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Abstract—Recent studies have demonstrated the advantages
of fractional-order calculus tools for probing the viscoelastic
properties of collagenous tissue, characterizing the arterial
blood flow and red cell membrane mechanics, and modeling
the aortic valve cusp. In this article, we present novel lumped-
parameter equivalent circuit models of the apparent arterial
compliance using a fractional-order capacitor (FOC). FOC,
which generalizes capacitors and resistors, displays a fractional-
order behavior that can capture both elastic and viscous
properties through a power-law formulation. The proposed
framework describes the dynamic relationship between the
blood pressure input and blood volume, using linear fractional-
order differential equations. The results show that the proposed
models present reasonable fit performance with in-silico data
of more than 4,000 subjects. Additionally, strong correlations
have been identified between the fractional-order parameter
estimates and the central hemodynamic determinants as well as
pulse wave velocity indexes. Therefore, fractional-order based
paradigm of arterial compliance shows prominent potential as
an alternative tool in the analysis of arterial stiffness.

Keywords—Cardiovascular system, Apparent compliance, In-
put Impedance, Fractional order capacitor, Arterial stiffness

I. INTRODUCTION

O VER the last decades, arterial models have been proven
to be extremely useful and effective in unraveling car-

diovascular diseases [1], in the medical intervention planning
[2], in diseases’ treatment and monitoring [3], and in the
design and testing of medical devices and simulators [4], [5].
Besides, arterial models have shown great potential in the
noninvasive evaluation of physiological parameters, which
are not directly accessible, such as the arterial compliance
and stiffness [6], [7], [8]. Vascular compliance is defined as
the ability of a particular arterial vessel to store blood. It
describes the capacitance of the vascular wall to dynamically
distend and increase the vessel volume with an increase in the
transmural pressure or the tendency of the vascular wall to
resist and recoil toward its original geometry with compres-
sion. Functionally, arterial compliance is demonstrated by the
relationship between the stored blood volume’s variation and
the input blood pressure’s variation. Similarly, the concept
of total arterial compliance was introduced as the sum of all
compliance components of the entire arterial system. Thus,
the total compliance describes the global arterial capacity to
store blood and is equal to the variation in blood volume
in the entire arterial system divided by the systemic input
pressure’s variation. However, it is known that this ratio
is not only governed by the total arterial compliance but

also incorporates some other effects such as the pulse wave
reflection. Indeed, it is equivalent to the total compliance
only at low frequency. Hence, the concept of dynamic arterial
compliance-or, equivalently, apparent compliance have been
proposed by Quick et al. [9] to show how to estimate the true
total compliance correctly from the transfer function relating
the blood volume to the input pressure [10] and explain
a question of fact as to whether the classical estimation
methods of arterial compliance fails to yield to true arterial
compliance. Before the introduction of the "apparent compli-
ance" concept, the transfer function relating blood volume to
systemic input pressure is thought to be constant and modeled
by a constant capacitance of an ideal capacitor (electrical
analog model). This hypothesis is based on the Windkessel
concept, which is adopted by the lumped-element modeling
school. The drawbacks of this assumption are reflected in its
estimation-based methods of compliance, which doesn’t yield
to a correct evaluation of the true arterial compliance [11].
Because of the distributed nature of the vascular compliance
and resistance within the arterial network, the relationship
blood Volume/input pressure is frequency-dependent [9].
Accordingly, a time delay between the arterial blood volume
and the input pressure occurs. During the past decades, some
clinical studies demonstrated the necessity of introducing
apparent compliance to extract total compliance. Therefore,
a new lumped-parameters modeling framework, which takes
into account the complex and frequency-dependence proper-
ties of the apparent arterial compliance, have been proposed
[12]. These models are based on the idea that the arterial
wall is viscoelastic rather than pure elastic. Hence, the Voigt
cell model (resistor in series with a capacitor) has been
proposed as a suitable candidate to represent the total arterial
compliance. The resistor of the Voigt cell displays the viscous
losses held by the arterial wall motions, while the capacitor
represents the static compliance of the arteries. Through
the combination of resistor and capacitor cells gives rise
to complex and frequency-dependent compliance, the Voigt
model configuration is considered very poor in representing
the arterial viscoelasticity properties since it does not ac-
count for the stress-relaxation experiment [13]. Therefore,
to address this inconsistency, the order of the viscoelastic
representation has been increased by adding more viscous
and elastic connected elements [12]. The higher-order config-
uration provided a more accurate but complex configuration,
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Fig. 1: Schematic representations of the electrical analog of the proposed fractional-order models.

