation for unstable systems. We show that our proposed

preconditioner provides performance equivalent to an existing SDP

preconditioner on several examples, while also providing a reduction

in the computational effort required to compute the preconditioner.

Additionally, we exploit the block Toeplitz structure of the CLQR

problem’s condensed Hessian to derive tight horizon-independent

bounds on the extremal eigenvalues and condition number of both

the original and preconditioned Hessians.

We begin in Section II by introducing the CLQR problem formula-

tion and the notation used in this paper. In Section III, we derive the

theoretical framework for the computation of the bounds on the ex-

tremal eigenvalues and condition number of the Hessian. We propose

our new preconditioner and extend the bounds to the preconditioned

Hessian in Section IV. Finally, we present numerical examples in

Section V that compare the proposed preconditioner against existing

preconditioners, and show its effect on the convergence rate of the

Fast Gradient Method applied to three different systems.

II. PRELIMINARIES

A. Notation

A′ and A∗ denote the transpose and conjugate-transpose of the

matrix A, respectively. A ⊗ B represents the Kronecker product of

matrix A with matrix B. λ1 ≤ · · · ≤ λk are the real eigenvalues of

a Hermitian matrix A in sorted order, with the set of all eigenvalues

denoted by λ(A). The p-norm is denoted by ‖◦‖p, with ‖A‖2 the

matrix spectral norm, and ‖A‖F the Frobenius norm. The condition

number of a matrix is κ(A) := ‖A‖2‖A
−1‖2. The set T := {z ∈ C :

|z| = 1} is the complex unit circle. For an infinite-dimensional block

Toeplitz matrix T with blocks of size m × n, PT (·) : T → C
m×n

represents its matrix symbol and TN represents the truncated version

of T after N block diagonals (where N is a positive integer).

We use the notation from [6] to represent the transfer function

matrix of the system G with state space matrices A,B,C,D as

G(z) :=

[

A B

C D

]

.

L∞ is the space of matrix-valued essentially bounded functions

(i.e. matrix-valued functions that are measurable and have a finite

Frobenius norm almost everywhere on their domain, see [7, §2]).

C̃2π is the space of continuous 2π-periodic functions inside L∞.

http://arxiv.org/abs/2010.08572v4
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Definition 1. Let PT (·) ∈ C̃2π be a function that maps T → C
n×n,

we define the extreme eigenvalues of PT (·) as

λmin(PT ) := inf
z∈T

λ1(PT (z)), λmax(PT ) := sup
z∈T

λn(PT (z)),

and the condition number of PT (·) as

κ(PT ) :=
λmax(PT )

λmin(PT )
.

Definition 2. Let Tn be the n×n truncation of the infinite matrix T.

If the limits exist, we define the extrema of the spectrum of T as

λmin(T) := lim
n→∞

λ1(Tn), λmax(T) := lim
n→∞

λn(Tn).

B. CLQR Formulation

In this work, we examine the Constrained Linear Quadratic Regu-

lator (CLQR) formulation of the MPC problem, which can be written

as the constrained QP

min
u,x

1

2
x
′

NPxN +
1

2

N−1
∑

k=0

[

xk

uk

]′ [

Q 0
0 R

] [

xk

uk

]

(1a)

s.t. xk+1 = Axk +Buk, k = 0, . . . , N − 1

x0 = x̂

(1b)

Euuk + Exxk ≤ c, k = 0, . . . , N − 1 (1c)

where N is the horizon length, xk ∈ R
n are the states, and uk ∈ R

m

are the inputs at sample instant k, and x̂ ∈ R
n is the current measured

system state. A ∈ R
n×n and B ∈ R

n×m are the state-space matrices

describing the discrete-time system with transfer function matrix

G(z) :=

[

A B

I 0

]

.

Eu ∈ R
l×m and Ex ∈ R

l×n are the stage constraint coefficient

matrices, and c ∈ R
l is the vector of bounds for the stage constraints.

The matrices Q = Q′ ∈ R
n×n, R = R′ ∈ R

m×m and P = P ′ ∈
R

n×n are the weighting matrices for the system states, inputs and

final states, respectively. The weighting matrices are chosen such that

P , Q and R are positive definite.

This problem can be condensed by removing the state vari-

ables from (1) to leave only the control inputs in the vector

u:=
[

u′

0 u′

1 · · · u′

N−1

]′

. The optimization problem is then

min
u

1

2
u
′
Hu+ x̂

′Φ′
u (2a)

s.t. Gu ≤ F x̂+ g (2b)

with H := Γ′Q̄Γ + R̄, R̄ := IN ⊗R, Q̄ :=

[

IN−1 ⊗Q 0
0 P

]

,

Γ :=















B 0 0 0
AB B 0 0
A2B AB B 0

..

.
. . .

..

.

AN−1B AN−2B AN−3B · · · B















.

The terminal weight matrix P in (1) can be crucial to the stability

and performance of the closed-loop controller. The simplest choice

is to set P = Q, so that final states are weighted the same as other

states. This allows for simple formation of the problem matrices, but

does not provide stability guarantees for the closed-loop problem.

