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Abstract— This paper addresses the problem of real-time
vision-based autonomous obstacle avoidance in unstructured
environments for quadrotor UAVs. We assume that our UAV
is equipped with a forward facing stereo camera as the
only sensor to perceive the world around it. Moreover, all
the computations are performed onboard. Feasible trajectory
generation in this kind of problems requires rapid collision
checks along with efficient planning algorithms. We propose a
trajectory generation approach in the depth image space, which
refers to the environment information as depicted by the depth
images. In order to predict the collision in a look ahead robot
trajectory, we create depth images from the sequence of robot
poses along the path. We compare these images with the depth
images of the actual world sensed through the forward facing
stereo camera. We aim at generating fuel optimal trajectories
inside the depth image space. In case of a predicted collision, a
switching strategy is used to aggressively deviate the quadrotor
away from the obstacle. For this purpose we use two closed
loop motion primitives based on Linear Quadratic Regulator
(LQR) objective functions. The proposed approach is validated
through simulation and hardware experiments.

I. INTRODUCTION

Quadrotor aerial navigation using vision is gaining a lot
of importance recently. One of the motivations behind this
paper is to mimic the ‘Race the Sun’ game [1]. The game
involves a spaceship navigating forward and consuming solar
energy while the sun slowly sets over the horizon. Moreover,
it can only exploit limited maneuvers while flying owing
to the vehicle dynamics and speed. Such a set up has
important implications on practical systems. In this kind of
scenario, the aircraft has to undergo maneuvers that are fuel
efficient. Moreover, it has to plan its trajectories using a
limited reachability set as a result of limited field of view of
the onboard sensors such as a camera. Recently, Lockheed
Martin partnered with the ESPN’s Drone Racing League
for the AlphaPilot Innovation Challenge [2]. The objective
is to develop an artificial system that is able to compete
with the human pilots while navigating through a three-
dimensional obstacle course. Accomplishing this task in real-
time primarily requires efficient processors on the hardware
side and fast decision-making algorithms on the software
side.

A. Related Works

Some earlier works on real-time trajectory generation
by solving optimization and performing cost function up-
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date onboard include [3] and [4]. As for the vision-based
robotic navigation, mapping based approaches are one of
the most commonly used methods. Simultaneous localization
and mapping (SLAM) techniques helped achieve real-time
perception for efficient decision making [5]–[7]. Authors in
[8] used a more efficient technique relying on temporary
short-term maps known as ego-centric cylinders, rather than
saving and creating full map of the environment. Similarly,
[9] proposed a technique to solve the problem of navigation
in complex environments using onboard processing and 3D
maps. This research enabled development of better algo-
rithms for real-time navigation.

One of the main problems of concern in robotic vision
is that an RGB image from a camera provides information
only for the two axes. Calculation of distances or the values
associated with the third axis provides more information
to the robot in vision aided navigation. Authors in [10]
proposed an approach to self-learn relative distances onboard
to facilitate this kind of navigation. One way to obtain
depth is to use a well known stereo pair of cameras to
calculate the pixels’ depth in an image. This computation
is governed by the epipolar geometry and triangulation. [11]
used a stereo camera to compute depth in an event-triggered
way. This approach reduces unnecessary computations of
depth maps when a robot has limited hardware resources
for processing. From the planning perspective, many opti-
mization techniques might fail in real-time and/or onboard a
robotic agent because of their computational complexity. A
library-based approach is known to be quite effective to fast
navigation. This technique allows to compute some limited
motion primitives off-line prior to the flight. Some previous
work in this area include [12] and [13].

