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Abstract—Relative vehicle positioning methods can contribute
to safer and more efficient autonomous driving by enabling
collision avoidance and platooning applications. For full automa-
tion, these applications require cm-level positioning accuracy and
greater than 50 Hz update rate. Since sensor-based methods (e.g.,
LIDAR, cameras) have not been able to reliably satisfy these
requirements under all conditions so far, complementary methods
are sought. Recently, positioning based on visible light communi-
cation signals from vehicle head/tail LED lights (VLP) has shown
significant promise as a complementary method attaining cm-
level accuracy and near-kHz rate in realistic driving scenarios.
Vehicular VLP methods measure relative bearing (angle) or
range (distance) of transmitters (i.e., head/tail lights) based
on received signals from on-board photodiodes and estimate
transmitter relative positions based on those measurements. In
this survey, we first review existing vehicular VLP methods
and propose a new method that advances the state-of-the-art
in positioning performance. Next, we analyze the theoretical
and simulated performance of all methods in realistic driving
scenarios under challenging noise and weather conditions, real
asymmetric light beam patterns and different vehicle dimensions
and light placements. Our simulation results show that the
newly proposed VLP method is the overall best performer,
and can indeed satisfy the accuracy and rate requirements for
localization in collision avoidance and platooning applications
within practical constraints. Finally, we discuss remaining open
challenges that are faced for the deployment of VLP solutions in
the automotive sector and further research questions.

Index Terms—autonomous vehicles, collision avoidance, pla-
tooning, visible light positioning

I. INTRODUCTION

Collision avoidance and platooning are essential applica-
tions for safe and efficient autonomous driving [1]. For full
autonomy, these applications require vehicle-to-vehicle rela-
tive localization with cm-level accuracy and greater than 50 Hz
rate [2, 3]. Conventional relative vehicle localization methods
using repurposed sensor-based object trackers (e.g., LIDAR,
RADAR, cameras) and “co-operative” schemes based on shar-
ing GPS information have shown promise on this front in
recent years, especially with the advent of deep learning based
methods. However, these methods fail to meet all stringent
requirements simultaneously due to sensor rate and accuracy
limitations or high computational complexity, necessitating
complementary solutions. Moreover, the cost associated with
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sensor-based systems are getting increasingly prohibitive since
they require powerful accelerators such as GPUs to process
high-dimensional data (e.g., billions of pixels for cameras) [4–
6]. On the other hand, communication-based methods, which
use only 1D received signals over time for localizing antennas
on vehicles, fundamentally promise the cm-level accuracy
at much greater than 50 Hz rate on low cost processors
thanks to their low computational complexity and robust target
detection procedures [7–11]. For this reason, communication-
based methods can be a suitable complementary solution.

Communication-based relative vehicle localization methods
have primarily used radio frequency (RF) and visible light
communication (VLC) signals for positioning. However, pre-
vious studies on localization with RF communications like
the IEEE 802.11p based ITS G5 and IEEE 1609 WAVE
[12], and the cellular-based LTE and C-V2X [13] show that
their accuracy is limited to 1-10 m in realistic use cases.
This is primarily due to severe congestion, multi-path in-
terference (fueled by non-directional antenna patterns) and
tight synchronization requirements in RF [14–18]. On the
other hand, vehicular visible light positioning (VLP), which
uses received directional VLC signals from modulated vehicle
head/tail LED lights for positioning, fundamentally promises
the required cm-level accuracy owing to the dominant line-of-
sight (LoS) propagation characteristics of the channel at dis-
tances relevant to collision avoidance and platooning [19–23].
Therefore, vehicular VLP is closer to realizing the promises
of communication-based positioning compared to RF.

Fundamental technologies in the field of vehicular VLP
were first conceived for indoor VLC and VLP, which consider
localization of RX mobile devices under TX LED ceiling
lights [20, 24–27]. However, vehicular VLC/VLP emerged as
a separate field due to three major differences between the
indoor and vehicular domains [7, 28]:

1) Much fewer TX units: LED head/tail lights and co-
located photodiodes are the natural choice for vehicular
VLC TX/RX units. Therefore, vehicular use cases con-
sider only two head or two (max. three [29]) tail lights
as TX/RX units. Indoor use cases require many more
TXs (ceiling lights) for high accuracy [30–36].

2) Very high mobility: Vehicular use cases have very high
TX-RX relative mobility resulting in frequent fluctu-
ations in SNR. On the other hand, indoor use cases
typically rely on very low RX mobility and static parallel
TXs (ceiling lights) for high accuracy (e.g., long-interval
averaging at the cost of lower rate) [24, 37, 38].
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3) LoS-dominant channel: The vehicular VLC channel is
LoS-dominant [22, 23, 39] but indoor channels typically
contain significant non-LoS components due to random
reflections from many surfaces. For this reason, while
vehicular VLP achieves higher accuracy with geometric
algorithms that exploit the strong correlation between
TX-RX bearing/range and the RX signal characteristics,
indoor methods achieve higher accuracy from statistical
inference methods like direct estimation [40, 41] which
estimate position directly from RX signals without ex-
plicitly measuring bearing/range.

We categorize existing major works in vehicular VLP as
well as indoor methods in Table I and discuss how the current
state-of-the-art in vehicular VLP is distinguished from others
for historical reasons. Vehicle-to-infrastructure VLP methods
that consider road/traffic lights as TX units are proposed as
an adaptation of indoor VLP methods [42–46, 57]. Although
these methods enable general traffic information and road
safety applications in urban settings, they are not suitable
for collision avoidance and platooning applications due to
low availability of road lighting. Vehicle-to-vehicle VLP us-
ing head/taillights is considered as a solution, and suitable
RX architectures are proposed accordingly. Tilted (pyramidal)
photodiodes based [47–49] and camera-based methods [50]
are proposed, but these are costly, they provide low precision
position estimation and prohibitively low VLC rate. The state-
of-the-art in vehicular VLP rather has lower cost units (<20
USD [11, 58]) capable of high precision measurement and do
not negatively affect VLC rate.

Current state-of-the-art vehicular VLP methods consider
either direct range measurements [56] or direct bearing mea-
surements [11] from two receivers, differential versions of
those [54, 55] or simply two time-consecutive measurements
from a single receiver to obtain a running fix [53, 54]. These

existing simple vehicular VLP methods all utilize two-step
estimation with only two TXs and two RXs at most on the
vehicles. First, received noisy VLC signals are processed for
measuring physical system parameters, i.e., relative bearing
(angle-of-arrival, AoA) or range (distance) between a TX and
one or more receivers (RX), with a certain level of accuracy.
Next, these individual parameter measurements are combined
to estimate the position of the VLC TX relative to the VLC
RXs. There are two main sources of positioning error for these
methods: 1) Low signal-to-noise ratio (SNR) on the received
VLC signal, and 2) high vehicle mobility. Low SNR causes
statistical error and occurs either due to high geometric signal
attenuation (e.g., long distance), or due to high noise (e.g.,
high shot noise due to sunlight). High vehicle mobility causes
a deterministic error (i.e., bias) and occurs due to the finite
rate and latency of the position estimations, i.e., estimations
cannot “catch up” with the actual position when the relative
vehicle speeds (between TX-RX) are high. This fundamental
error affects all finite-rate localization methods [59, 60] and
decreases with higher positioning rate (greater than 50 Hz rate
is required for typical driving scenarios [11]). For this reason,
the primary design goal of vehicular VLP is providing cm-
level accuracy at greater than 50 Hz positioning rate despite
low received SNR and high mobility.

The existing two-step vehicular VLP methods have al-
ready shown promising performance, but there is still room
for improvement. Specifically, while range-based position-
ing methods excel in longitudinal positioning, bearing-based
ones perform lateral positioning with higher accuracy, and
their combination has not yet been explored [54]. Further-
more, comparative performance benchmarks for vehicular
VLP methods under both realistic and challenging road and
weather conditions as well as practical constraints such as
different vehicle dimensions and realistic automotive light
beam patterns, are not available in the literature.

TABLE I
EXISTING VLP METHODS, INDOOR VS. VEHICULAR

reference indoor/vehicular estimation method useful for collision avoidance and platooning?

[40]

indoor

direct
×, not applicable, requires more TXs than available on the target vehicle and
perfect alignment between RX and TXs. [24] summarizes all methods in this
category.

[30, 31, 37] bearing-based

[32, 33] range-based

[34, 35] hybrid

[38] bearing-based ×, not applicable, algorithms diverge in the high-mobility case without good
initialization and/or training data[36] range-based

[42]

vehicular

direct ×, vehicular but not applicable since fixed co-planar TX arrays are assumed
(traffic/road lights); these methods are useful for vehicle-to-infrastructure
applications

[43, 44] bearing-based

[45, 46] range-based

[47–49] bearing-based ✓, but low-precision positioning due to the use of tilted (pyramid) RX units.