Instead, a possible choice for P is to either choose it to be the

solution to the Discrete Algebraic Riccati Equation (DARE)

P = A
′
PA+Q− A

′
PB(B′

PB +R)−1
B

′
PA, (3)

or choose P to be the solution to the discrete Lyapunov equation

A
′
PA+Q = P, (4)

where Q and R are the cost matrices from Problem (1), and A and B

are the system matrices. Choosing P in these ways approximates the

cost function value for the time after the horizon ends, and allows for

the derivation of closed-loop stability guarantees for the controller [8].

C. Numerically Robust CLQR Formulation

The condensed formulation (2) with an unstable system can

become numerically unstable as the horizon length increases, since

unstable systems have |λmax(A)| > 1, taking repeated powers of A

to form Γ then causes the condition number of H to be unbounded.

To overcome this, a modification to (2) was proposed in [9] where

instead of using the actual system A for computing the prediction

matrix and optimal control, a prestabilized system A−BK is used

instead. This prestabilized system would guarantee that the prediction

matrix entries do not grow unbounded with the horizon length,

leading to better conditioning of the optimization problem. Note that

this transformation requires the pair (A,B) to be stabilizable.

To formulate the prestabilized problem, a new system Gc is formed

by setting uk = −Kxk + vk where v ∈ R
m is a new input so that

Gc(z) :=

[

A−BK B

I 0

]

, (5)

where the controller K is chosen so that |λmax(A − BK)| < 1.

There are several ways to compute a K that meets this criterion,

however we focus on K chosen as the unconstrained infinite-horizon

LQR controller computed using Q and R from (1a).

The computations are then done using the input space

v:=
[

v′0 v′1 · · · v′N−1

]′

, turning the condensed QP (2) into

v
∗ := argmin

v

1

2
v
′
Hcv + x̂

′Φ′

cv (6a)

s.t. Gcv ≤ Fcx̂+ g (6b)

with Ac = A−BK, Qc = Q+K′RK, K̄ = IN ⊗−K,

Hc := Γ′

cQ̄cΓc + Γ′

cK̄
′
R̄ + R̄K̄Γc + R̄,

Q̄c :=

[

IN−1 ⊗Qc 0
0 P

]

,

Γc :=















B 0 0 · · · 0
AcB B 0 0
A2

cB AcB B 0
..
.

. . .
..
.

AN−1
c B AN−2

c B AN−3
c B · · · B















. (7)

The input applied to the original system is then u0 = −Kx̂+v∗0(x̂).
The constraint matrices Fc and Gc in Problem (6) are formed by

modifying F and G from Problem (2) to use the prestabilized system,

with full details given in [9].

III. SPECTRAL PROPERTIES

In order to effectively analyze and derive our closed-form pre-

conditioner, we first derive some spectral properties for the Hessian

and prediction matrix in the CLQR problem. Similar results were

reported in [10] and [11, Sect. 11], but our analysis differs in several

ways. Specifically, the prior work requires that the system G have no

eigenvalues on the unit circle, and that it be transformed into a system

with separable stable and unstable modes so that they can be handled

separately. Our analysis uses the numerically robust formulation (6)

to support eigenvalues of G on the unit circle and both its stable
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and unstable modes at the same time. Additionally, the prior work

assumes Q = C′C (with C the output state-mapping matrix of G),

whereas our analysis allows for an arbitrary positive-definite Q and

a P matrix chosen as either Q or the solution to the DARE.

A. Matrix Symbol for the Prediction Matrix

We start by analyzing the prediction matrix Γc and note that

its diagonals are constant blocks, which means that Γc is a block

Toeplitz matrix. Finite-dimensional block Toeplitz matrices with

blocks of size m× n can be viewed as the truncation of an infinite-

dimensional block Toeplitz matrix by extending the block pattern.

The infinite-dimensional matrix is represented by a matrix-valued

function mapping T → C
m×n, called the matrix symbol, which is

used for analyzing properties of the matrix.

The blocks on the diagonals of the matrix give the spectral

coefficients of the matrix symbol, so the symbol can be represented

as a Fourier series with the coefficients given by the matrix blocks.

For the original prediction matrix Γ, the truncated Fourier series that

only uses the blocks in the horizon is given by

N−1
∑

i=0

A
i
Bz

−i
, ∀z ∈ T.

As the horizon length increases, this series is only guaranteed to

converge to a finite matrix symbol when the system G with matrices

A and B is Schur-stable.

To form a convergent Fourier series, we use the numerically robust

CLQR formulation from Section II-C to introduce a stabilizing linear

state-feedback controller uk = −Kxk + vk to the prediction. For

systems where the pair (A,B) is stabilizable, this then leads to a

convergent Fourier series for the prediction matrix Γc of the new

controlled system, and the finite matrix symbol given in Lemma 1.

Lemma 1. Let the pair (A,B) be stabilizable and K ∈ R
m×n be

a linear state-feedback control matrix used to form the prestabilized

system (5). The prediction matrix Γc then has the matrix symbol

PΓc
∈ C̃2π with

PΓc
(z) := z(zI − (A−BK))−1

B = zGc(z), ∀z ∈ T,

where Gc(·) is the transfer function matrix for the system Gc.

