
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

Learning a Low-dimensional Representation of a
Safe Region for Safe Reinforcement Learning on

Dynamical Systems
Zhehua Zhou, Ozgur S. Oguz, Marion Leibold, and Martin Buss

Abstract—For the safe application of reinforcement learning
algorithms to high-dimensional nonlinear dynamical systems, a
simplified system model is used to formulate a safe reinforcement
learning framework. Based on the simplified system model, a
low-dimensional representation of the safe region is identified
and used to provide safety estimates for learning algorithms.
However, finding a satisfying simplified system model for complex
dynamical systems usually requires a considerable amount of
effort. To overcome this limitation, we propose a general data-
driven approach that is able to efficiently learn a low-dimensional
representation of the safe region. By employing an online adap-
tation method, the low-dimensional representation is updated
using the feedback data to obtain more accurate safety estimates.
The performance of the proposed approach for identifying the
low-dimensional representation of the safe region is illustrated
using the example of a quadcopter. The results demonstrate a
more reliable and representative low-dimensional representation
of the safe region compared to previous work, which extends the
applicability of the safe reinforcement learning framework.

Index Terms—safe reinforcement learning, deep learning in
robotics and automation, learning and adaptive systems, data-
driven model order reduction

I. INTRODUCTION

RECENT studies of applying reinforcement learning or
deep reinforcement learning algorithms to complex, i.e.,

highly nonlinear and high-dimensional, dynamical systems
have demonstrated attractive achievements in various control
tasks, e.g., humanoid control [1] and robotic manipulator
control [2]. However, although the results display the potential
of utilizing reinforcement learning algorithms as a substitute
for traditional controller design techniques, most of them are
still only presented in simulations [3]. One major impediment
against implementing reinforcement learning algorithms on
real-world dynamical systems is that, due to the random
exploration mechanism, the intermediate policy may lead to
dangerous behaviors of the system. As a result, both the system
itself and the environment may be damaged during learning.
In order to apply state-of-the-art reinforcement learning algo-
rithms to real-world control systems, one central problem to
address is how to introduce a reliable safety guarantee into the
learning process.

This paper has been accepted by IEEE Transactions on Neural Networks
and Learning Systems. DOI: 10.1109/TNNLS.2021.3106818

Z. Zhou, M. Leibold and M. Buss are with the Chair of Automatic Control
Engineering, Technical University of Munich, Munich 80290, Germany (e-
mail: zhehua.zhou@tum.de; marion.leibold@tum.de; mb@tum.de).

O. Oguz is with the Max Planck Institute for Intelligent Systems and
University of Stuttgart (e-mail: ozgur.oguz@ipvs.uni-stuttgart.de).

A. Related Work

Safe reinforcement learning (SRL) aims to find an optimal
control policy by way of reinforcement learning while ensuring
that certain safety conditions are not violated during the
learning process. Although the exact definition of safety in
SRL varies in different learning tasks, for instance collision
avoidance in autonomous vehicles or crash prevention when
controlling a quadcopter, we generally consider the safety
condition as neither the system itself nor the environment will
be damaged.

SRL in dynamical systems with continuous action space
has been a topic of research for over a decade [4]. Most
previous studies employed a manual control mechanism to
ensure the safety of the controlled system. For instance, in [5],
an experienced human pilot takes over the control of the
helicopter if the learning algorithm places the system in a
risky state. However, such an approach requires a considerable
amount of resource to monitor the entire learning process.
Hence, in most cases, it is not applicable to complex learning
tasks. Another possibility of safely implementing reinforce-
ment learning algorithms on real-world dynamical systems
is by transfer learning [6]. First, a satisfying initial policy
is trained in simulation and then transferred to the real-
world dynamical system. In essence, this minimizes required
number of learning iterations for obtaining the final policy and
thus reduces the risk of encountering dangerous intermediate
policy [7]. However, since the mismatch between simulation
and reality is not considered in transfer learning, no reliable
safety guarantee is obtained [8].

In recent studies, SRL in model-free scenarios is usually
achieved by solving a constraint satisfaction problem. For
example, constrained policy optimization [9] introduces a
constraint to the learning process to the effect that the expected
return of cost functions should not exceed certain prede-
fined limits. Alternatively, including an additional risk term
in the reward function, such as risk-sensitive reinforcement
learning [10], can also increase the safety of reinforcement
learning algorithms. However, as no system model is directly
considered in these approaches, there is still a high possibility
that safety conditions are violated, especially in the early
learning phase.

When at least an approximated system model is available,
a more promising SRL can be realized by combining control-
theoretic concepts with reinforcement learning approaches.
For example in [11], [12], Lyapunov functions are employed

ar
X

iv
:2

01
0.

09
55

5v
2 

 [
cs

.R
O

] 
 8

 S
ep

 2
02

1



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2

to compute a sub-region of the state space where safety
conditions will never be violated. The system is then limited to
this sub-region during the learning process. However, finding
suitable candidates for Lyapunov functions is challenging
if the system dynamics contains uncertainties or is highly
nonlinear.

For uncertain dynamical systems, methods based on learn-
ing a model of unknown system dynamics [13] or of environ-
mental constraints [14] are proposed to ensure safety during
learning. For instance, by predicting the system behavior in the
worst case, robust model predictive control [15] is able to pro-
vide safety and stability guarantees to reinforcement learning
algorithms if the error in the learned model is bounded. Be-
sides, [16] introduces an action governor to correct the applied
action when the system is predicted to be unsafe. However,
limited by computational efficiency, these approaches with
deterministic safety estimates, i.e., the prediction about the
safety of a system state is either safe or unsafe, are usually
only applicable to linear systems. Moreover, the accuracy of
the learned model also strongly affects the performance of
these approaches.

To relax the demands placed on the system model and
extend the SRL to nonlinear systems, instead of deterministic
safety estimates, recent studies employ probabilistic safety
estimates, in which safety predictions are represented as
probabilities [17]. In [18], for example, modelling uncer-
tainties are approximated by Gaussian process models [19],
and a probabilistic safe region is computed by reachability
analysis [20]. Similarly, Gaussian process models are used
in [21], [22] to model unknown system dynamics. A safe
region is then obtained from the probabilistic estimate of the
region of attraction (ROA) of a safe equilibrium state. The
key component of these studies is a forward invariant safe
region, such that the learning algorithm has the flexibility
to execute desired actions within the safe region. Safety is
ensured by switching to a safety controller whenever the sys-
tem approaches the boundary of the safe region. However, the
safe region is computed either by solving a partial differential
equation in [18] or sampling in [22], both of which suffer from
the curse of dimensionality. Moreover, modeling an unknown
dynamics or disturbance with Gaussian process models also
poses challenges when the system is highly nonlinear and
high-dimensional, since both making adequate assumptions
about the distribution of dynamics and acquiring a sufficient
amount of data are difficult. Therefore, although approaches
like [18], [22] enable promising results with low-dimensional
dynamical systems1, they are not directly applicable to com-
plex dynamical systems [23].

Often the motivation for using reinforcement learning algo-
rithms for controller design is to overcome the difficulty of
applying model-based controller design approaches to highly
nonlinear, high-dimensional and uncertain dynamic system
models [24], [25]. In particular, it is challenging to compute a
safe region for a complex dynamical system. For this reason,

1In this paper we consider dynamical systems with dimensions higher than
six as high-dimensional, as in such cases it is computationally difficult to
implement traditional methods, such as reachability analysis or sum-of-squares
programming, in identifying the safe region.

[26] introduces an SRL framework that utilizes a supervisory
control strategy based on finding a simplified system by means
of physically inspired model order reduction [27]. A simplified
safe region is constructed from the simplified system, which
functions as an approximation for the safe region of the full
dynamics. Such a low-dimensional representation of the safe
region, which is usually two- or three-dimensional, at least
provides safety estimates for the original system states, and it
can be updated online during the learning process. To account
for the uncertainty in making safety decisions for the complex
dynamics based on a rough low-dimensional reduction, the
safety estimate is represented in a probabilistic form. Then,
in accordance with the derived safety estimate, a supervisor is
employed to switch the actual applied control action between
the learning algorithm and a corrective controller to keep
the system safe. However, implementing physically inspired
model order reduction usually requires a thorough understand-
ing of the system dynamics. Moreover, multiple performance
tests are required before a satisfying simplified system can be
found.

B. Contribution

In this paper, we consider the same supervisory control
strategy as used in [26] to construct a general SRL framework
that is applicable to complex dynamical systems. However, to
overcome the limitations of physically inspired model order
reduction, we propose a novel data-driven approach to identify
the supervisor, i.e., the low-dimensional representation of the
safe region. Inspired by transfer learning [28], we assume
that an approximated system model of the complex dynamical
system is available. Even though, inevitably, the approximated
model displays discrepancies compared with the real system
behavior, an initial estimate of safety can usually be obtained
by simulating the approximated model. For example, while
the dynamics of a real-world humanoid cannot be known per-
fectly, an approximated humanoid model can be constructed
in simulation for making predictions. Hence, by simulating
the system, we obtain training data that represents the safety
of various original system states. However, as the state space
is high-dimensional, it is infeasible to acquire a sufficient
amount of training data to directly learn the safe region of the
original system. To solve this problem, a data-driven approach
that computes probabilistic similarities between each training
data is proposed to first learn a low-dimensional representative
safety feature of the complex dynamical system. Then, based
on the learned feature, a low-dimensional representation of the
safe region is identified, which is used as the starting point to
SRL in the real system.