[50] bearing-based ✓, but low VLC rate (500 bps/link [28, 51]) and costly (high-FPS camera).

[52] range-based ✓, but needs ≫2 RXs for high accuracy.

[11, 53, 54]
vehicular bearing-based ✓✓, state-of-the-art methods for vehicle collision avoidance and

platooning, analyzed in this paper
[54–56]

range-based
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Fig. 1. Anatomy of two-step vehicular VLP methods using bearing / range
measurements for position estimation.

In this paper, we survey the state-of-the-art in vehicular
VLP, propose a novel vehicular VLP method that advances
the state-of-the-art, analyze the theoretical and simulated per-
formances of all relevant methods for collision avoidance and
platooning applications, and discuss the remaining open ques-
tions and challenges for widespread deployment of vehicular
VLP. Our main contributions are summarized as follows:

• We review feasible bearing/range measurement tech-
niques and the existing algorithms that use them for
position estimation in vehicular VLP for the first time
in the literature.

• We propose a new method that advances the state-of-the-
art in vehicular VLP by combining bearing and range
measurements. The method utilizes the fact that higher
accuracy is obtained from bearing-based methods for
the lateral axis and from range-based methods for the
longitudinal axis, to provide optimal performance.

• We benchmark the state-of-the-art in vehicular VLP
performance by simulating all methods under the same
realistic driving scenarios, for the first time in the lit-
erature. While earlier studies have analyzed individual
vehicular VLP methods [11, 56, 61], we improve upon
these by providing extended fair comparison results un-
der recorded collision course trajectories, high mobility
scenarios, measured real asymmetric light patterns and
different vehicle dimensions. Moreover, we evaluate the
associated Cramer-Rao Lower Bounds (CRLBs) for each
algorithm (derived in [54]) under realistic driving scenar-
ios to bridge the gap between theoretical and simulated
performance. We provide the complete source code in
GitHub 1 to motivate further benchmarks on the topic.

• We discuss the open research questions and challenges
faced for the widespread deployment of vehicular VLP in
the automotive sector and elaborate on potential solutions
in detail, for the first time in the literature.

The rest of the paper is organized as follows. The ve-
hicular VLP system model and the mathematical definition
of the received VLC signals are described in Section II.
Bearing/range measurement techniques and existing VLP al-
gorithms using those techniques are reviewed, and the newly
proposed hybrid positioning algorithm is presented in Section
III. The simulations under realistic collision avoidance and
platooning scenarios are presented in Section IV. Remaining
open questions and challenges are discussed in Section V. Our
conclusions are presented in Section VI.

1https://github.com/sonebu/vehicular-vlp-simulations

Fig. 2. System model: The ego vehicle (red) estimates the 2D relative
positions of two TXs on the target vehicle (green), i.e., (x1, y1) and (x2, y2),
for vehicle localization. Channel characteristics between TX 2 and RX 1 are
depicted as an example: H12 is the channel gain, τ12 is the propagation delay
and θ12 is the AoA from TX 2 to RX 1. Sij is the angle subtended by RX
i with respect to point source TX j, and L is the RX separation.

II. SYSTEM DESCRIPTION

This section describes the vehicular VLP system model
assumptions, presents the problem definition for relative vehi-
cle localization using parameter measurements (i.e., two-step
estimation as shown in Fig. 1), and provides the mathematical
model of the received VLC signals that are used for those
measurements. The system model is depicted in Fig. 2.

A. System Model Assumptions

The model is based on the following assumptions (A#):

• A1: Vehicles cruise on piecewise-flat roads, i.e., their
pitch angles with the horizon is the same. This assump-
tion, which reduces the 3D positioning problem to 2D
(i.e., the road plane), is reasonable for collision avoid-
ance and platooning scenarios where vehicles are within
1-20 m of each other driving at ≥30 km/h [62, 63].

• A2: Vehicles contain VLC units with LED TXs 2 and
photodiode-based RXs 3 on their head and tail lights
(i.e., 4 VLC units in total), sustaining reliable LoS
communication. A minimal setup (2 RXs on each face)
is assumed to assess worst case performance.

• A3: VLC TX units are assumed to be point sources 4. This
assumption holds for the intended applications since the
photometric distance for vehicle LED head/tail lights (a
maximum of approximately 50 cm [72–74]), is smaller
than the 1 m minimum distance between the vehicles
considered in (A1).

• A4: Transmissions by the VLC units do not interfere.
This can be achieved via special medium access control
mechanisms, e.g., by assigning each unit to a separate
transmission frequency band [75].

2TX design (both power as well as the 3D asymmetrical beam pattern [7])
is subject to strict traffic and eye safety regulations [64–67].

3RX design is not constrained: Various front-end designs that explore
different optical and electrical trade-offs exist [7, 11, 68–71].

4Note that this only implies that they are not extended sources. No
assumption is made about the shape of the radiation pattern.

https://github.com/sonebu/vehicular-vlp-simulations
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We call the vehicle that is being positioned the “target”, and
the vehicle that is estimating the position the “ego”. The two
vehicles do not need to be identical. Fig. 2 depicts this system
model for the case of a target vehicle (green) being followed
by an ego vehicle (red), but both vehicles can take either role.

B. Vehicular VLP Problem - Technical Definition
Vehicular VLP methods use RX VLC signals to estimate TX

relative positions, which are denoted as (xij , yij) in this paper
with regards to the indices i, j ∈ {1, 2, 3, 4} for vehicular
VLC RXs and TXs, respectively. For determining the exact
2D relative location of the target vehicle, positioning two TX
units on the target vehicle with respect to two RX units on the
ego vehicle is necessary, as discussed in [11]. However, since
the two ego RX units are simply separated by L in the lateral
axis of the ego frame of reference, estimating positions with
respect to only one RX is sufficient, e.g., only (x11, y11) and
(x12, y12) for RX 1 in Fig. 2. For this reason, the i subscript
in (xij , yij) can be dropped when describing TX position
coordinates, i.e., (xj , yj)=(x1j , y1j) for TX j, j ∈ {1, 2}, as
in Fig. 2. Additionally, if vehicles are longitudinally parallel,
the following holds: (x2, y2) = (x1 + L, y1), and estimating
only one position, (x1, y1), is sufficient. Note that RX sepa-
ration L is naturally known by the ego vehicle, but it does
not necessarily have to be equal to TX separation, and TX
separation is assumed to be unknown.

Accordingly, although estimating position for the two TX
units is necessary for completely characterizing localiza-
tion performance, analyses in this paper show results and
derivations for only one TX due to the following reasons:
1) Extending the analyses to a second TX is straightforward,
2) the position estimation error for one TX does not differ
significantly from that of the other due to the physical prox-
imity between the two, and 3) this allows fair comparison
with methods that assume longitudinally parallel vehicles (e.g.,
[55]) which converge to the closest solution that satisfies
the parallel assumption even when the actual orientations of
vehicles do not. Therefore, estimation error is defined as

e =

√
(x1 − x̂1)

2
+ (y1 − ŷ1)

2
, (1)

where (x̂1, ŷ1) is the position estimation for TX 1 (̂ denotes
measured or estimated quantities in the rest of the text), and
e is the associated error for a given estimate. Note that due
to high mobility and finite estimation rate, e varies within an
estimation period. The maximum such e value is considered as
the error for that estimation period and faster relative vehicle
movement or lower estimation rate induces higher error. This
mobility-induced error forms the basis of the 50 Hz minimum
estimation rate requirement [11, Fig. 2]. The other main source
of error is the random VLC channel noise which necessitates
evaluating a distribution of e values sampled over the noise
process rather than individual e samples. Accordingly, the term
“cm-level accuracy” in this paper refers to the distribution of
e having one standard deviation above the mean smaller than
10 cm 5.

5Note that in the zero-mean case (i.e., unbiased estimation), this corre-
sponds directly to standard deviation being less than 10 cm.

C. Mathematical Model of Received VLC Signals

The following received VLC signal model is considered:

ri(t) =
∑
j

rij(t) + µi(t) , rij(t) = Hij · sj(t− τij) , (2)

where t is time, ri is the total received photocurrent signal at
RX i, sj is the transmitted photocurrent signal at TX j, rij
is the contribution of sj to ri, µi is the photocurrent noise,
and Hij and τij are respectively the geometric channel gain
and the finite propagation time from TX j to RX i. Since TX
signals are directional, only two TXs on a given face of the
target vehicle contribute to Eqn. (2) for a given RX on the
ego vehicle, i.e., j is either ∈ {1, 2} or ∈ {3, 4} for a given
i ∈ {1, 2, 3, 4} depending on vehicle orientation, and the two
TX components arriving at RX i can be processed separately
as rij in Eqn. (2) as per assumption A4.