Proof. The matrix symbol for the block Toeplitz matrix Γc is derived

using the infinite-dimensional extension of Γc, called Γ. The blocks

that make up Γ can be extrapolated from (7) to

Γi :=

{

0 if i < 0,

(A−BK)iB if i ≥ 0,
(8)

where i is the number of the block diagonal of the matrix, with 0
being the main diagonal and positive i below the main diagonal. A

possible way to form the matrix symbol of a block Toeplitz matrix

is to define it as the trigonometric polynomial with the blocks of the

matrix as coefficients [12, §4.3]. Doing that for Γ uses the blocks (8)

as the coefficients to form the trigonometric polynomial

∞
∑

i=0

z
−i(A−BK)iB. (9)

The constant B matrix can be extracted from the summation, giving
(

∞
∑

i=0

(A−BK)iz−i

)

B.

Since K was designed to make (A − BK) Schur-stable, the sum-

mation becomes a convergent Neumann series that converges to

z(zI−(A−BK))−1 [13, §3.4]. With the B matrix right-multiplying

the summation, the result is the transfer function matrix for the

time-shifted system zGc(z), giving the matrix symbol in the lemma.

Finally, note that the coefficients in the sum (9) are absolutely

summable, so PΓc
is in the Wiener class, meaning that PΓc

∈ L∞

and is continuous and 2π-periodic, leading to PΓc
∈ C̃2π .

It is tempting to only apply the stabilizing controller K after the

horizon, like the CLQR stability theory in [8], but this will cause Γ to

have AiB in the upper-left N×N block submatrix and (A−BK)iB
in the remaining part, breaking the block Toeplitz structure.

At this point, there is no restriction on the type of linear state-

feedback controller used to prestabilize the system — any controller

that results in a Schur-stable closed-loop system can be used. A

convenient choice for K is the infinite-horizon LQR controller

designed using the cost matrices in (1a) with P chosen to be the

solution to the DARE (3) as described in Section II-B.

If the system G is Schur-stable to begin with, then there is no need

for a prestabilizing controller K and the matrices Γ and Γc can be

the same. The matrix symbol for Γc can then be simplified as shown

in Corollary 1.

Corollary 1. If the system G is Schur-stable, then with K = 0 the

prediction matrix Γ has a convergent Fourier series, producing the

matrix symbol PΓ ∈ C̃2π with

PΓ(z) := z(zI − A)−1
B = zG(z), ∀z ∈ T,

where G(·) is the transfer function matrix for the system G.

B. Matrix Symbol for the Hessian

The Hessian of the MPC problem formulation in (6) can be split

into four distinct parts

Hc := HQ +HP +HK +HR (10)

where HQ, HR, HP , and HK are the parts that contain the matrices

Q, R̄, P , and the K̄ cross-terms, respectively. Slightly different

analysis must be done depending on the choice of P , and in this

work we focus on the cases when P = Q and P is the solution to the

DARE for the infinite-dimensional unconstrained LQR of problem.

1) P is the same as Q: Choosing P = Q for (1) allows the term

HP to be consolidated into HQ, giving

Hc = Γ′

cQ̄cΓc + Γ′

cK̄
′
R̄+ R̄K̄Γc + R̄,

Q̄c = IN ⊗ (Q+K
′
RK).

Analysis of the resulting matrix Hc reveals that Hc is also block

Toeplitz with the matrix symbol given in Lemma 2.

Lemma 2. Let P = Q and PΓc
be the matrix symbol for Γc from

Lemma 1. The matrix Hc is then a block Toeplitz matrix with the

matrix symbol PHc
∈ C̃2π , where

PHc
(z) := P∗

Γc
(z)(Q+K

′
RK)PΓc

(z) +R

− P∗

Γc
(z)K′

R −RKPΓc
(z), ∀z ∈ T.

Proof. Using the assumption that P = Q, we can see that the new

state weighting matrix Q̄c is block diagonal with the same entry

in each block, making Q̄c a block Toeplitz matrix with the symbol

PQ̄c
(z) := Q+K′RK. Since Γc is a lower-triangular block matrix

and Γ′

c is an upper-triangular block matrix, the product Γ′

cQ̄Γc is

block Toeplitz with matrix symbol P∗

Γc
PQ̄c

PΓc
[12, Lemma 4.5].

By construction, R̄ and K̄ are both block Toeplitz matrices with

symbols PR̄(z) := R and PK̄(z) := −K, respectively. Γ′

cK̄
′R̄ and

R̄K̄Γc are then block Toeplitz, since the product R̄K̄ produces a

block diagonal block Toeplitz matrix, preserving the block Toeplitz

structure of Γc during the multiplication. The matrix symbols for
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Γ′

cK̄
′R̄ and R̄K̄Γc are then −P∗

Γc
(z)K′R and −RKPΓc

(z),
respectively. Block Toeplitz structure is preserved over the addition

of two or more block Toeplitz matrices, and the matrix symbol for

the resulting sum is the sum of the original matrix symbols, giving

the matrix symbol in the lemma.