The authors in [14] claimed to be the first ones to come up
with the C-space expansion technique for the depth images.
The depth image is modified and the scene information un-
dergoes an expansion to allow the quadrotor to be treated as a
point mass for collision checks. They used rapidly exploring
random trees (RRT) for path planning. Later, authors in [15]
extended the approach for obstacle avoidance in disparity
space. Authors of [13] used a library of seven pre-computed
trajectories which are appended and executed onboard. They
assumed that the patches of the feasible trajectory started
from the same initial condition i.e., a perfect hover. The
stability analysis was also out of scope of their work. Other
contributions to the area of vision-based navigation of UAVs
include [16]–[18]. In [17], the authors used an A* algorithm
for path planning with local and global map information.
They also performed trajectory optimization online. Some
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other contributions in the area of visual perception and
trajectory planning for obstacle avoidance are reported in
[19]–[22]. They dealt with the problem of aerial navigation
in GPS-denied environments. Authors in [20] focused on
mapping based techniques while [22] based their approach
on certain pre-defined motion primitives for fast flight. A
reachability-based approach for planning in the presence of
noise while performing replanning using an efficient self-
triggered way is explored in [23].

B. Contributions

There has been an extensive work in the area of real-time
navigation in the presence of obstacles at known locations
or in the area of vision-based planning using mapping-
based techniques for slower navigation. However, a com-
plete solution for fast real-time vision-based navigation in
unstructured environments still requires significant research
contributions. We attempt at bridging some gaps in the
research, by designing a framework for a stereo vision-
based agile quadrotor navigation for real-time and onboard
computations. To achieve this goal, we adopt a collision
detection strategy [24] which requires minimal amount of
computations without relying on building maps or processing
the depth image for C-space expansion. To the best of our
knowledge, this technique is still unexplored for fast navigat-
ing robots such as a UAV. Moreover, we design our trajectory
generator using LQR-based close loop motion primitives.
This technique does not require to search the whole 3D
space unlike sampling based algorithms or reachability based
graph search algorithms. Moreover, the trajectories generated
using this approach are dynamically feasible and optimal
with respect to predefined quadratic costs. Also our technique
does not require to assume hovering initial condition to
generate trajectories for each time horizon, unlike many other
methods proposed in the literature for vision-based naviga-
tion. Finally, the technique is tested on an actual quadrotor
UAV with all the processing and sensing done onboard
the quadrotor UAV. The proposed hardware design is also
discussed in this paper. Our active perception framework for
UAVs can be used with a variety of other planning algorithms
such as sampling based and graph search methods.

C. Limitations

Some limitations that we consider for our setup are men-
tioned as follows. The workspace structure is unknown i.e.,
the quadrotor is not provided with any obstacle information
before flight. The quadrotor localization solely relies on the
visual odometry from a stereo camera and the state estimate
from the Inertial Measurement Unit (IMU). The same stereo
camera is used to perform obstacle detection. This camera
is rigidly attached to the quadrotor body and is facing
forward with respect to the quadrotor body, at all times. The
quadrotor generates the trajectories in the look-ahead fashion.
To generate a look-ahead trajectory, the quadrotor has to
perform collision checks. However, these collision checks
can only be performed inside the camera’s field of view.
Since the camera is rigidly attached to the quadrotor body,

the quadrotor only sees a limited area to perform collision
checks, which changes as the quadrotor moves. This means
that the quadrotor’s field of view is a function of its pose and
time and so is the reachability for the look-ahead trajectory.
This is explained in detail later. Moreover, the planner has
to make sure that the generated trajectories are dynamically
feasible and follow the pre-defined quadratic cost functions
to be fuel optimal.

D. Organization

The rest of the paper is organized as follows. Section
II presents the real-time vision-based collision detection
strategy. Section III-A discusses the trajectory generation
methodology which exploits optimal control and the pro-
posed collision detection methodology. Section IV discusses
the implementation details including the simulation and hard-
ware experiments. Finally, Section V provides concluding
remarks.

