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Abstract

When stochastic control problems do not possess separability and/or monotonicity, the dy-

namic programming pioneered by Bellman in 1950s fails to work as a time-decomposition solu-

tion method. Such cases have posted a great challenge to the control society in both theoretical

foundation and solution methodologies for many years. With the help of the progressive hedging

algorithm proposed by Rockafellar and Wets in 1991, we develop a novel scenario-decomposition

solution framework for stochastic control problems which could be nonseparable and/or non-

monotonic, thus extending the reach of stochastic optimal control. We discuss then some of its

promising applications, including online quadratic programming problems and dynamic portfolio

selection problems with smoothing properties.

Keywords: Nonseparable stochastic control, scenario decomposition, progressive hedging algo-

rithm, online quadratic programming, dynamic portfolio selection.

1 Introduction

Stochastic control problems can be, in general, formulated as follows,

(P) min
ut,t=0,...,T−1

E[J(x0, u0, x1, u1, . . . , xT−1, uT−1, xT )]

s.t. xt+1 = ft(xt, ut, ξt),

gt(xt, ut) ≤ 0, gT (xT ) ≤ 0,

t = 0, 1, . . . , T − 1,

where xt ∈ R
m is the state with x0 given, ut ∈ R

n is the control, and gt(xt, ut) ≤ 0 and gT (xT ) ≤ 0

represent, respectively, the running constraints on states and controls, and the constraint on the
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terminal state. Moreover, ξt ∈ R
p is a white noise vector, and ft : R

m × R
n × R

p → R
m is

the system dynamics. Thus, the system under consideration is of a Markovian property. The

performance measure J is backward separable if there exist functions φt : Rm × R
n × R → R,

t = 0, 1, . . . , T − 1, and φT : Rm → R such that

J = φ0(x0, u0, φ1(x1, u1, φ2(. . . φT−2(xT−2, uT−2, φT−1(xT−1, uT−1, φT (xT ))) . . .))).

The backward separable objective function J is then said backward monotonic if for all t = 0, 1,

. . ., T − 1, the condition

φt(x̂t, ût, φt+1(. . . φT−1(x̂T−1, ûT−1, φT (x̂T )) . . .)) ≤ φt(x̃t, ũt, φt+1(. . . φT−1(x̃T−1, ũT−1, φT (x̃T )) . . .))

implies the following: for any triple (xt−1, ut−1, ξt−1) such that x̂t = x̃t = ft−1(xt−1, ut−1, ξt−1), we

have

φt−1(xt−1, ut−1, φt(x̂t, ût, φt+1(. . . φT−1(x̂T−1, ûT−1, φT (x̂T )) . . .))) ≤

φt−1(xt−1, ut−1, φt(x̃t, ũt, φt+1(. . . φT−1(x̃T−1, ũT−1, φT (x̃T )) . . .))).

When (P) satisfies both the separability and the monotonicity as defined above, the celebrated

dynamic programming (DP) Bellman (1952) is a powerful time-decomposition solution approach,

which is based on the principle of optimality.

There exist, however, a plenty of problems of interests that do not satisfy these fundamental

requirements in DP. One notorious nonseparable case is the variance minimization problem (see

White (1974) and Li et al. (2003)). The obstacle is mainly due to that the variance operation,

unlike the expectation operator, does not satisfy the tower property along the time horizon. The

variance minimization naturally emerges in the dynamic mean-variance (MV) portfolio selection

problem. After many years of struggle, Li and Ng (2000) finally solves it by embedding the original

nonseparable problem into a family of separable auxiliary problems that are analytically solvable by

DP. Sniedovich (1986) and Domingo and Sniedovich (1993) in the early days consider nonseparable

problems with the objective function of the form h(u) = ψ(v(u), z(u)), where both v and z are

functions in additive forms w.r.t. stages. Under the assumption that ψ is pseudo-concave w.r.t.

its arguments, the authors of Sniedovich (1986) and Domingo and Sniedovich (1993) develop the

so-called C-programming to convert the primal problem into a separable version which could be

handled by DP and report its applications in the variance minimization (see also Sniedovich (1987))

and fractional programming (see also Sniedovich and Vazirinejad (1990)). Carraway et al. (1990)

proposes a generalized DP for the multi-criteria optimization problem that violates the monotonic-

ity. Li and Haimes (1990), Li and Haimes (1991), and Li (1990) consider a class of nonseparable

problems where the nonseparable objective function is a monotone function of several separable

sub-objectives. Among these three papers, the first two deal with the deterministic cases, whereas

the last one deals with the stochastic counterpart. They introduce the concept of kth-order sep-

arability and convert the primal nonseparable problem into a separable k-objective optimization

problem which could be solved by the multi-objective DP Li and Haimes (1987). They further

develop conditions under which a specific Pareto solution is optimal to the original nonseparable

problem. Moreover, Li and Schmidt (1997) investigates a nonseparable cost smoothing problem for

the discrete-time deterministic linear-quadratic control.
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Different from the above works, this paper aims to develop a novel solution framework through

the scenario decomposition, which is fundamentally distinct from the methods governed by time-

decomposition-based DP. Our solution framework relies on the progressive hedging algorithm (PHA)

pioneered in Rockafellar and Wets (1991). In contrast to DP, our PHA-oriented solution scheme

can be applied to stochastic control problems which may not be separable and/or monotonic.

We emphasize that PHA has not been fully recognized up to today for its powerful capability

in dealing with the non-separability or non-monotonicity in stochastic control. We will further

apply the newly-developed solution scheme to two nonseparable (thus non-tractable by DP) real-

world applications: online quadratic programming (QP) and a novel variation of the dynamic

portfolio selection problem with smoothing properties. Interestingly, the considered MV problem

with smoothing feature could be embedded into a series of auxiliary problems that turn out to be

a concrete type of our proposed online QP model.

The rest of the paper proceeds as follows. We build up in Section 2 the scenario-decomposition

solution framework through adopting PHA on general stochastic control problems, where the in-

formation flow follows a tree structure. We then demonstrate its prominent application to the

online QP problem in Section 3. On top of that, we also apply this solution methodology to dy-

namic portfolio selection problems and their novel variations with smoothing features, and analyze

experimental results in Section 4. Finally, we conclude the paper in Section 5.

2 Solution Approach by Scenario Decomposition

We consider in this paper the problem (P) with a Markovian system. As the most prominent

feature of our new formulation, the objective function in general could be nonseparable and/or

non-monotonic. On the other hand, we confine the structure of the information flow to a tree

form, where the system randomness ξ = {ξ0, ξ1, . . . , ξT−1} is realized stage by stage, and a series

of realizations of ξt’s will form a scenario of the tree, indexed by i. From the scenario analysis

prospective, the dynamic stochastic control problem could be armed with a scenario tree in order

to reflect its information flow for the underlying uncertainties. Figure 1 exemplifies a specific three-

stage tree structure, where ξ is realized successively from ξ0 to ξ1 and finally to ξ2, thus leading to

seven possible scenarios (paths of ξ) in total. The number in each circle node represents a possible

value of the disturbance realized right before that stage. Note that any parent node (starting from

the square root node) could in general result in different numbers of children nodes. In contrast

to DP whose effectiveness comes from the time decomposition, the solution power by PHA that

we adopt in this paper roots in the scenario decomposition. Invented almost thirty years ago,

PHA has been successfully applied to several application areas including power systems scheduling

problems (see dos Santos et al. (2009) among others) and water resource planning problems (see,

e.g., Carpentier et al. (2013)). For more details on the general methodology of PHA, please refer

to Rockafellar and Wets (1991).

Let us denote by I the scenario set which consists of all possible scenarios, and denote by

ξi = {ξi0, ξ
i
1, . . . , ξ

i
T−1} the realizations of disturbance under the scenario i ∈ I. Assuming the

occurring probability of scenario i to be ρi that is fixed at time 0, we can rewrite the objective of
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Figure 1: A scenario tree with three stages and seven scenarios.