where its complexity is principally due to the enormous
number of unknown parameters, which suggests another
challenge. Indeed, for higher-order models, the number of
parameters to identify is more significant, while the collected
real data is small and insufficient. It is also known that
reduced-order models are desirable for their simplicity and
ease of exploration. Over the last decades, the fractional-
order derivative (FD), defined as a generalization of the
standard integer derivative to a non-integer order, has been
gaining paramount popularity in modeling and characterizing
biological tissues [14], [15]. Because of its non-locality and
memory properties, FD has been regarded as a powerful
tool for modeling complex physical phenomena that exhibit
power-law response or involve memory effects [16], [17]. In
recent research, the power-law behavior has been proved in
the viscoelasticity characterization of an elastic aorta. The in-
vivo and in-vitro data analysis showed that the FD tools are
more convenient to accurately model and describe the arterial
wall viscoelastic dynamic response [18], [19], [20], [21],
[22]. Besides, a recent study by the authors [23], [24], used
fractional-order derivative tools to the well-known arterial
Windkessel paradigm, by replacing the ideal capacitor, which
accounts for the total arterial compliance, with a fractional-
order capacitor. The preliminary analysis demonstrated that
the fractional-order impedance is the right candidate for the
accurate assessment of the aortic input impedance. Further-
more, a simple correlation between the main parameters of
the central arterial blood pressure and the fractional differ-
entiation operator has been shown. Consequently, the novel
fractional-order parameter may have an influential role as a
physiological index of the arterial stiffness [25]. This paper
introduces and investigates the fractional-order derivative
modeling framework for apparent compliance. The proposed
modeling framework offers a new paradigm for the phys-
iological interpretation of the frequency-dependent arterial
compliance and the interaction between the systemic arterial
mechanical properties (viscosity and elasticity). Besides, this
study compares the different proposed models as well as with
the corresponding integer-order models. The rest of the paper
is organized as follows: in Section II, the preliminaries, the
proposed models and the method are presented. Section III
shows the results and discussion. Finally, section IV presents
the conclusion and future perspectives.

II. MATERIAL AND METHOD

A. Preliminaries

1) Input impedance, apparent compliance, and resistance:
Aortic input impedance (Zin) and apparent compliance (Capp)
are considered significant in the characterization of the arte-
rial system, independently of the heart properties. Whereas
Zin describes the ability of the arterial system to hamper
the blood flow dynamically, Capp depicts the capacity of the
arterial bed to store blood dynamically. Functionally, Zin is
defined as the dynamic relationship, in the frequency domain,
of the arterial blood pressure (Pin) and blood flow (Qin) at
the entrance of the systemic circulatory system, that is:

Zin(ω) =
Pin(ω)

Qin(ω)
, (1)

where ω corresponds to the angular frequency. Capp is
defined as the dynamic relationship, in the frequency domain,
between the blood volume V , and the input aortic blood
pressure (Pin) that is:

Capp =
V (ω)

Pin(ω)
(2)

Similarly, to the concept of apparent compliance, another fre-
quency dependent transfer function relating Pin to the output
blood flow (Qout ) has been defined as well. It describes the
so-called apparent resistance (Rapp) and it can be formulated
as:

Rapp =
Pin(w)

Qout(w)
(3)

Based on Quik’s et al. investigations in [9] and [10], Rapp can
be approximated as a constant that is equivalent to the total
peripheral resistance. Additionally, Capp can be expressed in
terms of Zin and Rapp:

Capp =
Rapp−Zin

jωRappZin
(4)

As mentioned in the previous section, the transfer function
describing the apparent compliance is frequency-dependent
and describes, not only the total arterial compliance but
also incorporates other physiological effects such as pulse
reflections. At low frequency, Capp convergences to a value



that approximates the true total arterial compliance (Ctot ):

Ctot = lim
w→0

Capp (5)

2) Fractional-order capacitor (FOC): FOC also known
as Constant Phase Element [26], is the main building block
for developing analog model structure according to FC.
FOC is an electrical element that represents a fractional-
order derivative relationship between the current, i(t), passing
through and the voltage, v(t), across it with respect to time,
t, as follow:

i(t) =Cα Dα
t v(t), (6)

where Cα is a proportionality constant so-called pseudo-
capacitance, expressed in units of [Farad/second1−α ]. The
conventional capacitance, C, in unit of Farad is related to Cα

as follow:
C =Cα ω

α−1. (7)

The impedance (ZFOC) of FOC in Laplace domain is given
as:

ZFOC(s) =
1

Cα sα
. (8)

Substituting the Laplace variable, s, by ( jω), (9) can be
expressed as:

ZFOC (ω) =
1

Cα

ω
−α cos(φ)︸ ︷︷ ︸
Gr

− j
1

Cα

ω
α sin(φ)︸ ︷︷ ︸
Hr

, (9)

where φ represents the phase shift given by the formula:
φ =απ/2 [rad] or φ =90α [degree or ◦]. As illustrated
in Fig. S1 in the Supplementary Materials, the bounding
values of α represent the discrete conventional elements:
the resistor when α = 0 and the capacitor when α = 1).
Additionally, from (9), it is clear that as α goes to 0, the
imaginary part (Hr) of ZC vanishes to 0 and hence the FOC
characteristic becomes more like that a pure resistor, whereas
as α approaches to 1, the real part (Gr) converges to 0 and
hence, FOC operates as a pure capacitors. Furthermore, it
has been demonstrated that the characteristics of FOC can be
approximated using RC ladder structure [27]. Based on the
above properties and in comparison to an integer order model
where α is strictly fixed to an integer (0 or 1), the parameter
α offers extra flexibility for a fractional-order paradigm. In
connection with the apparent compliance modeling concept,
FOC can be considered as a great candidate that might
overcome the discrepancies stemming from integer-order
limitation as follows:

• The proportionality constant Cα (pseudo-capacitance) is
expressed in unit of [F.sec1−α ] that makes, by its very
nature, the conventional capacitance C, in the unit of
[Farad], frequency-dependent, hence FOC has a physical
foundation in representing the complex and frequency
dependence of Capp

• Based on the order of the fractional differentiation
factor α , the storage and the dissipation parts of the

resultant FOC’s impedance can have different levels,as
illustrated in Fig. S2, in the Supplementary Materials.
Thus FOC might offer a key advantage in modeling
complex system, that is the whole spectrum of dissi-
pative and storage mechanisms may be included in a
single parameter (the fractional differentiation order).

• The equivalent analog circuit of FOC can be viewed
as infinity Voigt cells connected in parallel. Hence FOC
might lead to a minimal representation of the mechanical
properties of the arterial network by using only two
parameters (α and Cα ).

In biorheological research field, the imaginary, as well as the
real part of ZFOC, might represent the tissue damping (Gr)
and tissue elastance (Hr), respectively:

Gr( jω) =
1

Cα ωα
cos(α

π

2
)

Hr( jω) =− 1
Cα ωα

sin(α
π

2
)

(10)

The hysteresivity coefficient ηr (dimensionless) is defined as:

ηr =
Gr

Hr
=−cot(α

π

2
) (11)

In general, these parameters are usually used to characterize
the heterogeneity of the bio-tissue and are shown to be
variable with pathology, as demonstrated for lung tissue for
the respiratory system in [28].

B. Models

1) Fractional order model of the dynamic Volume/Input-
pressure relationship: Recent researches have shown the key
advantages of applying fractional calculus tools to describe
correctly: 1) the viscoelasticity properties of the collagenous
tissues in the arterial bed, 2) analyze the arterial blood flow
[21], [22] and red blood cell (RBC) membrane mechanics
[20] and, 3) modeling the heart valve cusp [29]. Bearing this
in mind, in this part, we introduce the fractionalization of the
dynamic relationship of the arterial blood volume and input-
pressure. Based on the conservation mass, the arterial blood
flow pumped from the heart to the arterial vascular bed (qin)
can be expressed as:

qin(t) = qstored(t)+qout(t), (12)

where qstored is the blood stored in the arterial tree, and
qout corresponds to the flow out of the arterial system. As
described in (3), qout can be expressed as:

qout(t) =
1

Rapp
pin(t). (13)

Regarding qstored , typically using the conventional definition,
it can be determined as the rate of flow by taking the first
derivative of the volume equation for the time, whereas, in
consideration of the fractional properties of both RBC and
the collagenous tissues forming the arterial bed, we allow the
differentiation order of the blood volume for time to be real



Fig. 2: Distribution, mean value and standard deviation of: (a) systolic blood pressure (SBP), (b) diastolic blood pressure (DBP), (c) aortic pulse pressure
(APP = SBP−DBP), (d) mean blood pressure (MBP), and (e) the maximum of the blood low (BF) at the level of of ascending aorta for 4,374 virtual
subject based in-silico database.