II. VISUAL PERCEPTION

Let FW be the reference frame fixed with the workspace
W ⊂ R3. The problem setup includes obstacles Oi ⊂
W , of unknown geometries, locations and distribution in a
workspaceW . The workspace is assumed to be compact. Let,
FB be the reference frame attached to the quadrotor body.
To perform the relative coordinate transformations between
the frames, the knowledge of the quadrotor configuration is
required. Let q = (x, y, z, φ, θ, ψ) ∈ C represent a configu-
ration of the quadrotor in its configuration space C. Here φ, θ
and ψ are roll, pitch and yaw angles of the robot respectively.
Moreover, we let A(q) ⊂ W and G(q) ⊂ W be expressed
as a set of all the points occupied by the quadrotor and
the camera’s field of view respectively, while the quadrotor
maintains a certain configuration q. The collision-free state
is represented as Cfree = C\Cobs. The configuration for
which the quad-rotor collides with the obstacle is given as
Cobs = {q ∈ C : A(q) ∩ Oi 6= φ}.

A. Collision Detection

Problem 1: Let the quadrotor be following a trajectory
q. Given a quadrotor configuration q(tc) ∈ Cfree at any
time instant tc, find whether a configuration q(t) is under
collision, collision free or outside the field of view for t > tc.

We use the notion of planning in depth image space
to solve this problem. While following a trajectory q, the
quadrotor is able to perform the collision checks at any
time instant. In order to continue following the trajectory
q, the robot needs to know if the look-ahead trajectory is
under collision or not. To perform this check, the quadrotor
hallucinates itself along the given trajectory q in FW ,
forward in time. The collision detector creates the depth
images of the hallucinated quadrotor configurations and
compares it with the depth of the actual 3D scene as seen
by the forward facing stereo camera. If the depth image
of an hallucinated configuration exceeds the depth of the
actual scene, then the configuration is under collision. If the



Fig. 1: Comparison of the 3D scene depth image (in blue)
with the depth images of the hallucinated robots (in black).

hallucinated configuration does not project to valid image
points, then it is outside the field of view of the quadrotor.

Let us consider that the quadrotor is following a trajectory
of configurations q, and has reached a configuration q(tc).
The planner wants to know if a hallucinated configuration
q(t > tc) is under collision or not. The first step is to
create a depth image of the configuration q(t). Following the
conventional graphics methodology, the depth image of a 3D
scene model is generated by projecting the 3D objects models
to the image and selecting, for each pixel, the closest point
to the camera. However, we will generate the hallucinated
robot’s depth image by projecting the farthest points of the
robot sitting at a configuration q(t) [24].

We use a pinhole model for the stereo camera. Let PW =
(xw, yw, zw) ∈ R3 be a 3D scene point in FW . Before
projecting it to an image, it has to be transformed to the
body frame FB and then to the camera coordinate frame
FS . Let the point PW in the camera coordinate frame be
PS = (xs, ys, zs) ∈ R3. The transformation among the
corresponding homogeneous coordinates is governed by the
following expression.


xs
ys
zs
1

 =

[
RSW(φ, θ, ψ) T (x, y, z)

03×3 1

]
xw
yw
zw
1

 . (1)

The scene point in the camera coordinates is then projected
to the image using the following expression.

r ∼

fsx 0 cx 0
0 fsy cy 0
0 0 1 0



xs
ys
zs
1

 . (2)

The above expression essentially converts the homoge-
neous point coordinates to the homogeneous image coordi-
nates. Here RSW ∈ SO(3) and T ∈ R3 represent the rotation

and translation matrices for the transformation from FW to
FS . The rotation from FW to FB is given by the Z-X-Y rota-
tion matrix RBW ∈ SO(3) while the rotation from FB to FS
is governed by RSB = Ry(−π/2)×Rx(π/2) ∈ SO(3). This
transformation (and hence projection) clearly depends on the
quadrotor configuration at time instant tc. Therefore, we need
to feedback the quadrotor’s most recent configuration to the
collision detector whenever the collision check needs to be
performed. The intrinsic camera calibration parameters are
the pixel dimensions sx and sy , the location of the camera
optical axis cx and cy and the focal length of the camera
lens f . Finally, r = (rx, ry) ∈ R2 is the pixel location of
the transformed point in image coordinate frame.