Due to the inevitable simulation-to-reality gap, the initial
low-dimensional representation of the safe region learned
from training data displays discrepancies compared to the real
system behavior. To compensate for this mismatch, we also
propose an efficient online adaptation method to update the
low-dimensional representation of the safe region. During the
learning process, we receive feedback data about the actual
safe region of the real system. These feedback data are not
only used to generate new safety estimates, but they also allow



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 3

us to adjust our confidence in the reliability of the safety
estimates obtained from training data. The proposed online
adaptation method then updates the low-dimensional repre-
sentation of the safe region by simultaneously considering the
safety estimates derived from training and feedback data.

The contributions of this study are summarized as follows:
1) We propose a novel data-driven approach that is capable

of systematically identifying a low-dimensional repre-
sentation of the safe region. In contrast to physically
inspired model order reduction, the proposed approach
does not require a thorough understanding of system
dynamics. Moreover, it is applicable to a wide range of
dynamical systems, as long as an approximated system
model is available.

2) We introduce a new online adaptation method for up-
dating the low-dimensional representation of the safe
region according to the observed real system behavior.
By fully utilizing the information contained in the feed-
back data, the update is performed efficiently, while a
reasonable amount of feedback data enables an accurate
low-dimensional representation of the safe region to be
acquired.

3) Since the proposed approach results in a reliable and
representative low-dimensional representation of the safe
region, the applicability of the SRL framework is in-
creased.

The remainder of this paper is organized as follows: a brief
introduction to the SRL framework is given in Section II.
Thereafter, we present an overview of our approach in Sec-
tion III. In Section IV, we propose a data-driven method to
derive a low-dimensional representation of the safe region.
This is followed by the online adaptation method in Section V,
which is used to update the low-dimensional representation.
An example is presented in Section VI to demonstrate the
performance of the proposed approach. In Section VII, we
discuss several properties of the approach, and Section VIII
concludes the paper. A table of nomenclatures is included in
the supplementary material.

II. SAFE REINFORCEMENT LEARNING FRAMEWORK

In this paper, we consider SRL as to optimize a learning-
based policy with respect to a predefined reward function,
while ensuring that the system state remains in a safe region
of the state space. In this section, we outline a general SRL
framework for dynamical systems, see also [26]. The SRL
framework first identifies a safe state-space region as the safe
region. Then, the learning-based policy has the flexibility to
execute desired actions within the safe region. Once the system
state is about to leave the safe region, a corrective controller
is applied to drive the system back to a safe state.

A. System Model and Safe Region

A nonlinear control-affine dynamical system is given by

ẋ = f(x) + g(x)u (1)

where x ∈ X ⊆ Rn is the n-dimensional system state within
a connected set X , u ∈ U ⊆ Rm is the m-dimensional control

Fig. 1: SRL framework with a supervisor which decides on
the actual applied actions.

input to the system. With a given control policy u = K(x),
the closed-loop system dynamics is denoted as

ẋ = fK(x) = f(x) + g(x)K(x). (2)

If a system state x satisfies fK(x) = 0, then it is an
equilibrium point. Any equilibrium point can be shifted to the
origin by a state transform. Therefore, this paper only uses the
origin to formulate the safe region.

Assumption 1. The origin is a safe state and a locally asymp-
totically stable equilibrium point under the control policy
K(x).

Based on Assumption 1, the ROA of the origin is defined
as

R = {x0 ∈ X | lim
t→∞

Φ(t;x0) = 0} (3)

where Φ(t;x0) is the system trajectory of (2) that starts at the
initial state x0 when time t = 0. The ROA R is the set of
initial states that can be driven back to a safe state, i.e., the
origin, under the control policy K(x). Therefore in this paper,
we define the safe region of the SRL framework as follows.

Definition 1. A safe region S is a closed positive invariant
subset of the ROA R containing the origin. We consider the
system state x as safe if it is in the safe region S.

B. SRL Framework

To realize SRL, we keep the system state within the safe
region during the learning process. This is achieved by an SRL
framework that adapts a switching supervisory control strategy
where the given controller K(x) acts as corrective control and
π(x) is the learning-based policy that is used while the system
state is in the safe region (see Fig. 1). A supervisor determines
the actual applied actions as

u =

{
π(x), if t < tsafe

K(x), else
(4)

where tsafe is the first time point at which the system state x
is on the boundary of the safe region S.

For each learning iteration, the system starts inside the safe
region S for time t = 0. The learning algorithm then updates
and executes the learning-based policy π(x). Since the safe
region S is a closed set and the trajectory is continuous, the
system state can only leave the safe region S by crossing the
boundary. Hence, once the system state x is on the boundary



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 4

of the safe region S, this learning iteration is terminated at
time t = tsafe and the corrective controller K(x) is activated.
For the remaining time of this learning iteration, the corrective
controller K(x) attempts to bring the system back to the origin
to maintain safety. After this safety recovery, the learning
environment is reset and the next learning iteration starts at
time t = 0.

Remark 1. In this paper, we only consider the safe region
obtained from the ROA R, where stability is used as the
safety criterion. If more safety criteria should be taken into
consideration, such as collision avoidance represented as
state constraints, the safe region can be constructed using
other control-theoretical concepts, e.g., control barrier func-
tions [29] or invariance functions [30]. The definition of the
safe region does not affect the use of the SRL framework and
the proposed approach, as long as the safe region is a closed
and control invariant set under a given corrective controller.

C. SRL Framework for Complex Dynamical Systems

The aforementioned SRL framework is not directly appli-
cable to complex dynamical systems, as in such cases, cal-
culating the safe region S is computationally infeasible [31].
An SRL framework based on estimating safety with a low-
dimensional representation of the safe region is introduced to
overcome this problem [26].

Each original system state x is mapped to a low-dimensional
safety feature, represented as a simplified state y ∈ Y ⊆ Rny ,
ny � n, through a state mapping y = Ψ(x). The state map-
ping is chosen such that safe and unsafe states are separated
in the simplified state space Y . Nevertheless, due to the order
reduction, multiple original system states that have different
safety properties can map to the same simplified state. Hence,
the safety of the original system state x is estimated by the
safety of its corresponding simplified state y in a probabilistic
form as

p(x ∈ S) = Γ(y)|y=Ψ(x) ∼ [0, 1] (5)

where Γ(y) is a function defined over the simplified state space
Y and is referred to as the safety assessment function (SAF)
in this paper. Not only does the SAF Γ(y) encode information
relating to the safety of the simplified state y, it also includes
the uncertainty involved in making predictions for a high-
dimensional state by using a low-dimensional reduction. In
Section IV, we demonstrate how to efficiently identify the
state mapping y = Ψ(x) as well as the SAF Γ(y) using a
data-driven method.

For a given SAF Γ(y), the probability p(x ∈ S) depends
only on the simplified state y. Therefore, by introducing a pre-
defined probability threshold pt, we obtain a low-dimensional
representation of the safe region, denoted as Sy , in the
simplified state space Y

Sy = {y ∈ Y | Γ(y) > pt} (6)

which works as an approximation of the high-dimensional safe
region S. The supervisor (4) is thus modified to

u =

{
π(x), if t < tsafe′

K(x), else
(7)

where tsafe′ denotes the first time point at which the probability
p(x ∈ S) is not larger than the threshold pt, i.e., p(x ∈ S) =
Γ(y) ≤ pt. More details of this SRL framework are given
in [26].

III. OVERVIEW OF THE APPROACH

The essential factor when applying the SRL framework
to complex dynamical systems is finding a reliable low-
dimensional representation of the safe region Sy . In order to
overcome the limitations of physically inspired model order
reduction, we propose a novel data-driven approach to identify
the low-dimensional representation of the safe region Sy ,
together with a new online adaptation method to efficiently
update the learned low-dimensional representation.

We consider a scenario in which the complex dynamical
system, referred to as the real system, has partially unknown
dynamics. However, we assume that a nominal approximated
system model is available and can be used to roughly pre-
dict the real system behavior. The nominal system model is
assumed to be represented by (1). The real system model is
then given as

ẋ = f(x) + g(x)u+ d(x) (8)

where d(x) is the unknown, unmodelled part of the system
dynamics. For brevity, we refer to the nominal and the real
systems as simulation and reality, respectively.

Due to the highly nonlinear and high-dimensional dynamics,
the direct calculation of the safe region is computationally
infeasible for both the nominal and the real systems. Besides,
although the real system provides exact safety information,
in general it is expensive to collect data directly on the real
system. In contrast, simulating the nominal system is usually
efficient and allows a sufficient amount of data to be obtained
for finding a low-dimensional safety representation. However,
due to the unknown term d(x), such data is inaccurate and
has to be modified to account for the real system behavior.

Based on these facts, to construct a reliable low-dimensional
representation of the safe region Sy for the real system, we
propose the approach outlined in Fig. 2 (a complete work-flow
is given in the supplementary material). It consists of two parts
that solve the following two problems, respectively:

1) How to derive and initialize the low-dimensional rep-
resentation of the safe region Sy by using the nominal
system model.

2) How to update the low-dimensional representation of
the safe region Sy online with the observed real system
behavior.

Part 1) Derivation and Initialization

Since no information about uncertainty d(x) is available
prior to the learning process, the corrective controller K(x)
is designed for the nominal system model (1). Although the
safe region of the nominal system is unknown, its simulation
is possible and delivers a dataset as follows.

Definition 2. The training dataset of kt training data is given
as

Dtrain = {D1
train, D

2
train, . . . , D

kt

train}. (9)



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 5

Fig. 2: Overview of the proposed approach. The low-
dimensional representation Sy is initialized using the training
dataset Dtrain obtained from the nominal system. Once we
collect the feedback dataset Dfeedback on the real system,
the low-dimensional representation Sy is updated using the
proposed online adaptation method.