(α ∈ [0 1]) and hence applying the fractional-order derivative
to this differential equation.

qstored(t) = Dα
t V (t) =

dαV (t)
dtα

, (14)

qstored(t) =
dαV (t)

dα pin(t)︸ ︷︷ ︸
Aα

dα pin(t)
dtα

, (15)

where Aα is a fractional order proportionality constant that
can be defined as a fractional order compliance expressed in
the unit of [l/mmHg .sec1−α ]. Assuming null initial condi-
tion,the Laplace transform of (15) is given as:

Qstored = Aα sα Pin. (16)

The conventional compliance in the unit of [l/mmHg] that
represents the complex and frequency-dependent apparent
compliance can be written as follow:

CC = Aα sα−1. (17)

Accordingly, by analogy to the electrical circuit, one may
appropriately consider the fractional-order capacitor as a
lumped parametric element to stand for the apparent arterial
compliance. The voltage is equivalent to the arterial pressure;
the electrical charges correspond to the blood volume and the
electrical current as of the equivalent of the blood flow.

2) Apparent compliance fractional-order Models: In this
part, we show the derivations of the proposed model based-
structures for modeling the apparent arterial compliance.
These structures scheme different combinations of FOC
along with the conventional resistor and capacitor to display
the complex and frequency-dependent behavior of the real
dynamic compliance. Fig. 1 shows the proposed electrical
analog structures of the proposed models.
Model A: It comprises only one single FOC. As detailed in
the previous sections, the apparent compliance expressed in
unit of [l/mmHg] can be written as:

CA
c =Cα sα−1. (18)

Model B: It comprises a resistor (R) and FOC connected
in series. The apparent compliance expressed in the unit of

[l/mmHg] can be written as:

CB
c =

Cα sα−1

1+RCα s
. (19)

Model C: It comprises an ideal capacitor (Cstat ) accounting
for the static compliance and FOC connected in series. The
apparent compliance expressed in the unit of [l/mmHg] can
be written as:

CC
c =

CαCstatsα

Cα sα +Cstats
. (20)

Model D: It comprises a resistor (R), an ideal capacitor
(Cstat ) and FOC connected in series. The apparent compliance
expressed in unit of [l/mmHg] can be written as:

CD
c =

CstatCα sα

Cstats+Cα sα +RCαCstatsα+1 . (21)

Model E: It comprises a resistor (R1) in parallel to a FOC and
a resistor (R2) connected in series. The apparent compliance
expressed in unit of [l/mmHg] can be written as:

CE
c =

1+(R1 +R2)Cα sα−1

R1(1+R2Cα sα)
. (22)

C. In-silico Virtual Population

Owing to a lack of real data to validate the proposed
approaches, in this study, we utilize a virtual database of
simulated pulse waves (PWs) [30]. The publicly available PW
database 1 is considered a useful resource to evaluate the pre-
clinical assessment of PWs analysis algorithms. The database
encompasses mainly these arterial PWs: 1) flow velocity,
2) luminal area, 3) pressure and 4) photoplethysmogram
pulse waves at different sites of the arterial network such
as the ascending aorta, carotid artery, brachial artery, and
radial arteries. The database represents samples of 4,374
virtual healthy adults aged from 25 to 75 years old, in
ten-year increments (six age groups). For each age group,
729 virtual subjects based on pulse waves were created
by varying specific cardiac and arterial parameters like the
arterial stiffness and heart rate within normal ranges.
In this study, PWs at the level of ascending aorta have
been investigated to evaluate our approaches. Fig. 2 shows

1https://peterhcharlton.github.io/pwdb/index.html

https://peterhcharlton.github.io/pwdb/index.html


a summary statistic of the aortic blood pressure parameter
as well as the maximum blood flow at the level of the
ascending aorta, for all virtual subjects. Additionally, we
present a detailed statistic summary based on the group age
and heart rate in Table SI in the supplementary material. This
database presents physiological values with well-balanced
distributions.

D. Identification Algorithm

The parameters of the proposed fractional-order models
were estimated by a non-linear least square minimization
routine, making use of the well-known MATLAB−R2019b,
function lsqnonlin. This function is based on the trust-region
reflective method [31]. The steps used to obtain the optimal
estimates are outlined in Algorithm 1.