Expressions for Hij , τij and µi rely on the point-source
approximation6 of TXs from the perspective of RXs, which
simplifies expressions for Hij and τij , and indirectly, also µi.
Accordingly, the channel gain Hij can be expressed as

Hij = γiρi(θij)

∫∫
Sij

γjρj(S) dS , Sij ∝
Ai cos(θij)

dij
, (3)

where dij and θij are the relative distance (i.e., range) and
AoA (i.e., bearing) of TX j relative to RX i, respectively; ρj
and ρi are the normalized positive-definite TX beam pattern
and RX “reception” pattern, respectively; γj and γi are the
TX electrical-to-optical gain and RX optical-to-electrical, i.e.,
photodiode sensitivity respectively; and Sij is the solid angle
subtended by the active area of the RX i (≜Ai) with respect
to TX j [76].

Lambertian source models turn Eqn. (3) into a closed form
expression. However, since non-Lambertian beam patterns can
also be used, we provide the more general Eqn. (3), which can
easily be converted to an approximate Lambertian model when
necessary, as done so in [40, 77, 78]. θij and dij in Eqn. (3),
and τij in Eqn. (2) are expressed as

dij =
√

xij
2+yij2 , θij = arctan

(
xij

yij

)
, τij =

dij
c

, (4)

where c is the speed of light.
µi is composed of shot noise on the receiving p-i-n pho-

todetector (PD) and thermal noise on the FET-based front-
end transimpedance amplifier (TIA) that follows the PD [79].
The combined noise is zero mean additive white Gaussian
(AWGN) with variance [80, Eqn. (18)]:

σ2
µi

= σ2
shoti + σ2

thermali , (5a)

6Note that this does not imply a Lambertian radiation pattern. It only
implies that the source is not extended, thus, the far-field pattern is considered.



5

σ2
shoti = 2qγiPiBi + 2qIbg,iIB2Bi , (5b)

σ2
thermali = 4kTi

(
1

Ri
IB2Bi+

(2πCi)
2

gi
ΓIB3B

3
i

)
, (5c)

where q is the Coulomb electron charge, k is the Boltzmann
constant, Pi is the optical signal power on RX i, Ibg,i
is the background illumination current, Bi is the front-end
bandwidth, Ti is the circuit temperature, Ri is the front-end
resistance (i.e., TIA feedback gain term), Ci is the input
capacitance due to the photodiode and the FET, gi is the FET
transconductance, and Γ, IB2 and IB3 are unitless factors
for FET channel noise and noise bandwidth determined by
the signal shape [80]. For an optimal TIA (i.e., proper loop
compensation and impedance matching such that bitrate is
equal to Bi [79]), Eqn. (5c) is typically reorganized using
Ri = G/(2πBiCi) where G is the “open-loop voltage gain”,
and the front-end circuit gain is independent of transistor
parameters, i.e., Ri determines the transimpedance gain which
turns the received photocurrent ri into a voltage signal.

We ignore the following minor effects: Popcorn noise due
to silicon defects are absent in modern components. Flicker,
i.e., 1/f noise, is also ignored since VLC operation is not
near DC. Furthermore, random fluctuations on Hij and τij due
to atmospheric turbulence are ignored since LEDs are non-
coherent. Similarly, Doppler effects, which would make τij
time-dependent, are also ignored since they are shown to have
a negligible effect on positioning performance [81].

III. VEHICULAR VLP METHODS

This section first reviews parameter measurement tech-
niques and existing algorithms that use those techniques for
position estimation in vehicular VLP, and then proposes a
novel algorithm that combines bearing and range measure-
ments for positioning.

A. Parameter Measurement from Received VLC Signals

Vehicular VLP methods utilize parameter measurement
techniques that use received VLC signal samples to produce
bearing/range measurements. Specifically, these techniques
make observations on Hij or τij , which are then translated to
direct relative TX bearing (θij) or range (dij) measurements to
one RX, or their differential versions between two RXs when
direct measurements are not available. Differential range and
bearing are respectively defined as

∆dil/j=dij−dlj and ∆θil/j=θij−θlj , (6)

where l ∈ {1, 2, 3, 4}, l ̸= i, denotes the index for the
second RX unit on the same face as RX i. This type of
signal-based physical parameter measurement has long been
an active area of research due to its useful applications
in communication (channel estimation [82–84]) as well as
radio-navigation (i.e., RADAR). While the main challenges
in the area arising from fading and other multi-path effects

are highly pronounced when RF signals are used, vehicular
VLC signals are practically devoid of these effects since
intensity modulation and direct detection (IM/DD [39]) is used
and the channel is LoS-dominant for the distances relevant
in collision avoidance and platooning [22], enabling high-
accuracy measurement [24, 27, 37, 85]. Techniques used for
bearing and range measurement in vehicular VLP, categorized
by their use of Hij or τij , are reviewed in the following.

1) Techniques Using Propagation Delay Observations (τij):
Observations on propagation delay are a perfect fit for range
measurements since TX-RX distance is directly proportional
to τij as per Eqn. (4). In VLC systems employing multi-
carrier modulation strategies like orthogonal frequency divi-
sion multiplexing (OFDM), observations on τij can be made
via measuring phase difference over individual carriers or pilot
symbols [86–88]. Without loss of generality, we assume a
constantly available simple sinusoidal symbol or pilot (i.e.,
pure tone) for simplifying the analyses in this paper, reducing
the τij computation problem to the estimation of the phase
shift between that sinusoid and its propagation-delayed ver-
sion. Numerous techniques are available for this computation
[89], and some of them have been utilized in vehicular VLP
literature for range measurements [55, 78, 90]. Note that the
matched-filter approach is not feasible for vehicular VLP since
cm-level accuracy would require >10 GHz sampling rates,
increasing system cost beyond practical levels.

For direct range measurements, [78] presents an auto-digital
based technique [90]: VLC units on the ego and target vehicles
exchange a high frequency square wave back and forth, and
the ego vehicle measures the phase shift between the initial TX
signal and the round-trip-propagated RX signal. The channel-
corrupted RX signal on the ego vehicle first gets converted
to a logic signal by a high-speed comparator [81] (i.e., zero-
crossing detection) and then gets heterodyned to a lower fre-
quency along with the original TX signal. Since heterodyning
increases phase resolution considerably, the shift can be mea-
sured in high precision by sampling the logical XOR of the two
signals with a high-frequency clock and counting the number
of high pulses. While this means the quantized measurement
resolution is fundamentally limited by the clock frequency and
the heterodyning factor, the quantization intervals can be made
small with high-frequency hardware components, e.g., <1 cm
for a 100 MHz clock. Although this technique requires high-
frequency digital circuits, it has very low complexity and can
be completely integrated into a CMOS pipeline since logic
(i.e., virtually 1-bit) signals are used. Moreover, sine waves of
the same frequency can be transmitted over the channel instead
of square waves when narrow band-pass filters are utilized
since comparators already convert them to logic signals on
the RX end. This makes the technique realizable with current
low-bandwidth high-power automotive LEDs and multi-carrier
wide-band VLC modulation strategies.

For differential range measurements to two RXs (RX i and
RX l) from one TX, [55] presents a DFT-based technique: The
upper DFT sideband of one RX signal (RX i) is multiplied
with the complex conjugate of its counterpart for the other
RX signal (RX l). The mean of the phase for the result is an
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estimate of the phase shift between the two RX signals, for the
same TX. Although previously unexplored in vehicular VLP,
this technique can also be used for direct range measurement
when the scenario presented in [78] is used (i.e., RX i and
RX l are replaced by a known TX signal and its round-trip-
propagated RX version). These two measurement techniques
are depicted on the same block diagram in Fig. 3. While the
complexity of the DFT-based technique [55] is much higher
than the auto-digital technique [78] due to DFT use and the
analog-to-digital conversion requirement (ADC, much higher
than 1-bit precision), it typically provides higher accuracy
against noise due to averaging as will be shown via simulations
in Section IV. Similarly, the auto-digital measurement principle
[78] can be applied for differential range measurement, but
since differential values are very small, using this technique
would be impractical due to the extremely high clock speed
required for that level of precision.

Lastly, τij observations do not provide means for bearing
measurement as evident from Eqn. (3). While derivative mea-
surements are possible, e.g., differential bearing measurement
using direct range to two RXs, L and the law of cosines, this
simply transfers the uncertainty from one measurement type
to the other, thus, is not a dedicated technique.