It is important to note that the product of block Toeplitz matrices

is not guaranteed to be block Toeplitz except in certain special

cases, while the addition of multiple block Toeplitz matrices with

compatible block sizes is always guaranteed to produce a block

Toeplitz result. In this case, the lower-triangular structure of Γc and

the block Toeplitz structure of Q̄c implies that the product Γ′

cQ̄Γc

is one of the special cases where the multiplication of the three

block Toeplitz matrices of compatible block sizes is block Toeplitz.

Choosing an arbitrary P with P 6= Q will cause Q̄c to no longer be

block Toeplitz, so the multiplication will not necessarily produce a

block Toeplitz matrix and the Hessian may not be block Toeplitz.

2) P is the solution to the DARE: Choosing P as the solution

to the DARE (3) causes Q̄c to not be block Toeplitz, since Q̄c will

then have a different matrix in the lower-right corner than the rest

of the main diagonal. This means that the analysis based on the

multiplication of structured block Toeplitz matrices used in the proof

of Lemma 2 no longer can be applied. However, the resulting Hc

matrix is still block Toeplitz due to the fact that P will represent the

cost of the controller applied after the horizon ends.

Proposition 1. If P is the solution to the DARE (3) and K is the

infinite-horizon LQR controller for G, then Hc is block Toeplitz and

has the same matrix symbol as the case when P = Q given in

Lemma 2.

Proof. Using the matrix splitting (10), the Hessian can be decom-

posed into four terms, with HQ and HP given by (11) and (12),

respectively, and HR and HK the same as when P = Q. We start

by examining the first diagonal term of HQ +HP ,

N−1
∑

i=0

B
′(Ai

c)
′
QcA

i
cB +B

′(AN
c )′PA

N
c B. (13)

Since P is the solution to the DARE (3), P is also the solution to

the Lyapunov equation

(A−BK)′P (A−BK) +Q+K
′
RK = P (14)

when K is the infinite-horizon LQR controller. This means that P

can also be expressed as

P =

∞
∑

i=0

((A−BK)′)i(Q+K
′
RK)(A−BK)i,

transforming (13) into

N−1
∑

i=0

B
′(Ai

c)
′
QcA

i
cB +B

′(AN
c )′

(

∞
∑

i=0

(Ai
c)

′
QcA

i
c

)

A
N
c B.

The (AN
c )′ and AN

c terms around the right summation can be

consolidated into the summation, offsetting its starting point to be

i = N instead of 0 — meaning the right summation is simply the

continuation of the left summation to infinity and allowing the two

sums to be consolidated into
∞
∑

i=0

B
′(Ai

c)
′
QcA

i
cB. (15)

The same analysis can be performed on the other terms on the

main diagonal, which only differ by where the left summation ends

and the right summation is offset to. Therefore, the main diagonal of

the matrix sum HQ +HP is composed of blocks with all the same

terms. A similar analysis can be done on all diagonals above and

below the main diagonal, showing that they are also composed of

blocks with all the same terms down the diagonal.

Since all the diagonals are composed of the same blocks down

their length, the matrix sum HQ + HP is block Toeplitz, and the

resulting Hessian Hc is block Toeplitz as well, since HR and HK

are already known to be block Toeplitz.

To construct the matrix symbol for Hc when P is the solution to

the DARE, we examine the elements in the matrix HQ + HP and

how they relate to the case when P = Q. Note that when P = Q,

the individual elements of the matrix HQ have a summation that

terminates at the horizon length. Since the matrix symbol is based

on the infinite-dimensional matrix, if the matrix HQ is extrapolated

to a horizon of infinity to form HQ, the summations in HQ will all

terminate at infinity. Therefore, the sum HQ+HP will have the same

blocks as the infinite-dimensional HQ when P = Q, so the Hessians

for the cases when P = Q and P is the solution to the DARE will

both have the same matrix symbol.

3) Simplification when G is Schur-stable: When G is Schur-

stable and the results in Corollary 1 are used to simplify the matrix

symbol of the prediction matrix, the results given in Lemma 2 and

Proposition 1 can be simplified as well.

Corollary 2. If the system G is Schur-stable, then with K = 0 and

P = Q or P the solution to the discrete Lyapunov equation (4), the

Hessian H has the matrix symbol PH ∈ C̃2π with

PH(z) := P∗

Γ(z)QPΓ(z) +R, ∀z ∈ T.

where G(·) is the transfer function matrix for the system G.

Note that the matrix symbol in Corollary 2 has the same form as

the matrix symbol in Lemma 2, just with the terms containing K

removed and a different choice of the matrix P .

In order for Proposition 1 to reduce to Corollary 2 in the Schur-

stable case with K = 0, the terminal cost must be based on the

solution to the discrete Lyapunov equation instead of the DARE,

since using the DARE solution with no prestabilizing controller will

cause the Lyapunov equation (14) used in the proof of Proposition 1

to not be valid.

