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Abstract—For the safe application of reinforcement learning
algorithms to high-dimensional nonlinear dynamical systems, a
simplified system model is used to formulate a safe reinforcement
learning framework. Based on the simplified system model, a
low-dimensional representation of the safe region is identified
and used to provide safety estimates for learning algorithms.
However, finding a satisfying simplified system model for complex
dynamical systems usually requires a considerable amount of
effort. To overcome this limitation, we propose a general data-
driven approach that is able to efficiently learn a low-dimensional
representation of the safe region. By employing an online adap-
tation method, the low-dimensional representation is updated
using the feedback data to obtain more accurate safety estimates.
The performance of the proposed approach for identifying the
low-dimensional representation of the safe region is illustrated
using the example of a quadcopter. The results demonstrate a
more reliable and representative low-dimensional representation
of the safe region compared to previous work, which extends the
applicability of the safe reinforcement learning framework.

Index Terms—safe reinforcement learning, deep learning in
robotics and automation, learning and adaptive systems, data-
driven model order reduction

I. INTRODUCTION

ECENT studies of applying reinforcement learning or

deep reinforcement learning algorithms to complex, i.e.,
highly nonlinear and high-dimensional, dynamical systems
have demonstrated attractive achievements in various control
tasks, e.g., humanoid control [[1] and robotic manipulator
control [2]. However, although the results display the potential
of utilizing reinforcement learning algorithms as a substitute
for traditional controller design techniques, most of them are
still only presented in simulations [3]]. One major impediment
against implementing reinforcement learning algorithms on
real-world dynamical systems is that, due to the random
exploration mechanism, the intermediate policy may lead to
dangerous behaviors of the system. As a result, both the system
itself and the environment may be damaged during learning.
In order to apply state-of-the-art reinforcement learning algo-
rithms to real-world control systems, one central problem to
address is how to introduce a reliable safety guarantee into the
learning process.
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A. Related Work

Safe reinforcement learning (SRL) aims to find an optimal
control policy by way of reinforcement learning while ensuring
that certain safety conditions are not violated during the
learning process. Although the exact definition of safety in
SRL varies in different learning tasks, for instance collision
avoidance in autonomous vehicles or crash prevention when
controlling a quadcopter, we generally consider the safety
condition as neither the system itself nor the environment will
be damaged.

SRL in dynamical systems with continuous action space
has been a topic of research for over a decade [4]. Most
previous studies employed a manual control mechanism to
ensure the safety of the controlled system. For instance, in [5],
an experienced human pilot takes over the control of the
helicopter if the learning algorithm places the system in a
risky state. However, such an approach requires a considerable
amount of resource to monitor the entire learning process.
Hence, in most cases, it is not applicable to complex learning
tasks. Another possibility of safely implementing reinforce-
ment learning algorithms on real-world dynamical systems
is by transfer learning [6]. First, a satisfying initial policy
is trained in simulation and then transferred to the real-
world dynamical system. In essence, this minimizes required
number of learning iterations for obtaining the final policy and
thus reduces the risk of encountering dangerous intermediate
policy [7]. However, since the mismatch between simulation
and reality is not considered in transfer learning, no reliable
safety guarantee is obtained [8§]].

In recent studies, SRL in model-free scenarios is usually
achieved by solving a constraint satisfaction problem. For
example, constrained policy optimization [9] introduces a
constraint to the learning process to the effect that the expected
return of cost functions should not exceed certain prede-
fined limits. Alternatively, including an additional risk term
in the reward function, such as risk-sensitive reinforcement
learning [10], can also increase the safety of reinforcement
learning algorithms. However, as no system model is directly
considered in these approaches, there is still a high possibility
that safety conditions are violated, especially in the early
learning phase.

When at least an approximated system model is available,
a more promising SRL can be realized by combining control-
theoretic concepts with reinforcement learning approaches.
For example in [11], [[12], Lyapunov functions are employed
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to compute a sub-region of the state space where safety
conditions will never be violated. The system is then limited to
this sub-region during the learning process. However, finding
suitable candidates for Lyapunov functions is challenging
if the system dynamics contains uncertainties or is highly
nonlinear.