2) Techniques Using Channel Gain Observations (Hij):
The relationship between Hij and the relative TX-RX distance
is straightforward for the LoS vehicular VLC channel: Hij

is inversely proportional to the square of the propagation
distance [22]. Accordingly, for sinusoidal signals, an accurate
observation on Hij can be made via computing received
signal strength (RSS) by integrating the square of rij(t) over
an interval that captures many sj(t) cycles [37]. However,
extracting range information from that RSS info requires
exact knowledge of instantaneous TX power (cf. Eqn. (3)
and [27, Eqn. (4)]). This is highly unlikely even after a
potential future standardization of vehicular VLC TX power
since the electrical reference on a vehicle (i.e., a regulated
version of the battery voltage) is subject to broadband random
fluctuations (both in combustion [91] and electrical vehicles
[92]), making exact instantaneous knowledge of TX power
infeasible. Therefore, RSS-based direct ranging is not feasible
for use in vehicular VLP.

RSS-based differential range measurement is also not fea-
sible in vehicular VLP for a similar reason: In order to
extract ∆dil/j from RSS values, the technique would require
exact knowledge of the TX radiation pattern (ρj) and of the
instantaneous solid angles subtended by each RX (i and l) to
the TX. Since this is not realistic, RSS-based differential range
measurement is also not feasible for use in vehicular VLP.

RSS can still be used for bearing measurements via angu-
lar diversity receivers: An RX that employs closely-packed
detectors with different angular “reception” patterns (i.e., ρi)
has extremely close AoA values and different RSS values at
all detectors, enabling precise AoA measurement. An example
that utilizes a quadrant detector [11] is depicted in Fig. 4.
Accuracy of these measurements fundamentally depend on

Fig. 3. (a) Auto-digital based and (b) DFT-based direct range measurement
techniques using observations on τij and Eqn. (4). Technique (b) is originally
proposed for measuring differential range over 2 RX signals.

Fig. 4. Direct bearing measurement using observations on Hij (“Power”) and
Eqn. (3). Image adapted from [11]. Other angular diversity RX designs with,
e.g., photodiode arrays of different shapes and number of elements, and/or
different front-end optics (e.g., aperture-only) [68], can also be utilized.

how close the detectors are7 and how different their ρi patterns
are8. While there have been many such RX designs in indoor
multiple-input-multiple-output (MIMO) VLC [68, 93–95] and
associated AoA measurement techniques for indoor VLP [96–
101], only a few of these design ideas are feasible in the vehic-
ular domain due to high mobility and harsh road conditions.
Specifically, early works have considered pyramidal detectors
[47], but such tilted-detector based techniques, which have also
been studied in indoor cases [102–105], suffer in precision
and field-of-view (FoV). More recently, a planar quadrant-
photodiode based RX with front-end optics (named “QRX”)
has been shown to achieve high-precision and high-FoV direct
bearing measurement for vehicular localization in [11].

RSS-based differential bearing measurement techniques are
still unexplored in vehicular VLP. Therefore, to enable per-
formance evaluations for the differential bearing based VLP
methods later in the paper, subtraction of two direct bearing
measurements will be considered as a differential bearing
measurement even though it is a derivative measurement.

7Distance between the detectors should be much smaller than their distances
to the TX to keep both the bearing and the Sij the same for all detectors.

8RSS differences only depend on ρi patterns because small-scale fading is
insignificant due to detector sizes being millions of wavelengths [80, Fig. 2a]
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TABLE II
PARAMETER MEASUREMENT TECHNIQUES USED IN VEHICULAR VLP

measurement type direct range
dij , dlj

differential range
∆dil/j

direct bearing
θij , θlj

differential bearing
∆θil/j

using τij observations auto-digital [78],
(DFT-based) a [55]

DFT-based [55] no direct relation, cf. Eqn. (3)

using Hij observations not feasible b “QRX” [11] – c

a This was previously unexplored. We use it to realize the novel algorithm described in Section III-C and demonstrate its performance in Section IV.
b These require knowledge of exact TX power or exact solid angle subtended by RXs on TX ρj , both of which are unfeasible in vehicular use cases.
c No techniques have been proposed so far. We consider subtraction of two direct bearing measurements for this type to facilitate later related analyses.

A summary of all individual parameter measurement tech-
niques that have been described so far with respect to their
use in vehicular VLP, are provided in Table II.

B. Existing Positioning Algorithms in Vehicular VLP

Positioning algorithms in vehicular VLP use the avail-
able parameter measurements described in Section III-A and
combine them to estimate position. Based on system model
assumption (A2), at most two RXs on a given face of the ego
vehicle are considered available in this paper for positioning.
Positioning algorithms that use this minimal configuration can
be categorized with respect to their use of the following:

• differential (as in Eqn.(6)) vs. direct measurements,
• for bearing vs. range parameters, and
• “classical” vs. “running” position fixing.

“Classical” position fixing considers using triangulation or
trilateration, i.e., a TX gets within the LoS of the two RXs, and
the measurements from the two RXs, together with the known
ego vehicle light separation L in between (target vehicle light
separation is not known), form a determined set of equations.
On the other hand, “running” position fixing can be used
as a compromise when one of the TXs leaves the FoV of
one of the ego RXs, which frequently happens due to high
mobility. The running fix, heavily used in marine and aviation
disciplines, uses two consecutive measurements from only one
RX to a moving TX and assumes that the TX relative heading
(αv) and distance traveled (dv) within that time is known
(can be transmitted over the VLC link [53]). Classical fixing
for direct and differential bearing/range measurements, and
running fixing with direct range measurements, are pictured in
Fig. 5a, Fig. 5b and Fig. 5c, respectively. While measurements
from more than two RXs and/or more measurements in time
could potentially improve performance (e.g., via least squares),
only the minimal configuration is considered here to assess the
worst case performance (cf. A2).

Feasible combinations of the bearing-only or range-only
algorithms depicted in Fig. 5 have been proposed in the
literature up to now, as summarized in Table III. Classical
position fixing with direct measurements, i.e., triangulation
[106] has been explored for bearing measurements as in [11],
and trilateration has been explored for range measurements
as in [56]. Considering differential measurements instead of
direct measurements, this has been explored for ranges by

Fig. 5. (a) 2 RXs and 1 TX are required for a classical fix with direct
measurements for bearing (θij ) or range (dij , where i and j are indices for
RX and TX units, respectively). (b) 2 RXs and 2 TXs that are longitudinally
parallel are required for a classical fix with differential measurements for
bearing (∆θil/j ) or range (∆dil/j as defined in Eqn. (6). (c) A running
fix with direct measurements only needs 1 RX and 1 TX, but it also needs
extra information (i.e., relative target heading, αv , and travel distance, dv) to
estimate position for two time instants (i.e., t = t0 and t = t1) [53].

[55] and for bearings by [54]. When the target TX is not in
sight of one of the two RXs, a running position fix can be
made with 1 RX and 1 TX as a compromise. This has been
explored for direct ranges by [54] and for bearings by [53].
Differential measurements cannot be used for running fixes
because that would require the target vehicle to move only
sideways, conflicting with Ackermann steering rules (i.e., no
side-slip [107]). Hybrid methods that combine bearing and
range were previously unexplored since an RX design that
can simultaneously measure both parameters did not exist. A
novel method that does this is proposed in Section III-C. The
theoretical performance of all methods can be analyzed by
evaluating the CRLBs that are derived in [54] under realistic
driving scenarios. These evaluations are presented alongside
simulation results in Section IV to assess their performance.

TABLE III
VEHICULAR VLP ALGORITHMS USING A SINGLE PARAMETER

direct meas. differential meas.

classical fix running fix classical fix running fix

range ✓, [56]
✓, [54]

✓, [55] × a

bearing ✓, [11] ✓, [53]
✓, [54]

× a

a not feasible since it strictly requires the vehicle to move only sideways.
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C. A Novel Hybrid Vehicular VLP Method

Current state-of-the-art classical position fixing methods
utilize either direct bearing measurements as in [11] or direct
range measurements as in [56], but not both. The analyses in
[54] make it evident that combining these two methods would
improve performance, i.e., range-based positioning provides
higher accuracy in the longitudinal axis, and vice versa for
bearing and the lateral axis. The main challenge is designing
an RX that allows for measuring both simultaneously. We
propose a solution: The QRX, which is originally designed
for bearing measurements in [11], can be repurposed to simul-
taneously do direct range measurement with the DFT-based
method in [55] (auto-digital [78] would require additional
CMOS circuitry). The TX signal, which already gets decoded
by the QRX VLC subsystem for bearing measurement, can
be used in place of the second RX signal to convert the
DFT-based differential method to a direct one as described
in Section III-A-1.