C. Spectral Bounds for the Hessian

One useful property of block Toeplitz matrices is that the eigen-

value spectrum for any finite-dimensional truncation of the infinite-

dimensional block Toeplitz matrix is contained within the extremal

eigenvalues of its matrix symbol. This means that the minimum and

maximum eigenvalues of the matrix Hc can be bounded by analyzing

the matrix symbol PHc
, since Hc is a finite-dimensional truncation

of the infinite-dimensional matrix Hc to N blocks.

Theorem 1. Let Hc be the condensed Hessian with P the solution to

the DARE and a prediction horizon of length N that is block Toeplitz

with matrix symbol PHc
given in Lemma 2, then the following hold:

(a) λmin(PHc
) ≤ λ(Hc) ≤ λmax(PHc

)
(b) lim

N→∞

κ(Hc) = κ(PHc
)

Proof.

(a) The spectrum of a finite-dimensional truncation of a block

Toeplitz matrix with a symbol in C̃2π is bounded by the extremes

of the spectrum of its symbol [12, Theorem 4.4].

(b) Note that Hc is a Hermitian matrix, which means that it is also

normal [14, §4.1]. Since it is both normal and positive semi-

definite, the singular values are the same as the eigenvalues [15,

§3.1], resulting in the condition number becoming κ(Hc) =



5

HQ :=

















∑N−1
i=0 B′(Ai

c)
′QcA

i
cB

∑N−2
i=0 B′(Ai+1

c )′QcA
i
cB

∑N−3
i=0 B′(Ai+2

c )′QcA
i
cB · · · B′(AN−1

c )′QcB
∑N−2

i=0 B′(Ai
c)

′QcA
i+1
c B

∑N−2
i=0 B′(Ai

c)
′QcA

i
cB

∑N−3
i=0 B′(Ai+1

c )′QcA
i
cB · · · B′(AN−2

c )′QcB
∑N−3

i=0 B′(Ai
c)

′QcA
i+2
c B

∑N−3
i=0 B′(Ai

c)
′QcA

i+1
c B

∑N−3
i=0 B′(Ai

c)
′QcA

i
cB · · · B′(AN−3

c )′QcB
...

...
...

. . .
...

B′QcA
N−1
c B B′QcA

N−2
c B B′QcA

N−3
c B · · · B′QcB

















(11)

HP :=















B′(AN
c )′PAN

c B B′(AN
c )′PAN−1

c B B′(AN
c )′PAN−2

c B · · · B′(AN
c )′PAcB

B′(AN−1
c )′PAN

c B B′(AN−1
c )′PAN−1

c B B′(AN−1
c )′PAN−2

c B · · · B′(AN−1
c )′PAcB

B′(AN−2
c )′PAN

c B B′(AN−2
c )′PAN−1

c B B′(AN−2
c )′PAN−2

c B · · · B′(AN−2
c )′PAcB

...
...

...
. . .

...

B′A′

cPAN
c B B′A′

cPAN−1
c B B′A′

cPAN−2
c B · · · B′A′

cPAcB















(12)

λn(Hc)
λ1(Hc)

. Taking the limit of both sides in conjunction with the

spectral bounds from part (a) gives

lim
N→∞

κ(Hc) = κ(PHc
).

Corollary 3. If the system G is Schur-stable, then with K = 0 and

P the solution to the discrete Lyapunov equation (4), the results in

Theorem 1 can be applied to H using the matrix symbol PH instead

of PHc
.

Essentially, these results say that the spectrum for the condensed

Hessian in these cases will always be contained inside the interval

defined by the maximum and minimum eigenvalues of the matrix

symbol in Lemma 2/Corollary 2. Additionally, as N → ∞ the

extremal eigenvalues of the Hessian will converge asymptotically to

the maximum and minimum eigenvalues of its symbol.

IV. PRECONDITIONING

The spectral results presented in Sections III-B and III-C can be

readily extended to analyze the case of a preconditioned Hessian, as

well as to help design new preconditioners.

A. Analysis of the Preconditioned Hessian

For simplicity of discussion, we focus on the case when Hc is

symmetrically preconditioned to form

HL := L
−1
N Hc(L

−1
N )′, (16)

where LN is a block-diagonal preconditioner that has N copies of the

matrix L on its diagonal, thus guaranteeing that the preconditioned

matrix is block Toeplitz. This case is most appropriate for first-

order methods, since it guarantees that the structure of the feasible

set is preserved over the preconditioning operation and that the

preconditioned Hessian is symmetric [5].

Since the preconditioner matrix LN is block-diagonal with only L

on its main diagonal, the matrix symbol for LN is simply L.

The spectral bounds in Section III-C can then be extended to the

preconditioned matrix HL by simply replacing PHc
in Theorem 1(b)

with PHL
given by

PHL
:= L̄PHc

L̄
′
, (17)

where L̄ := L−1. A similar substitution can be made when G is

Schur-stable by using PH in (17) with Corollary 3. This analysis

requires LN to be block Toeplitz, which may not be the case for many

methods of computing the preconditioner, unless such a constraint is

added to its computation.

B. Preconditioner Design

There is a rich literature of preconditioners for Toeplitz and

circulant matrices, with a focus on designing the preconditioners

independent of the size of the matrix (see [16] and references therein).