It contains the simulation results that state whether the safety
recovery is successful or not for different system states x under
the corrective controller K(x). The i-th training data consists
of three elements

Di
train = {xisim, ssim(xisim),Φsim(t;xisim)}. (10)

xisim is the initial system state in which the corrective con-
troller K(x) is activated. ssim(xisim) is the safety label that
represents the result of safety recovery for the state xisim. We
denote ssim(xisim) = 1 if the system state xisim is safe under
the corrective controller K(x), and ssim(xisim) = 0 if it is
not. Φsim(t;xisim) is the corresponding system trajectory of
the safety recovery that starts at xisim when time t = 0. The
subscript sim indicates that the data is collected by using the
nominal system model.

The low-dimensional representation of the safe region Sy
is thus derived and initialized by using the training dataset
Dtrain. To do this, we first identify the state mapping y = Ψ(x)
using a data-driven method that computes the probabilistic
similarity between each training data (Section IV-A). Then to
facilitate an efficient computation, we discretize the simplified
state space Y into grid cells and assign an index vector
v ∈ Zny

+ to each grid cell. By assuming that the SAF Γ(y)
is constant in each grid cell, we thus obtain a discretized
safety assessment function (DSAF) Γd(v). A discretized low-
dimensional representation of the safe region Sy is then given
by applying the probability threshold pt on the DSAF Γd(v)
(Section IV-B). To enable the SRL framework on the real
system, we also calculate an initial estimate of the DSAF
Γd(v), denoted as the prior DSAF Γprior

d (v), from the training
dataset Dtrain. It is then used to initialize the low-dimensional
representation of the safe region Sy (Section IV-C). Further
details of Part 1) are given in Section IV.

Part 2) Online Adaptation

Due to the unknown part of the system dynamics d(x),
there is inevitably a mismatch between simulation and reality.
In order to compensate for this mismatch, we update the
low-dimensional representation Sy by accounting for the real
system behavior.

Each time the corrective controller K(x) is activated during
learning, we observe feedback data about the real safe region.
The set of feedback data is defined as follows.

Definition 3. The feedback dataset of kf feedback data is
given as

Dfeedback = {D1
feedback, D

2
feedback, . . . , D

kf

feedback}. (11)

It contains the results of safety recovery from implementing
the corrective controller K(x) on the real system. The i-th
feedback data is

Di
feedback = {xireal, sreal(x

i
real),Φreal(t;x

i
real)}. (12)

While xireal, sreal(x
i
real) and Φreal(t;x

i
real) have the same

meaning as in Definition 2, the subscript real indicates here
that the data is collected on the real system.

Since collecting data on the real system, e.g., real-world
robots, is usually expensive and time-consuming, in most cases
the feedback dataset Dfeedback has a limited size. Therefore,
the low-dimensional representation of the safe region Sy needs
to be updated in a data-efficient manner. To achieve this, we
propose an online adaptation method, as given in Section V.
It comprises three steps: First, we modify the prior DSAF
Γprior

d (v) by changing our confidence in its reliability using the
feedback dataset Dfeedback (Section V-A). Second, to fully uti-
lize the valuable information contained in the feedback dataset
Dfeedback, we generate another feedback DSAF Γfeedback

d (v)
(Section V-B). Third, the two DSAFs are fused to obtain a
more accurate DSAF Γd(v), which is then used to update the
low-dimensional representation Sy (Section V-C).

IV. LEARNING A LOW-DIMENSIONAL REPRESENTATION
OF THE SAFE REGION

To derive the low-dimensional representation of the safe
region Sy , two components have to be determined: the state
mapping y = Ψ(x), which gives the low-dimensional safety
feature, and the SAF Γ(y), which predicts the safety of original
system states. In this section, we present a data-driven method
for identifying the low-dimensional representation of the safe
region Sy . It utilizes a technique called t-distributed stochas-
tic neighbor embedding (t-SNE) [32], which was originally
proposed for visualizing high-dimensional data.

A. Identifying the State Mapping with t-SNE

To identify the state mapping y = Ψ(x), we first find
the realization of the low-dimensional safety feature, i.e., the
values of simplified states y1, . . . , ykt , that best corresponds
with the training dataset Dtrain by revising t-SNE. Through
measuring the similarity between each high-dimensional data
point, t-SNE defines a two- or three-dimensional data point



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 6

such that similar high-dimensional data points are represented
by nearby low-dimensional data points with high probability. It
uses Euclidean distance between each pair of high-dimensional
data points as the metric for measuring similarity. However,
since our purpose is to construct the low-dimensional repre-
sentation of the safe region Sy , we are more interested in
safety rather than just distance. Accordingly, we propose a
new metric that considers similarity and safety at the same
time.

The general motivation for determining the simplified state
y is that the safe and unsafe original system states x should be
separated in the simplified state space Y . Since, in this paper,
the safe region is defined with respect to the ROA, the trajec-
tories of safe initial states will converge to the origin, while
unsafe initial states will have divergent trajectories. Hence, if
two original system states x have similar trajectories under the
corrective controller K(x), then ideally they should also have
nearby corresponding simplified states y (see Fig. 3). Based
on this, we first calculate the pairwise trajectory distance ωij

between the i-th and j-th training data, using dynamic time
warping (DTW) as

ωij = dtw(Φsim(t;xisim),Φsim(t;xjsim)) (13)

where dtw(·) represents the DTW measurement. We thus have
ωij = 0 if i = j, and the more similar the trajectories are, the
smaller the value of ωij is.

Remark 2. Besides DTW, other trajectory distance measures,
e.g., Fréchet distance, can also be used in (13). Changing
the distance metric does not affect the applicability of the
proposed approach. However, DTW turns out to be a more
suitable metric for trajectories of the dynamical systems we
investigated.

While, in general, the trajectory distance ωij reflects the
probability that original system states xisim and xjsim have
the same safety property, it is still possible that safe and
unsafe states have similar trajectories. To obtain a better low-
dimensional safety feature, we thus modify the trajectory
distance ωij in relation to the safety label ssim(xsim) and
compute the distance Ωij between the i-th and j-th training
data as

Ωij =


ωij

ωmax
+ δ, if ssim(xisim) 6= ssim(xjsim)

ωij

ωmax
, if ssim(xisim) = ssim(xjsim)

(14)

where δ is a constant and ωmax = maxi,j ωij is the maximum
trajectory distance within the training dataset Dtrain. The
distance Ωij is then used as the new metric for t-SNE to
measure the similarities between different training data.

In our experiments, we find that a small value of δ is
sufficient for providing a satisfying result of t-SNE (in this
paper, for example, we use δ = 0.01). A large value of δ,
in contrast, may lead to information contained in trajectories
being ignored, which can reduce the representation power of
the learned simplified states y. A sensitivity analysis of the
parameter δ is provided in the supplementary material.

After computing the distance Ωij between each pair of
training data, we apply t-SNE on the training dataset Dtrain

Fig. 3: The distances Ω12 and Ω13 are computed for three
training data D1

train, D2
train, D3

train using the trajectory dis-
tances ω12, ω13 and the safety labels ssim(x1

sim), ssim(x2
sim),

ssim(x3
sim). Based on these distances, t-SNE calculates the

values of corresponding simplified states y, where similar and
dissimilar training data are modeled by nearby and distant
simplified states, respectively.

to derive a realization of the low-dimensional safety feature.
To do this, we modify the conditional probability pj|i of t-
SNE [32] using the distance Ωij as

pj|i =
exp(−Ω2

ij/2σ
2
i )∑

k 6=i

exp(−Ω2
ik/2σ

2
i )

(15)

where σi is the variance of the Gaussian distribution that is
centered on the state xisim. The remaining computations are
the same as in t-SNE. Since this part makes no contribution,
the main steps involved in performing t-SNE are given only in
the supplementary material. More details are available in [32].

Using t-SNE, we obtain the values of simplified states
y1, . . . , ykt that correspond to the training dataset Dtrain as an
initial realization of the low-dimensional safety feature. Such a
realization models similar training data with nearby simplified
states, e.g., y1 and y2 in Fig. 3, and dissimilar training data
with distant simplified states, e.g., y1 and y3 in Fig. 3. In
general, the simplified state y is chosen to be two- or three-
dimensional, i.e., y ∈ Rny with ny = 2 or ny = 3. In this
paper, we set ny = 2.

Note that t-SNE only determines the values of simplified
states but gives no expression of the state mapping y = Ψ(x).
Therefore, to identify the state mapping y = Ψ(x), we learn
a function approximator using the values of simplified states
y1, . . . , ykt obtained from t-SNE and the original system
states x1

sim, . . . , x
kt

sim contained in the training dataset Dtrain.
This function approximator, e.g., we use a neural network



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 7

Fig. 4: The simplified state space Y is discretized into grid
cells. The location of each grid cell is indicated by the index
vector v. The safety of a new original system state, e.g. x∗, is
estimated by way of the corresponding belief mass as p(x∗ ∈
S) = Γd([2, 3]) = b

[2,3]
safe , where L(x∗) = v = [2, 3]. The

prior estimate Bprior
v of an index vector v is either obtained

by fusing all BBAs within the set Bv , e.g., Bprior
[2,3] = F(B[2,3]),

or set to an initial estimate, e.g., Bprior
[3,6] = Bini.

in this paper, is then utilized to represent the state mapping
y = Ψ(x) = NN(x).