(P) as min
∑

i∈I ρiJi, where Ji denotes the sub-objective under ξ
i. Then it is natural to decompose

problem (P) into a family of scenario subproblems and consider the following individual scenario

subproblem for each i ∈ I,

(Pi) min
ut,∀t

Ji = J(xi0, u0, x
i
1, u1, . . . , x

i
T−1, uT−1, x

i
T )

s.t. xit+1 = ft(x
i
t, ut, ξ

i
t), x

i
0 = x0,

gt(x
i
t, ut) ≤ 0, gT (x

i
T ) ≤ 0,

t = 0, 1, . . . , T − 1,

which is a deterministic optimal control problem, and should be much easier to solve than the origi-

nal stochastic one. In this paper, we further assume that each (Pi) is convex w.r.t. the control vari-

able u = (u′0, u
′
1, . . . , u

′
T−1)

′ ∈ R
nT . Although the optimal solution of (Pi) satisfies all the admissible

constraints of the primal problem (P), it is not implementable in reality, since we have “stolen” the

future information (i.e., the future realization of ξ) when solving each scenario subproblem at time 0.

In other words, the scenario-specific solutions violate the so-called nonanticipative constraint which

is either explicitly or implicitly implied in any stochastic control problem. To force any admissible

solution to meet nonanticipativity, the scenario bundles, as a partition of I, are formed at each time

according to the scenario tree of the underlying problem. Graphically speaking, scenarios passing

through each node at a certain time stage are grouped together to form a bundle. In Figure 1, for

instance, at time 0 all the scenarios form a single bundle that is the scenario set itself and we denote

this partition by I0 = {I0,1} = {{i1, . . . , i7}}; and when t = 1 we have two bundles together to form

I1 = {I1,1,I1,2} = {{i1, . . . , i4}, {i5, . . . , i7}}; and finally for t = 2 we have five bundles to form the

partition of I at that time, i.e., I2 = {I2,1,I2,2,I2,3,I2,4,I2,5} = {{i1}, {i2, i3}, {i4}, {i5}, {i6, i7}}.

The nonanticipativity naturally requires any implementable policy to react the same to all indif-

ferent scenarios (the scenarios from the same bundle), and this is achieved by taking conditional

expectations on the scenario-specific solutions from the related bundle. More specifically, the im-

plementable control at time t, if the scenario i occurs, is computed through

ûit =
∑

j∈It,l

ρj
∑

j′∈It,l
ρj′
ujt , i ∈ It,l, l = 1, . . . , |It|, (1)

where ujt is the scenario-j-based admissible control at time t, and |It| is the number of scenario

bundles in the partition It. Note that |It| determines the number implementable controls corre-
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sponding to different realizations at that time. In fact, the above procedure in (1) can be char-

acterized in a linear transformation ût = Ttut, where ût = ((û1t )
′, (û2t )

′, . . . , (û
|I|
t )′)′ ∈ R

n|I|,

ut = ((u1t )
′, (u2t )

′, . . . , (u
|I|
t )′)′ ∈ R

n|I|, and the projection matrix Tt can be easily build up by

scenario probabilities based on the structure of It. Then the overall linear mapping is













û0

û1

...

ûT−1













=













T0 0 · · · 0

0 T1 · · · 0
...

...
. . .

...

0 0 · · · TT−1

























u0

u1

...

uT−1













.

The beauty of PHA lies in its augmented Lagrangian formulation that progressively aggregates

the scenario-specific solutions into an implementable one and forces them to converge to the optimal

solution of the primal problem (P), which are both admissible and implementable. More precisely,

it deals with an augmented Lagrangian problem at each iteration ν = 0, 1, . . ., which is constructed

by adding a linear Lagrangian term and a quadratic penalty term to the scenario-specific objective

function in order to penalize any utilization of the anticipative information from the future. More

precisely, we solve the following augmented Lagrangian problem in the νth iteration for each i ∈ I,

(Pi,ν) min
u

J(xi0, u0, x
i
1, u1, . . . , x

i
T−1, uT−1, x

i
T ) + u′wi,ν +

1

2
α|u− ûi,ν |22,

s.t. xit+1 = ft(x
i
t, ut, ξ

i
t), x

i
0 = x0,

gt(x
i
t, ut) ≤ 0, gT (x

i
T ) ≤ 0,

t = 0, 1, . . . , T − 1,

where we define, for compactness, u = (u′0, u
′
1, . . . , u

′
T−1)

′ ∈ R
nT as the overall control vector, and

ûi,ν = ((ûi,ν0 )′, (ûi,ν1 )′, . . . , (ûi,νT−1)
′)′ ∈ R

nT (2)

is a given implementable control for (Pi,ν). Let us denote the optimal solution of (Pi,ν) by

ui,ν+1 = ((ui,ν+1
0 )′, (ui,ν+1

1 )′, . . . , (ui,ν+1
T−1 )′)′,∈ R

nT (3)

which is a new scenario-based solution. We then aggregate all ui,ν+1, i ∈ I, into a new imple-

mentable control, denoted by

ûi,ν+1 = ((ûi,ν+1
0 )′, (ûi,ν+1

1 )′, . . . , (ûi,ν+1
T−1 )′)′ ∈ R

nT , (4)

through the componentwise calculations of (1), or in the following compact way: we first gather

ui,ν+1
t of all i to form

uν+1
t = ((u1,ν+1

t )′, (u2,ν+1
t )′, . . . , (u

|I|,ν+1
t )′)′ ∈ R

n|I|, (5)

and conduct the transformation ûν+1
t = Ttu

ν+1
t , where

ûν+1
t = ((û1,ν+1

t )′, (û2,ν+1
t )′, . . . , (û

|I|,ν+1
t )′)′ ∈ R

n|I|; (6)

and this is done for every t = 0, 1, . . . , T − 1. We then pick up the ith component of ûν+1
t , ûi,ν+1

t ,

for all t, to serve as ûi,ν+1 in (Pi,ν+1). When ν = 0, all the initial ûi,0, i ∈ I, are attained from
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ui,0, i ∈ I, following the above procedure, where ui,0 could be selected as the optimal solution

of (Pi). In (Pi,ν), the penalty parameter α > 0 is predetermined, and the Lagrangian multiplier

wi,ν = ((wi,ν
0 )′, (wi,ν

1 )′, . . . , (wi,ν
T−1)

′)′ ∈ R
nT , for every i, satisfies the recursion below,

wi,ν+1 = wi,ν + α(ui,ν+1 − û
i,ν+1
t ), (7)

where wi,0 is set at zero. The solution process repeats until a stopping criterion is satisfied. We

now provide the convergence result as follows.

Theorem 1 (Convergence of PHA, Rockafellar and Wets (1991)). If all the scenario subproblems

(Pi) are convex w.r.t. u and have been solved exactly, and {u : gt(xt, ut) ≤ 0,∀t} is a convex set

under any xt, then the sequence {ûi,ν+1}ν, generated by (Pi,ν), ν = 0, 1, . . ., converges to the real

optimal ui,∗, i ∈ I, of the primal problem (P). And on the other hand, the sequence {wi,ν+1}ν

converges to wi,∗, which is also known as the shadow price for each scenario i of the problem.

Moreover, the solution quality is guaranteed continuously improved, in the sense that

∑

i∈I

ρi

(

|ûi,ν+1 − ui,∗|22 +
1

α2
|wi,ν+1 −wi,∗|22

)

≤
∑

i∈I

ρi

(

|ûi,ν − ui,∗|22 +
1

α2
|wi,ν −wi,∗|22

)

, (8)

and the equality is finally achieved when (ûi,ν+1,wi,ν+1) = (ui,∗,wi,∗) for some ν.