Algorithm 1 Parameter calibration of the apparent compli-
ance models

1: Load the in-silico aortic blood pressure (P) and flow (Q)
2: Evaluate the Fast Fourier Transform (FFT) of both P and

Q
3: Select the frequency range (Hz) f ∈ [0 12]
4: Calculate the aortic input impedance Zin

. Using equation (1)
5: Calculate the in-silico apparent compliance Capp

. Using equation (4)
6: Select the model to fit with the data
7: Include and Initialize the parameter to estimate Θ

% For instance for a single fractional-order capacitor
based model (model A), Θ = {Cα , α}

8:

RMSE =

√√√√∑
Ns
i=1

(
Re−R̂e

max(Re)

)2
+
(

Im− ˆIm
Im

)2

Ns

Θ̂ = arg min
Θ

RMSE

% Where Ns denoting the number of excited frequency
points, Re and Im denoting the real and imaginary parts
of the real Capp, and Im, evaluated in step (5), and R̂e and
ˆIm designate the real and imaginary parts of the model of

Capp, respectively. θ̂ denotes the estimates that minimize
RMSE

In this study, we compare the performance of the proposed
model with their corresponding integer-order version, where
the fractional differentiation order α is equal to 1. Accord-
ingly, the integer order version of model A will be equivalent
to an ideal capacitor whose capacitance is a constant, which
is not frequency-dependent, hence in our comparison, we
exclude this case. Similarly, the integer-order version of
model C leads to a series of two ideal capacitors, which is
as well, equivalent to an ideal capacitor whose capacitance
is constant. For the models, B and D, the integer-order
version is equivalent to the analog Voigt cell model (an ideal

capacitor connected in series with a resistor). Conclusively, in
this work, we compare our proposed methods to the Voigt cell
model. On top of that, in order to show the role of fractional-
order concept in reducing the complexity of such approach,
we conduct an extra comparison with the well-known general
apparent compliance-based model for viscoelastic material
[32] which is expressed as:

CF
c =Cstat

∏
N
n=1 an( jω +bn)

∏
N
n=1 bn( jω +an)

, (23)

where an and bn are imperial constants that can be convenient
to fit any particular case. Cstat denoting the static compliance
for the vessel. Goedhard et. all showed that this model could
fit an experimental data with N=4. Hence in our comparison
we choose N=4. We refer to the viscoelastic model and Voigt
model as models F and G, respectively. Because the proposed
models have a different number of parameter, to perform a
fair comparison, the corrected Akaike Information Criterion
(AICC) was evaluated:

AICC =−2ln(RMSE)+
2PNs

Ns−P−1
, (24)

where P is the number of parameters. Furthermore, the
deviation of the model modulus from the in-silico apparent
compliance modulus was calculated, using the following
expression:

Di [%] =


∣∣∣Cmodel

c[i]

∣∣∣− ∣∣∣Capp[i]

∣∣∣∣∣∣Capp[i]

∣∣∣


i=1..Ns

×100%. (25)

For ease of visualization of the various comparisons between
the different models, for each virtual subject, we evaluated
the mean of D [%] over the Ns harmonics, based on the
following equation:

Deviation [%] =
∑

Ns
i=1 Di[%]

Ns
. (26)

III. RESULTS AND DISCUSSION

In this section, we first present a comparative evaluation
between the proposed fractional-order model along with
the integer-order ones. Afterward, we discuss the parameter
estimates and their physiological insights.

A. Quantifying the models performances

The mean values of the goodness of fit criterion (NRMSE,
Deviation(%) and AICc), after applying all the models, are
depicted in Fig. 3, along with their box plots providing a
visualization of summary statistics of this comparison. Addi-
tionally, we listed in Table SII, in the supplementary material,
all the RMSE, Deviation and AICC mean values for each
group of age and heart rate of the in-silico data. Fig. S3, in the
Supplementary Materials represents a map of all the models
with respect to the Deviation and the number of parameters
to estimate (complexity). As for any modeling system, based
on the fitting performance results, it is clear that there is a



Fig. 3: Comparison of goodness of fit quantified as the mean values of RMSE , Devivation, and , AIcc evaluated for both proposed models along with
Viscoelastic and Voigt models for all the virtual subjects, and box plots providing a visualization of summary statistics of this comparison.

good compromise between the accuracy and complexity of
the model. Among the five proposed fractional-order model,
the single fractional-order capacitor-based, Model A, failed
to produce the lowest RMSE and Deviation for any of the
data sets; however, it represents the smallest (AICC). The
fractional-order Model E and the integer-order Model F
exhibit the lowest Deviation, as well as RMSE at the expense
of the complexity that was reflected in the highest values
of AICC. It is worth to mention that the fractional-order
Model E comprises only four parameters and performed
better than Model F, which posses nine parameters. As
illustrated in Fig.7, the best models that compromise between
the complexity and the accuracy are Model B, Model D,
and Model G. In terms of accuracy performance, among the
latest models, the fractional-order Model B is performing
the optimal. Conclusively, from the previous analysis, it is
apparent that model system fractionalizing is enhancing the
accuracy of the arterial compliance as well as reducing the
complexity.