In an RGB camera the information at a pixel location
r corresponds to the color of the 3D scene point that is
projected to r. These kind of images lose the information
in the z-axis of the camera coordinate frame FS . However,
in a depth image, the information stored at the location
r is the lost z-axis distance information (in FS ) of the
projected 3D point. Given the camera pose (and hence the
quadrotor configuration at tc), we can compare the location
of an hallucinated configuration q(t > tc) with the depth
of the environment. However, we do not know which pixels
correspond to the hallucinated quadrotor for comparison. We
create a depth image of the hallucinated robot and compare it
with the depth image of the actual 3D scene from the stereo
camera.

To create a depth image from an hallucinated quadrotor,
we assume that it is sitting at a configuration q(t) in an empty
world. Given the mesh model of the quadrotor in an empty
world, let {P i

W}, i = 0, 1, 2, 3, ..., be the set of all points at
the surface of the quadrotor projecting to a pixel rj . After
transforming these points to the camera coordinates, they
are represented as {P i

S}, i = 0, 1, 2, 3, .... In a conventional
computer vision approach, only that point wins which is
closest to the camera. However, while creating the depth
image of the hallucinated robot we select the point P j

S to
be projected to the image at the pixel rj where,

j = argmax
i

zis. (3)

For any point P j
W (or P j

S ), if the pixel location rj is not
a valid image coordinate then the hallucinated quadrotor is
considered outside the field of view. More formally,

if ∃ j such that rj /∈ R then A(q(t)) 6⊂ G(q(tc)).
Here, R ⊂ R2 is a set of valid image coordinates. Since

the camera is rigidly attached to the quadrotor body, the set
G(q(tc)) changes with the quadrotor pose and hence with
the time when the collision check is performed.

If inside the field of view, the quadrotor configuration is
checked for collision, i.e,

if zjs > Drj ∀ rj ∈ R and A(q(t)) ⊂ G(q(tc))
then q(t) ∈ Cfree.

Here Drj is the depth of the actual 3D scene at the pixel
rj . If both of the above conditions are not satisfied, the
configuration q(t) is declared under collision.



(a) (b) (c)

Fig. 2: Escape configuration computation (Squares are used to represent the configurations for simplification). (a) Collision is
detected in a look-ahead trajectory configuration. (b) Four candidate configurations, around the under-collision configuration,
are checked for collisions. (c) Collision-free trajectory is generated towards the escape configuration.

B. Finding Escape
If any hallucinated configuration q(t > tc) is under col-

lision, higher depth areas are checked for collision, parallel
to the image plane. The quadrotor is hallucinated in the up,
down, left and right direction on a circle of radius dl, around
the configuration q(t). These configurations are checked for
collision to see if the quadrotor can fit through the gap in
the 3D scene. If a collision-free configuration is found, it is
selected as an escape configuration qesc ∈ Cfree. If all four
configurations are under collision, the process is repeated
by checking more configurations in up, down, right and left
directions at radii 2dl. The process repeats for the circle radii
3dl, 4dl, ..., until either a collision-free configuration is found
or the candidate configurations in all the directions leave the
field of view. In the later case, the robot is assumed to be
stuck under its field of view constraints. This happens if
the field of view of the quadrotor is completely blocked,
leaving no gaps to escape through as shown in Figure 2. We
look for escapes in a deterministic fashion. However, a more
random approach can be adopted to look for the escapes by
performing a denser search.

III. OPTIMAL CONTROL
Differential flatness is a useful property exhibited by a

quadrotor UAV system [25]. Flat outputs of a differential flat
system determine the behaviour of the system. This allows
us to plan the trajectories in the output space which can be
mapped back to the approximate inputs. Differential flatness
property for the quadrotor UAVs allows us to decouple the
inputs for the three position axes. We will exploit this prop-
erty for the trajectory generation to save online computations.
Let,

x(t) = [p(t)T , ṗ(t)T , p̈(t)T , ..., p(n−1)(t)] ∈ X , (4)

be the quadrotor system states, represented as 3D position
and its (n−1) derivatives. Here, p(t) = (x, y, z) ∈ W is the
3D quadrotor position at the time instant t. The set of valid
system states is represented by X ⊂ R3n. Let U ⊂ R3 be the
set of admissible inputs to the system. Choosing n = 2 for
the state space (Equation (4)), the system can be controlled
by generating the trajectories using the following relation.