3 Online Quadratic Programming

Quadratic programming (QP) is a fundamental subject in mathematical programming with wide

spectra of applications in various fields, including business and finance (see Shim (1983) for a

survey). Although QP has been investigated broadly and deeply, almost all of the studies up to

today have been confined in a deterministic framework. Recently, Agrawal et al. (2014) studies

the online linear programming (LP), where the constraint matrix is revealed column by column

along with the corresponding coefficients in the objective function. In this section, we will extend

the online programming from online LP to online QP and solve it by our newly proposed solution

scheme introduced in Section 2. More precisely, we consider an online version of a general QP,

(Q) min
ut,∀t

E

[

∑T

i,j=0

1

2
x′iQijxj +

∑T

t=0
x′tct +

∑T−1

i,j=0

1

2
u′iRijuj +

∑T−1

t=0
u′tdt

]

s.t. xt+1 = Atxt +Btut + ξt, t = 0, 1, . . . , T − 1,

where xt ∈ R
m is the state with x0 given, ut ∈ R

n is the control, and ξt ∈ R
m is the system

randomness at time t following some discrete distribution Dξt with |Dξt | possible outcomes and

the probability πkt for each k = 1, 2, . . . , |Dξt |. We further assume that ξt’s are independent across

time stages. Therefore, there are in total
∏T−1

t=0 |Dξt | scenarios for this T -period problem, and each

scenario reflects a path of ξt’s along the time horizon, and the scenario probability ρi is calculated

by the product of the involved πkt ’s. The assumptions on the coefficients will be stated later. Note

that the system disturbance ξt is realized after the decision is made at time t. To see the online
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nature of (Q), we can aggregate all the constraints into the following compact form,



















Im 0 0 · · · 0 0

−A1 Im 0 · · · 0 0

0 −A2 Im · · · 0 0
...

...
. . .

. . .
...

...

0 0 0 · · · −AT−1 Im





































x1

x2

x3
...

xT



















−













B0 0 · · · 0

0 B1 · · · 0
...

...
. . .

...

0 0 . . . BT−1

























u0

u1
...

uT−1













=













A0x0

0
...

0













+













ξ0

ξ1
...

ξT−1













, (9)

where Im is an identity matrix of size m. It becomes clear now that the right hand side of the

constraints (9) is fully uncertain at time 0, and it becomes partially deterministic when time evolves.

For instance, at time 1 (before u1 is made), only the first constraint becomes deterministic. In

general, at time t (before ut is determined), the first t constraints are realized. Although we can

observe the states when the system randomness is gradually achieved, it is often the case that we

need to make optimal decisions before that happens. On the other hand, the objective function of

(Q), in general, includes cross terms on xt’s and ut’s in terms of t, respectively. These interactions

among time stages make (Q) a concrete nonseparable instance of (P). Let us take a deeper look

on its compact form and make some assumptions on its coefficients,

(Qc) min
u

E

[

1

2
x′Qx+ x′c+

1

2
u′Ru+ u′d

]

s.t. x = A+Bu+Cξ,

where x = (x′0, x
′
1, . . . , x

′
T−1, x

′
T )

′ ∈ R
m(T+1), u = (u′0, u

′
1, . . . , u

′
T−1)

′ ∈ R
nT , and ξ = (ξ′0, ξ

′
1, . . . , ξ

′
T−1)

′ ∈

R
mT , and the coefficient matrices are given by

Q =













Q00 Q01 · · · Q0T

Q10 Q11 · · · Q1T

...
...

. . .
...

QT0 QT1 · · · QTT













∈ R
m(T+1)×m(T+1),

R =













R00 R01 · · · R0(T−1)

R10 R11 · · · R1(T−1)
...

...
. . .

...

R(T−1)0 R(T−1)1 · · · R(T−1)(T−1)













∈ R
nT×nT ,

c = (c′0, c
′
1, . . . , c

′
T )

′ ∈ R
m(T+1), d = (d′0, d

′
1, . . . , d

′
T−1)

′ ∈ R
nT ,

A =

(

x′0, (A0x0)
′, (A1A0x0)

′, . . . , (
T−1
∏

t=0

Atx0)
′

)′

∈ R
m(T+1),
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B =





















0 0 . . . 0

B0 0 . . . 0

A1B0 B1 . . . 0
...

...
. . .

...

(
T−1
∏

t=1
At)B0 (

T−1
∏

t=2
At)B1 . . . BT−1





















∈ R
m(T+1)×nT ,

and

C =



















0 0 . . . 0

Im 0 . . . 0

A1 Im . . . 0
...

...
. . .

...
∏T−1

t=1 At
∏T−1

t=2 At . . . Im



















∈ R
m(T+1)×mT .

Assumption 1. The matrices Q and R are positive semidefinite.

The conventional stochastic linear-quadratic (LQ) problem turns out to be a special case of

(Qc) in which both Q and R are diagonal block matrices, and are positive semidefinite and positive

definite, respectively. Under Assumption 1, (Qc) is solvable by our proposed scenario-decomposition

scheme, as each scenario subproblem

(Qi
c) min

u

1

2
x′Qx+ x′c+

1

2
u′Ru+ u′d

s.t. x = A+Bu+Cξi,

is convex w.r.t. the decision variable u. If R is further positive definite, we have the optimal

solution to (Qi
c), denoted by ui,0, in an analytical form given by

ui,0 = −(B′QB+R)−1[B′Q(A+Cξi) +B′c+ d]. (10)

Note again that the optimal solution to the ith scenario problem, ui,0, is not the optimal result to

the primal problem (Qc), even not a feasible one since it violates the nonanticipative constraint. We

now apply the scenario-decomposition solution approach to (Qc). More precisely, let us consider

at iteration ν = 0, 1, . . ., the following augmented Lagrangian problem for each scenario i,

(Qi,ν
c ) min

u

1

2
x′Qx+ x′c+

1

2
u′Ru+ u′d+ u′wi,ν +

1

2
α|u− ûi,ν |22

s.t. x = A+Bu+Cξi,

for a given implementable policy ûi,ν and a Lagrangian multiplier wi,ν (note that when ν = 0, ûi,0

is set at the implementable solution attained from ui,0, the optimal solution of (Qi
c), and wi,0 is

set as a zero vector). This time, due to the newly-added quadratic term on u in the objective, the

optimal solution of (Qi,ν
c ), denoted by ui,ν+1, is always given analytically by

ui,ν+1 = − (B′QB+R+ αInT )
−1
[

B′Q(A+Cξi) +B′c+ d+wi,ν − αûi,ν
]

, (11)

where InT is an nT -by-nT identity matrix. Note that the explicit recursions in (11) help us saving

efforts when we deal with the iterative augmented Lagrangian problems. Therefore, the algorithm
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for this type of application is quite efficient. We then calculate ûi,ν+1, the implementable solution

for the next iteration, based on (1) or following the same procedure shown from (3) to (6), and

update wi,ν+1 according to (7). In practice, we could select the following condition as our stopping

criterion,

∑

i∈I

ρi

(

|ûi,ν+1 − ûi,ν |22 +
1

α2
|wi,ν+1 −wi,ν |22

)

≤ ǫ, (12)

for a sufficiently small tolerance ǫ > 0. The set of implementable controls {ûi,ν+1 : i ∈ I} that

satisfies this stopping rule is chosen as the optimal solution to (Q) or (Qc), which is denoted by

{ûi,∞ : i ∈ I}.