One consideration for doing range measurements with such
an imaging receiver would be the refraction-induced time-of-
flight delay on the signal inside the lens. However, since the
lens-sensor distance on the QRX is only a few millimeters,
this delay is negligible compared to the TX-RX distance,
which is on the order of meters. Therefore, the QRX can be
used for range measurements as well bearing measurements
simultaneously, and realize the envisioned hybrid vehicular
VLP method.

IV. SIMULATIONS

The simulations in this section have three goals: 1) bench-
marking the performance of all existing vehicular VLP meth-
ods under realistic collision avoidance and platooning sce-
narios to identify the best performers, 2) characterizing the
best performers against severe VLC channel noise, adverse
weather conditions, high mobility, real measured (incl. asym-
metric) light patterns and different vehicle dimensions, and 3)
validating the theoretical performance of these algorithms by
evaluating their respective Cramer-Rao Lower Bounds (CRLB)
for positioning accuracy (derived in [54]) alongside simulation
results. A custom simulator is built for this purpose in Python
language and all related source material (i.e., code and related
documentation) is made available on GitHub [108].

Simulator setup parameters are given in Table IV. In all
simulations, a leading target vehicle transmits VLC signals
from its tail light towards the ego vehicle (Fig. 2); this is the
worst case scenario since taillights have lower optical power (2
W) than headlights. The taillight is considered to be a Lamber-
tian pattern of 20° half-power angle (order m=11) throughout
most simulations since it is the closest analytical pattern to
taillight regulations [78] as well as measured patterns [29], but
we also evaluate different patterns such as wider Lambertians
[77] and real asymmetric patterns [109] to quantify their effect
on performance. Pure tone modulation at 1 MHz [78] is
considered since it is a realistic pass-band limit for current
high-power automotive LEDs. The signal is band-pass filtered
at 100 kHz bandwidth around the 1 MHz carrier on the RX end
as in [81]. To facilitate fair comparison and practical relevance,

TABLE IV
SIMULATOR SETUP PARAMETERS

TX

Signal pure tone, 1 MHz

Power γj ·max(|sj |) = 2 W (tail light)

Patterns various Lambertians [77, 78] and real [109]

Attenuation

clear: -

heavy rain (≈10 mm/hr): 0.1 dB/m [111]

dense fog (≈200 m): 0.3 dB/m [111]

QRX

γi, gi, Ai
a 0.5 A/W, 30 mS, 31.2 mm2

Bi, Ci, Ri 10 MHz b, 45 pF, 2.84 kΩ, i.e., G ≈ 10

Factors Γ=1.5 , IB2=0.562 , IB3=0.0868

Temperature T=298 K

Ibg,i [110]
night-time: 10 µA

day, indirect sun: 750 µA

Lens N-BK7 (n=1.52), diameter = 9.0 mm

Detector dH = 6.3 mm , dX = 1.9 mm, see [11]

FoV ±60°, see [108] for ray-optics simulations

Vehicle

Length 5 m

Light Height target = [1.1m : 1.7m], ego = 1.1 m

Width (L) target = 1.5 m, ego = 1.6 m

Steering Ackermann [107] (small sideslip)

a This is the area of the aperture stop, which is 6.3 mm in diameter.
b This is ADC output, but effectively, Bi = 100 kHz due to filtering [81].

all methods are configured for 100 Hz positioning rate (i.e., the
rate requirement is satisfied, and simulations test the accuracy
requirement), ADCs have a moderate 10 MSPS conversion
rate, and all methods utilize the “QRX” unit [11] following
the discussion in Section III-C. To further improve practical
relevance, we choose the solid model of a very simple plano-
convex lens from the Edmund Optics catalog (#67-149) during
QRX design, and accordingly tune for ≈ ±60◦ FoV using ray-
optics simulations 9. A wide range of realistic ambient light
induced noise conditions (night, day, direct sunlight [110])
and weather-induced attenuation conditions (clear, foggy, rainy
[111]) are considered in the simulations.

Accordingly, we present seven evaluation scenarios (ES#):

• ES1 - Comparing Range Measurement Techniques: We
simulate the two range measurement techniques used in
vehicular VLP, i.e., auto-digital [78] and DFT-based [55],
for static target vehicle locations on a 1-20 m straight test-
track (i.e., bearing=0) to characterize and compare their
performance.

• ES2 - Benchmark, All Methods, Lane Change Scenario:
We simulate all six existing vehicular VLP methods
listed in Table III as well as the novel hybrid algorithm
proposed in Section III-C in a lane change scenario to
benchmark their performance in a realistic driving setting.
The target vehicle passes over the lane of the ego vehicle
from the left, moderate speed, as described in [54].

9https://github.com/mjhoptics/ray-optics

https://github.com/mjhoptics/ray-optics
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• ES3 - Validating Theoretical Performance Analyses: We
evaluate the CRLBs of all classical position fixing meth-
ods at various static target vehicle locations over the
operational range to validate the theoretical performance
analyses in [54]. The vehicles stay longitudinally parallel
for fair comparison between methods utilizing direct and
differential measurements.

• ES4 - Characterizing Vehicular VLP Operational Range:
We evaluate the performance of the top three performers
from ES2 over a grid that covers a typical 3-lane road
(a 6 m x 14 m zone in front of the ego vehicle) to
determine the operational range of the best-performing
vehicular VLP methods.

• ES5 - Weather Conditions, Collision Avoidance Scenario:
We use a recorded dynamic collision threat scenario
extracted from the INTERACTION dataset [112] to char-
acterize the performance of the newly proposed hybrid
algorithm for collision avoidance under different weather
conditions. A leading target vehicle brakes abruptly while
merging onto a highway, risking collision with the ego
vehicle that follows it. A video of this scenario is pro-
vided in [113].

• ES6 - High Mobility, Platooning Scenario: We simulate
the newly proposed hybrid algorithm in the dynamic
platooning scenario described in [11, SM2] and repeat
the simulation for different target vehicle speeds (0.25x,
0.5x, 2x and 4x) to quantify the “mobility-induced er-
ror” arising from finite-rate estimation in vehicular VLP
performance.

• ES7 - Real Light Patterns and TX-RX Placements: We
repeat the platooning scenario in ES6 with normal speed,
but with different TX light patterns and placements on
the target vehicle. Specifically, we evaluate performance
under a measured real asymmetric pattern from [109]
as well as Lambertian patterns with different half-power
angles (20°, 35°and 50°) to emulate various radiation
pattern examples from the literature [29, 77, 78]. Like-
wise, we evaluate the system for different TX placements,
ranging from on-axis TX-RX placement to a 60cm height
offset, similar to the experimental study in [109].

1) ES1 - Characterizing Range Measurement Techniques:
Fig. 6 shows the sampled standard deviation of the ranging
error over 100 iterations for the two range measurement
techniques, i.e., auto-digital [78] and DFT-based [55], for
static target vehicle locations on a 1-20 m straight test track
under both favorable and adverse weather conditions. Since
the auto-digital technique is susceptible to systematic error
due to both quantization and heterodyning [114], we make
two arrangements to observe the effect of channel noise in
isolation: 1) The true range values are chosen to be exact
multiples of the resolution limit of the auto-digital technique
to avoid systematic quantization error (statistical quantization
error due to noise will still be present), and 2) each point on
the test-track is simulated with a fixed time window that is free

Fig. 6. ES1 - Performance of the two range measurement techniques [55, 78]
on a 1-20m straight test-track under various weather conditions.

of heterodyning error by definition. The auto-digital technique
is tuned to ≈0.75 cm resolution for 100 Hz measurement rate
(r=5000, N=4, fclock=100 MHz with the notation in [78]),
which results in a ≈10 ms simulation time window for each
point on the test track.

Results show that the DFT-based technique is more accurate
even in the face of SNR drop throughout the test-track (i.e.,
with increasing range since TX power is constant) and also
with worsening weather conditions. Furthermore, the quanti-
zation effect of the auto-digital technique is also seen: At the
1 m true range mark in the clear-night scenario, the output
of the auto-digital technique does not change among different
samples since none of the noise samples are big enough to
shift the output from the same quantization interval, causing
standard deviation to be 0 (the 2.5 m mark sample shoots
down towards negative infinity, which is virtually where the
1 m sample is on the logarithmic vertical axis). Therefore, in
this specific case, the auto-digital technique produces a perfect
output, but this only happens because the target vehicle is
positioned at an exact multiple of the resolution limit, which
is a very scarce occurrence in high-mobility road scenarios. In
summary, the relatively more complex DFT-based technique is
more accurate than the auto-digital technique against channel
noise, making it a better fit for use in vehicular VLP when
complexity requirements are not extremely stringent.