ṗ(t) = u(t), u(t) ∈ U . (5)

This can be written in the standard state space form as,

ẋ(t) = Ax(t) +Bu(t), (6)

where,

A =

[
03×3 I3×3
03×3 03×3

]
, B =

[
03×3
I3×3

]
.

We use the model shown in Equations (5) and (6) for
generating the trajectories. However, our collision detector
takes as an input, the configuration of the robot that is
performing the collision check as well as the configuration
of the hallucinated robot that is to be checked for colli-
sion. These configurations are referred to as q(tc) and q(t)
respectively. These configurations include the position and
orientation information. The onboard state estimator provides
the information about the most recent configuration q(tc)
of the actual robot. Since our trajectory generator does
not generate trajectories in SE(3), we do not know the
orientation of the hallucinated robot sitting at a position p(t)
on a look-ahead trajectory. To check a robot position p(t)
for collision we simply assume the most pessimistic robot
orientation. Keeping in view the maximum roll and pitch
angles of the quadrotor, this is the configuration such that
we can project the quadrotor to the maximum number of
pixels in the image. Consequently, x(t) ∈ Xfree if the most
pessimistic configuration of the quadrotor (that is sitting at
p(t)) is collision free. Similarly, the escape state xesc ∈ X
corresponds to the configuration qesc ∈ C.

A. Trajectory Generation

Problem 2. Let the collision free states be represented as
Xfree ⊂ X . Given an initial state x0 ∈ Xfree and a goal
region Xgoal ⊂ Xfree, find a trajectory x : [0 tf ] → X
such that:

minimize
u,x

s(t)J0(u,x) + (1− s(t))J1(u,x)

subject to ẋ(t) = Ax(t) +Bu(t), ∀ t ∈ [0 tf ]

x(0) = x0, x(tf ) ∈ Xgoal

x(t) ∈ Xfree, u(t) ∈ U , ∀ t ∈ [0 tf ].

Here s is the binary variable used to perform the switching
between the two pre-defined quadratic objectives, J0(u,x)



Fig. 3: Cartoon to show the trajectory generation method.

and J1(u,x). The first control objective takes the quadrotor
forward towards the goal with emphasis on saving energy,
while the second one is designed for quick sharp turns
around the obstacles to see what is behind and past the
obstacle. These control objectives lead to different closed
loop dynamics at various instances of the maneuver. Each
control objective corresponds to a discrete mode. Since the
dynamics of the system are continuous and the modes are
discrete, the system can be represented as a hybrid automaton
[26] as shown in Figure 4. A discrete mode li corresponds
to the ith control objective while a guard G(li, lj) defines a
state for which the switching has to occur from mode li to
lj .

The workspace is assumed to be unknown and unstruc-
tured. Moreover, it can only be explored by the stereo camera
attached to the quadrotor body. Therefore, the final trajectory
is obtained by appending the small fixed horizon look-ahead
trajectories. Let the kth look-ahead trajectory be x(t) for

Fig. 4: The hybrid automaton.

t = [kτ (k + 1)τ ], where k ∈ N and τ is the time horizon
for which the trajectories are generated. This trajectory is
considered under-collision if any state along its path is
under collision. If the trajectory x(kτ ≤ t ≤ (k + 1)τ)
is collision-free, then it is accepted as a valid trajectory
and the next look-ahead trajectory is generated starting from
the state x((k + 1)τ). This allows us avoid assuming hover
as an initial condition for each look-ahead trajectory. The
quadrotor executes the feasible trajectory x(t ≤ kτ) in
parallel. If any state is outside the field of view, the trajectory
generator keeps on checking it till the quadrotor gets closer
to this state so that the camera can see it. Figure 3 shows
the trajectory generation method.