Example 1. Let us consider an illustrative problem with a scalar state (m = 1), a two-dimensional

control (n = 2), and a planning horizon of T = 3. The system parameters are simply given by

At = 1 and Bt = (1, 1) for all t, whereas Q = (Qij)
T
i,j=0 and R = (Rij)

T−1
i,j=0 in the performance

measure are randomly generated as follows,

Q =













2.4512 1.0930 1.0243 1.8873

1.0930 0.7852 0.2319 1.0027

1.0243 0.2319 0.7276 0.5147

1.8873 1.0027 0.5147 1.7188













,

R =























1.3281 1.4932 1.2903 0.7788 1.0149 1.0774

1.4932 2.6110 2.2984 1.3315 1.3902 2.3629

1.2903 2.2984 2.7214 1.7258 1.7339 2.6799

0.7788 1.3315 1.7258 1.3102 1.0305 1.6583

1.0149 1.3902 1.7339 1.0305 1.3073 1.6208

1.0774 2.3629 2.6799 1.6583 1.6208 2.9734























.

The above two matrices are positive semidefinite and positive definite, respectively. To have a

positive definite R in this example is for the purpose of comparison with the classical stochastic LQ

control. Furthermore, c and d are set to be zero vectors for simplicity. The white system disturbance

ξt is modeled by a two-point distribution at each time t with Dξt = {1,−1} and equal probability.

Hence this is simply a binomial scenario tree as shown in Figure 2, where the possible realizations

of ξt’s at different time stages and under different scenarios are listed next to the related circle

nodes. The total number of scenarios is |I| = 8 with the scenario probability ρi = 1/8 for every

i ∈ I. The partitions of the scenario set, It’s, together with scenario bundles at each time, It,l’s,

are easily recognized: I0 = {I0,1} = {{i1, . . . , i8}}; I1 = {I1,1,I1,2} = {{i1, . . . , i4}, {i5, . . . , i8}};

and finally I2 = {I2,1, . . . ,I2,4} = {{i1, i2}, . . . , {i7, i8}}. Suppose the system starts from x0 = 1.

The optimal controls ûi,∞ = ((ûi,∞0 )′, (ûi,∞1 )′, (ûi,∞2 )′)′, i ∈ I, solved by the scenario-decomposition

scheme in MATLAB for the above online QP problem, are displayed (rounding in two decimals)

beneath the corresponding nodes in Figure 2. We next keep only diagonal blocks and set others to

be zeros in the above Q and R and investigate the resulted standard stochastic LQ problem using

both PHA and DP. We find that the optimal controls obtained from both methods coincide with

each other. This exercise numerically demonstrates equivalent solution powers to certain degrees

from both time decomposition and scenario decomposition approaches when both are applied to the

separable and monotone stochastic control problems with convex scenario subproblems.
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1

1

1 -1

-1

1 -1

-1

1

1 -1

-1

1 -1

t = 0

t = 1

t = 2

T = 3

ûi,∞0 =

(

0.37

−1.83

)

,

∀i ∈ I0,1

ûi,∞1 =

(

3.58

−5.01

)

,

∀i ∈ I1,1

ûi,∞1 =

(

1.60

−1.50

)

,

∀i ∈ I1,2

ûi,∞2 =

(

−3.23

1.87

)

,

∀i ∈ I2,1

ûi,∞2 =

(

−1.25

1.41

)

,

∀i ∈ I2,2

ûi,∞2 =

(

−1.60

1.25

)

,

∀i ∈ I2,3

ûi,∞2 =

(

0.38

0.79

)

,

∀i ∈ I2,4
i1 i2 i3 i4 i5 i6 i7 i8

Figure 2: Scenario tree for ξ of Example 1 and its optimal controls at different times and under

different scenarios.

4 Dynamic Portfolio Selection with Smoothing Properties

In this section, let us consider a financial market consisting of n risky assets and one risk-free asset,

and an investment time horizon T (with the time indices t = 0, 1, · · · , T−1). The total return of the

riskless asset, denoted by rt, is deterministic and given, whereas the random total return of risky

assets at time t, denoted by et = (e1t , . . . , e
n
t )

′ ∈ R
n, is assumed to follow a discrete distribution

Det with |Det | possible realizations and corresponding probabilities πkt ≥ 0, k = 1, . . . , |Det |.

Furthermore, et’s from different time stages are assumed to be independent. A series of realizations

on {et}t then defines a scenario. Therefore, given the time horizon T , there are in total
∏T−1

t=0 |Det |

number of scenarios and the scenario probability ρi is then calculated by the product of related

πkt ’s that are attached to this scenario i. Let xt ∈ R be the wealth level at time t with the initial

wealth x0 given, and ut = (u1t , , · · · , u
n
t )

′ ∈ R
n be the portfolio allocation where uit is the dollar

amount to invest in the risky asset i, i = 1, · · · , n. Then the dollar amount to the riskless asset

at time t is (xt −
∑n

i=1 u
i
t) under the assumption of self-financing. Therefore, the wealth dynamic

under policy ut becomes

xt+1 =

n
∑

i=1

eitu
i
t + (xt −

n
∑

i=1

uit)rt = rtxt + P ′
tut, t = 0, 1, . . . , T − 1, (13)

where Pt = et − rt1n ∈ R
n is known as the excess total return and 1n ∈ R

n is an all-one vector of

size n.

There are in general two directions on objectives for modelling the portfolio selection problem,

i.e., the expected utility maximization framework and the mean-variance formulation. Among con-

ventional formulations, most objective functions focus on the performance of the terminal wealth.

Failing to take into account the investment behavior during the investment process could lead to

large fluctuations either in the wealth level or in the policy values, while the former may further

lead to a bankruptcy (see Zhu et al. (2004) and Bielecki et al. (2005)) and the latter may cause

large transaction costs. Thus, a relatively smooth wealth growth may often be desirable, even

with some sacrifice of the terminal wealth. In some other situations, to avoid the transaction cost

as much as possible, investors may demand relatively uniform budget allocation during the whole

investment period. In order to reflect these practical concerns, we extend in this research both the
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traditional utility formulation and the conventional dynamic mean-variance model by attaching to

their original objective functions an expectation of a smoothing term in a quadratic variation form

along the time horizon,

S({xt}t, {ut}t) =
∑

t∈T

(

ft(xt, ut)−
1

|T |

∑

τ∈T

fτ (xτ , uτ )
)2
, (14)

for some types of functions ft : R × R
n → R, where T ⊆ {0, 1, . . . , T} is a subset of time stages

selected for smoothing purpose. Some concrete choices of ft could be

ft(xt, ut) = xt (15)

in order for us to smooth the wealth levels, and

ft(xt, ut) =
∑

i∈N

uit, (16)

in order for us to smooth the total investment amount in some specific risky assets specified by

N ⊆ {1, 2, . . . , n}.

4.1 Smoothing under Expected Utility Maximization

Conventionally, the investor seeks to find the optimal ut for all t such that the expected utility of the

final wealth, denoted by E[U(xT )], is maximized subject to the wealth dynamic (13), where U(x)

is the investor’s utility function. In this paper we further assume that the utility function U(x)

satisfies −U ′(x)/U ′′(x) = a+ bx for certain coefficients a and b, which is known as the hyperbolic-

absolute-risk-aversion (HARA) utility. Some commonly-used utilities, for example, the exponential

utility of the form {U(x) = −e−x/a : x ∈ R} where a > 0 and b = 0 and the power utility of the

form {U(x) = 1
b−1 (a+ bx)1−1/b : x ≥ −a/b} where b 6= 1 and b 6= 0 are two special cases of HARA

utility. In this subsection, we consider expected utility maximization with a general smoothing

term,

(US(γ)) max
ut,∀t

E[U(xT )]− γE[S({xt}t∈T , {ut}t∈T )]

s.t. xt+1 = rtxt + P ′
tut, t = 0, 1, . . . , T − 1,

where the trade-off parameter γ ≥ 0 specified by the investor represents a trade-off between the

expected utility of the terminal wealth and the smoothing demand during the intermediate process.