For uncertain dynamical systems, methods based on learn-
ing a model of unknown system dynamics [|13] or of environ-
mental constraints [14] are proposed to ensure safety during
learning. For instance, by predicting the system behavior in the
worst case, robust model predictive control [15] is able to pro-
vide safety and stability guarantees to reinforcement learning
algorithms if the error in the learned model is bounded. Be-
sides, [16] introduces an action governor to correct the applied
action when the system is predicted to be unsafe. However,
limited by computational efficiency, these approaches with
deterministic safety estimates, i.e., the prediction about the
safety of a system state is either safe or unsafe, are usually
only applicable to linear systems. Moreover, the accuracy of
the learned model also strongly affects the performance of
these approaches.

To relax the demands placed on the system model and
extend the SRL to nonlinear systems, instead of deterministic
safety estimates, recent studies employ probabilistic safety
estimates, in which safety predictions are represented as
probabilities [17]. In [18]], for example, modelling uncer-
tainties are approximated by Gaussian process models [19],
and a probabilistic safe region is computed by reachability
analysis [20]. Similarly, Gaussian process models are used
in [21f, [22] to model unknown system dynamics. A safe
region is then obtained from the probabilistic estimate of the
region of attraction (ROA) of a safe equilibrium state. The
key component of these studies is a forward invariant safe
region, such that the learning algorithm has the flexibility
to execute desired actions within the safe region. Safety is
ensured by switching to a safety controller whenever the sys-
tem approaches the boundary of the safe region. However, the
safe region is computed either by solving a partial differential
equation in [[18]] or sampling in [22], both of which suffer from
the curse of dimensionality. Moreover, modeling an unknown
dynamics or disturbance with Gaussian process models also
poses challenges when the system is highly nonlinear and
high-dimensional, since both making adequate assumptions
about the distribution of dynamics and acquiring a sufficient
amount of data are difficult. Therefore, although approaches
like [18]], [22] enable promising results with low-dimensional
dynamical system they are not directly applicable to com-
plex dynamical systems [23].

Often the motivation for using reinforcement learning algo-
rithms for controller design is to overcome the difficulty of
applying model-based controller design approaches to highly
nonlinear, high-dimensional and uncertain dynamic system
models [24]], [25]. In particular, it is challenging to compute a
safe region for a complex dynamical system. For this reason,

'In this paper we consider dynamical systems with dimensions higher than
six as high-dimensional, as in such cases it is computationally difficult to
implement traditional methods, such as reachability analysis or sum-of-squares
programming, in identifying the safe region.

[26] introduces an SRL framework that utilizes a supervisory
control strategy based on finding a simplified system by means
of physically inspired model order reduction [27]]. A simplified
safe region is constructed from the simplified system, which
functions as an approximation for the safe region of the full
dynamics. Such a low-dimensional representation of the safe
region, which is usually two- or three-dimensional, at least
provides safety estimates for the original system states, and it
can be updated online during the learning process. To account
for the uncertainty in making safety decisions for the complex
dynamics based on a rough low-dimensional reduction, the
safety estimate is represented in a probabilistic form. Then,
in accordance with the derived safety estimate, a supervisor is
employed to switch the actual applied control action between
the learning algorithm and a corrective controller to keep
the system safe. However, implementing physically inspired
model order reduction usually requires a thorough understand-
ing of the system dynamics. Moreover, multiple performance
tests are required before a satisfying simplified system can be
found.

B. Contribution

In this paper, we consider the same supervisory control
strategy as used in [26] to construct a general SRL framework
that is applicable to complex dynamical systems. However, to
overcome the limitations of physically inspired model order
reduction, we propose a novel data-driven approach to identify
the supervisor, i.e., the low-dimensional representation of the
safe region. Inspired by transfer learning [28], we assume
that an approximated system model of the complex dynamical
system is available. Even though, inevitably, the approximated
model displays discrepancies compared with the real system
behavior, an initial estimate of safety can usually be obtained
by simulating the approximated model. For example, while
the dynamics of a real-world humanoid cannot be known per-
fectly, an approximated humanoid model can be constructed
in simulation for making predictions. Hence, by simulating
the system, we obtain training data that represents the safety
of various original system states. However, as the state space
is high-dimensional, it is infeasible to acquire a sufficient
amount of training data to directly learn the safe region of the
original system. To solve this problem, a data-driven approach
that computes probabilistic similarities between each training
data is proposed to first learn a low-dimensional representative
safety feature of the complex dynamical system. Then, based
on the learned feature, a low-dimensional representation of the
safe region is identified, which is used as the starting point to
SRL in the real system.

