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Abstract: This paper is concerned with optimality and stability analysis of a family of ensemble Kalman
filter (EnKF) algorithms. EnKF is commonly used as an alternative to the Kalman filter for high-
dimensional problems, where storing the covariance matrix is computationally expensive. The algorithm
consists of an ensemble of interacting particles driven by a feedback control law. The control law is
designed such that, in the linear Gaussian setting and asymptotic limit of infinitely many particles,
the mean and covariance of the particles follow the exact mean and covariance of the Kalman filter.
The problem of finding a control law that is exact does not have a unique solution, reminiscent of the
problem of finding a transport map between two distributions. A unique control law can be identified
by introducing control cost functions, that are motivated by the optimal transportation problem or
Schrodinger bridge problem. The objective of this paper is to study the relationship between optimality
and long-term stability of a family of exact control laws. Remarkably, the control law that is optimal in
the optimal transportation sense leads to an EnKF algorithm that is not stable.
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1. INTRODUCTION

Consider the linear system
dX; = AX; +opdB;, Xo~ N(mg,Xo) (1a)
dZ; = HX;dt + dWy, (1b)

where X; € R? is the state of the system at time t, Z; € R™
is the observation process, B; € RY and W, € R™ are
mutually independent standard Brownian motions, and A, H,
op are matrices of appropriate dimensions. The distribution of
the initial state X is Gaussian N (mg, Xo) with mean mg and
covariance Y.

The filtering problem is to compute the posterior distribution of
X conditioned on the filtration generated by the history of ob-
servations Z; := o(Zs; 0 < s < t). For the linear system (1),
the filtering problem admits an explicit solution: the posterior
distribution is Gaussian N (my, ¥;) with mean and covariance
governed by the Kalman-Bucy filter equations [Kalman and
Bucy 1961]:

dmt = Amt dt + Kt(dZt — Hmt dt) =: ﬁ(mt, Et), (23)

% =AY 4+ XA" 4+ X5 - NH'"HY =: Ricc(%;), (2b)
where K; := X, H " is the Kalman gainand Xp := JBJ];. The
notation 7;(+,-) and Ricc() is used to identify the update law
for the mean and covariance respectively.

Ensemble Kalman filter (EnKF) is a Monte-Carlo-based numer-
ical algorithm that is designed to approximate the solution to the
filtering problem [Evensen 1994, Whitaker and Hamill 2002,
Reich 2011, Bergemann and Reich 2012]. EnKF is widely used
in in applications (such as weather prediction) where the state

dimension d is very high; cf., [Bergemann and Reich 2012,
Houtekamer and Mitchell 2001]. The high-dimension of the
state-space provides a significant computational challenge even
in linear Gaussian settings. For such problems, an EnKF imple-
mentation may require less computational resources (memory
and FLOPS) than a Kalman filter [Houtekamer and Mitchell
2001, Evensen 2006].

The EnKF algorithm is designed in two steps:

(1) a controlled stochastic process X, is constructed, whose
conditional distribution given Z; is equal to the posterior
distribution of X;:

(exactness) P(X; € -|Z;) = P(X; €-2:). (3)

(i) an ensemble of N stochastic processes { X/ }¥ | is simu-
lated to empirically approximate the distribution of X:

_ 1 &
P(X; € 12) ~ 5 > 0x; (). €5
i=1

The process X; is referred to as mean-field process and the
stochastic processes { X/} | are referred to as particles. The
property (3) is referred to as exactness.

The motivation to study the EnKF algorithm is two-fold:

(i) As mentioned above, EnKF algorithm is computation-
ally efficient compared to Kalman filter algorithm for high-
dimensional problems [Bergemann and Reich 2012]. The com-
putational cost of EnKF scales as O(Nd), wheres it scales as
O(d?) for Kalman filter.


http://arxiv.org/abs/2010.09920v2

Table 1. Description of three established forms of EnKF. Gy, r¢, g; are parameters of the mean-field
process update law (8). Stability rate and approximation error are described in Prop. 2 and 3 respectively.