A look-ahead trajectory x(kτ ≤ t ≤ (k+1)τ) is generated
either using the control objective J0(x,u) or J1(x,u).
We use infinite horizon LQR controller to generate the
trajectories for each objective. The control law is then applied
for the time horizon τ .

Let a quadratic objective be,

minimize
u,x

Ji(u,x) =∫ ∞
0

x(t)Qix(t) + u(t)Riu(t), i ∈ {0, 1}

subject to ẋ(t) = Ax(t) +Bu(t), ∀ t ∈ [0 tf ]

x(0) = x(kτ), x(∞) = xref .

The optimal input u(t) to the system is obtained by
using Pontryagin’s minimum principle and Hamilton-Jacobi-
Bellman (H-J-B) equation. Here,

ui(t) = −R−1i BTSix(t). (7)

Here Si is the solution to the steady state algebraic Riccati
equation (ARE) given below,

SiA+ATSi +Qi − SiBR−1i BTSi = 0. (8)

Equation (8) is solved for all i prior to flight to save
onboard computations. Two discrete modes are elaborated
as follows.

Mode l0 (Go-To-Goal):
This mode is responsible for moving the quadrotor forward

to its destination in an obstacle-free environment. The refer-
ence state is defined as xref ∈ Xgoal. The objective function



J0 is given by the matrices Q0 = diag(1, 0.1, 1, 0.1, 1, 0.1)
and R0 = diag(3, 3, 3). These values are chosen such that
the quadrotor can save more energy if there are no obstacles
hindering it way. If any state in the look-ahead trajectory
x(kτ ≤ t ≤ (k+1)τ) is under-collision, then it is discarded
and is re-generated in the Escape mode towards the nearest
escape. The guard condition is hence given by G(l0, l1) =
{x(t = kτ) : ∃ x(t) ∈ Xobs for any t ∈ [kτ (k + 1)τ ]}.

Mode l1 (Escape):
Trajectories generated using this mode are designed to

take the quadrotor toward the closest possible escape through
an aggressive maneuver in order to have a clearer view of
what is behind the obstacle. Trajectories generated using
Go-To-Goal mode tend to be curvy, and less agile. This
fact poses problems while deviating the quadrotor from its
path. Therefore, lesser weights are put on the input term
in the objective function. The control law for the Escape
mode is computed using Q1 = diag(1, 0.1, 1, 0.1, 1, 0.1) and
R1 = diag(0.1, 0.1, 0.1). The reference state for this mode
is xref = xesc. The mode switches back to the Go-To-
Goal once the escape point is reached and the quadrotor
may now see behind the obstacle. The guard associated with
this transition is given by G(l1, l0) = {x(t = kτ) : x(t) =
xesc}.

Discussion:
Problem (2) can be solved using the search or sampling-

based path planning techniques [27]. These techniques are
particularly useful in the presence of non-convex constraints,
x(t) ∈ Xfree. However, these techniques are proven to be
inefficient for planning in high dimensional spaces, because
they have to rely on the expansion of large number of
nodes. Also, the number of collision checks increases with
the number of nodes. For the real-time planning, we are
interested in techniques that require minimal collision checks
to generate feasible paths. Our method generates dynamically
feasible trajectories without requiring the planner to search
the whole 3D workspace. However, an LQR problem is
inherently unconstrained and the structure of the workspace
is unknown. Therefore, we exploit the depth image space
to perform the planning in Xfree. Regardless, the collision
detector presented in Section II-A, can be used with several
planning algorithms that require fast collision checks.

IV. IMPLEMENTATION

A. Software Architecture

Fig. 5: Simplified software architecture.