These existing ideas can be applied to the block Toeplitz structure of

the Hessian in the CLQR problem in order to design preconditioners

to use when solving the QP.

One of the first circulant preconditioners was proposed by Gilbert

Strang in [17]. This preconditioner was originally proposed for

preconditioning iterative conjugate gradient methods, and is formed

by simply copying the central diagonals of the Toeplitz matrix into

the preconditioning matrix and wrapping them around to form a

circulant matrix. Strang’s preconditioner can be naturally extended

to the block Toeplitz case by simply copying the individual blocks

into the preconditioning matrix and wrapping them around to form a

block circulant matrix.

In the case of the CLQR problem with a block diagonal precondi-

tioning matrix, we can explicitly compute the block on the diagonal

of the preconditioning matrix without forming the entire Hessian, as

shown in Theorem 2.

Theorem 2. Let Hc be the Hessian from (6) formed by choosing

either:

• K as the infinite-horizon LQR controller for G, with P the

solution to the DARE (3), or

• K = 0 with P the solution to the discrete-time Lyapunov

equation (4) for a Schur-stable G.

The matrix Hc can be symmetrically preconditioned as

L−1
N Hc(L

−1
N )′, with LN = IN ⊗ L and the blocks L given

by the lower-triangular Cholesky decomposition of M with

M := B
′
PB −B

′
K

′
R −RKB +R.

Proof. Based on the work in [17], a Circulant preconditioning matrix

W for the block Toeplitz matrix V will have entries that are obtained

by copying the central diagonals of V and wrapping them around to

form a circulant matrix since the main diagonals are usually strongly

dominant. For example, the matrix

V :=













V0 V1 V2 V3 V4

V−1 V0 V1 V2 V3

V−2 V−1 V0 V1 V2

V−3 V−2 V−1 V0 V1

V−4 V−3 V−2 V−1 V0













,

will have a block circulant preconditioning matrix

W :=













V0 V1 V2 V−2 V−1

V−1 V0 V1 V2 V−2

V−2 V−1 V0 V1 V2

V2 V−2 V−1 V0 V1

V1 V2 V−2 V−1 V0













.
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Since we want the preconditioner to be block diagonal, we only need

to focus on computing the diagonal block V0 for the CQLR.

For the block Toeplitz Hessian Hc, the main diagonal block of the

infinite dimensional block Toeplitz matrix is (15), which when the

HR and HK components are added becomes

∞
∑

i=0

B
′(Ai

c)
′
QcA

i
cB −B

′
K

′
R−RKB +R.

Since Ac is Schur-stable and K is the LQR controller, this sum

converges to the solution of the DARE, making the diagonal block

V0 = B
′
PB −B

′
K

′
R−RKB +R.

Since Strang’s preconditioner is designed as a left preconditioner

(i.e. W−1V ) and we want a symmetric preconditioner, we apply

the lower-triangular Cholesky factorization to M , resulting in L.

Remark 1. The preconditioning matrix L in Theorem 2 can also be

formed by using the matrix square-root of M instead of the Cholesky

factorization, which could allow for L to have the same structure as

M if the square root operation is structure preserving (e.g. if G is

a circulant system, using the matrix square root can lead to L and

HL being circulant as well).

Note that the matrices M and L will have dimension m×m, and

that the full preconditioning matrix LN is formed by simply repeating

L down the diagonal N times, so changing the horizon length means

simply adding or removing blocks of L from the diagonal of LN .

Since LN is block Toeplitz, we can show that if G is single-input,

the preconditioner will not affect the conditioning.

Proposition 2. If the system G is single-input (i.e. m = 1), then the

block Toeplitz preconditioner LN will not affect the condition number

of Hc (i.e. κ(HL) = κ(Hc)).

Proof. A system with m = 1 will have L ∈ R, making the precon-

ditioner matrix simply LN = IN ⊗ L = LIN . For the symmetric

case, (16) becomes HL =
(

1
L
IN
)

Hc

(

IN
1
L

)

, which simplifies to

HL = 1
L2 Hc. Using the fact that λi(αHc) = |α|λi(Hc),

κ(HL) =
λmax

(

1
L2 Hc

)

λmin

(

1
L2Hc

) =
|L2|

|L2|

λmax(Hc)

λmin(Hc)
= κ(Hc).

Also note that all the matrices involved in computing M have

dimensions on the order of m and n, and have no relation to the

horizon length. This is in contrast to SDP-based preconditioner design

techniques such as [5], which require the full Hessian to be placed

inside the semidefinite optimization problem.

V. NUMERICAL EXPERIMENTS

In this section, we present numerical examples showing the spectral

properties computed using the results of Section III, and also the

effect of applying the preconditioner from Section IV-B to the CLQR

problem for four systems.

A. Example Systems

1) Schur-stable system: The first two example systems we use are

the Schur-stable discrete-time system with four states and two inputs

given in [18] with state equation

xk+1 =









0.7 −0.1 0.0 0.0
0.2 −0.5 0.1 0.0
0.0 0.1 0.1 0.0
0.5 0.0 0.5 0.5









xk +









0.0 0.1
0.1 1.0
0.1 0.0
0.0 0.0









uk.