B. Statistical Analysis of the estimated parameters

1) Model A: Fig. 4 shows the distribution of the parameter
estimates of Model A, after fitting the in-silico data of
the arterial compliance. By observing the distribution of
the fractional differentiation order, α , estimates, it is clear
that this parameter is less than 1 for all the subjects. Its
mean value is approximately 0.58±0.008. It is worth noting
that in the estimation phase, for the parameter α , we have
only constrained the lower bound to be zero; however, for
the upper bound, it was unconstrained. Accordingly, this
result indicates that the arterial system exhibits a viscoelastic
behavior, not a purely elastic one. Indeed, the fact that α 6= 1

implies that the FoC element incorporates both resistance
and capacitance behaviors, as demonstrated mathematically
in (10). This result further supports the concept of fractional-
order behavior by the arterial system. In the proposed model,
the fractional-order element combines both the resistance
and the capacitance properties, which display the viscoelastic
behavior of the arterial vessel. The contributions from both
properties are controlled by the fractional differentiation
order α , enabling a more flexible physiological description.
As the fractional power approaches to 1, the capacitance part
dominates and, hence the arterial system behaves like a pure
elastic system.

2) Model B: Fig. 5 (a), (b), and (c) show the distribution
of the parameter estimates of the Model B after fitting the in-
silico data of the arterial compliance. By observing the distri-
bution of αB, it is clear that for all the subjects, this parameter

Fig. 4: Distribution, mean value and standard deviation of Model A pa-
rameter estimates: (a) the pseudo-capacitance CαA , and (b) the fractional
differentiation order parameter αA.



Fig. 5: Distribution, mean value and standard deviation of Model B parameter estimates: (a) the resistance RB, (b) the pseudo-capacitance CαB , and (c) the
fractional differentiation order parameter αB.

is higher than 1 with a mean value of approximately equals
to 1.22± 0.09. Mathematically, as α exceeds 1, the real
part of the fractional-order element impedance, Gr, becomes
negative, and hence it has the characteristic of a negative
resistor that supplies power. Having a negative resistance,
in this case, comes as compensation for the added series
resistance RB. Besides, comparing to Model A, it is worthy
to notice that the mean value of the pseudo-capacitance CαB
was decreased to 0.78±0.19.

3) Model C: Fig. 6 (a) and (b) show the distribution of
the parameter estimates of the Model C after fitting the in-
silico data of the arterial compliance. In this model, the static
capacitance has been chosen to be equal to the pseudo-
capacitance. By observing the distribution of αC, we can
notice that this parameter is less than 1 for all the population
with a mean value equal to 0.49±0.10. Comparing to Model
A, the fractional factor has been decreased by approximately
0.1; however, the pseudo-capacitance was increased by 1. The
decrease of α implies an increase of the resistive part of the
FOC, as explained in the previous parts, which comes as to
compensate for the increase in the overall capacitive part of
the whole system model. In this model, the ideal capacitor is
counting for static compliance, whereas the fractional-order
one controls the arterial stiffness level. In other words, α

might give a piece of information about the variation of the
viscoelasticity of the arteries.

Fig. 6: Distribution, mean value and standard deviation of Model C param-
eter estimates: (a) the static capacitance Cstat and the pseudo capacitance
CαC which are equals, and (b) the fractional differentiation order parameter
αC .

4) Model D: Fig. 7 (a) and (b) show the distribution
of the parameter estimates of the Model D after fitting
the in-silico data of the arterial compliance. This model
incorporates a static capacitor in series to FOC, along with
a small resistor. Comparing to Model C, the addition of
the small resistance causes α to go beyond 1 with a mean
value approximately equal to 1.43±0.14. Besides, the mean
value of static compliance and pseudo-capacitance decreases
to 1.61±0.50. The addition of serial constant resistor and
capacitor in this model is for the sake of account for the static
viscosity and elasticity, respectively, while FOC depicts the
ability of the arterial vessel to store blood dynamically.

5) Model E: Fig. 8 (a), (b), (c), and (d) show the dis-
tribution of the parameter estimates of the Model E after
fitting the in-silico data of the arterial compliance. This
model is similar to the equivalent analog circuit of Maxwell’s
mechanical element ( series spring and dashpot in parallel
with a dashpot), whereas instead of using an ideal capacitor
to represent the spring, FOC has been employed. In terms of
performance, Model E is the best. Similar to all the proposed
model, αD ∈ R which demonstrate the fractional-order be-
havior of the apparent arterial compliance. By observing the
distribution of R1E R2E , it is noticeable that these parameters
are larger than RB and RD.