Remark 3. Different forms of function approximator, for
instance, a Gaussian process, can be used to describe the state
mapping y = Ψ(x). The selection of function approximator
depends mainly on the available number of training data.

Due to the approximation error in the function approxima-
tor, some original system states x may have slightly different
values in their simplified states y when comparing the initial
realization obtained from t-SNE with the one computed from
the learned state mapping y = Ψ(x) (for an example, see the
simulations in Section VI-B and in particular Fig. 7). Hence,
to reduce the influence of this issue on deriving the low-
dimensional representation of the safe region Sy , we compute
the values of simplified states y1, . . . , ykt once again with
the learned state mapping. This final realization of the low-
dimensional safety feature is then used for formulating the
SAF Γ(y).

B. Belief Function Theory and DSAF

Once the state mapping y = Ψ(x) is determined, we are able
to generate the SAF Γ(y) using the training dataset Dtrain.
However, due to the limited size of the training data, it is
difficult to construct the SAF Γ(y) over the continuous sim-
plified state space Y . Therefore, we discretize the simplified
state space Y .

The range of the simplified state space Y is determined
by the maximum and minimum values of the simplified
states y1, . . . , ykt in each dimension. We then discretize the
simplified state space Y into grid cells with a predefined step
size. Each grid cell is assigned an index vector v ∈ Z2

+

to indicate its position in the simplified state space Y; for
example, v = [2, 3] refers to the grid cell that is located at the

second row and third column (see Fig. 4). A locating function
is defined as follows.

Definition 4. By locating the simplified state y = Ψ(x) for
an original system state x in the simplified state space Y , the
locating function L(x) returns the index vector v of the grid
cell that it belongs to.

By assuming that the SAF Γ(y) is constant in each grid cell,
we obtain a DSAF Γd(v) that we will have to define. Then,
instead of using the simplified state y, the safety of an original
system state x is estimated by way of the index vector v as

p(x ∈ S) = Γd(v)|v=L(x) ∼ [0, 1]. (16)

In general, the DSAF Γd(v) for an index vector v can
be approximated by the number of safe and unsafe original
system states x that map to the corresponding grid cell, i.e.,
L(x) = v. However, due to the high-dimensional original
system state space, it is, in most cases, infeasible to acquire
a sufficient amount of data to derive an accurate estimate.
To solve this problem, we propose using belief function
theory [33] to describe the DSAF Γd(v), where the uncertainty
caused by insufficiency in the data amount is considered by a
subjective probability [34].

Belief function theory is a general approach to modeling
epistemic uncertainty that uses a belief mass to represent the
probability of the occurrence of an event. The assignment of
belief masses to all possible events is denoted as the basic
belief assignment (BBA). The belief mass on the entire event
domain, i.e., the probability that one arbitrary event happens,
indicates the subjective uncertainty of the estimate [34]. Ac-
cording to this, we define a BBA Bv separately for each index
vector v as follows.

Definition 5. The BBA Bv for an index vector v is given as

Bv = (bvsafe, b
v
unsafe, µ

v) (17)

which represents the belief about the value of the DSAF Γd(v)
for the index vector v. The belief masses bvsafe and bvunsafe

are the probabilities of the occurrence of two complementary
events, i.e., p(x ∈ S) and p(x /∈ S), where the original system
state x has the index vector v from the locating function L(x).
µv is the subjective uncertainty that reflects the confidence
level of estimating the safety. µv = 0 means we believe that
the estimate is absolutely correct. It holds that

bvsafe + bvunsafe + µv = 1 (18)

and bvsafe, bvunsafe, µv all lie within the interval [0, 1].

Hence the DSAF Γd(v) is given by the belief masses bvsafe

of the corresponding BBAs Bv as

Γd(v) = bvsafe. (19)

The low-dimensional representation of the safe region Sy is
then defined among the discretized simplified state space as

Sy = {v | Γd(v) = bvsafe > pt} (20)

where pt is the predefined probability threshold. In the next
subsection, we explain how to initialize the DSAF Γd(v) so
as to enable the application of the SRL framework on the real
system.



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 8

C. Initializing the DSAF from Training Data

Since each training data provides information on the value
of the DSAF Γd(v), the low-dimensional representation of
the safe region Sy is initialized using the training dataset
Dtrain. By considering each training data as a belief source,
we formulate the following BBAs for all training data and later
fuse them to derive an initial estimate of the DSAF Γd(v).

Definition 6. The BBA Bi obtained from the i-th training data
Di

train is defined as

Bi = (bisafe, b
i
unsafe, µ

i). (21)

It represents the belief about the value of the DSAF Γd(v) for
the index vector v = L(xisim), where the belief source is the i-
th training data. bisafe, biunsafe and µi have the same meanings
as in Definition 5.

Due to the inevitable simulation-to-reality gap, we initialize
the BBA of each training data with a constant uncertainty
µini > 0 as

Bi =

{
(1− µini, 0, µini), if ssim(xisim) = 1

(0, 1− µini, µini), if ssim(xisim) = 0
(22)

where i = 1, . . . , kt. Since no information about the unknown
term d(x) is available prior to the learning process on the real
system, the initial subjective uncertainties are chosen to be
the same for all BBAs. Later in the online adaptation method,
the subjective uncertainties are updated by using the feedback
data to realize more accurate safety estimates.

For each index vector v, the BBA Bv is then estimated by
using the BBAs of the training data. To achieve this, we first
generate a set of BBAs Bv for each index vector v

Bv = {Bi | L(xisim) = v}. (23)

which contains the BBAs of the training data whose original
system state xsim corresponds to the index vector v. The size
of the set Bv is denoted as kv .

Every BBA in the set Bv provides a belief about the value
of the DSAF Γd(v) for the index vector v. Hence, an estimate
of the BBA Bv is derived by fusing all BBAs within the set
Bv as

Bprior
v = (bv,prior

safe , bv,prior
unsafe , µ

v,prior) =

{
F(Bv), if kv ≥ kmin

Bini, else
(24)

where Bini is an initial estimate that represents our guess about
the BBA Bv when no training data is available (see Fig. 4).
F(·) is a fusion operation among the set Bv , which is referred
to as weighted belief fusion and is defined according to [35]
as

bv,prior
safe =

∑
Bi∈Bv

bisafe(1− µi)
∏

Bj∈Bv
i 6=j

µj

 ∑
Bi∈Bv

∏
Bj∈Bv
i 6=j

µj

− kv ∏
Bi∈Bv

µi

(25)

bv,prior
unsafe =

∑
Bi∈Bv

biunsafe(1− µi)
∏

Bj∈Bv
i 6=j

µj

 ∑
Bi∈Bv

∏
Bj∈Bv
i 6=j

µj

− kv ∏
Bi∈Bv

µi

(26)

µv,prior =

kv − ∑
Bi∈Bv

µi

 ∏
Bi∈Bv

µi

 ∑
Bi∈Bv

∏
Bj∈Bv
i 6=j

µj

− kv ∏
Bi∈Bv

µi

. (27)

We refer to this estimate of the BBA Bv as the prior estimate
Bprior

v . Since it is still likely to be imprecise if the available
number of training data is too small, the fusion is performed
only when the number of BBAs contained in the set Bv is
not smaller than a minimum number kmin. Otherwise, the
prior estimate Bprior

v is set to the initial estimate Bini. We
use Bini = (0.05, 0.55, 0.4) in our experiments. This means
that if there is very little experience available in the form of
training data for one grid cell, then the respective states will
initially be considered as unsafe. The resulting prior estimate
Bprior

v is a BBA that satisfies

bv,prior
safe + bv,prior

unsafe + µv,prior = 1 (28)

and bv,prior
safe , bv,prior

unsafe , µv,prior all lie within the interval [0, 1].
After computing the prior estimate Bprior

v for all index
vectors v, we thus obtain a prior DSAF Γprior

d (v)

Γprior
d (v) = bv,prior

safe (29)

which delivers an estimate of the DSAF Γd(v) that is derived
from the training data. The low-dimensional representation
of the safe region Sy is then initialized by letting Γd(v) =
Γprior

d (v). In the next section, we propose an online adaptation
method to update the DSAF Γd(v) using feedback data, to
account for the unknown part of the system dynamics d(x).

V. ONLINE ADAPTATION OF THE SAFETY ASSESSMENT
FUNCTION

In the early learning phase with the real system, the prior
DSAF Γprior

d (v) allows a rough estimate of the safety of
an original system state. During the learning process, the
feedback data is used to update the DSAF Γd(v) to achieve
more accurate safety estimates. Each update iteration of the
DSAF Γd(v) consists of three steps. First, we modify the prior
DSAF Γprior

d (v) by revising the subjective uncertainties of the
BBAs of the training data. Second, we compute a feedback
DSAF Γfeedback

d (v) using the feedback data. Third, the updated
DSAF Γd(v) is obtained by fusing the prior and feedback
DSAFs. Note that each time the corrective controller K(x) is
activated for the real system, we obtain new feedback data.
Hence the size of the feedback dataset Dfeedback increases
incrementally during the learning process. For simplicity, we
consider the feedback dataset Dfeedback of size kf in this



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 9

section. Details of the online adaptation method are given in
the following.

A. Update of the Prior DSAF with Feedback Data

The prior DSAF Γprior
d (v) is constructed using the training

datasetDtrain, in which the uncertainty caused by the unknown
term d(x) is represented by the subjective uncertainty µi of
each BBA Bi. Hence, the update of the prior DSAF Γprior

d (v)
will now modify the subjective uncertainties by accounting for
new information given by feedback data. For this, we assume
that original system states that are in close proximity to each
other most probably have similar safety properties.