We constrain the inputs of the system to be |uk| ≤ 0.5 and use a

prediction horizon of N = 10. The first system has cost matrices

Q = diag(10, 20, 30, 40), R = diag(10, 20), (18)

and the second system has cost matrices

Q = diag(100, 200, 300, 400), R = diag(0.001, 0.002). (19)

2) Inverted pendulum: The next example system we use is a

linearized inverted pendulum described by the continuous-time dy-

namics

ẋ =









0 1 0 0
3g
2l

−b 0 0
0 0 0 1
0 0 0 0









x+









0
3
2l

0
1









u,

with g = 9.8067, b = 1, and l = 0.21. The system was discretized

using a zero-order hold with a sampling time of 0.02 s, resulting in

an unstable discrete-time system. The CLQR problem used the cost

matrices Q = diag(1000, 1, 100, 1), R = 10, a prediction horizon of

N = 10, and input constraints |u| ≤ 10,

3) Distillation column: The final example system we use is a

binary distillation column with 11 states and 3 inputs from [19,

Problem 90-01]. The system was discretized using a zero-order hold

with a sampling time of 1.0 s, resulting in a Schur-stable system. We

used a prediction horizon of N = 100 and the cost matrices

Q = diag(10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110),

R = diag(10, 20, 30),

with input constraints |u1| ≤ 2.5, |u2| ≤ 2.5, |u3| ≤ 0.30.

B. Matrix Conditioning

The first numerical results we present examine the Hessian con-

ditioning. The preconditioners were implemented using Julia 1.6.1,

and the COSMO solver (version 0.8.1) [20] was used to compute

the SDP preconditioner from [5]. Figures 1a and 2a show that the

limits presented in Theorem 1(b) are attained as the horizon length

increases. Note that the rate at which the finite-dimensional Hessian’s

condition number approaches the bound is system-dependent, with

the Schur-stable system (18) converging within 0.01% of the bound

by N = 40, and the inverted pendulum system by N = 225.

As described in Section IV-A, the condition number bound of

Theorem 1(b) can be used to analyze the preconditioned Hessian,

and is shown in Figures 1b and 2b. The bound was computed for

the proposed preconditioner by finding L using Theorem 2, then

substituting (17) into Theorem 1(b). Note that the bound computed

with L from Theorem 2 does not hold for the SDP preconditioner

from [5], since L will be different between the two preconditioners.

Additionally, the SDP preconditioner does not guarantee that LN will

be block Toeplitz, so Theorem 1 cannot be used to compute horizon-

independent limits when it is used.

Comparing the proposed preconditioner against the existing SDP

preconditioner shows that they produce nearly identical condition

numbers, as can be seen in Figures 1b and 2b and Table I. Propo-

sition 2 can also be seen in Figure 2b, where the conditioning of

the Hessian is not affected by the preconditioners, since the inverted

pendulum is a single-input system.

As shown in Table I, both the SDP preconditioner and our proposed

preconditioner decrease the condition number by 66% for the Schur-

stable system (18) and the already Schur-stable non-prestabilized

distillation column, and decrease the condition number for the ill-

conditioned Schur-stable system (19) by 97%. Applying the precon-

ditioner to the prestabilized inverted pendulum system has no effect,
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12

Horizon Length N

κ
(H

)
H with P = Q

H with P the solution to (4)

Bound from Corollary 3

(a) Original Hessian

0 10 20 30 40 50 60
1

2

3

4

Horizon Length N

κ
(H

L
)

SDP [5]

Proposed (Theorem 2)

Bound from Section IV-A

(b) Preconditioned Hessian

Fig. 1. Condition number versus the horizon length of the condensed Hessian
for the Schur-stable system (18)

leaving the condition number nearly identical to the original, since

this system is single-input.

C. Performance

To test the effect of the preconditioners on the performance of a

first-order method for the CLQR problem, the Fast Gradient Method

(FGM) was implemented in Julia using the constant step-size scheme

[21] and gradient map stopping criteria [22, Section 6.3.1] with a

desired error of 10−5. The inequality constraints were implemented

through projection operations, with the non-prestabilized problems

being simple projections onto a box and the prestabilized problems

requiring a more complex projection algorithm. In these examples, the

projections for the prestabilized problems were computed by solving

the projection QP directly; however, in an embedded application other

techniques like an explicit QP [23] can be used instead.

We present two types of iteration results in Table II: the actual

iterations taken by the FGM and the cold-start Upper Iteration Bound

(UIB) from [5]. The UIB will be the worst-case number of iterations

needed to achieve convergence regardless of the number of active

constraints in the solution, while the actual iterations is the number

taken on a single example QP for the CLQR problem. The proposed

preconditioner gives a 2.1x actual and 2.6x UIB speedup for the

Schur-stable system (18), a 3.6x actual and 2.25x UIB speedup for

the non-prestabilized distillation column, and a 4.5x actual and 9.5x

UIB speedup for the ill-conditioned Schur-stable system (19).