Due to the inevitable simulation-to-reality gap, the initial
low-dimensional representation of the safe region learned
from training data displays discrepancies compared to the real
system behavior. To compensate for this mismatch, we also
propose an efficient online adaptation method to update the
low-dimensional representation of the safe region. During the
learning process, we receive feedback data about the actual
safe region of the real system. These feedback data are not
only used to generate new safety estimates, but they also allow
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us to adjust our confidence in the reliability of the safety
estimates obtained from training data. The proposed online
adaptation method then updates the low-dimensional repre-
sentation of the safe region by simultaneously considering the
safety estimates derived from training and feedback data.

The contributions of this study are summarized as follows:

1) We propose a novel data-driven approach that is capable
of systematically identifying a low-dimensional repre-
sentation of the safe region. In contrast to physically
inspired model order reduction, the proposed approach
does not require a thorough understanding of system
dynamics. Moreover, it is applicable to a wide range of
dynamical systems, as long as an approximated system
model is available.

2) We introduce a new online adaptation method for up-
dating the low-dimensional representation of the safe
region according to the observed real system behavior.
By fully utilizing the information contained in the feed-
back data, the update is performed efficiently, while a
reasonable amount of feedback data enables an accurate
low-dimensional representation of the safe region to be
acquired.

3) Since the proposed approach results in a reliable and
representative low-dimensional representation of the safe
region, the applicability of the SRL framework is in-
creased.

The remainder of this paper is organized as follows: a brief
introduction to the SRL framework is given in Section
Thereafter, we present an overview of our approach in Sec-
tion [II} In Section V] we propose a data-driven method to
derive a low-dimensional representation of the safe region.
This is followed by the online adaptation method in Section [V}
which is used to update the low-dimensional representation.
An example is presented in Section to demonstrate the
performance of the proposed approach. In Section [VII[ we
discuss several properties of the approach, and Section [VIII
concludes the paper. A table of nomenclatures is included in
the supplementary material.

II. SAFE REINFORCEMENT LEARNING FRAMEWORK

In this paper, we consider SRL as to optimize a learning-
based policy with respect to a predefined reward function,
while ensuring that the system state remains in a safe region
of the state space. In this section, we outline a general SRL
framework for dynamical systems, see also [26]]. The SRL
framework first identifies a safe state-space region as the safe
region. Then, the learning-based policy has the flexibility to
execute desired actions within the safe region. Once the system
state is about to leave the safe region, a corrective controller
is applied to drive the system back to a safe state.

A. System Model and Safe Region
A nonlinear control-affine dynamical system is given by
&= f(z) +g(z)u (D

where z € X C R"” is the n-dimensional system state within
a connected set X', u € U C R™ is the m-dimensional control
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Fig. 1: SRL framework with a supervisor which decides on
the actual applied actions.

input to the system. With a given control policy u = K(x),
the closed-loop system dynamics is denoted as

&= fx(2) = f(2) + g(a)K (). @)

If a system state = satisfies fx(z) = 0, then it is an
equilibrium point. Any equilibrium point can be shifted to the
origin by a state transform. Therefore, this paper only uses the
origin to formulate the safe region.

Assumption 1. The origin is a safe state and a locally asymp-
totically stable equilibrium point under the control policy
K(z).

Based on Assumption [T} the ROA of the origin is defined
as
R={xo € X| tlim O(t;9) = 0} 3)

where ®(t; ) is the system trajectory of (2) that starts at the
initial state xg when time ¢ = 0. The ROA R is the set of
initial states that can be driven back to a safe state, i.e., the
origin, under the control policy K (z). Therefore in this paper,
we define the safe region of the SRL framework as follows.

Definition 1. A safe region S is a closed positive invariant
subset of the ROA 'R containing the origin. We consider the
system state x as safe if it is in the safe region S.