Algorithm Acronym Gt T qt Stability rate steady-state error
EnKF with perturbed observation [Reich 2011, Eq. (26)] P-EnKF A— 3 H? o | StH Ao x N~NZp + H?)
Square-root EnKF [Bergemann and Reich 2012, Eq. (3.3)] S-EnKF A— éitHQ oB 0 %()\0 —A) x N~1xp
Deterministic EnKF [Taghvaei and Mehta 2016] D-EnKF A—SH? + %E B Et_ 1 0 0 0 0

(i1) The two-step design procedure can be generalized to non-
linear and non-Gaussian setting. The result is the feedback par-
ticle filter (FPF) algorithm [Yang et al. 2013, 2016]. Therefore,
EnKF can be considered as special case of FPF, and understand-
ing EnKF is insightful for understanding the FPF algorithm.

Here is the outline and summary of the paper:

(i) The problem of constructing a mean-field process X, such
that exactness property (3) is satisfied, is addressed in Section 2.
It is shown that exact mean-field process is not unique. The fam-
ily of exact processes is identified in Prop. 1. Three members of
the family, that correspond to three established forms of EnKF
algorithm, are presented in Table 1.

(ii) The stability of the mean-field process is studied in Sec-
tion 3. It is shown that, the mean-field processes exhibit dif-
ferent stability behaviour. In particular, the deterministic EnKF,
that is constructed from limit of incremental optimal transporta-
tion maps, is not stable. While, other forms EnKF that involve
stochastic terms, are stable.

(iii) Finally, the particle system and the analysis of the approxi-
mation error (4) is presented in Section 4. It is observed that the
EnKF algorithms that were stable, exhibit larger approximation
error, because of the presence of stochastic terms.

This paper builds on the growing literature on the design
and the analysis of the EnKF algorithms. Three forms of the
EnKF algorithm are of importance: EnKF with perturbed ob-
servation [Evensen 1994, Reich 2011], square-root form of
EnKF [Whitaker and Hamill 2002, Bergemann and Reich 2012]
which is the same as FPF algorithm with constant gain ap-
proximation [Yang et al. 2016], and deterministic EnKF [Tagh-
vaei and Mehta 2016, 2020]. This paper is also related to the
stability and tthe error analysis of the EnKF algorithm in the
discrete-time setting [Le Gland et al. 2009, Mandel et al. 2011,
Tong et al. 2016, Kelly et al. 2014, Kwiatkowski and Mandel
2015], and the continuous-time setting [Del Moral and Tugaut
2018, de Wiljes et al. 2018, Del Moral et al. 2017, Bishop and
Del Moral 2018].

Assumption I: It is assumed that the processes X; and Z; are
scalar, i.e. d = m = 1. This assumption is made to simplify
the exposition. The possible extension to vector-valued case is
briefly discussed as a remark in each Section.

2. CONSTRUCTION OF MEAN-FIELD PROCESS

In order to construct an exact mean-field process X,, consider
the following sde

dXt = Z/{t(Xt) dﬁ + Vt(Xt) dZt + Rt(Xt) dBt
+0Qu(Xy) dWr,  Xo ~ To, (5)
driven by control laws U;(+), Vi(-),Re(-), Q:(+), where B,

and W, are independent copies of B; and W; of (1), and 7y
is the initial distribution. The following result characterizes

control laws that lead to a mean-field process X, with exactness
property (3).
Proposition 1. The mean-field process (5) satisfies the exact-

ness property (3) if the initial distribution 7y is Gaussian
N(mo, Xo), and

Us(z) = (A — SiH?)my + Gi(z — my), (6a)
Vi(z) = 54H, (6b)
Ri(x) =7y,  Qi(z) = g, (6¢)