Assumption 2. The probability p(sreal(x
1) = sreal(x

2)) that
two original system states x1 and x2 have the same safety
property on the real system is inversely proportional to their
Euclidean distance in the original state space ||x1 − x2||.

In addition, we define a function P (x) to quantify the
similarity with respect to the safety of nominal and real system
trajectories that start in the same initial original system state
x

P (x) = p(ssim(x) = sreal(x)) ∼ [0, 1]. (30)

It represents the probability that for a given original system
state x, its safety label ssim(x) obtained with the nominal
system is the same as the safety label sreal(x) obtained with
the real system. Then, according to Assumption 2, if we
observe an original system state x that has the same safety
property both in simulation and in reality, it is likely that other
original system states that are close to the observed state will
also show the same safety property.

In order to predict the value of the function P (x), we
approximate it with a Gaussian process regression (GPR)
model P (x) = GP(x). For each original system state xreal

contained in the feedback dataset Dfeedback, we examine its
safety label ssim(xreal) in simulation. This leads to a set of
samples {P (x1

real), . . . , P (x
kf

real)} for the function P (x), in
which

P (xireal) =

{
1, if ssim(xireal) = sreal(x

i
real)

0, if ssim(xireal) 6= sreal(x
i
real)

(31)

for i = 1, . . . , kf . Hence the GPR model GP(x) is trained
with the sets {x1

real, . . . , x
kf

real} and {P (x1
real), . . . , P (x

kf

real)},
which are obtained from the current feedback dataset
Dfeedback.

Remark 4. If the real system is a real-world dynamical sys-
tem, then it is usually difficult to test the corrective controller
K(x) with arbitrary initial original system states x in reality,
since there is a high risk of encountering unsafe behaviors.
However in contrast, the simulation can be initialized with
any original system state xreal contained in the feedback data,
which then makes it possible to approximate the function P (x).

The trained GPR model GP(x) is then used to update the
BBA Bi of each training data. The general motivation is that,
we decrease the subjective uncertainty µi if we are confident
about the reliability of this training data. Hence for the i-
th training data, we compute a predicted mean value of the

Fig. 5: As given in (33), the subjective uncertainty µi in the
BBA Bi of the i-th training data is determined using the
corresponding standard deviation pistd obtained from the GPR
model GP(x).

function P (xisim), denoted as pimean, from the GPR model
GP(x), along with a corresponding standard deviation pistd of
the predicted value. Since a low value of the standard deviation
pistd means we have observed enough feedback data to make a
reliable prediction, we only update the BBA Bi if the standard
deviation pistd is smaller than a predefined threshold pth

Bi =


(pimean(1− µi), (1− pimean)(1− µi), µi),

if pistd ≤ pth and ssim(xisim) = 1

((1− pimean)(1− µi), pimean(1− µi), µi),

if pistd ≤ pth and ssim(xisim) = 0

(32)

with the new subjective uncertainty µi calculated as

µi =
µini − µmin

αpth − 1
(αpi

std − 1) + µmin (33)

where µini is the same initial subjective uncertainty as that
given in (22) (see Fig. 5 for a graphical representation of (33)).
BBAs Bi with pistd > pth remain unchanged, as in (22). Such
an update of the BBA Bi considers the predicted value of the
function P (xisim) and the reliability of this prediction at the
same time.

(33) is designed by considering two aspects: first, the sub-
jective uncertainty µi is set equal to µini when pistd ≥ pth. This
means that in this case we do not have the confidence to update
the BBA Bi, as not enough information is observed from the
feedback data; second, due to the inevitable reality gap, the
subjective uncertainty µi maintains a minimum uncertainty
µmin even when the standard deviation pistd is 0. We use
the exponential form such that the decrease in µi is faster
when the standard deviation pistd is near the threshold pth. The
parameter α > 1 determines the decay rate and is selected by
considering the actual learning task.

Note that for the same training data, the relationship be-
tween the standard deviation pistd and the threshold pth can
change during the learning process. For example, we might
obtain pistd ≤ pth in the current update iteration, but in the
next update iteration it changes to pistd > pth. This happens
primarily when we first observe a safe original system state
but followed by a nearby unsafe state, such that the safety
of the states in between these two observed states becomes
uncertain. In such cases, we set the BBA Bi back to the initial
BBA given in (22).



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 10

Once the BBAs Bi of all training data have been updated
with the up-to-date feedback dataset Dfeedback, the prior
estimate Bprior

v for each index vector v is recomputed using
(24). This results in an updated prior DSAF Γprior

d (v), which
is used later for revising the DSAF Γd(v).

B. Feedback DSAF

The feedback data contain the information about the real
safety properties of different original system states x. To fully
utilize this valuable information, we construct an additional
DSAF, denoted as the feedback DSAF Γfeedback

d (v), using the
feedback dataset Dfeedback.

As the amount of data is insufficient, we also consider
the estimate obtained from the feedback data as a subjective
probability [26]. Then, as with the prior estimate Bprior

v , we
formulate another estimate of the BBA Bv for each index
vector v as

Bfeedback
v = (bv,feedback

safe , bv,feedback
unsafe , µv,feedback) (34)

which is referred to as the feedback estimate Bfeedback
v .

For each index vector v, the feedback estimate Bfeedback
v

is determined by the number of safe and unsafe feedback
data that correspond to this grid cell. By sorting the feed-
back dataset Dfeedback with the locating function L(x), we
denote the number of safe feedback data that have the index
vector v from the locating function, i.e., L(xreal) = v and
sreal(xreal) = 1, as kvsafe (and kvunsafe for the number of unsafe
feedback data). If at least one feedback data is available for
the index vector v, i.e., kvsafe + kvunsafe ≥ 1, we compute the
feedback estimate Bfeedback

v as follows

bv,feedback
safe =

kvsafe

kvsafe + kvunsafe

(1− µv,feedback) (35)

bv,feedback
unsafe =

kvunsafe

kvsafe + kvunsafe

(1− µv,feedback) (36)

µv,feedback = βexp(−γ(kvsafe + kvunsafe − 1)). (37)

The subjective uncertainty µv,feedback decreases if more feed-
back data are observed for the index vector v. It satisfies
that, if a sufficient number of feedback data is obtained, the
subjective uncertainty µv,feedback approaches 0. In such a case,
the belief masses bv,feedback

safe and bv,feedback
unsafe can be considered

as the actual probabilities. The parameters β and γ define the
initial value and the decay rate of the subjective uncertainty
µv,feedback, respectively. If no feedback data is observed for
the index vector v, we set the feedback estimate Bfeedback

v to
an empty BBA B∅ defined as Bfeedback

v = B∅ = (0, 0, 1),
which indicates that no safety estimate can be made.

Using the feedback estimate Bfeedback
v , we obtain the fol-

lowing feedback DSAF Γfeedback
d (v)

Γfeedback
d (v) = bv,feedback

safe (38)

which represents the estimate of the DSAF Γd(v) derived from
the feedback data only. In the next subsection, we fuse the
feedback DSAF Γfeedback

d (v) with the updated prior DSAF
Γprior

d (v) to derive a more accurate DSAF Γd(v).

C. Fusion of Prior and Feedback DSAFs

The prior and feedback DSAFs both provide beliefs about
safety by using different datasets as their belief source. To
update the DSAF Γd(v), we fuse these two functions using
weighted belief fusion as given in (25-27). This leads to a
fused estimate Bfuse

v for each index vector v

Bfuse
v = (bv,fuse

safe , bv,fuse
unsafe, µ

v,fuse) (39)

which is computed as

Bfuse
v =

{
F({Bprior

v , Bfeedback
v }), if Bfeedback

v 6= B∅

Bprior
v , if Bfeedback

v = B∅.
(40)

If the feedback estimate Bfeedback
v is non-empty, we find the

fused estimate Bfuse
v through weighted belief fusion F(·) of the

set {Bprior
v , Bfeedback

v }. Otherwise, we set the fused estimate
Bfuse

v equal to the prior estimate Bprior
v .

The fused estimate Bfuse
v fulfills the following property,

which is also given in [26].

Proposition 1. If the number of feedback data approaches
infinity, the fused estimate Bfuse

v becomes the actual proba-
bilities, and the prior estimate Bprior

v has no effect in making
safety estimates.

Proof. Proposition 1 is justified by the following equations

lim
kv
safe+kv

unsafe→∞
bv,fuse
safe = bv,feedback

safe (41)

lim
kv
safe+kv

unsafe→∞
bv,fuse
unsafe = bv,feedback

unsafe (42)

lim
kv
safe+kv

unsafe→∞
µv,fuse = µv,feedback = 0 (43)

which are obtained by simplifying (25-27) with the set
{Bprior

v , Bfeedback
v }.

Considering computational efficiency, the update of the
DSAF Γd(v) is generally performed once when every ku
feedback data is obtained, where the value of ku is selected
according to the actual learning task. In each update iteration
(indexed by number N , see Section VI-C), we first use the up-
to-date feedback dataset Dfeedback to update the prior DSAF
Γprior

d (v) and to construct the feedback DSAF Γfeedback
d (v).

Then, the fused estimate Bfuse
v is computed from these two

functions for each index vector v. The updated DSAF Γd(v)
is thus obtained using the fused estimate Bfuse

v as

Γd(v) = bv,fuse
safe (44)

which also gives the latest low-dimensional representation of
the safe region Sy according to (20). With further feedback
data, the DSAF Γd(v) becomes more accurate and more
reliable safety estimates are obtained.