2) ES2 - Benchmark, All Methods, Lane Change Scenario:
Fig. 7 shows the positioning error for all six existing vehicular
VLP methods listed in Table III as well as the novel hybrid
method described in Section III-C in the lane change scenario
described in [54] under clear day-time indirect sun exposure
conditions. Fig. 7a shows the trajectory, Fig. 7b shows the
sampled standard deviation and Fig. 7c shows the sampled
mean of the positioning error over 1000 iterations of the
same simulation run. The results demonstrate that all methods
other than those based on classical position fixing and direct
parameter measurements suffer significantly in accuracy. The
differential measurement based methods have significant bias
since they assume target and ego vehicles to be parallel while
in reality they aren’t, as can be seen in Fig. 7a and Fig. 7c.
The running fix based methods suffer significantly when the
target vehicle starts to change its heading dynamically (i.e.,
after passing over to the right lane at the 0.5s mark) since
they assume relative heading and speed not to change within
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Fig. 7. ES2 - (a) Trajectory of the lane change scenario, (b) standard deviation and (c) mean of positioning error for all six existing vehicular VLP methods
listed in Table III as well as the novel hybrid method described in Section III-C under day-time, clear weather and indirect sun exposure.

an estimation interval. The direct bearing/range-based classical
position fixing methods as well as the novel hybrid method
are the only ones that can sustain cm-level error. Furthermore,
the novel hybrid method outperforms the existing state-of-the-
art methods using direct bearing/range-based classical position
fixing since it has less standard deviation in the positioning
error.

3) ES3 - Validating Theoretical Performance Analyses:
In this evaluation scenario, the target vehicle is positioned
at various locations within a <20 m radius of the ego ve-
hicle (i.e., bearing ̸=0) at longitudinally parallel orientation.
At each target vehicle location, the parameter measurements
are simulated over 1000 iterations of the noise process, and
the resulting parameter measurement distributions are used for
evaluating the CRLB on positioning accuracy for each method.
The goal of this simulation is to validate the theoretical analy-
ses in [54] which claim that all of the classical position fixing
algorithms discussed so far converge to the minimum variance
unbiased estimator (MVUE) for the parameter measurements
they utilize under moderate to high RX SNR conditions.

Fig. 8a shows the test locations, and Fig. 8b and c show the
standard deviations as predicted by the CRLB in the lateral
(x) and longitudinal (y) axes, respectively, for foggy weather
at night. The outputs of the algorithms are also sampled to test
the MVUE claim in [54]. The results empirically support this
claim since the sampled outputs of the algorithms all approx-
imately match their respective CRLBs. However, as shown in
Fig. 8c, the extremely low SNR at the farthest points on the
track cause deviation from the CRLBs and a significant non-
zero bias (shown on the inset) on the differential measurement
based methods (as discussed in [54, Section III-B]), making
them virtually unusable at high noise.

In summary, the results show the following: 1) direct
measurements provide higher robustness against channel noise,
thus, are more suitable than differential measurements for
high accuracy in vehicular VLP methods, and 2) in support
of the results in ES2, we observe why the novel hybrid
method provides the best performance since direct range-based
methods provide the highest accuracy in the y axis, while
direct bearing-based methods do the same in the x axis.

Fig. 8. ES3 - CRLBs and simulated estimation error in the lateral (x) and
longitudinal (y) axes for classical fixing methods evaluated for test locations
shown in (a), under foggy night time conditions in (b) and (c), respectively.
Test location indices start from the bottom-most location shown in (a) and go
around the track in clockwise direction.

4) ES4 - Characterizing Vehicular VLP Operational Range:
Fig. 9 lays out a 6 m x 14 m grid over which the sampled
standard deviation of positioning error attained by the top
three performers from ES2 are simulated under daytime, clear
weather, indirect sun exposure conditions, measured over 50
iterations. From top-to-bottom, the performance of the follow-
ing methods are shown, respectively: Classical fix with direct
bearing measurements [11], classical fix with direct range
measurements [56], and the novel hybrid method described
in Section III-C which combines the outputs of those two
methods. The results verify the original hypothesis of the
hybrid method: The bearing-based method performs better on
the lateral axis, and the range-based method performs better on
the longitudinal axis, as demonstrated by the orange cm-level
performance boundaries extending towards the x axis and y
axis, respectively. The hybrid method gets the “best of both
worlds” by combining the outputs of the two and covers a
much larger region with cm-level accuracy. Furthermore, the
results also characterize the cm-level performance range of
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the novel hybrid method under these conditions to be almost
a complete 6 m x 14 m grid, which complies with collision
avoidance and platooning requirements.

5) ES5 - Weather Conditions, Collision Avoidance: Fig.
10 shows the results for ES5, which simulates the perfor-
mance of the novel hybrid method in a recorded collision
threat scenario extracted from the INTERACTION dataset
[112] under all weather conditions considered in this paper,
sampling results over 500 iterations of the same trajectory.
A video of the scenario showing vehicle trajectories can be
found in [113]. While the mobility level in this scenario is
relatively low (hence, lower mean error), the trajectory here
is taken from actual vehicles on a road, which improves the
practical relevance of the simulations. Three different weather
conditions (clear, rainy and foggy) and three different sunlight
conditions (night, daytime indirect sun, and daytime direct
sun exposure) are considered to stimulate different shot noise
and signal attenuation levels. Attenuation levels for different
weather conditions are taken from the experimental results in
[111] and sunlight-induced shot noise photocurrent level on
the RX photodiode for different light exposure conditions are
taken from the experimental results in [110]. Foggy weather
and direct sunlight are not considered together since that is not
a probable natural occurrence. Results show that the increase
in shot noise due to sunlight exposure has a larger effect on
performance compared to signal attenuation due to weather
conditions, and their combined effect can make errors up to
eight times higher compared to the best performance under
clear, night-time conditions. Nevertheless, cm-level perfor-
mance is preserved under all adverse conditions except for
direct sunlight exposure in this collision avoidance scenario.

6) ES6 - High Mobility, Platooning Scenario: Fig. 11
shows the sampled standard deviation and mean of positioning
error over 500 iterations for the novel hybrid classical position
fixing method during a high-mobility platooning scenario at
different target vehicle speed levels under 100 Hz positioning
rate like in all other simulation scenarios. The trajectory
shown in Fig. 11a is repeated at different speeds by the
target vehicle to demonstrate the effect of different levels of
mobility on the performance of algorithms. To cover a wide
range, we test for the following average relative target vehicle
speed levels over the trajectory: 12.31 km/h (4x slow), 24.62
km/h (2x slow), 49.26 km/h (default case), 98.62 km/h (2x
fast), 197.63 km/h (4x fast). Although the two fastest cases
are extremely improbable since they would require immense
torque and handling by the target vehicle (note that the ego
vehicle is already moving and these are relative speeds, so
the actual speeds need to be even higher), we include them
in the simulation to demonstrate the greater than 50 Hz rate
positioning rate requirement discussed in Section II.

In the mean error plot (Fig. 11c), each point shows the
mobility-induced error, which is the maximum error occurring
within an estimation interval as described in Section II-B
and also in detail in [11]. This plot shows the effect of the
finite-rate estimations not being able to “catch up” with the
fast-moving target vehicle, which only affects the mean of
positioning error since it is deterministic and unknown, i.e.,

Fig. 9. ES4 - Operational range of the direct measurement based classical
fixing methods and the novel hybrid method that combines them, evaluated
over a 6 m x 14 m grid covering approximately a 3-lane road. Simulation
takes place in daytime, clear weather conditions with indirect sun exposure.
White pixels on the grid refer to points where the TX is out of the FoV of
the RXs, denoting a loss of estimation.

bias. The plot for the standard deviation in Fig. 11b of the
error shows the non-deterministic effect of channel noise, and
therefore stays relatively similar among different speeds as
expected since speed does not affect channel noise directly
(note that Doppler effects are found to be insignificant in
earlier works [81]). Results show that except for extremely
high mobility cases which are physically improbable (the
2x and 4x fast cases), the novel hybrid method provides
cm-level accuracy at the 100 Hz positioning rate simulated
in this scenario. This forms the basis of the greater than
50 Hz positioning rate requirement which considers realistic
relative vehicle speeds for collision avoidance and platooning
applications.