C. Relations between fractional-order parameters and cen-
tral hemodynamic characteristics

Several research studies have observed that the changes
in the determinants of the central blood pressure waveform,
such as systolic blood pressure SBP, diastolic blood pressure
DBP, and pulse pressure (APP), are strongly associated with
cardiovascular diseases incidents. For instance, the augmenta-
tion of the SBP or APP is considered as a reflection marking
the improper functioning of the cardiovascular system. In
fact, stiffer arteries resulting from the arteriosclerosis dis-
ease causes increases in the SBP as well as arterial pulse
wave velocity (PWV ). PWV, such as carotid-to-femoral one
(PWVc f ), are recognized as valuable surrogates of the arterial
stiffness. In this part, we investigate whether the fractional
differentiation order, α , and the hysteresivity coefficient, ηr,
(defined by (11)) correlate with the central blood pressure
determinants and the arterial pulse wave velocity (PWVa)
and (PWVc f ). In addition to the arterial pulse waves, the



Fig. 7: Distribution, mean value and standard deviation of Model D parameter estimates: (a) the resistance RD, (b) the static capacitance CstatD and the
pseudo capacitance CαD which are equals, and (c) the fractional differentiation order parameter αD.

used database provides both (PWVa) and (PWVc f ) for each
subject.

Accordingly, to evaluate the associations between the
fractional-order parameters and the central hemodynamic
determinants, for each model, we calculated the average
value of α and ηr estimates over a fixed interval of the
blood pressure determinant (SBP, DBP, and APP) that is
equal to 5 [mmHg] and PWV that is equal to 0.5 [m/s].
Table I shows the correlation coefficients between α , and ηr
and (SBP, DBP, APP, PWVa and PWVcf) (95% confidence
interval). It is clear from these results that, for the majority
of the models, the fractional-order parameters are strongly
associated with the hemodynamic determinants. For instance,
with regards to SBP, DBP,and APP, we notice that for all
the proposed model, excepting for Model D the correlation
coefficients with respect to ηr and α are larger or equal
to 0.90. Regarding to the stiffness indexes, (PWVa) and
(PWVc f ), the coefficients correlation are approximately equal
or larger than 0.85 for all the proposed model apart from
Model D. Overall, the fractional-order parameter estimates of
Model B present the best correlation coefficients. This result
is in agreement with the goodness of the fit performance
of this model. In fact, as analyzed in the previous parts,
Model B provides a compromise between the accuracy
and complexity of other proposed fractional-order models.
In addition, although Model A is not very accurate in
estimating the apparent compliance and not complicated, the

correlation coefficients between its parameter estimates and
the hemodynamic determinant as well as the central PWVs
are acceptable and reasonable.

Conclusively, our findings point out the potential interests
of using FOC in the characterizing of arterial compliance. In
addition, it demonstrates the viability of the fractional-order
differentiation order to serve as a surrogate measure of the
arterial stiffness or marker of cardiovascular diseases. Indeed,
by assessing the fractional factor, α , it is easy to evaluate
the hysteresivity coefficient ηr reflecting the ratio between
two physiologically insightful parts: the tissue resistance and
elastance.

D. Limitations

The fractional-order paradigm proposed in this work
should be developed a little further before its generalization
in the hemodynamic modeling context. In fact, It is worthy
to note the limitations of this study. Firstly, in this work, due
to the non-availability of real data, we used in-silico data.
Although this database mimics the real physiological human
states, and it is based on a validated one-dimensional numer-
ical model of the arterial network, in-vivo investigations are
required to validate and verify the reliability of the proposed
models. The use of real data would considerably give more
credibility to the new paradigm. Secondly, the estimation was
based on only one cardiac cycle. Future work should derive

Fig. 8: Distribution, mean value and standard deviation of Model E parameter estimates: (a) the resistance R1E , (b) the resistance R2E , (c) the pseudo
capacitance CαE , and (d) the fractional differentiation order parameter αE .



TABLE I: Correlation coefficients between α and arterial systolic blood pressure (SBP),arterial diastolic blood pressure (DBP), arterial pulse pressure
(APP), arterial pulse wave velocity (PWVa) and carotid-femoral pulse wave velocity (PWVc f ) (95% confidence interval).