B. SRL Framework

To realize SRL, we keep the system state within the safe
region during the learning process. This is achieved by an SRL
framework that adapts a switching supervisory control strategy
where the given controller K (x) acts as corrective control and
m(x) is the learning-based policy that is used while the system
state is in the safe region (see Fig.[I). A supervisor determines
the actual applied actions as

: safe
. m(x), ift<t @
K(x), else

where 52 is the first time point at which the system state z
is on the boundary of the safe region S.

For each learning iteration, the system starts inside the safe
region S for time ¢ = 0. The learning algorithm then updates
and executes the learning-based policy 7(z). Since the safe
region S is a closed set and the trajectory is continuous, the
system state can only leave the safe region S by crossing the
boundary. Hence, once the system state x is on the boundary
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of the safe region S, this learning iteration is terminated at
time t = %% and the corrective controller K (x) is activated.
For the remaining time of this learning iteration, the corrective
controller K (z) attempts to bring the system back to the origin
to maintain safety. After this safety recovery, the learning
environment is reset and the next learning iteration starts at
time ¢ = 0.

Remark 1. In this paper, we only consider the safe region
obtained from the ROA R, where stability is used as the
safety criterion. If more safety criteria should be taken into
consideration, such as collision avoidance represented as
state constraints, the safe region can be constructed using
other control-theoretical concepts, e.g., control barrier func-
tions [29|] or invariance functions [30]. The definition of the
safe region does not affect the use of the SRL framework and
the proposed approach, as long as the safe region is a closed
and control invariant set under a given corrective controller.

C. SRL Framework for Complex Dynamical Systems

The aforementioned SRL framework is not directly appli-
cable to complex dynamical systems, as in such cases, cal-
culating the safe region S is computationally infeasible [31]].
An SRL framework based on estimating safety with a low-
dimensional representation of the safe region is introduced to
overcome this problem [26].

Each original system state « is mapped to a low-dimensional
safety feature, represented as a simplified state y € J) C R"v,
n, < n, through a state mapping y = ¥(x). The state map-
ping is chosen such that safe and unsafe states are separated
in the simplified state space ). Nevertheless, due to the order
reduction, multiple original system states that have different
safety properties can map to the same simplified state. Hence,
the safety of the original system state x is estimated by the
safety of its corresponding simplified state y in a probabilistic
form as

p(:L’ € S) = F(y)|y=\ll(x) ~ [Oa 1] (5)

where I'(y) is a function defined over the simplified state space
Y and is referred to as the safety assessment function (SAF)
in this paper. Not only does the SAF I'(y) encode information
relating to the safety of the simplified state y, it also includes
the uncertainty involved in making predictions for a high-
dimensional state by using a low-dimensional reduction. In
Section we demonstrate how to efficiently identify the
state mapping y = ¥(z) as well as the SAF T'(y) using a
data-driven method.

For a given SAF TI'(y), the probability p(z € S) depends
only on the simplified state y. Therefore, by introducing a pre-
defined probability threshold p;, we obtain a low-dimensional
representation of the safe region, denoted as S,, in the
simplified state space )

Sy={yeVIT(y) >p:i} (6)

which works as an approximation of the high-dimensional safe
region S. The supervisor () is thus modified to

: safe’
" w(x), ift<t ™
K(x), else

where 527 denotes the first time point at which the probability
p(z € 8) is not larger than the threshold p, i.e., p(z € §) =
I'(y) < p:. More details of this SRL framework are given
in [26].

III. OVERVIEW OF THE APPROACH

The essential factor when applying the SRL framework
to complex dynamical systems is finding a reliable low-
dimensional representation of the safe region S,. In order to
overcome the limitations of physically inspired model order
reduction, we propose a novel data-driven approach to identify
the low-dimensional representation of the safe region S,
together with a new online adaptation method to efficiently
update the learned low-dimensional representation.

We consider a scenario in which the complex dynamical
system, referred to as the real system, has partially unknown
dynamics. However, we assume that a nominal approximated
system model is available and can be used to roughly pre-
dict the real system behavior. The nominal system model is
assumed to be represented by (I). The real system model is
then given as

&= f(x) +g(x)u+d(z) (®)

where d(z) is the unknown, unmodelled part of the system
dynamics. For brevity, we refer to the nominal and the real
systems as simulation and reality, respectively.