VI. QUADCOPTER EXPERIMENTS

In this section, we demonstrate the proposed approach for
identifying the low-dimensional representation of the safe
region Sy , using the example of a quadcopter.



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 11

Fig. 6: The system state x of a quadcopter is defined using
the ground frame and the body frame.

A. Experimental Setup

We simulate the quadcopter using the system dynamics
given in [36] with MATLAB Simulink2 (Version R2019b)
running on a laptop powered by an Intel i7-7700HQ CPU. The
12-dimensional system state is defined as x = [pg, θg, vb, ωb]

T ,
where pg = [px, py, pz]T and θg = [θr, θp, θy]T are the
linear and angular positions defined in the ground frame,
vb = [vx, vy, vz]T and ωb = [ωr, ωp, ωy]T are the linear
and angular velocities defined in the body frame (see Fig. 6).
The control input u consists of the four motor speeds of the
quadcopter. For the nominal system model, we set the mass
of the quadcopter to m = 1 kg and the maximal lifting force
to f = 200 N. The safety of a given state x is determined
by simulating the controlled dynamics with the corrective
control K(x) that starts in initial state x, and checking if the
controller is able to successfully drive the quadcopter back to
a hovering state without crashing. In this example, we use the
PID controller given in [36] as the corrective controller K(x).
It stabilizes the quadcopter’s height as well as its roll, pitch
and yaw rotations. The coefficients of the PID controller are:
KP,h = 1.5, KI,h = 0, KD,h = 2.5 for the height control,
and KP,r = KP,p = KP,y = 6, KI,r = KI,p = KI,y = 0,
KD,r = KD,p = KD,y = 1.75 for the roll, pitch and yaw
rotations control, respectively.

To generate the training dataset Dtrain, we first create
kt = 10000 original system states x. We set px = py =
0 and pz = 2 m to leave enough space and time for
the corrective controller K(x). All other variables are sam-
pled with a uniform distribution within the following range:
0 ≤ θr, θp, θy ≤ 2π rad, −3 m/s ≤ vx, vy, vz ≤ 3 m/s,
−10 rad/s ≤ ωr, ωp, ωy ≤ 10 rad/s. The training dataset
Dtrain is then obtained by examining the performance of the
corrective controller K(x) for all these initial values.

B. Identifying the Low-dimensional Representation of the Safe
Region

The initial realization of the low-dimensional safety feature,
i.e., the values of simplified states y1, . . . , ykt , obtained from
t-SNE is given in Fig. 7a. We use δ = 0.01 in (14) and
set the perplexity and tolerance of t-SNE (see [32]) to 40
and 1e−4, respectively. The result shows that the safe and

2https://www.mathworks.com/products/simulink.html

-30 -20 -10 0 10 20 30

-30

-20

-10

0

10

20

30

unsafe

safe

(a)

-30 -20 -10 0 10 20 30

-30

-20

-10

0

10

20

30

unsafe

safe

(b)

Fig. 7: (a) The initial realization of simplified states
y1, . . . , ykt obtained from t-SNE. The safe and unsafe training
data are denoted by green and blue points, respectively. (b)
The final realization of simplified states y1, . . . , ykt obtained
by recomputing with the learned neural network that represents
the state mapping y = Ψ(x) = NN(x).

unsafe original system states are clearly separated in the two-
dimensional simplified state space Y ⊆ R2.

The state mapping y = Ψ(x) is represented by a
two-layer neural network with 128 neurons in each layer,
which is trained using the initial realization of simplified
states y1, . . . , ykt and the set of original system states
{x1

sim, . . . , x
kt

sim}. By recomputing the outputs of the learned
neural network, we obtain the final realization of the low-
dimensional safety feature, i.e., the values of the simplified
states y1, . . . , ykt , given in Fig. 7b. Due to approximation
error, certain simplified states have a slightly changed posi-
tion compared to the values obtained from t-SNE. However,
this does not affect the computation of the low-dimensional
representation of the safe region Sy , as the results are updated
later in the online adaptation using the feedback data.

We set the simplified state space as {Y | − 30 ≤ y1, y2 ≤
30}. By discretizing the simplified state space Y into grid
cells with step size 1 in both y1 and y2, we obtain the index
vector v ∈ {1, 2, . . . , 60}2. The prior DSAF Γprior

d (v) is thus
computed from the training dataset Dtrain using the index
vector v. The results are given in Fig. 8a, where the initial
subjective uncertainty, the initial estimate and the minimum
number are selected as µini = 0.4, Bini = (0.05, 0.55, 0.4) and
kmin = 3, respectively. Depending on the number of safe and
unsafe training data in each grid cell, the prior DSAF Γprior

d (v)

https://www.mathworks.com/products/simulink.html


IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 12

(a) (b) (c) (d)

-20 0 20
-30

-20

-10

0

10

20

30

0

0.2

0.4

0.6

0.8

1

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 8: Results of the online adaptation. (a)-(d) The prior DSAF Γprior
d (v) in different update iterations N . N = 0 refers to

the initialization prior to the online adaptation. The values of the safety estimates are represented by different colors. (e)-(h)
The feedback DSAF Γfeedback

d (v) in different update iterations N . (i)-(l) The DSAF Γd(v) in different update iterations N .

estimates the probability p(x ∈ S) for original system states
x that take the index vector v from the locating function
L(x). In Fig. 8i, the DSAF Γd(v) is initialized by the prior
DSAF Γprior

d (v). In the next subsection, we demonstrate the
update process of the DSAF Γd(v) using the proposed online
adaptation method.

C. Updating the Low-dimensional Representation

To simulate a mismatch between the nominal and the real
systems, we set the mass and the maximal lifting force of the
real system to m = 0.8 kg and f = 145 N, respectively. To
eliminate the influence of a specific learning task or algorithm
and focus on illustrating the update process, the feedback
dataset Dfeedback is obtained by randomly selecting states xreal

where the corrective controller K(x) is activated, such that the
entire original system state space can be visited.

The following parameters are used in the online adaptation
method: µmin = 0.1, pth = 0.3, α = 3e5, β = 0.3, γ = 0.4.
The GPR model GP(x) uses a squared exponential kernel. To
demonstrate the online update process, we collect the feedback
data one by one and incrementally extend the feedback dataset
Dfeedback. The DSAF Γd(v) is updated once when every ku =
20 feedback data are obtained.

The results of the online adaptation are given in Fig. 8.
Prior to the update (update iteration N = 0), the DSAF
Γd(v) is initialized as the prior DSAF Γprior

d (v), while the
feedback DSAF Γfeedback

d (v) is constructed using the empty
BBA B∅ (see Fig. 8a, 8e, 8i). Once the learning procedure
has started, we collect the feedback data incrementally. In
the early updating phase, e.g., update iteration N = 10,
the DSAF Γd(v) is mainly determined by the prior DSAF
Γprior

d (v). The subjective uncertainties of each training data are
modified using the feedback data, where we become confident
about the safety of certain training data when we observe a
nearby feedback data that has the same safety property. Since
the amount of feedback data is insufficient for providing a
reliable safety estimate, the feedback DSAF Γfeedback

d (v) has
a smaller effect on the computation of the low-dimensional
representation of the safe region Sy (see Fig. 8b, 8f, 8j).

When more feedback data are available, e.g., update iter-
ation N = 50, the feedback DSAF Γfeedback

d (v) is able to
provide more accurate safety estimates, hence its influence on
the DSAF Γd(v) also becomes more significant. Due to the
high dimensionality of the original system state x and the
limited amount of feedback data, it is difficult to acquire an
estimate with high confidence from the GPR model GP(x). As
a result, changes are marginal in the prior DSAF Γprior

d (v) (see



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 13

(a) (b) (c) (d)

Fig. 9: Comparison with physically inspired model order reduction. (a) For physically inspired model order reduction, the DSAF
Γd(v) is initialized conservatively. (b)-(c) The DSAFs Γd(v) obtained by using physically inspired model order reduction and
the proposed approach, respectively. The feedback dataset D′

feedback is used for the update. (d) The DSAF Γd(v) obtained by
using physically inspired model order reduction and the feedback dataset Dfeedback.

Fig. 8c, 8g, 8k). With even more feedback data, e.g., update
iteration N = 100, the DSAF Γd(v) is able to provide reliable
estimates about the probability p(x ∈ S) for each index vector
v. While the prior and feedback DSAFs are updated accord-
ingly, the DSAF Γd(v) represents the actual low-dimensional
representation of the safe region Sy under the unknown part
of the system dynamics d(x) (see Fig. 8d, 8h, 8l).

D. Comparison with Physically Inspired Model Order Reduc-
tion

We compare the proposed approach with the physically
inspired model order reduction presented in [26] in terms
of the representation power of the identified low-dimensional
representation of the safe region Sy , i.e., how well the safe
and unsafe states are separated. To do this, we compute
another DSAF Γd(v) using physical features. As in [26], the
low-dimensional safety feature, i.e., the simplified state y, is
selected for the velocities in x and y directions y = [vx, vy]T .
To avoid any dangerous behavior in early learning phase,
the low-dimensional representation of the safe region Sy is
initialized conservatively [26] by setting Γd(v) = 0.6 for grid
cells that satisfy −0.5 ≤ vx, vy ≤ 0.5 (see Fig. 9a).