Multi-threading in Robot Operating System (ROS)
is used with nodes and functions written in C++.
Three primary functions in the trajectory generation
thread include find escape, waypoints2collision, and
trajectory generator. Let the initial quadrotor state be x0.
The trajectory generator function forms a trajectory x(t)
for t = [0 τ ] under the Go-To-Goal mode towards the
goal state xgoal ∈ Xgoal. The trajectory x(t) is sent to
waypoints2collision function to perform collision checks.
This function samples the trajectory with the sampling time
ts and checks each state for collision. If the trajectory x(t) is
collision-free and inside the quadrotors field of view, then it
is accepted as a valid trajectory and the execution thread
starts sending commands to the quadrotor. The execution
thread runs at the sampling time of ts. While the quadrotor
(and hence the attached camera) is following x(t), the
trajectory generator generates the next trajectory x(t)
for t = [τ 2τ ] under the mode l0 towards xgoal. If any
state along the trajectory x(t) for t = [τ 2τ ] is under
collision, the trajectory is discarded for this time duration.
The function find escape gets the information about the
under collision state and finds an escape state xesc around
it. The trajectory generator now generates the trajectory
x(t) for t = [τ 2τ ] towards the state xesc under the
Escape mode. The trajectory generator then waits for
the quadrotor to physically reach the escape state before
generating more trajectories so that the quadrotor can see
past the obstacle. Once the quadrotor reaches the escape
state, the trajectory generator generates a trajectory in
Go-To-Goal and the process continues until the generated
trajectories reach the goal state. This type of technique allows
the trajectory generation and execution to run in parallel.
The execution thread keeps on sending the reference states
from the feasible trajectory to the autopilot. Meanwhile,
the generation thread continues on appending the collision-
free look-ahead trajectories to the already existing feasible
trajectory. This type of multi-threading plays an important
role in achieving the real-time maneuver. The simplified
software architecture is shown in the Figure 5.

B. Simulations

We use Gazebo simulator with Robot Operating System
(ROS) to simulate our framework. RotorS package is used
[28] to simulate a quadrotor model with a forward facing
depth camera. We tested several different obstacles config-
urations. One simulator setup is shown in Figure 6. The
quadrotor starts from an initial state as shown in the Figure
6(a). The goal region Xgoal is defined by a y−z plane in FW .
The quadrotor is expected to escape the cluttered environ-
ment and move forward towards the goal region. In this setup
and the gains given in Section III-A, the quadrotor took 8 s to
reach its goal plane which was 10 m away from the quadrotor
initial position. The step-by-step trajectory generation for
a first few iterations is shown in the Figure 8. The figure
shows the generation of the look-ahead trajectories which
are appended together to generate a feasible trajectory. The
complete feasible trajectory after appending and discarding



(a) (b) (c)

Fig. 6: Gazebo simulation environment. (a) and (c) show the quadrotor start and goal states for the maneuver respectively.

Fig. 7: Feasible trajectory for Gazebo simulation setup. The
region in yellow represents the goal.

the look-ahead trajectories is shown in the Figure 7.

C. Hardware Experiments

We verified our real-time planner on a real quadrotor
(Lobo Drone). We equipped the quadrotor with a ZED
mini stereo camera [29] for obtaining the depth image
stream and visual odometry. The state estimation is ac-
complished through an Extended Kalman Filter by fusing
the visual odometry with the IMU data. All the processing
and computations are performed onboard the Lobo Drone
without any help of offboard sensors such as a motion
capture system. All the code runs as ROS nodes on NVIDIA
Jetson TX2 computer [30] onboard a Lumenier QAV250
quadrotor airframe with a PX4 based pixracer autopilot. This
setup enables the system to execute autonomous maneuvers
independently using only a forward facing camera. The
experiments are performed in three different setups. In each
setup, the quadrotor does not have any information about the
workspace prior to flight and is only provided with the goal
region. The Jetson TX2 computer fetch the 640x480 depth
images at the rate of 30 FPS. The ZED mini stereo camera
has the depth range of 10 m. The look-ahead trajectory is
sampled at every ts = 0.2 s to perform the collision checks.