Due to the highly nonlinear and high-dimensional dynamics,
the direct calculation of the safe region is computationally
infeasible for both the nominal and the real systems. Besides,
although the real system provides exact safety information,
in general it is expensive to collect data directly on the real
system. In contrast, simulating the nominal system is usually
efficient and allows a sufficient amount of data to be obtained
for finding a low-dimensional safety representation. However,
due to the unknown term d(x), such data is inaccurate and
has to be modified to account for the real system behavior.

Based on these facts, to construct a reliable low-dimensional
representation of the safe region S, for the real system, we
propose the approach outlined in Fig. 2] (a complete work-flow
is given in the supplementary material). It consists of two parts
that solve the following two problems, respectively:

1) How to derive and initialize the low-dimensional rep-
resentation of the safe region S, by using the nominal
system model.

2) How to update the low-dimensional representation of
the safe region S, online with the observed real system
behavior.

Part 1) Derivation and Initialization

Since no information about uncertainty d(x) is available
prior to the learning process, the corrective controller K (x)
is designed for the nominal system model (I). Although the
safe region of the nominal system is unknown, its simulation
is possible and delivers a dataset as follows.

Definition 2. The training dataset of k; training data is given
as
Dtrain = {D1 D2

trainy ~trains * *

., DM 1 9)

train
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Nominal system

l

Training dataset Diyain

[ Real system ]

l

Feedback dataset Drecdback ]

(Sec. IVfA)l

Update

(Sec. V-A) (Sec. V-B)

State Mapping y = ¥(x)

(Sec. IV—B—C)l

Prior DSAF T2 (v)

Initialization L
(Sec. IV-C)

[Feedback DSAF Dfeedback(y))

| Update
}(Sec. V-C)

Low-dimensional representation of the safe region S,

Fig. 2: Overview of the proposed approach. The Ilow-
dimensional representation S, is initialized using the training
dataset Diyain obtained from the nominal system. Once we
collect the feedback dataset Dieeqnack On the real system,
the low-dimensional representation S, is updated using the
proposed online adaptation method.

It contains the simulation results that state whether the safety
recovery is successful or not for different system states x under
the corrective controller K (x). The i-th training data consists
of three elements

Di

train

= {$éim7 SSiHl(zéiIn)7 (bsirn (t7 xélm)} (10)

xl | is the initial system state in which the corrective con-
troller K(x) is activated. Sqim(xk,,) is the safety label that
represents the result of safety recovery for the state x.; . We
denote Sgim(Ty;,) = 1 if the system state xg;, is safe under
the corrective controller K(z), and ssim(tg,y,) = 0 if it is
not. @gin, (t; ) is the corresponding system trajectory of
the safety recovery that starts at xf;, when time t = 0. The
subscript sim indicates that the data is collected by using the
nominal system model.

The low-dimensional representation of the safe region S,
is thus derived and initialized by using the training dataset
Dirain- To do this, we first identify the state mapping y = ¥(z)
using a data-driven method that computes the probabilistic
similarity between each training data (Section [[V-A). Then to
facilitate an efficient computation, we discretize the simplified
state space ) into grid cells and assign an index vector
v € Z* to each grid cell. By assuming that the SAF T'(y)
is constant in each grid cell, we thus obtain a discretized
safety assessment function (DSAF) T'q(v). A discretized low-
dimensional representation of the safe region S, is then given
by applying the probability threshold p; on the DSAF T'y(v)
(Section [[V-B). To enable the SRL framework on the real
system, we also calculate an initial estimate of the DSAF
T'4(v), denoted as the prior DSAF '} (v), from the training
dataset Dypqin. It is then used to initialize the low-dimensional
representation of the safe region S, (Section . Further
details of Part 1) are given in Section [[V]

Part 2) Online Adaptation

Due to the unknown part of the system dynamics d(x),
there is inevitably a mismatch between simulation and reality.
In order to compensate for this mismatch, we update the
low-dimensional representation S, by accounting for the real
system behavior.

Each time the corrective controller K (z) is activated during
learning, we observe feedback data about the real safe region.
The set of feedback data is defined as follows.