As the learning task in [26] is relatively simple, the explo-
ration in the original system state space is limited to a small
subspace around the origin (see Section VII-A for more dis-
cussions on this point). Therefore, to make a fair comparison,
we also generate another feedback dataset D′

feedback that has
the same size as the dataset Dfeedback. However, instead of the
complete original system state space given in Section VI-A,
the states xreal in the set D′

feedback are sampled from a smaller
state space, where the ranges of angular positions and angular
velocities are changed to − 1

3π ≤ θr, θp, θy ≤ 1
3π rad and

−3 rad/s ≤ ωr, ωp, ωy ≤ 3 rad/s, respectively.
We first compare the performance of both approaches by

considering a small state space, i.e., the feedback dataset
D′

feedback is used for the update. The results show that, in
this case, physical features are able to provide reasonable
predictions about safety, i.e., the safe and unsafe regions are
separated (see Fig. 9b). Meanwhile, the proposed approach
also produces a satisfying result with a marginally better
separation between safe and unsafe states (see Fig. 9c).

However, if the learning task becomes more complex, the
complete state space usually has to be explored to enable an
optimal policy to be found. To simulate this scenario, we also
update the initial DSAF Γd(v) using the feedback dataset
Dfeedback. As seen in Fig. 9d, when considering the entire
original system state space, it is difficult to make reliable
safety estimates based only on physical features. The boundary
between safe and unsafe regions becomes unclear, and there
are numerous grid cells that lead to a safety estimate close
to 0.5. In contrast, the proposed approach is still able to
find a representative low-dimensional representation of the
safe region Sy for the complete state space. As the identified
simplified state y can describe the safety of original system
states x more precisely, a satisfying separation between safe
and unsafe regions is achieved (see Fig. 8l) and more useful
safety estimates are obtained. The independence of the size of
the state space indicates the possibility of implementing the
proposed approach on different learning tasks, which in turn
increases the applicability of the SRL framework.

VII. DISCUSSION

In this work, we propose a general approach for efficiently
identifying a low-dimensional representation of the safe re-
gion. Two important aspects of the proposed approach are
discussed in this section.

A. Relevance to Different SRL Tasks

In [26], the SRL framework utilizes the low-dimensional
representation of the safe region Sy that is obtained us-
ing physically inspired model order reduction. Such a low-
dimensional representation is useful when the learning task is
relatively simple, e.g., teaching a quadcopter to fly forwards as
given in [26], such that a satisfying control policy can be found
without requiring an extensive exploration in the original state
space. Since, in this case, the system state is likely to stay
in a sub-state space near the origin, physical features are
able to provide reliable safety estimates. However, when the
learning task becomes more difficult, e.g., the quadcopter
needs to track a complex 3D trajectory, the learning algorithm
in general has to explore a large portion of the state space to
find an optimal policy. Under these circumstances, at least a



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 14

rough safety assessment of the complete state space is needed.
Unfortunately, being restricted by the representation power,
the physically inspired low-dimensional representation of the
safe region Sy fails to provide useful safety estimates when
considering the entire state space. Hence, the performance of
the SRL framework is affected.

Therefore, to overcome this problem, this paper proposes
a data-driven approach for identifying a low-dimensional rep-
resentation of the safe region Sy that is able to make more
precise predictions about safety. Meaningful safety estimates
are even obtained for the entire original state space. This not
only gives the learning algorithm more flexibility in choosing
its actions to find the optimal policy, but also indicates
the applicability of the proposed approach to more complex
learning tasks.

B. Strengths and Limitations

The presented approach has three particular strengths. First,
it finds a low-dimensional representation of the safe region
Sy that allows safe and unsafe states to be clearly separated
for large portions of a high-dimensional state space; see also
Section VI-D. Second, the effort required for identifying the
low-dimensional representation of the safe region Sy is low.
While, for instance, physically inspired model order reduc-
tion usually needs a comprehensive analysis of the system
dynamics, the proposed approach relies solely on training data
that can be collected efficiently even for complex dynamical
systems through parallel computing and a suitable simulation
environment. Third, it fully utilizes the information contained
in the feedback data using two DSAFs. Hence, the update
can be performed with few feedback data while providing a
satisfying result.

However, the performance of the identified low-dimensional
representation of the safe region Sy is affected by the quality
of the nominal system, i.e. the magnitude of the discrepancy
between the nominal and the real systems. While the state
mapping y = Ψ(x) is determined using only training data, the
online adaptation method attempts to find an accurate DSAF
Γd(v) based on the learned low-dimensional safety feature. If
the reality gap is too large, then it is possible that the learned
safety feature is not sufficiently representative and we might
therefore observe more grid cells with final safety estimates
that are close to 0.5, i.e., Γd(v) ≈ 0.5, which are less useful
for guiding the learning process. In general, if the nominal
system is assumed to be unreliable, a high probability thresh-
old pt should be used for constructing the low-dimensional
representation of the safe region Sy (see (20)), such that
the learning process becomes more conservative for keeping
the system safe. However, we usually consider the unknown
system dynamics d(x) as bounded within a reasonable range,
since it makes less sense to use a dissimilar nominal system to
predict the behavior of the real system. To further generalize
the proposed approach, more studies are required to quantify
the influence of the simulation-to-reality gap on the reliability
of the obtained safety estimates.

VIII. CONCLUSION

To apply SRL to complex dynamical systems, this paper
proposes a novel data-driven approach to identify a low-
dimensional representation of the safe region for realizing
a general SRL framework. Using a nominal system model
that predicts the behavior of the real system, we first collect
training data about the safety of different system states.
Then, by computing the probabilistic similarities between
each training data using a data-driven method, an initial low-
dimensional representation of the safe region is obtained. To
compensate for the mismatch between the nominal and the real
systems, an efficient online adaptation method based on belief
function theory is also proposed to update the low-dimensional
representation of the safe region by accounting for the real
system behavior. Experimental results show that, compared
to the previous work, a more reliable and representative
low-dimensional representation of the safe region is found
using the proposed approach. However, our approach has the
limitation that its performance is affected by the magnitude
of discrepancy between the nominal and real systems. If the
reality gap is assumed to be large, then it is likely that a less
meaningful low-dimensional representation of the safe region
will be obtained.

For future work, we intend to combine the data-driven
method with model-based model order reduction techniques to
find an approach that is more robust to the simulation-to-reality
gap when identifying the low-dimensional representation of
the safe region. Moreover, we also plan to investigate the
possibility of quantifying the similarity between different
dynamical systems, such that the learned safety feature can be
generalized from one system to other similar systems. How
the similarity between dynamical systems will be measured,
is, however, still an open research problem.

REFERENCES

[1] X. B. Peng, G. Berseth, K. Yin, and M. Van De Panne, “Deeploco: Dy-
namic locomotion skills using hierarchical deep reinforcement learning,”
ACM Trans. Graphics, vol. 36, no. 4, pp. 1–13, Jul. 2017.

[2] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training of
deep visuomotor policies,” J. Mach. Learn. Res., vol. 17, no. 39, pp.
1–40, Apr. 2016.

[3] Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel, “Bench-
marking deep reinforcement learning for continuous control,” in Proc.
33rd Int. Conf. Mach. Learn. (ICML), Jun. 2016, pp. 1329–1338.

[4] J. Garcıa and F. Fernández, “A comprehensive survey on safe reinforce-
ment learning,” J. Mach. Learn. Res., vol. 16, no. 42, pp. 1437–1480,
Aug. 2015.

[5] P. Abbeel, A. Coates, M. Quigley, and A. Y. Ng, “An application of
reinforcement learning to aerobatic helicopter flight,” in Proc. Adv.
Neural Inf. Process. Syst. (NeurIPS), Dec. 2006, pp. 1–8.

[6] S. J. Pan, Q. Yang et al., “A survey on transfer learning,” IEEE Trans.
Knowl. Data Eng., vol. 22, no. 10, pp. 1345–1359, Oct. 2010.

[7] P. Christiano, Z. Shah, I. Mordatch, J. Schneider, T. Blackwell, J. Tobin,
P. Abbeel, and W. Zaremba, “Transfer from simulation to real world
through learning deep inverse dynamics model,” arXiv:1610.03518,
2016. [Online]. Available: http://arxiv.org/abs/1610.03518

[8] S. Huang, N. Papernot, I. Goodfellow, Y. Duan, and P. Abbeel,
“Adversarial attacks on neural network policies,” arXiv:1702.02284,
2017. [Online]. Available: http://arxiv.org/abs/1702.02284

[9] J. Achiam, D. Held, A. Tamar, and P. Abbeel, “Constrained policy
optimization,” in Proc. 34th Int. Conf. Mach. Learn. (ICML), Aug. 2017,
pp. 22–31.

[10] Y. Shen, M. J. Tobia, T. Sommer, and K. Obermayer, “Risk-sensitive
reinforcement learning,” Neural Comput., vol. 26, no. 7, pp. 1298–1328,
Jul. 2014.

http://arxiv.org/abs/1610.03518
http://arxiv.org/abs/1702.02284


IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 15

[11] T. J. Perkins and A. G. Barto, “Lyapunov design for safe reinforcement
learning,” J. Mach. Learn. Res., vol. 3, no. Dec, pp. 803–832, Dec. 2002.

[12] Y. Chow, O. Nachum, E. Duenez-Guzman, and M. Ghavamzadeh, “A
lyapunov-based approach to safe reinforcement learning,” in Proc. Adv.
Neural Inf. Process. Syst. (NeurIPS), Dec. 2018, pp. 8103–8112.

[13] C. J. Ostafew, A. P. Schoellig, and T. D. Barfoot, “Robust constrained
learning-based nmpc enabling reliable mobile robot path tracking,” Int.
J. Robot. Res., vol. 35, no. 13, pp. 1547–1563, May 2016.