7) ES7 - Real Light Patterns and TX-RX Placements: Fig.
12 shows the results for the same platooning scenario in ES6
repeated at normal target vehicle speed, but with different TX
light patterns and placements on the target vehicle. Perfor-
mance is evaluated under four different light patterns and five
different TX relative height offsets. For the light patterns, three
different Lambertian patterns with half-power angles of 20°,
35° and 50°, as well as one real asymmetric pattern exper-
imentally measured in [109] are tested. The 20° Lambertian
is the one used in all of the preceding simulations since it
is the closest analytical pattern to taillight regulations [78] as
well as measured patterns [29]. Using the 20° Lambertian,
the simulation scenario is repeated at five different TX height
offsets to quantify the effect of a headlight height mismatch
between the target and ego vehicles. These five different offsets
are given by, z = {0, 15, 30, 45, 60} cm.



12

Fig. 10. ES5 - Evaluation of the novel hybrid method in a recorded collision threat scenario from the INTERACTION dataset [112, 113] under all weather
and sunlight-induced shot noise conditions.

Fig. 11. ES6 - Evaluation of the novel hybrid method in a high-mobility
platooning scenario at different target vehicle speeds. Horizontal axis for (b)
standard deviation and (c) mean of positioning error shows trajectory location
indices rather than time since the same trajectory in (a) is repeated at different
speeds, thus, at different time intervals. The non-existent data points at the
start and end of the trajectory correspond to sections where the TX is out of
the FoV of the RXs, denoting a loss of estimation.

Results show that while the TX height offset has minimal
effect on the performance, the headlight pattern has three sig-
nificant effects on positioning performance. First, asymmetric
and/or non-smooth patterns like the real measured ones from
[109] cause significant variance in positioning performance

Fig. 12. ES7 - Evaluation of the novel hybrid method by repeating the
platooning scenario in ES6 at normal (1x) speed but with different TX
headlight patterns and relative placements (height offsets, or z-levels). Three
different Lambertian patterns with half-power angles of 20°, 35° and 50°, as
well as one real asymmetric pattern experimentally measured in [109] are
tested. Five different height offsets are tested, z = {0, 15, 30, 45, 60}cm.

over a trajectory (shown in red in Fig. 12) even if the
trajectory itself is smooth as in Fig. 11a. This occurs since
the TX beam is asymmetric in both polar axes, causing it to
move in and out of the RX many times over the course of
the trajectory. Second, the real pattern causes lower overall
accuracy compared to the Lambertian patterns. The reason for
this is that the real pattern is of a sedan low-beam (LbSedan1,
[109]), which has a downward aim in its main lobe to avoid
blinding drivers in oncoming traffic with excessive light, and
the target vehicle mostly remains outside this downward-
looking main lobe. We chose to use this low-beam as the
real pattern to quantify the effects of a severely asymmetric
pattern since real taillights heavily resemble Lambertians [29]
which are already simulated. Third, a wider beam such as
the higher half-power angle Lambertians enables the cm-level
performance to be preserved over a wider area (i.e., the 0.0
to 0.1s region), but the performance naturally degrades during
regions of the trajectory in which the TX beam shines directly
on the RX since the power is not as concentrated to the RX
as it is in the case with the narrower beam. In summary, the
findings match the directional nature of the TX beams well:
Wider and smoother beam patterns allow for higher coverage
in high-mobility cases, but narrower beams allow for higher
accuracy when the TX beam aligns with the RX active area
and asymmetric beam patterns cause frequent fluctuations and
outage when the beam is not aimed towards the RX.
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V. OPEN QUESTIONS AND CHALLENGES

In this section, we present remaining important open ques-
tions and challenges for the widespread deployment of vehicu-
lar VLP under the following categories: 1) further performance
improvements and analyses for vehicular VLP, 2) integration
of vehicular VLP into the currently evolving “connected and
autonomous vehicle” (CAV) software stack and enabling its
widespread deployment in thereof, and 3) co-design of vehic-
ular VLP with sensor systems to enable better localization for
upstream applications.

A. VLP Performance Improvements and Further Analyses

One of the main shortcomings of current vehicular VLP
methods is insufficient FoV: The current setups that consider
only front/rear-facing VLC units can only cover half of all
vehicle-to-vehicle collisions as shown in Fig. 13 since they
cannot detect pure side collision threats [115, 116]. Although
existing methods can be adapted for detecting such collisions
via additional RX units on the sides [117], the effectiveness
and regulation compliance of such configurations are yet to be
investigated. Moreover, current classical position fixing meth-
ods have dead zones within their FoV limiting their coverage:
target TXs need to be inside the FoVs of both RXs at the same
time for a fix. Therefore, developing better running position
fixing methods or hybrid bearing/range classical methods that
use a single RX (similar to radial and distance measurement
equipment (DMEs) in aviation [118]) are important directions
for improving vehicular VLP FoV.

Another important line of research is further improving
the accuracy and rate of vehicular VLP methods: Using an
extended set of measurements by adding more RX units or
taking more samples over time and solving over-determined
systems of equations (i.e., typically via least-squares or ma-
chine learning) is a promising research direction, and has
recently seen some elementary progress [52]. Other promising
research directions include new RX optical and electrical
configurations [119] and parameter measurement techniques
(e.g., via positioning-motivated visible light waveform de-
sign [120]) with higher robustness against noise, and fur-
ther “environment-aware” methods that sense and adapt to
channel conditions for higher accuracy [121]. The theoretical
performance of such new techniques can be investigated via
the generalized bounds derived in [41], and the positioning
performance they enable can be evaluated via the CRLBs
derived in [54].

Lastly, we note that experimental studies in this area are
currently very limited. Notable experimental studies from the
vehicular VLP field are [81, 114] for the auto-digital ranging
method described in Section II-A, but these are laboratory
experiments in controlled environments rather than field ex-
periments, and other methods in the field (e.g., bearing-based)
still lack thorough experimental validation. Field experiments
have been more popular for vehicular VLC since precision
and repeatability in vehicle placement and movement is not
as critical as in VLP in those studies [22, 23, 122–124].
These studies have helped in characterizing the vehicular VLC
channel, which indirectly also contributed to vehicular VLP

Fig. 13. Distribution of traffic accidents based on configuration of victims
involved, as measured in the annual “Verkehrsunfälle” report by Federal
Statistical Office of Germany (DESTATIS) [116]

since the two share the same physical medium. However,
although theoretical and simulated analyses done so far have
provided a good basis for understanding vehicular VLP per-
formance in realistic scenarios by enabling investigation into
field configurations that would have been hard to investigate
experimentally, comprehensive experimental studies on the
road are still necessary for fully characterizing vehicular
VLP performance with actual regulation-compliant headlights
[109, 125].

B. Integration and Widespread Deployment of Vehicular VLP

The integration of communication-based positioning meth-
ods into the vehicular domain is still an open field. Unlike
RF [17], VLP can provide the required accuracy for collision
avoidance and platooning applications, but on-vehicle VLC
TX and RX units are not ubiquitous yet. Even with ubiquitous
deployment, analyses need to be conducted as to the avail-
ability of the applied methods, especially regarding daytime
operation since vehicle lights are not promised to stay on all
the time during the day. Such analyses need to deduce service
schedules for vehicular VLP methods based on how long the
vehicle lights stay on, and accordingly measure the overall
availability of the vehicular VLP service as a suitable comple-
mentary method for other on-board sensor-based localization
technologies. Moreover, the position of VLC technologies
within the automotive software stack is not clear yet since
the stack itself is currently evolving to accommodate “V2X”
connectivity and autonomy [126]. VLP could either be a
standalone localization service or it could exist as an extension
of the VLC service without compromising communication
functionality [127] within these lines. Further research on
this aspect is necessary since this choice has implications
for the newly developed safety-relevant automotive software
standards (e.g., ISO/PAS 21448, SOTIF [128]) as well as for
future-proofing [129].

One other related challenge, which might be regarded as
the holy grail in this area, is attaining modulation-free VLP.
Modulation-free VLP considers the detection of random LED
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intensity fluctuations, which occur due to various random noise
factors, such as power supply switching noise. Once the LED
is detected, range and/or angle measurements can be done,
and the vehicular VLP methods discussed in this paper can
be applied for positioning. Since this would enable the local-
ization of “legacy” vehicles that do not carry dedicated VLC
TX modulators, it would vastly improve the adoption speed of
vehicular VLP in the automotive sector. While there have been
indoor VLP works towards this direction primarily by utilizing
so-called “signals of opportunity” [130], this highly valuable
technology is still an open question for vehicular VLP.

C. VLP-Sensor Co-design and Upstream Applications

Vehicular VLP and sensor-based systems can also be jointly
designed to exploit localization performance gains from both
sides since they have “orthogonal” performance attributes. For
example, VLP position estimations can be used as a new
grounding modality for improving the performance of vision-
based target trackers [5] and trajectory prediction models
[131]. Since current examples of such systems typically do
grounding by bootstrapping on the same modality (e.g., they
utilize a priori known features from the same source image
for grounding [132]) the complexity increases and the rate
decreases. These systems could significantly benefit from a
new modality like VLP that is low complexity, high rate and
high accuracy.

