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the Arterial Stiffness
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Abstract—Recent studies have demonstrated the advantages
of fractional-order calculus tools for probing the viscoelastic
properties of collagenous tissue, characterizing the arterial
blood flow and red cell membrane mechanics, and modeling
the aortic valve cusp. In this article, we present novel lumped-
parameter equivalent circuit models of the apparent arterial
compliance using a fractional-order capacitor (FOC). FOC,
which generalizes capacitors and resistors, displays a fractional-
order behavior that can capture both elastic and viscous
properties through a power-law formulation. The proposed
framework describes the dynamic relationship between the
blood pressure input and blood volume, using linear fractional-
order differential equations. The results show that the proposed
models present reasonable fit performance with in-silico data
of more than 4,000 subjects. Additionally, strong correlations
have been identified between the fractional-order parameter
estimates and the central hemodynamic determinants as well as
pulse wave velocity indexes. Therefore, fractional-order based
paradigm of arterial compliance shows prominent potential as
an alternative tool in the analysis of arterial stiffness.

Keywords—Cardiovascular system, Apparent compliance, In-
put Impedance, Fractional order capacitor, Arterial stiffness

I. INTRODUCTION

VER the last decades, arterial models have been proven
O to be extremely useful and effective in unraveling car-
diovascular diseases [[1], in the medical intervention planning
[2], in diseases’ treatment and monitoring [3], and in the
design and testing of medical devices and simulators [4], [S].
Besides, arterial models have shown great potential in the
noninvasive evaluation of physiological parameters, which
are not directly accessible, such as the arterial compliance
and stiffness [6], [7]], [8]. Vascular compliance is defined as
the ability of a particular arterial vessel to store blood. It
describes the capacitance of the vascular wall to dynamically
distend and increase the vessel volume with an increase in the
transmural pressure or the tendency of the vascular wall to
resist and recoil toward its original geometry with compres-
sion. Functionally, arterial compliance is demonstrated by the
relationship between the stored blood volume’s variation and
the input blood pressure’s variation. Similarly, the concept
of total arterial compliance was introduced as the sum of all
compliance components of the entire arterial system. Thus,
the total compliance describes the global arterial capacity to
store blood and is equal to the variation in blood volume
in the entire arterial system divided by the systemic input
pressure’s variation. However, it is known that this ratio
is not only governed by the total arterial compliance but

also incorporates some other effects such as the pulse wave
reflection. Indeed, it is equivalent to the total compliance
only at low frequency. Hence, the concept of dynamic arterial
compliance-or, equivalently, apparent compliance have been
proposed by Quick et al. [9] to show how to estimate the true
total compliance correctly from the transfer function relating
the blood volume to the input pressure [10] and explain
a question of fact as to whether the classical estimation
methods of arterial compliance fails to yield to true arterial
compliance. Before the introduction of the "apparent compli-
ance" concept, the transfer function relating blood volume to
systemic input pressure is thought to be constant and modeled
by a constant capacitance of an ideal capacitor (electrical
analog model). This hypothesis is based on the Windkessel
concept, which is adopted by the lumped-element modeling
school. The drawbacks of this assumption are reflected in its
estimation-based methods of compliance, which doesn’t yield
to a correct evaluation of the true arterial compliance [L1].
Because of the distributed nature of the vascular compliance
and resistance within the arterial network, the relationship
blood Volume/input pressure is frequency-dependent [9].
Accordingly, a time delay between the arterial blood volume
and the input pressure occurs. During the past decades, some
clinical studies demonstrated the necessity of introducing
apparent compliance to extract total compliance. Therefore,
a new lumped-parameters modeling framework, which takes
into account the complex and frequency-dependence proper-
ties of the apparent arterial compliance, have been proposed
[12]. These models are based on the idea that the arterial
wall is viscoelastic rather than pure elastic. Hence, the Voigt
cell model (resistor in series with a capacitor) has been
proposed as a suitable candidate to represent the total arterial
compliance. The resistor of the Voigt cell displays the viscous
losses held by the arterial wall motions, while the capacitor
represents the static compliance of the arteries. Through
the combination of resistor and capacitor cells gives rise
to complex and frequency-dependent compliance, the Voigt
model configuration is considered very poor in representing
the arterial viscoelasticity properties since it does not ac-
count for the stress-relaxation experiment [13]]. Therefore,
to address this inconsistency, the order of the viscoelastic
representation has been increased by adding more viscous
and elastic connected elements [12]. The higher-order config-
uration provided a more accurate but complex configuration,
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Fig. 1: Schematic representations of the electrical analog of the proposed fractional-order models.