The larger the γ, the more the investor is concerned about smoothing. When γ = 0, this problem

reduces to the classical model under the HARA utility. It is well known that (US(0)) is solvable

by DP and the optimal policy (see Bertsekas (2017)) is given by

u∗t (xt) = βt

(

a
∏T−1

τ=t+1 rτ
+ brtxt

)

, (17)

for t = 0, 1, . . . , T − 1 (let us define the operator
∏T−1

τ=T rτ = 1 for consistency), where βt =

(β1t , . . . , β
n
t )

′ ∈ R
n should be derived from the optimality condition once given xt,

E

[

U ′

(

rtxt +

(

a
∏T−1

τ=t+1 rτ
+ brtxt

)

β′tPt

)

Pt

]

= 0, (18)
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which is a system of n nonlinear equations at time t. In general, the condition (18) is hard to solve for

βt. We point out here that (US(0)) is also solvable by PHA under a discrete market setting, leading

to a family of numerical optimal solutions in a tabular form, conditional on the future realizations

of et’s. More importantly, PHA will display its extra solution power more on (US(γ)) with γ > 0,

the expected utility maximization with smoothing term, whose non-separability prevents DP from

its adoption. It is obvious that, for any γ ≥ 0, the quadratic smoothing terms in the forms of (15)

or (16), together with the linear wealth dynamic in (13), make the problem (US(γ)) satisfying the

conditions in Theorem 1, thus being solvable by PHA. We complete this subsection by investigating

a case study below.

Example 2. Consider a similar market setting as in Example 3 of Cui et al. (2014), where there

are three risky assets (n = 3) and the distribution, for simplicity, is directly imposed on the random

excess total return Pt, instead of et. Suppose that Pt is independent and identically distributed with

a discrete uniform distribution of five possible realizations (|DPt | = 5 for all t and πkt = 1/5 for all

k = 1, . . . , 5 and all t),

Pt ∈













0.18

−0.05

−0.14






,







0.03

−0.12

−0.03






,







−0.05

0.15

0.05






,







−0.01

0.15

0.10






,







−0.05

0.01

0.06












, ∀t. (19)

We scale the initial wealth to x0 = 1, and set T = 3 and rt = 1.04 for all t. Suppose that the investor

has an exponential utility U(x) = −e−x (hence a = 1 and b = 0). Originally, the model (US(0))

with this exponential utility can still be solved by DP under the above discrete market setting (19),

and based on (17), the analytical optimal feedback policy is given by, for t = 0, 1, . . . , T − 1,

u∗t (xt) =
βt

∏T−1
τ=t+1 rτ

, (20)

According to (18), the xt-dependent βt = (β1t , β
2
t , β

3
t )

′ at each time t should be derived from the

following system of nonlinear equations, starting from t = 0,

|DPt
|

∑

k=1

πk exp

{

−

(

rtxt +
β′tPt,k

∏T−1
τ=t+1 rτ

)}

Pt,k = 0, (21)

where Pt,k stands for the kth possible realization in DPt of (19). Although obtaining the value of

βt is indispensable for executing the DP-based optimal policy, solving for βt from (21) is not easy,

even under the current discrete market setting.

We now resolve the above (US(0)) by the scenario-decomposition method PHA and get the

optimal asset allocations ûi,∞t in Table 1 (rounding in two decimals), which is a tabular form in

the sense that it indicates how much to invest at what time, on which asset (the symbols A1, A2

and A3 represent the three risky assets, respectively), and under which scenario (a path of realized

Pt,k’s). Then the wealth trajectory under the optimal policy can be traced for any scenario i, and we

denote it by {xi,∞t }t with x
i,∞
0 = x0 given for every i. Since the number of all possible realizations of

wealth trajectories under the optimal solutions is finite in our discrete market (which in this example

is |I| = 125), we could easily check the consistency of the optimal solutions between numerical values
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from PHA and those outputted by the analytical policy from DP when plugging in those possible

future wealth levels. This is done by, for each scenario i, replacing the left hand side of (20) with

the value of ûi,∞t and deriving reversely the scenario-specific βt,i, and we succeed to confirm that the

resulted βt,i satisfies the equality in (21) where we set xt = xi,∞t . We again numerically demonstrate

the equivalence between the scenario-decomposition and the time-decomposition approaches, when

available, for solving separable, monotone and convex multistage decision-making problems under

a finite-scenario setting. More importantly, we attain the exact investment decisions that DP often

fails to provide due to the difficulty in finding βt from (18).

When we consider (US(γ)) with γ > 0, only PHA works for numerical solutions. In this

example, we test γ = 1 and γ = 10 for the wealth smoothing term in (15) with T = {1, 2, 3}. The

computational tabular results are also listed in Table 1. Comparing them with the results without

smoothing, we find that, when γ > 0, the asset allocations in general become moderate. This further

leads to smoother wealth trajectories, no matter in a single-scenario level {xi,∞t }t (which could be

seen from our experiments but we omit the details here), or in an overall level in terms of their

expectations and variances as exhibited in Table 2 (rounding in two decimals if needed). From Table

2, we could see a stabler growth on the expected wealth and a less-fluctuated wealth movement (i.e.,

lower variances) when the wealth smoothing is considered (γ = 1, 10). These naturally cause a

decrease on the expected terminal wealth E[xi,∞T ] compared with the non-smoothing setting (γ = 0).

And the larger the γ, the more conservative the investment decision, thus the bigger the sacrifice

on E[xi,∞T ]. On the other hand, however, the smoothing helps, to a certain degree, on reducing

the possible bankruptcy induced by the relatively aggressive investing style during the investment

process. To see this, let us define the bankruptcy rate at time t by (similar to Zhu et al. (2004))

BRt = P(xt < xbt , xτ ≥ x
b
τ for τ = 0, 1, . . . , t− 1)

=
BNt

|I| −
∑t−1

τ=0BNτ

, t = 1, . . . , T, (22)

where xbt denotes the wealth benchmark at time t specified by the investor, and we define BNt as the

number of bankruptcy scenarios at time t under which xt < xbt and xτ ≥ xbτ for τ < t. In fact, the

denominator of (22) indicates the number of scenarios that still survive at time t. Initially at t = 0,

we set BR0 = 0, BN0 = 0, and xb0 = x0, and we choose a risk-free-growing wealth benchmark, that

is, xbt =
∏t−1

τ=0 rtx0 for t ≥ 1. From Table 2, we could see a distinct reduction on the bankruptcy

rates after introducing the smoothing property with some appropriate smoothing balances (such as

γ = 1 and γ = 10 here). Moreover, adding a smoothing term also leads to a better worst case of

the final wealth (in this example we obtain 0.3782, 0.9853, and 1.0131 for γ = 0, 1, 10, respectively):

the conservative behavior under smoothing helps to avoid severe losses in case an adverse scenario

occurs.

4.2 Smoothing under Mean-variance Formulation

Let us now consider a conventional discrete-time mean-variance (MV) formulation given as follows,

(MV(w)) max
ut,∀t

E(xT )− wV ar(xT )

s.t. xt+1 = rtxt + P ′
tut, t = 0, 1, . . . , T − 1,
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where the parameter w, predetermined by the investor, explicitly reveals her trade-off between

the expected terminal wealth and its variance. Note that (MV(w)), and also other types of MV

models, is nonseparable owing to the variance operator. From Li and Ng (2000), we know that

(MV(w)) can be embedded into a family of separable auxiliary problems that are solvable by DP

and the solution of an auxiliary problem with a special value of the parameter in turn solves the

primal problem. We list the analytical optimal feedback policy of (MV(w)) below,

u∗t (xt;w) = −Ktrtxt +

(

x0

T−1
∏

s=0

rs +
1

2w
∏T−1

s=0
(1 − E′[Ps]Ks)

)(

T−1
∏

τ=t+1

1

rτ

)

Kt, t = 0, 1, . . . , T − 1, (23)

where Kt = E
−1 [PtP

′
t ]E[Pt], and we define the operator

∏T−1
τ=T (1/rτ ) = 1 for consistency.