Fig. 8: First few iterations of look-ahead trajectories
(x(kτ ≤ t ≤ (k + 1)τ)) generation for Gazebo simulation
setup. The first look-ahead trajectory is generated in the iter-
ation 1 under the mode l0. Since this trajectory is collision-
free, it is accepted as the feasible trajectory. The look-ahead
trajectory generated in the iteration 2 using mode l0 is under
collision. This trajectory is discarded and a trajectory in
mode l1 is generated towards an escape in iteration 3. This
trajectory is appended after the existing feasible trajectory. In
the next few iterations, the trajectories are generated towards
the escape.

The time horizon τ is kept at 0.8 s.
The first setup is shown in Figure 9. The goal region is set

at 4 m distance from the initial state. The quadrotor predicted
a collision in a look-ahead trajectory by a thin obstacle.
According to our escape strategy, the nearest possible escape
was found towards the right of the obstacle. The quadrotor
planned the look-ahead trajectories towards the escape and
then towards the goal region. It took the quadrotor approx-
imately 6 s to complete the maneuver. Figure 10 shows the
feasible trajectory generated and tracked by the planner and
by the quadrotor respectively.

The second experiment is also performed in the same area



Fig. 9: Experimental setup 1.

Fig. 10: Trajectory results for experimental setup 1. The
region in yellow represents the goal.

Fig. 11: Experimental setup 2.

but with two different obstacles placed together. The goal
region is kept the same. The setup is shown in the Figure 11.
The quadrotor found an escape above the obstacle of lower
height and planned the look-ahead trajectories to escape. The
trajectory results for this experimental setup is shown in the
Figure 12. The quadrotor took approximately 5 s to reach
the goal state. It can also be noted that in using our method,
the global information about the obstacles is not required to
plan a feasible trajectory. Rather, only the obstacles causing
a potential predicted collision matter.

Fig. 12: Trajectory results for experimental setup 2. The
region in yellow represents the goal.

The third experiment is performed in a larger indoor lobby
area in a more cluttered workspace. The quadrotor is left at
at a starting hover state to escape the cluttered environment.
Regardless of the obstacle geometries, the quadrotor was able
to safely maneuver towards the goal plane that was 9 m away
from the initial quadrotor state. The whole manuever took
approximately 7 s to finish. The setup with start and goal
states is shown in Figure 13. The feasible trajectory for the
flight is shown in Figure 14.

One challenge in using depth image based perception is
that the typical stereo cameras are sometimes not able to
compute the depth at each image pixel. The ZED stereo
camera, however, provides a highly filtered depth image
stream over a ROS interface. The problem sometimes occurs
when the camera tries to compute the depth of a very intense
light source like a light bulb. In such rare circumstances the
corresponding pixel depths are declared as the maximum
allowed depth range of the camera. If the light source is
at a sufficient distance from the camera, its projection and
hence the noise in the whole image gets negligible.

V. CONCLUSION

This paper has proposed a technique for accomplishing
fast autonomous quadrotor navigation through unstructured
cluttered environments using only a forward facing stereo
camera as a primary perception source. We exploited the
depth image space to perform fast collision checks and to
generate collision-free dynamically feasible trajectories in
real-time. Also, we proposed the software and hardware
architectures to effectively implement the resulting vision-
based planner onboard a quadrotor UAV. Finally, we verified
the approach in simulation and hardware experiments.

The Videos for simulations and experiments can be found
at https://youtu.be/zO-yT8K3SCg. The code is
also open source and can be found at https://github.
com/shakeebbb/vision_pkg.

https://youtu.be/zO-yT8K3SCg
https://github.com/shakeebbb/vision_pkg
https://github.com/shakeebbb/vision_pkg


(a) (b) (c)

Fig. 13: Experimental setup 3. (a) and (c) show the quadrotor start and goal states for the maneuver respectively.

Fig. 14: Feasible trajectory for experimental setup 3. The
region in yellow represents the goal.
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