where its complexity is principally due to the enormous
number of unknown parameters, which suggests another
challenge. Indeed, for higher-order models, the number of
parameters to identify is more significant, while the collected
real data is small and insufficient. It is also known that
reduced-order models are desirable for their simplicity and
ease of exploration. Over the last decades, the fractional-
order derivative (FD), defined as a generalization of the
standard integer derivative to a non-integer order, has been
gaining paramount popularity in modeling and characterizing
biological tissues [14], [15]. Because of its non-locality and
memory properties, FD has been regarded as a powerful
tool for modeling complex physical phenomena that exhibit
power-law response or involve memory effects [16]], [17]. In
recent research, the power-law behavior has been proved in
the viscoelasticity characterization of an elastic aorta. The in-
vivo and in-vitro data analysis showed that the FD tools are
more convenient to accurately model and describe the arterial
wall viscoelastic dynamic response [18], [19], [20], [21],
[22]. Besides, a recent study by the authors [23], [24], used
fractional-order derivative tools to the well-known arterial
Windkessel paradigm, by replacing the ideal capacitor, which
accounts for the total arterial compliance, with a fractional-
order capacitor. The preliminary analysis demonstrated that
the fractional-order impedance is the right candidate for the
accurate assessment of the aortic input impedance. Further-
more, a simple correlation between the main parameters of
the central arterial blood pressure and the fractional differ-
entiation operator has been shown. Consequently, the novel
fractional-order parameter may have an influential role as a
physiological index of the arterial stiffness [25]. This paper
introduces and investigates the fractional-order derivative
modeling framework for apparent compliance. The proposed
modeling framework offers a new paradigm for the phys-
iological interpretation of the frequency-dependent arterial
compliance and the interaction between the systemic arterial
mechanical properties (viscosity and elasticity). Besides, this
study compares the different proposed models as well as with
the corresponding integer-order models. The rest of the paper
is organized as follows: in Section II, the preliminaries, the
proposed models and the method are presented. Section III
shows the results and discussion. Finally, section IV presents
the conclusion and future perspectives.

II. MATERIAL AND METHOD

A. Preliminaries

1) Input impedance, apparent compliance, and resistance:
Aortic input impedance (Z;,) and apparent compliance (Cypp)
are considered significant in the characterization of the arte-
rial system, independently of the heart properties. Whereas
Zin describes the ability of the arterial system to hamper
the blood flow dynamically, C,p, depicts the capacity of the
arterial bed to store blood dynamically. Functionally, Z;, is
defined as the dynamic relationship, in the frequency domain,
of the arterial blood pressure (P;,) and blood flow (Q;,) at
the entrance of the systemic circulatory system, that is:

_ Pu(o)

N Qin(w) ’
where ® corresponds to the angular frequency. Cgpp is
defined as the dynamic relationship, in the frequency domain,

between the blood volume V, and the input aortic blood
pressure (P;,) that is:
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Similarly, to the concept of apparent compliance, another fre-
quency dependent transfer function relating P, to the output
blood flow (Q,.) has been defined as well. It describes the
so-called apparent resistance (R,pp) and it can be formulated
as:

2
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Based on Quik’s et al. investigations in [9] and [10], R,p, can
be approximated as a constant that is equivalent to the total
peripheral resistance. Additionally, C,p, can be expressed in
terms of Z;, and R,;:

3)

Rapp =

Rapp - Zi
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As mentioned in the previous section, the transfer function
describing the apparent compliance is frequency-dependent
and describes, not only the total arterial compliance but
also incorporates other physiological effects such as pulse
reflections. At low frequency, C,,, convergences to a value



that approximates the true total arterial compliance (Cy,;):

Cor = }/IE}) Capp )

2) Fractional-order capacitor (FOC): FOC also known
as Constant Phase Element [26]], is the main building block
for developing analog model structure according to FC.
FOC is an electrical element that represents a fractional-
order derivative relationship between the current, i(¢), passing
through and the voltage, v(¢), across it with respect to time,
t, as follow:

i(t) = CaD{v(1), (6)

where Cy is a proportionality constant so-called pseudo-
capacitance, expressed in units of [Farad/second!~%]. The
conventional capacitance, C, in unit of Farad is related to Cy
as follow:

C=Co0* . 7

The impedance (Zroc) of FOC in Laplace domain is given
as: !
V4 = . 8
Foc(s) Cos® ®)
Substituting the Laplace variable, s, by (jw), (9) can be
expressed as:

1 1
Zroc (@) = C—w*“cos((j))—jc—a)“ sin(¢), )

a a

G, H,

where ¢ represents the phase shift given by the formula:
¢=amn/2 [rad] or ¢ =900 [degree or °]. As illustrated
in Fig. S1 in the Supplementary Materials, the bounding
values of « represent the discrete conventional elements:
the resistor when o = 0 and the capacitor when o = 1).
Additionally, from (9), it is clear that as o goes to 0, the
imaginary part (H,) of Z¢ vanishes to 0 and hence the FOC
characteristic becomes more like that a pure resistor, whereas
as o approaches to 1, the real part (G,) converges to 0 and
hence, FOC operates as a pure capacitors. Furthermore, it
has been demonstrated that the characteristics of FOC can be
approximated using RC ladder structure [27]. Based on the
above properties and in comparison to an integer order model
where « is strictly fixed to an integer (0 or 1), the parameter
o offers extra flexibility for a fractional-order paradigm. In
connection with the apparent compliance modeling concept,
FOC can be considered as a great candidate that might
overcome the discrepancies stemming from integer-order
limitation as follows:

o The proportionality constant Cy, (pseudo-capacitance) is
expressed in unit of [F.sec!~*] that makes, by its very
nature, the conventional capacitance C, in the unit of
[Farad], frequency-dependent, hence FOC has a physical
foundation in representing the complex and frequency
dependence of Cgp)

o Based on the order of the fractional differentiation
factor «, the storage and the dissipation parts of the

resultant FOC’s impedance can have different levels,as
illustrated in Fig. S2, in the Supplementary Materials.
Thus FOC might offer a key advantage in modeling
complex system, that is the whole spectrum of dissi-
pative and storage mechanisms may be included in a
single parameter (the fractional differentiation order).

¢ The equivalent analog circuit of FOC can be viewed
as infinity Voigt cells connected in parallel. Hence FOC
might lead to a minimal representation of the mechanical
properties of the arterial network by using only two
parameters (@ and Cg).

In biorheological research field, the imaginary, as well as the
real part of Zpoc, might represent the tissue damping (G,)
and tissue elastance (H,), respectively:

. 1 T
G (jo)= Cawacos(aa) (10

T

H(jo) = ——sin(a™

(jo) Cawasm(az)
The hysteresivity coefficient 1, (dimensionless) is defined as:
T

n,:ﬁ::—cot(ai) (11)

In general, these parameters are usually used to characterize
the heterogeneity of the bio-tissue and are shown to be
variable with pathology, as demonstrated for lung tissue for
the respiratory system in [28].

B. Models

1) Fractional order model of the dynamic Volume/Input-
pressure relationship: Recent researches have shown the key
advantages of applying fractional calculus tools to describe
correctly: 1) the viscoelasticity properties of the collagenous
tissues in the arterial bed, 2) analyze the arterial blood flow
[21]], [22]] and red blood cell (RBC) membrane mechanics
[20] and, 3) modeling the heart valve cusp [29]. Bearing this
in mind, in this part, we introduce the fractionalization of the
dynamic relationship of the arterial blood volume and input-
pressure. Based on the conservation mass, the arterial blood
flow pumped from the heart to the arterial vascular bed (g;,)
can be expressed as:

Gin(t) = Gstored(t) + qou (1), (12)

where ¢goreq 1S the blood stored in the arterial tree, and
gow corresponds to the flow out of the arterial system. As
described in (3), g, can be expressed as:

1

QOM[(I) = 7pin(t)-

(13)
Rapp

Regarding ggoreq, typically using the conventional definition,
it can be determined as the rate of flow by taking the first
derivative of the volume equation for the time, whereas, in
consideration of the fractional properties of both RBC and
the collagenous tissues forming the arterial bed, we allow the
differentiation order of the blood volume for time to be real
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subject based in-silico database.

(a € [0 1]) and hence applying the fractional-order derivative
to this differential equation.

d*V(t
CIStored([) :Dtav(t) = dl‘OE )7 (14)
V() dpnlt)
= 1
qg“mred(t) dapin(l) dre (15)
A

where Ay is a fractional order proportionality constant that
can be defined as a fractional order compliance expressed in
the unit of [I/mmHg .sec'~%]. Assuming null initial condi-
tion,the Laplace transform of (15) is given as:

o
Ostored = Aas” Pip.