Owing to the similar issues as in the utility framework, the objective in (MV(w)) merely

considers the final wealth, thus may suffer possible large fluctuations during the investment process.

Therefore, in this subsection we also investigate a more general mean-variance formulation by

adding a wealth smoothing term,

(MVS(w, γ)) max
ut,∀t

E(xT )− wV ar(xT )− γE

[

∑T

t=1
(xt − x̄)

2

]

s.t. xt+1 = rtxt + P ′
tut, t = 0, 1, . . . , T − 1,

where x̄ = 1/T
∑T

t=1 xt denotes the average wealth along the time horizon, and γ ≥ 0 reflects a

preselected trade-off between the MV objective and the smoothing term. Note that PHA cannot

be directly applied to (MVS(w, γ)) since it is originally designed for solving the stochastic problem

with only the risk-neutral evaluation criterion (i.e., the expectation measure). We first rearrange

the objective in (MVS(w, γ)) as

E(xT )− wV ar(xT )− γE

[

T
∑

t=1

(xt − x̄)
2

]

= E[xT ]− w(E[x
2
T ]− E

2[xT ])− γE

[

T
∑

t=1

x2t −
1

T
(

T
∑

t=1

xt)
2

]

= − E



(γ −
γ

T
)

T−1
∑

t=1

x2t + (w + γ −
γ

T
)x2T −

γ

T

∑

1≤i6=j≤T

xixj



+ wE2[xT ] + E[xT ]

= Ũ(E[x21],E[x1x2], . . . ,E[x1xT ],E[x2x1],E[x
2
2], . . . ,E[x2xT ], . . . ,E[xTx1],E[xTx2], . . . ,E[x

2
T ],E[xT ]). (24)

Note that Ũ is a convex function of E[xixj], 1 ≤ i, j ≤ T , and E[xT ]. By invoking the embedding

scheme as in Li and Ng (2000), we consider the following auxiliary problem

(A(wc, λ)) max
ut,∀t

E



−
∑

1≤i,j≤T

wijxixj + λxT





s.t. xt+1 = rtxt + P ′
tut, t = 0, 1, . . . , T − 1,

where λ ∈ R and we assemble all the wij’s into

wc = (w11, w12, . . . , w1T , w21, w22, . . . , w2T , . . . , wT1, wT2, . . . , wTT )
′ ∈ R

T 2

,

with wtt = γ − γ/T for t = 1, . . . , T − 1, wTT = w + γ − γ/T and wij = −γ/T for 1 ≤ i, j ≤ T

with i 6= j. Let us further denote the solution set of (MVS(w, γ)) by Π(w, γ), and the solution
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set of (A(wc, λ)) by ΠA(w
c, λ). We also denote, for any policy u = (u′0, u

′
1, . . . , u

′
T−1)

′ ∈ R
nT , the

first-order derivative of Ũ w.r.t. E[xT ] by

d(u) =
dŨ

dE[xT ]

∣

∣

∣

∣

u

= 1 + 2wE[xT ]|u. (25)

Lemma 1. For any u∗ ∈ Π(w, γ), u∗ ∈ ΠA(w
c, d(u∗)).

Proof. As Ũ is convex w.r.t. E[xixj], 1 ≤ i, j ≤ T , and E[xT ], the proof is similar to Theorem 1

in Li and Ng (2000). Thus, we omit the details here. �

The interpretation of Lemma 1 is similar to Li and Ng (2000), that is, in order to obtain the

primal solution, the problem (MVS(w, γ)) can be embedded into the auxiliary problem (A(wc, λ)).

Moreover, the auxiliary problem in Li and Ng (2000) is a special case of ours: only E[x2T ] exists

in the auxiliary problem of Li and Ng (2000), while all cross terms, E[xixj ], 1 ≤ i, j ≤ T , appear

in our setting. What significantly distinguishes our auxiliary problem from those in Li and Ng

(2000) and Zhu et al. (2004) is that (A(wc, λ)) in our case cannot be solved by DP anymore, since

the smoothing introduces cross terms of wealth levels among different time stages. Before we

demonstrate that (A(wc, λ)) can be solved by PHA, we need to prove first that (A(wc, λ)) satisfies

the conditions in Theorem 1. To see this, let us rewrite the auxiliary problem (A(wc, λ)) as the

following equivalent compact form,

(A(W, λ)) max
u

E
[

−x′Wx+ λx′δ
]

s.t. x = Pu+ x0r,

where x = (x1, . . . , xT )
′ ∈ R

T , δ = (0, . . . , 0, 1)′ ∈ R
T , and

W = (wij)1≤i,j≤T =













γ − γ
T − γ

T . . . − γ
T

− γ
T γ − γ

T . . . − γ
T

...
...

. . .
...

− γ
T − γ

T . . . w + γ − γ
T













∈ R
T×T ,

P =





















P ′
0 0 . . . 0

r1P
′
0 P ′

1 . . . 0

r2r1P
′
0 r2P

′
1 . . . 0

...
...

. . .
...

(
T−1
∏

t=1
rt)P

′
0 (

T−1
∏

t=2
rt)P

′
1 . . . P ′

T−1





















∈ R
T×nT ,

r =

(

r0, r1r0, . . . ,
∏T−1

t=0
rt

)′

∈ R
T .

Given w ≥ 0 and γ ≥ 0, we have x′Wx = wE[x2T ] + γE
[

∑T
t=1(xt − x̄)

2
]

≥ 0 for any x, thus the

matrix W is positive semidefinite. Together with the fact that x is linear in u, we conclude that

each scenario subproblem of (A(W, λ)) (with a certain realization on the matrix P) is concave

w.r.t. u. Thus, (A(W, λ)) satisfies the conditions in Theorem 1. Notice that the structure

15



of (A(W, λ)) falls into the framework of the online QP discussed in Section 3, except that the

underlying systems dynamics are slightly different. Before presenting the solution algorithm, let

us consider the condition under which the solution of (A(W, λ)) also constitutes a solution to

(MVS(w, γ)).

Theorem 2. Suppose u∗ ∈ ΠA(w
c, λ∗). A necessary condition for u∗ ∈ Π(w, γ) is λ∗ = 1 +

2wE[xT ]|u∗.

Proof. The solution set ΠA(w
c, λ) can be characterized by λ when we fix wc. Note that from

Lemma 1 we have Π(w, γ) ⊆ ∪λΠA(w
c, λ). Therefore, solving (MVS(w, γ)) is equivalent to con-

sidering the following,

max
λ

Ũ(E[xi(w
c, λ)xj(w

c, λ)],∀i, j,E[xT (w
c, λ)])

= max
λ
−
(

∑

1≤i,j≤T
wijE[xi(w

c, λ)xj(w
c, λ)]

)

+ wE2[xT (w
c, λ)] + E[xT (w

c, λ)].

The first-order necessary optimality condition for λ∗ is

−

(

∑

1≤i,j≤T
wij

dE[xi(w
c, λ)xj(w

c, λ)]

dλ

∣

∣

∣

∣

λ∗

)

+ (1 + 2wE[xT ]|u∗)
dE[xT (w

c, λ)]

dλ

∣

∣

∣

∣

λ∗

= 0. (26)

On the other hand, as u∗ ∈ ΠA(w
c, λ∗), we have the following according to Reid and Citron (1971),

−

(

∑

1≤i,j≤T
wij

dE[xi(w
c, λ)xj(w

c, λ)]

dλ

∣

∣

∣

∣

λ∗

)

+ λ∗
dE[xT (w

c, λ)]

dλ

∣

∣

∣

∣

λ∗

= 0. (27)

Combining (26) and (27), the vector (−(wc)′, λ∗)′ should be proportional to the vector (−(wc)′, 1+

2wE[xT ]|u∗)′, thus we must have λ∗ = 1 + 2wE[xT ]|u∗ . �

We now apply our scenario-decomposition solution method to solve (A(W, λ)) for a given λ.