where m; = E[X{|Z], & =
Gt, T, qr € R satisfy
2GS + 12 + ¢ = Rice(%y). (7

E[(Xt — mt>2|Zt], and

Using the form of control laws in (6), the sde (5) is
dXt = ﬂ(mt, it) =+ Gt(X; — mt) dt + Tt dBt
+q AWy, Xo ~ 7o (3)

where T;(m, ¥) is defined in (2). The fact that X satisfies the
exactness property (3) is observed by noting that: (i) m; = my
and ¥X; = ;, because the time-evolution of m; and X; is
identical to the Kalman filter equations (2); (ii) the distribution
of X; is Gaussian because the sde (8) is linear upon replacing
my = my and Xy = X; and the initial distribution 7 is
Gaussian.

There are three established choices for the parameters G, 14, ¢
that are tabulated in Table 1, where each row corresponds to a
specific form of EnKF algorithm.

Remark 1. The form of the sde (5) may not be general enough
to capture all possible stochastic processes X; that achieve
the exactness property (3). The particular form of sde (5) is
motivated by its appealing control theoretic form, where all the
control terms are assumed to be of feedback form. For a more
general prescription of exact mean-field processes, see Abedi
and Surace [2019].

Remark 2. For the vector-valued case, U (z) involves additional
divergence free term (e.g. Y(x) = QX1 (2 — m;) with skew-
symmetric matrix {2) that does not effect the distribution [Tagh-
vaei and Mehta 2020].

Remark 3. The control law governing the deterministic EnKF
in Table 1 is optimal with respect to control cost associated with
optimal transportation problem. In particular, it is obtained as
the continuous-time limit of infinitesimal optimal transporta-
tion maps between the Gaussian distributions that are given by
the Kalman filter [Taghvaei and Mehta 2020]. Also, the control
law governing the square-root EnKF in Table 1 is optimal with
respect to a control cost associated with the Schrodinger bridge
problem with prior dynamics given by (1) [Chen et al. 2016].

3. STABILITY OF THE MEAN-FIELD PROCESS
Let 7; denote the exact posterior distribution given by Kalman-

Bucy filter (2), and 7+ denote the distribution of the mean-field
process given by (8). Proposition 1 informs that the exactness




condition 7; = 7 is satisfied if the initial distribution 7y = g
and (7) holds. The objective is to study the error between 7; and
m; if the initial distributions 7 and 7y are not equal.

The convergence analysis is carried out by analyzing the con-
vergence of 7; to the Gaussian distribution 7 = N (M4, X¢)
with the same mean and variance as the mean-field process,
and the convergence of the mean and variance to the mean and
variance given by the Kalman-Bucy filter equations. The con-
vergence result is presented in the following proposition. We
use 2-Wasserstein metric [Villani 2003], denoted by W (-, -), in
order to measure the error between distributions, and we make
the following assumption.

Assumption II: The linear system (1) is controllable and
observable. In the scalar case, this amounts to o # 0 and
H # 0.

Proposition 2. Consider the mean-field process (8) under as-
sumption (I)-(IT). Then,

(i) The mean and the variance of the mean-field process con-
verge to the exact mean and variance given by the Kalman-Bucy
filter (2):

E[|m: — mq|?] < (const.)e™ 22! (|mg — mol? + |S0 — Zo|?),
|3; — 2| < (const.)e™ 22t Sy — X, 9)

where Ao = (A2 + H2% )3,
(ii) The error between the mean-field distribution 7; and the
Gaussian distribution 7, = N (7, X3¢ ) is bounded by:

Wa(7, 7o) < edo @4 Wy (7, 7o) (10)

(iii)) Combining part (i) and (ii), the total error between the
mean-field distribution and the exact filter is bounded by

EWs(me, )] < Ce™ 2 Wy(7o, mo) + edo Geds Wa (7o, o)
(11

where C' is a constant independent of time ¢.