Definition 3. The feedback dataset of kj feedback data is
given as

(1)

It contains the results of safety recovery from implementing
the corrective controller K(x) on the real system. The i-th
feedback data is

_ 1 2 kg
Dreedback = {Dfeedback’ Dfeedbacka ce Dfeedback .

%

D%eedback = {xieal’ Sreal(xiea1)7 (breal(t; xreal)}'

While .., Sreal(Tlo,) and Prea(t;xl.,,) have the same
meaning as in Definition [2| the subscript real indicates here

that the data is collected on the real system.

(12)

Since collecting data on the real system, e.g., real-world
robots, is usually expensive and time-consuming, in most cases
the feedback dataset Dieoqpack has a limited size. Therefore,
the low-dimensional representation of the safe region S, needs
to be updated in a data-efficient manner. To achieve this, we
propose an online adaptation method, as given in Section
It comprises three steps: First, we modify the prior DSAF
'™ (v) by changing our confidence in its reliability using the
feedback dataset Drcedback (Section[V-A). Second, to fully uti-
lize the valuable information contained in the feedback dataset
Dreedbacks We generate another feedback DSAF Tfeedback (y))
(Section [V-B). Third, the two DSAFs are fused to obtain a
more accurate DSAF T'q(v), which is then used to update the
low-dimensional representation S, (Section [V-C).

IV. LEARNING A LOW-DIMENSIONAL REPRESENTATION
OF THE SAFE REGION

To derive the low-dimensional representation of the safe
region S, two components have to be determined: the state
mapping y = ¥(x), which gives the low-dimensional safety
feature, and the SAF I'(y), which predicts the safety of original
system states. In this section, we present a data-driven method
for identifying the low-dimensional representation of the safe
region S,,. It utilizes a technique called t-distributed stochas-
tic neighbor embedding (t-SNE) [32], which was originally
proposed for visualizing high-dimensional data.

A. Identifying the State Mapping with t-SNE

To identify the state mapping y = W(x), we first find
the realization of the low-dimensional safety feature, i.e., the
values of simplified states 3, ..., y"**, that best corresponds
with the training dataset Di;ain by revising t-SNE. Through
measuring the similarity between each high-dimensional data
point, t-SNE defines a two- or three-dimensional data point
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such that similar high-dimensional data points are represented
by nearby low-dimensional data points with high probability. It
uses Euclidean distance between each pair of high-dimensional
data points as the metric for measuring similarity. However,
since our purpose is to construct the low-dimensional repre-
sentation of the safe region S,, we are more interested in
safety rather than just distance. Accordingly, we propose a
new metric that considers similarity and safety at the same
time.

The general motivation for determining the simplified state
y is that the safe and unsafe original system states x should be
separated in the simplified state space ). Since, in this paper,
the safe region is defined with respect to the ROA, the trajec-
tories of safe initial states will converge to the origin, while
unsafe initial states will have divergent trajectories. Hence, if
two original system states x have similar trajectories under the
corrective controller K (z), then ideally they should also have
nearby corresponding simplified states y (see Fig. [3). Based
on this, we first calculate the pairwise trajectory distance w;;
between the ¢-th and j-th training data, using dynamic time
warping (DTW) as

Wij = dtw (Psim (¢; x;im) s Psim (8 lilm))

where dtw(-) represents the DTW measurement. We thus have

w;; = 0 if 7 = j, and the more similar the trajectories are, the
smaller the value of w;; is.

13)

Remark 2. Besides DTW, other trajectory distance measures,
e.g., Fréchet distance, can also be used in (I3). Changing
the distance metric does not affect the applicability of the
proposed approach. However, DTW turns out to be a more
suitable metric for trajectories of the dynamical systems we
investigated.

While, in general, the trajectory distance w;; reflects the
probability that original system states z%, and 7, have
the same safety property, it is still possible that safe and
unsafe states have similar trajectories. To obtain a better low-
dimensional safety feature, we thus modify the trajectory
distance w;; in relation to the safety label Sgim(zsim) and
compute the distance €);; between the i-th and j-th training
data as
— 0, if Ssim (2hi) 7 Ssim (Tin)

- wmax
1 — Wi

14
) if Ssim (24) = Ssim (T
wmax
where ¢ is a constant and wy,ax = max; ;j w;; is the maximum
trajectory distance within the training dataset Dyyain. The
distance );; is then used as the new metric for t-SNE to
measure the similarities between different training data.