We first deal with individual scenario subproblems in their equivalent minimization forms,

(Ai(W, λ)) min
u

x′Wx− λx′δ

s.t. x = Piu+ x0r,

where Pi is the realization of P under the scenario i ∈ I. Although (Pi)′WPi could be singular for

some i, we could always leverage on any convex optimization algorithm to find the global optima of

(Ai(W, λ)), which are denoted by ui,0. We next consider its augmented Lagrangian at the iteration

ν,

(Ai,ν(W, λ)) min
u

x′Wx− λx′δ + u′wi,ν +
1

2
α|u− ûi,ν |22

s.t. x = Piu+ x0r,

and the optimal solution of (Ai,ν(W, λ)), denoted by ui,ν+1, can always be analytically obtained

as

ui,ν+1 = − [2(Pi)′WPi + αInT ]
−1[2x0(P

i)′Wr− λ(Pi)′δ +wi,ν − αûi,ν ], (28)
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for some given ûi,ν and wi,ν . Then the new implementable policy ûi,ν+1 is calculated according

to (1) or following the projection procedure from (3) to (6). The iteration process continues until

the stopping condition in (12) is satisfied. We finally obtain the optimal solution of (A(W, λ))

for a certain λ ∈ R. Now we need to design a solution method to find the optimal λ∗. When

the optimal solution of (A(W, λ)) can be expressed in a function form of λ, we can substitute it

back to (MVS(w, γ)) and find the optimal λ∗ such that Ũ is maximized. In the current situation,

however, as PHA does not yield an analytical solution, we need to invoke a heuristic method to

carry out the job.

Theorem 2 reveals the connection between λ∗ and u∗ as the optimal solution to both (A(W, λ∗))

and (MVS(w, γ)). In fact, we could rely on this relationship to narrow down the possible range of

λ∗. More precisely, the analysis of the previous subsection indicates that there is a sacrifice on the

expected final wealth when we consider the smoothing. Then according to Theorem 2, we could

set the upper bound of λ∗ as

λmax = 1 + 2wE[xT ]|uns , (29)

where uns = {unst }t denotes the optimal policy of the classical dynamic MV model with no smooth-

ing term given in (23). On the other hand, we could anticipate that the expected terminal wealth,

under an optimal policy in the dynamic MV model with a smoothing term, should be larger than

the initial wealth. Thus, we set the lower bound by

λmin = 1 + 2wx0. (30)

In summary, we claim that λ∗ ∈ [λmin, λmax]. Within this specified range, we could use a line

search method to efficiently find the optimal value of λ and hence the optimal policy of the primal

problem (MVS(w, γ)). We summarize our search procedure in details in Algorithm 1. From our

extensive experimental studies, we essentially find that the value of Ũ is always concave w.r.t. λ.

This phenomenon was also analytically found in Li and Ng (2000). Therefore, we add one more

step to fit a quadratic function in the algorithm in order to enhance the accuracy of the ordinary

line search. We discuss a case study of a dynamic MV problem with a smoothing term in the

following to complete this subsection.

Example 3. Let us consider a market with the following expectation vector and covariance matrix

of the random total return et ∈ R
3, which has been investigated in Li and Ng (2000),

E[et] =







1.162

1.246

1.228






, cov(et) =







0.0146 0.0187 0.0145

0.0187 0.0854 0.0104

0.0145 0.0104 0.0289






.

We randomly generate discrete distributions in this example to match exactly the above two moments

(and, at the same time, prevent arbitrage opportunities as a conventional assumption in the finance

literature), so that we could easily verify pros and cons of adding a smoothing term when we compare

it with the classical results in Li and Ng (2000). More precisely, we begin with an initial wealth

x0 = 10, an investment horizon T = 3, and one risk-free bond with the total rate rt = 1.04. Suppose
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Algorithm 1 Find λ∗ of (A(W, λ)) and u∗ of (MVS(w, γ))

Input: The parameters w and γ, the distribution Det and the risk-free rate for t = 0, 1, . . . , T − 1,

the initial wealth x0, the penalty α, the tolerance ǫ, and the step size θ.

Output: λ∗ of (A(W, λ)) and u∗ of (MVS(w, γ)).

1: Decide λmax by (29) and λmin by (30). Let κ = 0.

2: Set λκ = λmin + κθ, and solve (A(W, λκ)), and denote the optimal solution by uA(λ
κ).

3: Compute Ũ |
uA(λκ) of (24) and denote its value by Ũ(λκ).

4: If λκ = λmax, then stop; else, κ ← κ+ 1, and go back to Step 2.

5: Fit the dataset {λκ, Ũ(λκ)}κ into a quadratic function (a downward parabola in R
2) and find

its optimal solution denoted by λfit.

6: Finally, λ∗ ∈ argmax{Ũ (λ) : λ ∈ {λκ,∀κ} ∪ {λfit}} and hence u∗ = uA(λ
∗).

that et follows different uniform distributions at different time t = 0, 1, 2 (but independent across

time stages), which are given below,

e0 ∈

















1.2722

1.4294

1.3126






,







1.3352

1.4018

1.2519






,







1.0996

1.3859

1.2868






,







0.9448

0.6111

0.8722






,







1.1904

0.8172

1.4877






,







1.0606

1.1211

1.2403






,







1.0363

1.4716

1.0339






,







1.3191

1.4242

1.4224






,







1.1968

1.5481

1.1376






,







1.1649

1.2495

1.2346

















, |De0 | = 10,

e1 ∈

















1.3056

1.2997

1.4462






,







1.1498

1.4673

1.0048






,







1.0833

0.9035

1.2252






,







0.9665

0.7577

0.9926






,







1.2876

1.5520

1.2225






,







1.2733

1.1900

1.4485






,







1.0679

1.5517

1.2561

















, |De1 | = 7,

e2 ∈

















1.0724

0.7472

1.1059






,







1.0976

1.0795

1.3050






,







1.3114

1.5110

1.2140






,







1.3031

1.4376

1.5043






,







1.0255

1.4547

1.0109

















, |De2 | = 5.

Therefore, we have |I| = 350 scenarios. The corresponding scenario tree and scenario partitions

and bundles can also be easily constructed and obtained so that we omit the details here due to

the space limit. We then solve (MVS(w, γ)) by the procedure introduced in this subsection for

γ = 1 but with different w = 0.5, 1, 5, respectively, and obtain the optimal allocation, denoted by

{ûi,∞(w, γ)}i, and calculate the wealth trajectory xi,∞(w, γ) under ûi,∞(w, γ) for all the possible

scenarios. We also obtain the optimal policy u∗(x;w) of (MV(w)) for the same w’s based on (23)

and calculate the corresponding wealth trajectories xi,DP (w) under all circumstances starting from

x0.

18



The statistical results are listed in Table 3 (rounding in four decimals if needed). It is obvious

that, in general, taking smoothing into account facilitates investors to better manage their interme-

diate wealth fluctuations, and this can be seen from the much lower variances under (MVS(w, γ))

across all w’s considered, compared to those under (MV(w)). Similar to the utility framework,

there is also a sacrifice on the expected terminal wealth in (MVS(w, γ)) at all levels of w. What

different from the utility case is that the bankruptcy almost disappears in the current MV example

when we set the bankruptcy boundary at xbt = 0 for all t (except for a very small positive bankruptcy

rate 0.0143 when t = 2 under MV(0.5)). It seems plausible that smoothing has little to do on

controlling the bankruptcy rate in MV models. However, we claim that smoothing is still a better

choice if the investor really cares about the worst case. To see this, suppose the investor does not

consider smoothing. Although she could still achieve relatively good management for extreme situ-

ations through increasing w (i.e., emphasizing more on the variance part) in MV(w) (and this is

evidenced from the worst-case column from MV(0.5) to MV(5) in Table 3), it costs her nearly a

half drop on the expected terminal wealth (from 25.1709 to 12.6409 in our experiments). On the

other hand, smoothing not only brings better worst cases at every level of w, but also makes the

investor only suffer a quite mild loss on her expected final wealth (from 13.3638 to 11.8048 shown

under MVS(w, γ)’s).