The convergence result (11) decomposes the error into two
terms. The first term in the error is due to the incorrect spec-
ification of the initial mean and variance. In particular,

Wa(Fo, m0)% = (1Mo — mo)? + (VS0 — v/Z0)2.
The contribution from this term converges to zero with an expo-
nential rate, independent of the choice made for G¢, g4, ¢ in (8)
as long as (7) holds. The bound follows from the the stability of
the Kalman-Bucy filter which holds under controllability and
observability of the linear system [Ocone and Pardoux 1996].

The second term in the error is due to the fact that the initial
distribution is not Gaussian. It is controlled by the stability of
the mean-field process (8) which, in contrast to the first term in
the error, depends on the choice for G;. For three choices of G,
determined by the three forms of the EnKF tabulated in Table 1,
the following holds

t
G.d _
efo * < (const.)e 0t

(P-EnKF) (12a)
(S-EnKF) eJo =95 < (const.)e=M1t, (12b)
t s 2
(D-EnKF) oo Gads _ ’/i_t’ (12¢)

0

where \; = %. Following conclusions are in order:

(i) Both P-EnKF and S-EnKF are stable, i.e. the error con-
verges to zero as t — oo. Moreover, A\g > A1 > 0
(because \g = (A2 + H20%)2 > |A|). Therefore, the
convergence rate of P-EnKF is strictly larger than the
convergence rate of S-EnKF.

(ii)) D-EnKEF is not stable. If the initial distribution is non-
Gaussian, it remains non-Gaussian. In fact, one can es-
tablish the asymptotic lower-bound

lim inf Wo (ﬁt, 7Tt) > (const)Ws (77'07 %0)
t—o00
implying that the error remains positive if the initial dis-
tribution is not Gaussian.
Remark 4. The result (11) can be extended to vector-valued

case by replacing exp( fot G ds) with the state transition matrix
®, defined as the solution to %(I)t = G;D; with &g = 1.

4. PARTICLE SYSTEM AND ERROR ANALYSIS

The system of particles { X} }¥ | is constructed from the mean-
field process (8) by empirically approximating the mean and
covariance:

ax? =T, (m™, M) + Gy(xi = m™) dt + ry dB!
+qr AW, i=1,...,N (13)
wherem!™) = N1 3N Xiand oY) = (N—1)"t N (xi-

m,gN) )? are the empirical mean and the empirical covariance of
the particles respectively, and {B} ?]\L.l.and {Bi}N | are inde-
pendent copies of B; and W;. The initial state of the particles

are denoted by {x{} V.

Xy =zg, for

The objective is to analyze the error between the mean-field
distribution 7; and the empirical distribution of the particles

1 N

N

() = 5 2 0x:(0):
i=1

where ¢, is the Dirac delta distribution located at . The result
is presented for the convergence of the empirical covariance to
the mean-field covariance under the following assumption:

Assumption III: sup, -, E[(r7 + th)EEN)] =M < 0.

Proposition 3. Consider the particle system (13) and the mean-
field process (8) under Assumptions (I)-(IT)-(IIT). Then, the er-
ror between the empirical variance and the mean-field variance
is bounded according to

_ M _
E[|Zf™ — £ < (const) | - + e P E[Z(Y) - 2ol

(14)

16 H* M

for N > m

This result forms the basis for the convergence of the empirical
distribution to the mean-field distribution. However, the anal-
ysis is more involved and the subject of ongoing work. We
conjecture a result of the form

M ¢ s
d(m™ ) £ 5 + elo &2 a(x™) 7y)
N 6—2’\°t(IE[|m(()N) B m0|2 I |E(()N) B 20|2]) (15)

where d(p,v) = supjyy <1 Elu(f) — v(f)[?] is a metric
between two (possibly random) probability measure p and v,

and p(f) := [ fdp. The convergence analysis is carried out



in the literature, for the three forms of the EnKF in Table 1,
under strong assumption that the linear system is stable, i.e.
A < 0 [Del Moral and Tugaut 2018, Bishop and Del Moral
2018, Taghvaei 2019] (see Remark 5).