In our experiments, we find that a small value of ¢ is
sufficient for providing a satisfying result of t-SNE (in this
paper, for example, we use 6 = 0.01). A large value of §,
in contrast, may lead to information contained in trajectories
being ignored, which can reduce the representation power of
the learned simplified states y. A sensitivity analysis of the
parameter ¢ is provided in the supplementary material.

After computing the distance (2;; between each pair of
training data, we apply t-SNE on the training dataset Dy;ain

zr se (2l ) =1
Tgims Ssim (Tgipg) = 1

2 . 72
T Ssim (Tgn) = 1

D (5
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Fig. 3: The distances 212 and 213 are computed for three
training data D} , D2.,.., D2, using the trajectory dis-
tances w12, w3 and the safety labels Sgim (2L ,)), Ssim(72,,),
Ssim(22,,,). Based on these distances, t-SNE calculates the
values of corresponding simplified states y, where similar and
dissimilar training data are modeled by nearby and distant

simplified states, respectively.

to derive a realization of the low-dimensional safety feature.
To do this, we modify the conditional probability p;; of t-
SNE [32]] using the distance 2;; as

eXP(*Q?j/ZU?)
> exp(—923,/207)

ki
where o; is the variance of the Gaussian distribution that is
centered on the state z’; . The remaining computations are
the same as in t-SNE. Since this part makes no contribution,
the main steps involved in performing t-SNE are given only in
the supplementary material. More details are available in [32].

Using t-SNE, we obtain the values of simplified states
y', ..., y* that correspond to the training dataset Dy;,i, as an
initial realization of the low-dimensional safety feature. Such a
realization models similar training data with nearby simplified
states, e.g., y' and y? in Fig. [3| and dissimilar training data
with distant simplified states, e.g., ¥ and 3® in Fig. [3| In
general, the simplified state y is chosen to be two- or three-
dimensional, i.e., y € R™ with n, = 2 or ny, = 3. In this
paper, we set n, = 2.

Note that t-SNE only determines the values of simplified
states but gives no expression of the state mapping y = ¥(z).
Therefore, to identify the state mapping y = ¥(x), we learn
a function approximator using the values of simplified states

Djli = 15)

y',...,y* obtained from t-SNE and the original system
states ziim, ... ,;vfitm contained in the training dataset Dyyain-

This function approximator, e.g., we use a neural network
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Fig. 4: The simplified state space ) is discretized into grid
cells. The location of each grid cell is indicated by the index
vector v. The safety of a new original system state, e.g. *, is
estimated by way of the corresponding belief mass as p(z* €
S) = Ta([2,3]) = >3, where L(z*) = v = [2,3]. The

prior estimate BP'I°" of an index vector v is either obtained

by fusing all BBAs within the set B, e.g., B[’;zr = F(Bp,3).

= Bini.

prior

or set to an initial estimate, e.g., B[S’G]

in this paper, is then utilized to represent the state mapping
y = U(z) = NN(x).

Remark 3. Different forms of function approximator, for
instance, a Gaussian process, can be used to describe the state
mapping y = Y(x). The selection of function approximator
depends mainly on the available number of training data.

Due to the approximation error in the function approxima-
tor, some original system states x may have slightly different
values in their simplified states y when comparing the initial
realization obtained from t-SNE with the one computed from
the learned state mapping y = ¥(z) (for an example, see the
simulations in Section and in particular Fig. [7). Hence,
to reduce the influence of this issue on deriving the low-
dimensional representation of the safe region S,,, we compute
the values of simplified states y',...,y** once again with
the learned state mapping. This final realization of the low-
dimensional safety feature is then used for formulating the
SAF T'(y).

B. Belief Function Theory and DSAF

Once the state mapping y = ¥(x) is determined, we are able
to generate the SAF I'(y) using the training dataset Diyain-
However, due to the limited size of the training data, it is
difficult to construct the SAF T'(y) over the continuous sim-
plified state space ). Therefore, we discretize the simplified
state space ).