The conventional compliance in the unit of [I/mmHg] that
represents the complex and frequency-dependent apparent
compliance can be written as follow:

(16)

Co=Aqs* . (17)

Accordingly, by analogy to the electrical circuit, one may
appropriately consider the fractional-order capacitor as a
lumped parametric element to stand for the apparent arterial
compliance. The voltage is equivalent to the arterial pressure;
the electrical charges correspond to the blood volume and the
electrical current as of the equivalent of the blood flow.

2) Apparent compliance fractional-order Models: In this
part, we show the derivations of the proposed model based-
structures for modeling the apparent arterial compliance.
These structures scheme different combinations of FOC
along with the conventional resistor and capacitor to display
the complex and frequency-dependent behavior of the real
dynamic compliance. Fig. 1 shows the proposed electrical
analog structures of the proposed models.

Model A: 1t comprises only one single FOC. As detailed in
the previous sections, the apparent compliance expressed in
unit of [I/mmHg] can be written as:

Ct=Cus* .

c —

(18)

Model B: Tt comprises a resistor (R) and FOC connected
in series. The apparent compliance expressed in the unit of

[l/mmHg] can be written as:

Cf — QLOH.

1+RCqys

Model C: It comprises an ideal capacitor (Cy,4) accounting

for the static compliance and FOC connected in series. The

apparent compliance expressed in the unit of [I/mmHg] can
be written as:

19)

C _ CaCtars®

¢ Cos*+ Cstats.
Model D: 1t comprises a resistor (R), an ideal capacitor
(Cyrar) and FOC connected in series. The apparent compliance
expressed in unit of [I/mmHg] can be written as:

Cstulcasa

Cytars + Cgs* + RCyCoyoy s+
Model E: 1t comprises a resistor (R) in parallel to a FOC and

a resistor (R,) connected in series. The apparent compliance
expressed in unit of [I/mmHg] can be written as:

ot 1R +Ry)Coqs*™! .
¢ Ri(1+RoCys®)

C. In-silico Virtual Population

(20)

P =

ey

(22)

Owing to a lack of real data to validate the proposed
approaches, in this study, we utilize a virtual database of
simulated pulse waves (PWs) [30]. The publicly available PW
database[]is considered a useful resource to evaluate the pre-
clinical assessment of PWs analysis algorithms. The database
encompasses mainly these arterial PWs: 1) flow velocity,
2) luminal area, 3) pressure and 4) photoplethysmogram
pulse waves at different sites of the arterial network such
as the ascending aorta, carotid artery, brachial artery, and
radial arteries. The database represents samples of 4,374
virtual healthy adults aged from 25 to 75 years old, in
ten-year increments (six age groups). For each age group,
729 virtual subjects based on pulse waves were created
by varying specific cardiac and arterial parameters like the
arterial stiffness and heart rate within normal ranges.

In this study, PWs at the level of ascending aorta have
been investigated to evaluate our approaches. Fig. 2 shows

Uhttps://peterhcharlton.github.io/pwdb/index html
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a summary statistic of the aortic blood pressure parameter
as well as the maximum blood flow at the level of the
ascending aorta, for all virtual subjects. Additionally, we
present a detailed statistic summary based on the group age
and heart rate in Table SI in the supplementary material. This
database presents physiological values with well-balanced
distributions.

D. Identification Algorithm

The parameters of the proposed fractional-order models
were estimated by a non-linear least square minimization
routine, making use of the well-known MATLAB — R2019b,
function Isqnonlin. This function is based on the trust-region
reflective method [31]. The steps used to obtain the optimal
estimates are outlined in Algorithm 1.

Algorithm 1 Parameter calibration of the apparent compli-
ance models

1: Load the in-silico aortic blood pressure (P) and flow (Q)
2: Evaluate the Fast Fourier Transform (FFT) of both P and
Q
3. Select the frequency range (Hz) f € [0 12]
4: Calculate the aortic input impedance Z;,
> Using equation (1)
5: Calculate the in-silico apparent compliance Cypp
> Using equation (4)
6: Select the model to fit with the data
7. Include and Initialize the parameter to estimate ©®
% For instance for a single fractional-order capacitor
based model (model A), ® = {Cq, o}

~ 2 A\ 2
Ns Re—R« Im—1I
o (Reky) + ()
N

RMSE =

PN

® =arg ngn RMSE

% Where Ny denoting the number of excited frequency
points, Re and Im denoting the real and imaginary parts
of the real Cypp, and Im, evaluated in step (5), and Re and
Im designate the real and imaginary parts of the model of
Capp, TESpectively. 6 denotes the estimates that minimize
RMSE