[14] D. Sadigh and A. Kapoor, “Safe control under uncertainty with proba-
bilistic signal temporal logic,” in Proc. Robotics: Science and Systems
(RSS), Jun. 2016, pp. 171–181.

[15] M. Zanon and S. Gros, “Safe reinforcement learning using robust mpc,”
IEEE Trans. Autom. Control, early access, Sep. 2020.

[16] Y. Li, N. Li, H. E. Tseng, A. Girard, D. Filev, and I. Kolmanovsky, “Safe
reinforcement learning using robust action governor,” in Proc. 3rd Conf.
Learning for Dynamics & Control (L4DC), Jun. 2021, pp. 1093–1104.

[17] T. M. Moldovan and P. Abbeel, “Safe exploration in markov decision
processes,” in Proc. 29th Int. Conf. Mach. Learn. (ICML), Jun. 2012,
pp. 1451–1458.

[18] J. F. Fisac, A. K. Akametalu, M. N. Zeilinger, S. Kaynama, J. Gillula,
and C. J. Tomlin, “A general safety framework for learning-based control
in uncertain robotic systems,” IEEE Trans. Autom. Control, vol. 64,
no. 7, pp. 2737–2752, Jul. 2019.

[19] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine
Learning. Cambridge, MA, USA: MIT Press, 2006.

[20] S. Bansal, M. Chen, S. Herbert, and C. J. Tomlin, “Hamilton-jacobi
reachability: A brief overview and recent advances,” in Proc. IEEE 56th
Conf. Decision Control (CDC), Dec. 2017, pp. 2242–2253.

[21] F. Berkenkamp, R. Moriconi, A. P. Schoellig, and A. Krause, “Safe
learning of regions of attraction for uncertain, nonlinear systems with
gaussian processes,” in Proc. IEEE 55th Conf. Decision Control (CDC),
Dec. 2016, pp. 4661–4666.

[22] F. Berkenkamp, M. Turchetta, A. Schoellig, and A. Krause, “Safe model-
based reinforcement learning with stability guarantees,” in Proc. Adv.
Neural Inf. Process. Syst. (NeurIPS), Dec. 2017, pp. 908–919.

[23] J. F. Fisac, N. F. Lugovoy, V. Rubies-Royo, S. Ghosh, and C. J. Tomlin,
“Bridging hamilton-jacobi safety analysis and reinforcement learning,”
in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), May 2019, pp. 8550–
8556.

[24] A. R. Mahmood, D. Korenkevych, G. Vasan, W. Ma, and J. Bergstra,
“Benchmarking reinforcement learning algorithms on real-world robots,”
in Proc. 2nd Conf. Robot Learning (CoRL), Oct. 2018, pp. 561–591.

[25] S. James, Z. Ma, D. R. Arrojo, and A. J. Davison, “Rlbench: The
robot learning benchmark & learning environment,” IEEE Trans. Robot.
Autom., vol. 5, no. 2, pp. 3019–3026, Apr. 2020.

[26] Z. Zhou, O. S. Oguz, M. Leibold, and M. Buss, “A general framework
to increase safety of learning algorithms for dynamical systems based
on region of attraction estimation,” IEEE Trans. Robot., vol. 36, no. 5,
pp. 1472–1490, Oct. 2020.

[27] W. H. Schilders, H. A. Van der Vorst, and J. Rommes, Model Order
Reduction: Theory, Research Aspects and Applications. New York,
NY, USA: Springer, 2008.

[28] A. Marco, F. Berkenkamp, P. Hennig, A. P. Schoellig, A. Krause,
S. Schaal, and S. Trimpe, “Virtual vs. real: Trading off simulations and
physical experiments in reinforcement learning with bayesian optimiza-
tion,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), May 2017, pp.
1557–1563.

[29] M. Z. Romdlony and B. Jayawardhana, “Stabilization with guaranteed
safety using control lyapunov–barrier function,” Automatica, vol. 66, pp.
39–47, Apr. 2016.

[30] M. Sobotka, J. Wolff, and M. Buss, “Invariance controlled balance of
legged robots,” in Proc. Eur. Control Conf. (ECC), Jul. 2007, pp. 3179–
3186.

[31] A. A. Ahmadi and A. Majumdar, “Dsos and sdsos optimization: more
tractable alternatives to sum of squares and semidefinite optimization,”
SIAM J. Appl. Algebra Geom., vol. 3, no. 2, pp. 193–230, Apr. 2019.

[32] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” J. Mach.
Learn. Res., vol. 9, no. 86, pp. 2579–2605, Nov. 2008.

[33] G. Shafer, A Mathematical Theory of Evidence. Princeton, NJ, USA:
Princeton Univ. Press, 1976.

[34] A. Jøsang, Subjective Logic. New York, NY, USA: Springer, 2016.
[35] A. Jøsang, “Categories of belief fusion,” J. Adv. Inf. Fusion, vol. 13,

no. 2, pp. 235–254, Dec. 2018.
[36] T. Luukkonen, “Modelling and control of quadcopter,” Independent

Research Project in Applied Mathematics, Aalto University, Espoo,
Finland, Aug. 2011.

Zhehua Zhou received the B.E. degree in mecha-
tronics engineering from Tongji University, Shang-
hai, China in 2014 and the M.Sc. degree in electri-
cal and computer engineering from the Department
of Electrical and Computer Engineering, Technical
University of Munich, Munich, Germany in 2017.
He is currently working toward the Ph.D. degree
in learning-based control and robotics from the
Chair of Automatic Control Engineering, Depart-
ment of Electrical and Computer Engineering, Tech-
nical University of Munich, Munich, Germany. His

research interests include optimal control, learning-based control and the
applications to robotics.

Ozgur S. Oguz received the B.Sc. and the M.Sc.
(summa cum laude) degrees in computer science
from Koc University, Istanbul, Turkey, and the Ph.D.
degree (summa cum laude) from the Department
of Electrical and Computer Engineering, Technical
University of Munich, Germany, in 2018. Currently
he is a postdoctoral researcher at the Machine
Learning and Robotics Lab, University of Stuttgart
and Max Planck Institute for Intelligent Systems,
Germany. His research interests are developing au-
tonomous systems that are able to reason about their

states of knowledge, take sequential decisions to realize a goal, and simul-
taneously learn to improve their causal physical reasoning and manipulation
skills.

Marion Leibold (nee Sobotka) received the
diploma degree in applied mathematics from the
Technische Universität München, Germany, in 2002.
She received the PhD degree from the Faculty of
Electrical Engineering and Information Technology,
Technische Universität München, Germany, in 2007.
Currently she is a senior researcher at the Institute of
Automatic Control Engineering, Faculty of Electri-
cal Engineering and Information Technology, Tech-
nische Universität München, Germany. Her research
interests include optimal control and nonlinear con-

trol theory, and the applications to robotics.

Martin Buss received the Diploma Engineering de-
gree Technische Universität Darmstadt, Darmstadt,
Germany, in 1990 and the Doctor of Engineering
degree from The University of Tokyo, Tokyo, Japan,
in 1994, both in electrical engineering. In 1988, he
was a Research Student for one year with Science
University of Tokyo. From 1994 to 1995, he was
a Postdoctoral Researcher in the Department of
Systems Engineering, Australian National Univer-
sity, Canberra, ACT, Australia. From 1995 to 2000,
he was a Senior Research Assistant and Lecturer

in the Chair of Automatic Control Engineering, Department of Electrical
Engineering and Information Technology, Technical University of Munich,
Munich, Germany. From 2000 to 2003, he was a Full Professor, the Head
of the Control Systems Group, and the Deputy Director of the Institute of
Energy and Automation Technology, Faculty IV, Electrical Engineering and
Computer Science, Technical University Berlin, Berlin, Germany. Since 2003,
he has been a Full Professor (Chair) in the Chair of Automatic Control
Engineering, Faculty of Electrical Engineering and Information Technology,
Technical University of Munich, where he has been in the Medical Faculty
since 2008. Since 2006, he has also been the Coordinator of the Deutsche
Forschungsgemeinschaftcluster of excellence “Cognition for Technical Sys-
tems (CoTeSys)”, Bonn, Germany. His research interests include automatic
control, mechatronics, multimodal human system interfaces, optimization,
nonlinear, and hybrid discrete-continuous systems.


	I Introduction
	I-A Related Work
	I-B Contribution

	II Safe Reinforcement Learning Framework
	II-A System Model and Safe Region
	II-B SRL Framework
	II-C SRL Framework for Complex Dynamical Systems

	III Overview of the Approach
	IV Learning a Low-dimensional Representation of the Safe Region
	IV-A Identifying the State Mapping with t-SNE
	IV-B Belief Function Theory and DSAF
	IV-C Initializing the DSAF from Training Data

	V Online Adaptation of the Safety Assessment Function
	V-A Update of the Prior DSAF with Feedback Data
	V-B Feedback DSAF
	V-C Fusion of Prior and Feedback DSAFs

	VI Quadcopter Experiments
	VI-A Experimental Setup
	VI-B Identifying the Low-dimensional Representation of the Safe Region
	VI-C Updating the Low-dimensional Representation
	VI-D Comparison with Physically Inspired Model Order Reduction

	VII Discussion
	VII-A Relevance to Different SRL Tasks
	VII-B Strengths and Limitations

	VIII Conclusion
	References
	Biographies
	Zhehua Zhou
	Ozgur S. Oguz
	Marion Leibold (nee Sobotka)
	Martin Buss