The error result (14) involves two terms. The second term is
due to the error in the initial variance. It converges to zero as
t — oo for any choice of Gy, 1y, ¢, as long as (7) holds, due
to the stability of the Kalman-Bucy filter. The second term is
due to the stochastic terms present in the particle system. It
is proportional to M and converges to zero as N — oo. The
value of the constant M depends on the choice for r; and ¢;. In
particular, for the three forms of the EnKF algorithm, we have

Spsup B[S + H2supE[(SM)?),  (P-EnKF),
t t
M =< sgsup R[], (S-EnKF),
t
0, (D-EnKF).

The following conclusions can be drawn:

(i) P-EnKF admits larger steady-state error compared to S-
EnKF, while it was shown that it is more stable (see (12)).

(ii) The steady-state error for D-EnKF, in approximating the
variance, converges to zero, even for finite /N. The reason is
that the evolution of the empirical variance is deterministic, and
identical to Kalman-filter equation, while for P-EnKF and S-
EnKF involve stochastic terms.

(ii1) Assuming the conjecture (15) is true, the steady-state error
for D-EnKF, in approximating the distribution, is proportional
to d(ﬂ'éN), 7o) which depends on the initial conditions of the
particles. If the initial particles are sampled randomly from 7,
then the error decays as N ~!. However, if the initial particles
are not random samples from 7, the error persists to exists even
as N — oo. This is due to the fact that the mean-field system
is not stable, as shown in (12). This is in contrast to P-EnKF
and S-EnKF where the steady-state error for the distribution is
proportional to % independent of the initial condition of the
particles.

Remark 5. The result of the Prop. 3 also holds in vector-case,
under additional assumption that the linear system is stable and
fully observable (H is full-rank). For detailed analysis of P-
EnKEF algorithm, see [Del Moral and Tugaut 2018, Bishop and
Del Moral 2018], and extension to nonlinear setting [Del Moral
et al. 2017, de Wiljes et al. 2018]. Analysis of S-EnKF and D-
EnKF appears in [Taghvaei and Mehta 2018b] and [Taghvaei
and Mehta 2018a] respectively.

5. CONCLUSION

The paper presents stability and optimality analysis of EnKF
algorithms. The central concept is the construction of a mean-
field process that is exact, i.e. its time marginal distribution is
equal to the filter posterior distribution. Because the exactness
does not specify the joint distribution of the marginal distribu-
tions, there are infinity many exact mean-field processes (see
Prop. 1). Stability and accuracy of three forms of mean-field
process, that correspond to three forms of EnKF, are studied
(see Table 1). It is shown that the deterministic EnKF is not
stable, while stochastic forms of the EnKF are stable. The
stability is stronger for EnKF with larger stochastic input (see
Prop. 2 and the proceeding discussion). While stochastic forms
of EnKF are stable, they admit larger approximation error be-
cause of the presence of stochastic terms. The deterministic
EnKEF is accurate only if the particles are initialized properly,

because it does not correct for the initial error (see Prop. 3 and
proceeding discussion).

The analysis that is presented in this paper raises the question
about how to design a mean-field process in the nonlinear and
non-Gaussian setting, such that the mean-field process is stable.

Appendix A. PROOF OF PROPISITION 2

(i) To obtain a bound for the error in variance, we use the
explicit solution to the Riccati equation (2b) that is available
for the scalar case. In particular, let ¢ () denote the semigroup
associated with the Riccati equation such that ¥y = ¢4 (Xo).
The explicit form of the semigroup is given by

(Ao + Atanh(Aot))x + 3 p tanh(Agt)
(@) == Atanh(\ot) + H2 tanh(Not)z
The bound is obtained by providing a bound for the derivative
of the semigroup, with respect to x, denoted by Vo, (z):

(A.1)