5 Conclusion

Stochastic control problems can be in general classified into two categories: separable and nonsep-

arable. The former class can be solved by dynamic programming (DP), at least theoretically. For

the latter one, however, no general solution framework has been developed so far in the literature.

Recognizing the applicability of progressive hedging algorithm (PHA) in dealing with nonseparable

stochastic control problems, we develop in this paper the scenario decomposition solution frame-

work to fill in the gap. To the best of our knowledge, this is the first attempt in the literature

to solve nonseparable stochastic control problems under a general framework. We believe that

our new development will greatly extend the reach of the stochastic control. Our results in the

online quadratic programming and dynamic portfolio selections with smoothing properties clearly

demonstrate the applicabilities of the scenario decomposition approach when the time decomposi-

tion methodology inherent in DP fails. We would like to point out one future research direction:

While the curse of dimensionality blocks DP from solving relatively large-scale problems, the curse

of dimensionality also affects negatively the performance of PHA, especially due to the model

assumption of a tree structure.
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Table 1: Tabular Optimal Solutions ûi,∞t of (US(γ)) in Example 2

t
γ = 0 γ = 1 γ = 10

Scenarios
A1 A2 A3 A1 A2 A3 A1 A2 A3

0 10.92 3.31 7.25 13.76 0.92 14.04 12.16 0.14 13.43

1

8.65 3.33 4.97 2.79 -0.85 3.52 -0.55 -0.09 -0.44 if P0,1 occurs

13.65 2.85 10.46 1.92 0.10 1.74 -0.36 -0.02 -0.33 if P0,2 occurs

9.86 3.25 6.23 0.88 0.20 0.64 -0.65 0.04 -0.67 if P0,3 occurs

7.65 3.31 4.09 -0.74 -0.16 -0.55 -1.75 0.06 -1.75 if P0,4 occurs

12.47 2.98 9.12 0.88 0.18 0.67 -0.75 0.04 -0.76 if P0,5 occurs

2

7.12 3.31 3.56 1.78 -0.60 2.31 -0.49 -0.05 -0.42 if P0,1, P1,1 occurs

10.64 3.06 7.14 3.57 -1.37 4.81 -0.74 -0.07 -0.64 if P0,1, P1,2 occurs

7.81 3.31 4.16 3.25 -0.66 3.78 -0.51 -0.12 -0.37 if P0,1, P1,3 occurs

6.48 3.26 3.06 0.72 -0.69 1.39 -0.50 0.00 -0.48 if P0,1, P1,4 occurs

9.68 3.18 6.07 3.31 -1.22 4.40 -0.68 -0.07 -0.58 if P0,1, P1,5 occurs

10.41 3.09 6.89 1.40 0.06 1.28 -0.30 -0.01 -0.28 if P0,2, P1,1 occurs

17.32 2.04 15.15 2.30 0.08 2.14 -0.44 -0.01 -0.41 if P0,2, P1,2 occurs

12.56 2.76 9.41 2.05 0.12 1.85 -0.39 -0.03 -0.35 if P0,2, P1,3 occurs

9.02 3.23 5.39 1.09 -0.06 1.11 -0.23 0.00 -0.22 if P0,2, P1,4 occurs

15.66 2.28 13.14 2.11 0.10 1.93 -0.42 -0.01 -0.39 if P0,2, P1,5 occurs

7.96 3.31 4.31 0.64 0.16 0.46 -0.53 0.04 -0.54 if P0,3, P1,1 occurs

12.25 2.81 9.03 1.04 0.25 0.75 -0.72 0.05 -0.75 if P0,3, P1,2 occurs

8.92 3.25 5.28 0.91 0.17 0.71 -0.80 0.05 -0.82 if P0,3, P1,3 occurs

7.13 3.29 3.61 0.60 0.09 0.48 -0.27 0.02 -0.29 if P0,3, P1,4 occurs

11.17 2.97 7.78 0.93 0.25 0.65 -0.70 0.05 -0.72 if P0,3, P1,5 occurs

6.46 3.26 3.05 -0.63 -0.11 -0.50 -1.41 0.05 -1.41 if P0,4, P1,1 occurs

9.34 3.21 5.72 -0.93 -0.18 -0.72 -1.97 0.08 -1.98 if P0,4, P1,2 occurs

6.84 3.27 3.37 -0.64 -0.20 -0.42 -2.07 0.07 -2.06 if P0,4, P1,3 occurs

5.80 3.15 2.69 -0.47 -0.10 -0.35 -0.83 0.04 -0.84 if P0,4, P1,4 occurs

8.57 3.25 4.96 -0.88 -0.16 -0.69 -1.89 0.07 -1.89 if P0,4, P1,5 occurs

9.70 3.18 6.10 0.66 0.13 0.50 -0.61 0.03 -0.61 if P0,5, P1,1 occurs

15.66 2.28 13.14 1.00 0.23 0.73 -0.85 0.04 -0.86 if P0,5, P1,2 occurs

11.34 2.94 7.97 0.91 0.16 0.72 -0.90 0.04 -0.90 if P0,5, P1,3 occurs

8.45 3.25 4.85 0.61 0.07 0.52 -0.34 0.02 -0.35 if P0,5, P1,4 occurs

14.41 2.46 11.64 0.95 0.21 0.71 -0.81 0.04 -0.82 if P0,5, P1,5 occurs
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Table 2: Wealth Statistics and Bankruptcy Evaluations of Example 2

t xbt

E[xi,∞t ] Var(xi,∞t ) BRt

γ = 0 γ = 1 γ = 10 γ = 0 γ = 1 γ = 10 γ = 0 γ = 1 γ = 10

1 1.04 1.41 1.45 1.39 0.27 0.28 0.21 0.4 0.2 0.2

2 1.08 1.82 1.54 1.43 0.49 0.28 0.22 0 0 0

3 1.13 2.23 1.63 1.46 0.66 0.28 0.22 0.03 0 0

Table 3: Statistics of Wealth Levels underMVS(w, γ) andMV(w) with w = 0.5, 1, 5 and γ = 1

t
MVS(0.5, 1) MV(0.5)

E[xi,∞t ] Var(xi,∞t ) BRt Worst case E[xi,DP
t ] Var(xi,DP

t ) BRt Worst case

1 12.3502 2.8302 0 7.8774 18.5926 45.9106 0 1.0500

2 12.8505 2.0145 0 7.5099 22.7971 28.3624 0.0143 -6.3719

3 13.3638 1.3668 0 7.4497 25.1709 13.9223 0 -7.4081

t
MVS(1, 1) MV(1)

E[xi,∞t ] Var(xi,∞t ) BRt Worst case E[xi,DP
t ] Var(xi,DP

t ) BRt Worst case

1 11.6889 1.2014 0 8.7909 14.4963 11.4776 0 5.7250

2 12.1788 0.7319 0 8.5394 16.8066 7.0906 0 2.2220

3 12.6825 0.4080 0 8.6301 18.2098 3.4806 0 1.9203

t
MVS(5, 1) MV(5)

E[xi,∞t ] Var(xi,∞t ) BRt Worst case E[xi,DP
t ] Var(xi,DP

t ) BRt Worst case

1 10.9083 0.1788 0 9.8317 11.2193 0.4591 0 9.4650

2 11.3420 0.0823 0 9.9199 12.0141 0.2836 0 9.0972

3 11.8048 0.0392 0 10.3300 12.6409 0.1392 0 9.3830
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