Similarly, VLP-based collision avoidance and platooning
systems could also benefit from sensor systems: The results
in this paper have shown that one of the main sources of
error in vehicular VLP is due to the estimations not being
able to catch up with the high-mobility target vehicle. Since
this component changes relatively slowly compared to sensor
rates as explained in [11], inertial and visual sensor-based
probabilistic trajectory prediction methods (e.g., from SLAM
literature [133–135]) can be used for mitigating this mobility-
induced error in VLP. The investigation of the collaboration
between such sensor-based methods and vehicular VLP meth-
ods for improving localization performance in autonomous
driving, is a highly promising future research direction.

VI. CONCLUSION

This survey paper reviews the state-of-the-art in vehicular
VLP, proposes a new method that advances the state-of-
the-art, analyzes the performances of all methods against
challenging and realistic road scenarios as well as practi-
cal non-idealities, and discusses future challenges faced for
the widespread deployment of vehicular VLP. The proposed
novel hybrid classical position fixing method outperforms all
existing methods in all considered conditions by combining
direct range measurements for longitudinal and direct bearing
measurements for lateral coordinate estimations with a receiver
that can do both simultaneously. Simulation results show that
this method can satisfy the accuracy and rate requirements of
collision avoidance and platooning applications under nearly
all weather, noise, mobility and light pattern and placement
conditions, proving its eligibility.

Open challenges for vehicular VLP research includes en-
vironment and noise-adaptive operation and further analyses
of performance under different use cases, including, first and
foremost, comprehensive experimental studies. Furthermore,
integration of vehicular VLP as a relative vehicle localization
technology into the modern CAV software stack is an im-
portant topic that requires attention from both the academia
and the industry due to its implications for standardization of
safe autonomous driving. Similarly, practical challenges such
as increasing the FoV of vehicular VLP methods to enable
side collision detection, and finding new signal-of-opportunity
based target detection methods that do not require explicit LED
modulation to enable positioning of “legacy” vehicles without
VLC hardware, require further development efforts.

Solutions to these problems and challenges would free
vehicular VLP of its technical restrictions and induct it into
the vehicular localization framework alongside sensor-based
methods. This would pave the way for the ultimate goal
in vehicular VLP, which is complementing and improving
sensor-based vehicle localization systems for fully autonomous
collision avoidance and platooning applications.
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[5] J. Janai, F. Güney, A. Behl, A. Geiger et al., “Computer vision
for autonomous vehicles: Problems, datasets and state of the art,”
Foundations and Trends® in Computer Graphics and Vision, vol. 12,
no. 1–3, pp. 1–308, 2020.

[6] A. Mukhtar, L. Xia, and T. B. Tang, “Vehicle detection techniques for
collision avoidance systems: A review,” IEEE Trans. Intell. Transp.
Syst., vol. 16, no. 5, pp. 2318–2338, 2015.

[7] A. Memedi and F. Dressler, “Vehicular visible light communications:
A survey,” IEEE Communications Surveys & Tutorials, vol. 23, no. 1,
pp. 161–181, 2020.

[8] K. Abboud, H. A. Omar, and W. Zhuang, “Interworking of DSRC and
cellular network technologies for V2X communications: A survey,”
IEEE Trans. Veh. Technol., vol. 65, no. 12, pp. 9457–9470, 2016.

[9] K. Liu, H. B. Lim, E. Frazzoli, H. Ji, and V. C. Lee, “Improving posi-
tioning accuracy using gps pseudorange measurements for cooperative
vehicular localization,” IEEE Transactions on Vehicular Technology,
vol. 63, no. 6, pp. 2544–2556, 2013.

[10] L. N. Balico, A. A. Loureiro, E. F. Nakamura, R. S. Barreto, R. W.
Pazzi, and H. A. Oliveira, “Localization prediction in vehicular ad hoc
networks,” IEEE Commun. Surveys Tuts., vol. 20, no. 4, pp. 2784–2803,
2018.

[11] B. Soner and S. Coleri, “Visible light communication based vehicle
localization for collision avoidance and platooning,” IEEE Transactions
on Vehicular Technology, vol. 70, no. 3, pp. 2167–2180, 2021.

[12] D. Eckhoff, N. Sofra, and R. German, “A performance study of
cooperative awareness in etsi its g5 and ieee wave,” in 2013 10th
Annual Conference on Wireless On-demand Network Systems and
Services (WONS). IEEE, 2013, pp. 196–200.

[13] V. Mannoni, V. Berg, S. Sesia, and E. Perraud, “A comparison of the
v2x communication systems: Its-g5 and c-v2x,” in 2019 IEEE 89th
Vehicular Technology Conference (VTC2019-Spring). IEEE, 2019,
pp. 1–5.

[14] H. Liu, H. Darabi, P. Banerjee, and J. Liu, “Survey of wireless indoor
positioning techniques and systems,” IEEE Trans. Syst., Man, Cybern.



15

Syst., Part C (Applications and Reviews), vol. 37, no. 6, pp. 1067–1080,
2007.

[15] R. Klukas and M. Fattouche, “Line-of-sight angle of arrival estimation
in the outdoor multipath environment,” IEEE Trans. Veh. Technol,
vol. 47, no. 1, pp. 342–351, 1998.

[16] N. Alam, A. T. Balaei, and A. G. Dempster, “A cooperative positioning
method for VANETs using DSRC carrier frequency offset,” in Int.
Global Navigation Satellite Systems (IGNSS) Symp. Citeseer, 2011.

[17] N. Alam and A. G. Dempster, “Cooperative positioning for vehicular
networks: Facts and future,” IEEE Trans. Intell. Transp. Syst., vol. 14,
no. 4, pp. 1708–1717, 2013.

[18] J. Chen and A. Abedi, “A hybrid framework for radio localization in
broadband wireless systems,” in 2010 IEEE Global Telecommunica-
tions Conference GLOBECOM 2010. IEEE, 2010, pp. 1–6.

[19] J. Armstrong, Y. A. Sekercioglu, and A. Neild, “Visible light position-
ing: a roadmap for international standardization,” IEEE Communica-
tions Magazine, vol. 51, no. 12, pp. 68–73, 2013.

[20] Y. Zhuang, L. Hua, L. Qi, J. Yang, P. Cao, Y. Cao, Y. Wu, J. Thompson,
and H. Haas, “A survey of positioning systems using visible LED
lights,” IEEE Commun. Surveys Tuts., vol. 20, no. 3, pp. 1963–1988,
2018.

[21] S. Lee, J. K. Kwon, S.-Y. Jung, and Y.-H. Kwon, “Evaluation of
visible light communication channel delay profiles for automotive
applications,” EURASIP journal on Wireless Communications and
Networking, vol. 2012, no. 1, p. 370, 2012.

[22] B. Turan, G. Gurbilek, A. Uyrus, and S. C. Ergen, “Vehicular vlc
frequency domain channel sounding and characterization,” in 2018
IEEE Vehicular Networking Conference (VNC). IEEE, 2018, pp. 1–8.

[23] B. Turan and S. Coleri, “Machine learning based channel modeling
for vehicular visible light communication,” IEEE Transactions on
Vehicular Technology, vol. 70, no. 10, pp. 9659–9672, 2021.

[24] M. F. Keskin, A. D. Sezer, and S. Gezici, “Localization via visible
light systems,” Proceedings of the IEEE, vol. 106, no. 6, pp. 1063–
1088, 2018.

[25] J. Luo, L. Fan, and H. Li, “Indoor positioning systems based on visible
light communication: State of the art,” IEEE Communications Surveys
& Tutorials, vol. 19, no. 4, pp. 2871–2893, 2017.

[26] T.-H. Do and M. Yoo, “An in-depth survey of visible light commu-
nication based positioning systems,” Sensors, vol. 16, no. 5, p. 678,
2016.

[27] M. F. Keskin and S. Gezici, “Comparative theoretical analysis of
distance estimation in visible light positioning systems,” Journal of
Lightwave Technology, vol. 34, no. 3, pp. 854–865, 2016.
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[86] O. Şayli, H. Doğan, and E. Panayirci, “On channel estimation in dc
biased optical ofdm systems over vlc channels,” in 2016 International
Conference on Advanced Technologies for Communications (ATC).
Ieee, 2016, pp. 147–151.

[87] M. Sandell and O. Edfors, A comparative study of pilot-based channel
estimators for wireless OFDM. Luleå tekniska universitet, 1996.
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