The range of the simplified state space ) is determined
by the maximum and minimum values of the simplified
states y', ..., 4" in each dimension. We then discretize the
simplified state space ) into grid cells with a predefined step
size. Each grid cell is assigned an index vector v € Zi
to indicate its position in the simplified state space ); for
example, v = [2, 3] refers to the grid cell that is located at the

second row and third column (see Fig. ). A locating function
is defined as follows.

Definition 4. By locating the simplified state y = ¥ (zx) for
an original system state x in the simplified state space ), the
locating function L(x) returns the index vector v of the grid
cell that it belongs to.

By assuming that the SAF I'(y) is constant in each grid cell,
we obtain a DSAF T'q(v) that we will have to define. Then,
instead of using the simplified state y, the safety of an original
system state x is estimated by way of the index vector v as

p(z €8) =Ta(v)|v=r@) ~ [0,1]. (16)

In general, the DSAF T'y(v) for an index vector v can
be approximated by the number of safe and unsafe original
system states x that map to the corresponding grid cell, i.e.,
L(z) = v. However, due to the high-dimensional original
system state space, it is, in most cases, infeasible to acquire
a sufficient amount of data to derive an accurate estimate.
To solve this problem, we propose using belief function
theory [33] to describe the DSAF I'4(v), where the uncertainty
caused by insufficiency in the data amount is considered by a
subjective probability [34].

Belief function theory is a general approach to modeling
epistemic uncertainty that uses a belief mass to represent the
probability of the occurrence of an event. The assignment of
belief masses to all possible events is denoted as the basic
belief assignment (BBA). The belief mass on the entire event
domain, i.e., the probability that one arbitrary event happens,
indicates the subjective uncertainty of the estimate [34]]. Ac-
cording to this, we define a BBA B,, separately for each index
vector v as follows.

Definition 5. The BBA B, for an index vector v is given as

BU = (b:afed bﬁnsafe’ :uv) (17)

which represents the belief about the value of the DSAF T'q(v)
for the index vector v. The belief masses bl and by, _ .
are the probabilities of the occurrence of two complementary
events, i.e., p(x € S) and p(x ¢ S), where the original system
state x has the index vector v from the locating function L(x).
w’ is the subjective uncertainty that reflects the confidence
level of estimating the safety. p° = 0 means we believe that

the estimate is absolutely correct. It holds that

:afe + bﬁnsafe + :uv =1 (18)

and b ¢, b2 .o 1 all lie within the interval [0, 1].
Hence the DSAF I'y(v) is given by the belief masses b7, ;.
of the corresponding BBAs B,, as
Ta(v) = byt (19)

The low-dimensional representation of the safe region S, is
then defined among the discretized simplified state space as

Sy = {’U ‘ Fd(v) = b:afc > pt} (20)
where p; is the predefined probability threshold. In the next
subsection, we explain how to initialize the DSAF T'q(v) so

as to enable the application of the SRL framework on the real
system.
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C. Initializing the DSAF from Training Data

Since each training data provides information on the value
of the DSAF T'4(v), the low-dimensional representation of
the safe region S, is initialized using the training dataset
Dirain- By considering each training data as a belief source,
we formulate the following BBAs for all training data and later
fuse them to derive an initial estimate of the DSAF I'y(v).

Definition 6. The BBA B’ obtained from the i-th training data
D is defined as

B = (bsafev bunsafehu )

It represents the belief about the value of the DSAF T'y(v) for
the index vector v = L(w‘ , where the belief source is the i-
th training data. bl gz, b% . and ;i* have the same meanings

as in Definition [3

7
train

ey

sim)
S1m

Due to the inevitable simulation-to-reality gap, we initialize
the BBA of each training data with a constant uncertainty
Mini > 0 as

; 1 — finis 0, pini),  if Sgim () = 1
pi = J (0 inis 0 pins), 1 i (255) 22)
(Oa 1- Hini, /ffini)a if SSim(xéim) =
where ¢ = 1,. .., k. Since no information about the unknown

term d(x) is available prior to the learning process on the real
system, the initial subjective uncertainties are chosen to be
the same for all BBAs. Later in the online adaptation method,
the subjective uncertainties are updated by using the feedback
data to realize more accurate safety estimates.

For each index vector v, the BBA B, is then estimated by
using the BBAs of the training data. To achieve this, we first
generate a set of BBAs B, for each index vector v

B, = {B"| L