When the SDP preconditioner is applied to the non-prestabilized

inverted pendulum, it has no effect on the iterations required for the

FGM to converge, requiring 51 iterations in both cases. Applying

a prestabilizing controller to the inverted pendulum gives a 12.75x

speedup, while prestabilizing the distillation column produces a

0 50 100 150
1

1.5

2

2.5

3

Horizon Length N

κ
(H

)

H with P the solution to (3)

Bound from Theorem 1(b)

(a) Original Hessian

0 20 40 60 80 100
1

1.5

2

2.5

Horizon Length N

κ
(H

L
)

Un-preconditioned

SDP [5]

Proposed (Theorem 2)

Bound from Section IV-A

(b) Preconditioned Hessian

Fig. 2. Condition number versus the horizon length of the pre-stabilized
condensed Hessian for the inverted pendulum system.

TABLE I
CONDITION NUMBER OF THE PRECONDITIONED HESSIAN.

System Original SDP [5] Proposed (Thm. 2)

Schur-stable (18) 8.776 2.922 2.933

Ill-conditioned
Schur-stable (19)

254.66 7.415 7.500

Inverted pendulum
(non-prestabilized)

42.512 42.468 (Not computable)

Inverted pendulum
(LQR prestabilized)

1.889 1.884 1.889

Distillation column
(non-prestabilized)

21.527 7.175 7.175

Distillation column
(LQR prestabilized)

3.004 1.017 1.025

speedup of 9.6x, a larger speedup than just preconditioning the non-

prestabilized system.

The proposed preconditioner is also faster to compute than the SDP

preconditioner, with timing results for the example systems given in

Table III. These results show at least an order of magnitude difference

in the computation times, with the proposed preconditioner requiring

2.5 ms to compute for the non-prestabilized distillation column versus

151.74 seconds for the SDP preconditioner.

VI. CONCLUSIONS

In this work we presented a new preconditioner that is based on

the block Toeplitz structure of the Hessian for the condensed CLQR

problem when using either a prestabilizing LQR controller or a Schur-

stable system with appropriate choice of P . We showed that this

preconditioner is comparable to an existing SDP preconditioner on

several numerical examples, and can lead to speedups of between 2.1x

and 9.6x for the Fast Gradient Method. The proposed preconditioner
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TABLE II
ITERATIONS REQUIRED FOR COLD-START CONVERGENCE OF THE

FAST GRADIENT METHOD TO ǫ=10
−5 .

System None1 SDP [5]1 Proposed (Thm. 2)1

Schur-stable (18) 42 / 19 16 / 9 16 / 9

Ill-conditioned
Schur-stable (19)

294 / 114 32 / 25 31 / 25

Inverted pendulum
(non-prestabilized)

143 / 51 129 / 51 (Not computable)

Inverted pendulum
(LQR prestabilized)

18 / 3 17 / 3 18 / 3

Distillation column
(non-prestabilized)

97 / 48 43 / 25 43 / 25

Distillation column
(LQR prestabilized)

22 / 5 3 / 3 3 / 3

1 Cold-start upper iteration bound from [5] / actual iterations

TABLE III
TIME REQUIRED FOR COMPUTING THE PRECONDITIONERS.

System SDP [5] (ms) Proposed (Thm. 2) (ms)

Schur-stable (18) 197.4 0.213

Ill-conditioned
Schur-stable (19)

142.9 0.218

Inverted pendulum
(non-prestabilized)

18.69 (Not computable)

Inverted pendulum
(LQR prestabilized)

17.45 0.218

Distillation column
(non-prestabilized)

151746 2.543

Distillation column
(LQR prestabilized)

81929 2.545

is also faster to compute than the SDP preconditioner, especially for

long-horizon problems like the distillation column example.

This work also highlighted the relationship between the transfer

function and the spectrum of the condensed Hessian. We derived

results relating the extrema of the condensed Hessian’s spectrum to

the extrema of the spectrum for a complex-valued matrix symbol

formed using the weighting matrices and the system’s transfer func-

tion, and showed that these results can be used to obtain bounds on the

condition number of the Hessian when using our proposed precondi-

tioner. The examples also showed that the numerical prestabilization

controller K has a direct effect on the spectrum of the Hessian, so

preconditioning could also be achieved through a careful choice of

K instead of applying a separate preconditioner (at the expense of

turning the constraint sets into more complex shapes). Future work

could explore developing a preconditioner based on loop-shaping of

the system to reduce the Hessian’s condition number.

The derivation and examples in this work focused on precondi-

tioning the primal QP for the CLQR problem, however it is also

common to use a dual form of (2) with gradient algorithms such

as the Dual Gradient Projection or Dual Fast Gradient Method. The

preconditioner defined in Theorem 2 could be extended to handle

the dual problem by using the diagonal blocks of the dual Hessian

in the preconditoner instead. Further work is needed to extend the

theoretical bounds for the preconditioned Hessian in Section IV-A

though, since it isn’t known if the dual Hessian possesses a block

Toeplitz structure like the primal Hessian.
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