In this study, we compare the performance of the proposed
model with their corresponding integer-order version, where
the fractional differentiation order « is equal to 1. Accord-
ingly, the integer order version of model A will be equivalent
to an ideal capacitor whose capacitance is a constant, which
is not frequency-dependent, hence in our comparison, we
exclude this case. Similarly, the integer-order version of
model C leads to a series of two ideal capacitors, which is
as well, equivalent to an ideal capacitor whose capacitance
is constant. For the models, B and D, the integer-order
version is equivalent to the analog Voigt cell model (an ideal

capacitor connected in series with a resistor). Conclusively, in
this work, we compare our proposed methods to the Voigt cell
model. On top of that, in order to show the role of fractional-
order concept in reducing the complexity of such approach,
we conduct an extra comparison with the well-known general
apparent compliance-based model for viscoelastic material
[32] which is expressed as:

Hf:]:l an(jo+by)

CF :Ct[ R 9
‘ e N ba(jo+ay)

(23)
where a, and b, are imperial constants that can be convenient
to fit any particular case. Cy,, denoting the static compliance
for the vessel. Goedhard et. all showed that this model could
fit an experimental data with N=4. Hence in our comparison
we choose N=4. We refer to the viscoelastic model and Voigt
model as models F and G, respectively. Because the proposed
models have a different number of parameter, to perform a
fair comparison, the corrected Akaike Information Criterion
(AIC¢) was evaluated:

2PNj
Ny—P—1’
where P is the number of parameters. Furthermore, the
deviation of the model modulus from the in-silico apparent

compliance modulus was calculated, using the following
expression:

AICc = —2In(RMSE) + 24)

model
Cc[i]

Cappy

D; [%)] = x100%.  (25)

Cappy i=1.N,

For ease of visualization of the various comparisons between
the different models, for each virtual subject, we evaluated
the mean of D [%] over the N, harmonics, based on the
following equation:
Ny
Z,':‘ 1Di[%]

Deviation (%] = =N
s

III. RESULTS AND DISCUSSION

(26)

In this section, we first present a comparative evaluation
between the proposed fractional-order model along with
the integer-order ones. Afterward, we discuss the parameter
estimates and their physiological insights.

A. Quantifying the models performances

The mean values of the goodness of fit criterion (NRMSE,
Deviation(%) and AIC,), after applying all the models, are
depicted in Fig. 3, along with their box plots providing a
visualization of summary statistics of this comparison. Addi-
tionally, we listed in Table SII, in the supplementary material,
all the RMSE, Deviation and AICc mean values for each
group of age and heart rate of the in-silico data. Fig. S3, in the
Supplementary Materials represents a map of all the models
with respect to the Deviation and the number of parameters
to estimate (complexity). As for any modeling system, based
on the fitting performance results, it is clear that there is a
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Fig. 3: Comparison of goodness of fit quantified as the mean values of RMSE , Devivation, and , Alc. evaluated for both proposed models along with
Viscoelastic and Voigt models for all the virtual subjects, and box plots providing a visualization of summary statistics of this comparison.

good compromise between the accuracy and complexity of
the model. Among the five proposed fractional-order model,
the single fractional-order capacitor-based, Model A, failed
to produce the lowest RMSE and Deviation for any of the
data sets; however, it represents the smallest (AICc). The
fractional-order Model E and the integer-order Model F
exhibit the lowest Deviation, as well as RMSE at the expense
of the complexity that was reflected in the highest values
of AICc. It is worth to mention that the fractional-order
Model E comprises only four parameters and performed
better than Model F, which posses nine parameters. As
illustrated in Fig.7, the best models that compromise between
the complexity and the accuracy are Model B, Model D,
and Model G. In terms of accuracy performance, among the
latest models, the fractional-order Model B is performing
the optimal. Conclusively, from the previous analysis, it is
apparent that model system fractionalizing is enhancing the
accuracy of the arterial compliance as well as reducing the
complexity.