A5
Vr(x) = cosh(Aot)?(Ao — Atanh(Aot) + H? tanh(Aot)x)?
4N
< 02Xt A2
< ooy e (A.2)

Therefore, ¢ is globally Lipschitz and
10 = Bt| = [04(50) — ¢4(S0)| < cre™ V5o — %o

4r8
where Cc1 = m

To prove the bound for the mean, we subtract the equation for
my from the equation for m; to obtain
dmt — dmt = (A — itH2)(ﬁ’Lt — mt) dt
+ (% — X H AL

where dI; := dZ; — Hmydt is the innovation process.
Therefore, the difference m; — m; solves a linear system for
which the solution is given by

t
me —my = (Mo — mo) +/ (X — B¢ )H dI
0

where 1, s = exp(fst (A—X,H?)dr). Next we obtain a bound
for ¢ 5.

t t
Prs = eXp(/ (A— S H?)dr +/ (Yo — Sr)H?d7)

t
<exp(—(t — )X+ c1]X0 — Boo / e M dr)
< coexp(—(t — s)A)

1130 -S|
2x . Therefore,
72)\16(

where co = €

E[|m: — mt|2] < cie mo — mo)2

t
—|—/ Be” P15 PH?dt
0
< 63672)\16 (mO o mO)Q + 63672/\t|20 o EO|2

CQle . Combining the bounds for the variance and

the mean, we obtain the bound for the second term.

where ¢3 =

(i1) The result follows from a coupling argument. Introduce a

new process X; with the initial distribution N (g, Xo) gov-
erned by the same equation as the mean-field process:

d)?t = ﬁ(mt, it> 4+ Gt(jzt — mt>dt 4+ Tt dBt
+q: AWy, Xo ~ N(ing, Zo)



where B; and W, are the same as in (8). It is straightforward to

verify X; ~ 7; = N (4, 3¢). Subtracting the equation for X;

from X; yields d(X; — X;) = G¢(X; — X;) dt concluding
Xt — )A(:t = er G dS(X() — 5(:())

The result follows from definition of the Wasserstein distance

and the optimal coupling of the initial conditions.
(iii) The result follows from triangle inequality:

Wa(Ty, ) < Wa(Te, T) + Wa(Te, mt)

and application of part (i), part (ii), and of the formula for
Wasserstein distance between two Gaussian distributions. ,

Wa (T, )2 = (g — me)® + (VE — V)2
Appendix B. PROOF OF THE PROPOSITION 3

(N)

The time evolution of the empirical variance ;" is given by:
as™ = Rice(2™M) dt + d¢t™Y) (B.1)
where
5 N
N i N i i
A = 2 (i - m™)(r ABj + g, dW).

(N)

Note that Q(N) is amartingale and (d¢; /)2 = %Egm dt.

The difference EEN) — > can be expressed, in terms of the
semigroup (A.1), according to
5 =20 = 60(2™) — 0u(26™) + 0n(Z5) — 61(o)
The bound for the second term is straightforward:
[66(25") = 61(S0)] < ere” !5 — o).

The first term is

t
Go(EN)) — gy (V) = / dybr_o(E)
0

t t 1
- / Vor_o(EM) dctV) + / L G202 ac )2
0 0 2

where V2¢,(z) denotes the second-order derivative with re-
spect to z, and we used ¢ (2) = V¢, (z)Ricc(z) and (B.1).
Therefore, using the bounds (A.2) and

(V20 (2)] < cge™ 2P0
with ¢y = %, yields
t
Ellgo(2t™) — 6r (267 = / E[Ver—o(£8)* ()]
t 0 2
* [ / E[V2¢t-s(E§N>><d<§N>>Q]]
0

4c?
“N-1

t
0

2

t
bl [ e+ g
0
- 2ciM
- AN
if N > i%i;\j = (;065{2)%0 and M := sup, E[(¢2 + 2)2™)).
This concludes the bound:
4C%M

E|z™) - 5,/%) < +2c2e E[TY) — 50

No N
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