B. Statistical Analysis of the estimated parameters

1) Model A: Fig. 4 shows the distribution of the parameter
estimates of Model A, after fitting the in-silico data of
the arterial compliance. By observing the distribution of
the fractional differentiation order, ¢, estimates, it is clear
that this parameter is less than 1 for all the subjects. Its
mean value is approximately 0.58 +-0.008. It is worth noting
that in the estimation phase, for the parameter o, we have
only constrained the lower bound to be zero; however, for
the upper bound, it was unconstrained. Accordingly, this
result indicates that the arterial system exhibits a viscoelastic
behavior, not a purely elastic one. Indeed, the fact that a # 1

implies that the FoC element incorporates both resistance
and capacitance behaviors, as demonstrated mathematically
in (10). This result further supports the concept of fractional-
order behavior by the arterial system. In the proposed model,
the fractional-order element combines both the resistance
and the capacitance properties, which display the viscoelastic
behavior of the arterial vessel. The contributions from both
properties are controlled by the fractional differentiation
order o, enabling a more flexible physiological description.
As the fractional power approaches to 1, the capacitance part
dominates and, hence the arterial system behaves like a pure
elastic system.

2) Model B: Fig. 5 (a), (b), and (c) show the distribution
of the parameter estimates of the Model B after fitting the in-
silico data of the arterial compliance. By observing the distri-
bution of o, it is clear that for all the subjects, this parameter

() ®)
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Fig. 4: Distribution, mean value and standard deviation of Model A pa-
rameter estimates: (a) the pseudo-capacitance Cq,, and (b) the fractional
differentiation order parameter 4.
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is higher than 1 with a mean value of approximately equals
to 1.22 +0.09. Mathematically, as a exceeds 1, the real
part of the fractional-order element impedance, G;, becomes
negative, and hence it has the characteristic of a negative
resistor that supplies power. Having a negative resistance,
in this case, comes as compensation for the added series
resistance Rp. Besides, comparing to Model A, it is worthy
to notice that the mean value of the pseudo-capacitance Cg
was decreased to 0.78 £0.19.

3) Model C: Fig. 6 (a) and (b) show the distribution of
the parameter estimates of the Model C after fitting the in-
silico data of the arterial compliance. In this model, the static
capacitance has been chosen to be equal to the pseudo-
capacitance. By observing the distribution of ¢, we can
notice that this parameter is less than 1 for all the population
with a mean value equal to 0.49 +0.10. Comparing to Model
A, the fractional factor has been decreased by approximately
0.1; however, the pseudo-capacitance was increased by 1. The
decrease of o implies an increase of the resistive part of the
FOC, as explained in the previous parts, which comes as to
compensate for the increase in the overall capacitive part of
the whole system model. In this model, the ideal capacitor is
counting for static compliance, whereas the fractional-order
one controls the arterial stiffness level. In other words, o
might give a piece of information about the variation of the
viscoelasticity of the arteries.

(2)
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Fig. 6: Distribution, mean value and standard deviation of Model C param-
eter estimates: (a) the static capacitance Cyq and the pseudo capacitance
Co Which are equals, and (b) the fractional differentiation order parameter
Oc.

4) Model D: Fig. 7 (a) and (b) show the distribution
of the parameter estimates of the Model D after fitting
the in-silico data of the arterial compliance. This model
incorporates a static capacitor in series to FOC, along with
a small resistor. Comparing to Model C, the addition of
the small resistance causes o to go beyond 1 with a mean
value approximately equal to 1.43 +0.14. Besides, the mean
value of static compliance and pseudo-capacitance decreases
to 1.614+0.50. The addition of serial constant resistor and
capacitor in this model is for the sake of account for the static
viscosity and elasticity, respectively, while FOC depicts the
ability of the arterial vessel to store blood dynamically.

5) Model E: Fig. 8 (a), (b), (c), and (d) show the dis-
tribution of the parameter estimates of the Model E after
fitting the in-silico data of the arterial compliance. This
model is similar to the equivalent analog circuit of Maxwell’s
mechanical element ( series spring and dashpot in parallel
with a dashpot), whereas instead of using an ideal capacitor
to represent the spring, FOC has been employed. In terms of
performance, Model E is the best. Similar to all the proposed
model, ap € R which demonstrate the fractional-order be-
havior of the apparent arterial compliance. By observing the
distribution of Ry, Ry, it is noticeable that these parameters
are larger than Rp and Rp.

C. Relations between fractional-order parameters and cen-
tral hemodynamic characteristics

Several research studies have observed that the changes
in the determinants of the central blood pressure waveform,
such as systolic blood pressure SBP, diastolic blood pressure
DBP, and pulse pressure (APP), are strongly associated with
cardiovascular diseases incidents. For instance, the augmenta-
tion of the SBP or APP is considered as a reflection marking
the improper functioning of the cardiovascular system. In
fact, stiffer arteries resulting from the arteriosclerosis dis-
ease causes increases in the SBP as well as a