SBP DBP APP PWVa PWVcf

αA 0.96 ( 0.88 , 0.99) -0.94 (-0.98 , -0.82) 0.92 (0.78 , 0.97) 0.85 (0.61 , 0.95) 0.87 (0.65 , 0.95)
ηrA 0.95 ( 0.85 , 0.98) -0.94 ( -0.98 , -0.83) 0.90 (0.74 , 0.97) 0.84 (0.58 , 0.94) 0.85 (0.62 , 0.95)
αB -0.99 (-1.00 , -0.96) 0.96 ( 0.88 , 0.99) -0.97 (-0.99 , -0.91) -0.98 (-0.99 , -0.93) -0.97 (-0.99 , -0.92)
ηrB -0.99 (-1.00 , -0.96) 0.96 (0.89 , 0.99) -0.96 (-0.99 , -0.89) -0.97 (-0.99 , -0.92) -0.97 (-0.99 , -0.90)
αC 0.97 (0.91 , 0.99) -0.93 ( -0.98 , -0.81) 0.94 (0.82 , 0.98) 0.88 ( 0.68 , 0.96) 0.89 (0.72 , 0.96)
ηrC 0.96 ( 0.87 , 0.99) -0.93 (-0.98 , -0.81) 0.92 ( 0.77 , 0.97) 0.86 ( 0.64 , 0.95) 0.87 (0.66 , 0.96)
αD -0.92 (-0.97 , -0.78) 0.79 (0.48 , 0.92) -0.89 (-0.96 , -0.71) -0.79 (-0.92 , -0.48) -0.68 (-0.88 , -0.28)
ηrD 0.35 (-0.20 , 0.73) -0.65 (-0.87 , -0.22) 0.34 ( -0.18 , 0.72) 0.25 (-0.28 , 0.66) 0.42 ( -0.09 , 0.76)
αE -0.96 ( -0.99 , -0.88) 0.95 (0.85 , 0.98) -0.99 (-1.00 , -0.97) -0.90 (-0.97 , -0.74) -0.89 ( -0.96 , -0.71)
ηrE -0.96 (-0.99 , -0.89) 0.95 (0.86 , 0.98) -0.99 (-1.00 -0.97) -0.91 (-0.97 , -0.75) -0.89 (-0.96 , -0.70)

metrics from multiple cycles. This will help to assess and
take into account the inter-beat interval variability.

In addition, the presented approaches should be conducted
in a range of different real physiological situations and show
a good fitting for all the cases. It is straightforward to use
FOC in the simple model representation proposed here, but
there is no explicit agreement on the exact physiological
relevance of the new parameter, the fractional differentiation
order α or ηr. Although it is evident from mathematical
equations that α value controls the viscosity as well as the
elasticity levels, it would be of great potential for clinical
application, to define ranges of the α value for normal and
pathological physiological conditions. Finally, this study does
not consider the noise effect on the pulse wave signals. In
fact, several sources of noise can be allocated with the blood
pressure signal, such as the movement artifacts, poor sensor
contact, and optical interference, etc. Accordingly, consider-
ing the noise can impact the utility of the estimation of the
fractional-order parameters. In the future, the robustness of
the parameter estimates against the different sources of noise
should be studied and analyzed. This is extremely important
to especially assess arterial stiffness.

IV. CONCLUSION

The appearance of fractional-order behavior in the arterial
system has been identified by many experimental studies of
the viscoelasticity properties of the collagenous tissues in
the arterial bed; the analyzes of the arterial blood flow and
red blood cell membrane mechanics and the characterizing
the heart valve cusp. This paper introduced a fractional-
order modeling approach to assess the apparent arterial
compliance. The models incorporate FOC along with ideal
resistors and capacitors to display the dynamic relationship
between the blood volume and aortic input pressure. The
majority of proposed parametric models present reasonable
fit performance with in-silico data. The results show that
fractional-order model structures conveniently capture the
capacity of the arterial system to store the blood. Besides, the
fractional-order parameter estimates present good correlation
coefficients with the central hemodynamic determinants, such

as the systolic and pulse blood pressure along with the central
pulse wave velocity indexes. Thus, the fractional-order based
approach of arterial compliance has a great potential to
provide a new alternative in assessing the arterial stiffness.
Future investigations will be directed toward integrating these
models within a complete lumped-parameter model for the
systemic circulation and study the effects of certain cardio-
vascular pathologies upon changes in the dynamic arterial
compliance represented by the fractional-order capacitor.
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SUPPLEMENTARY MATERIALS

The Supplementary Information is described in more detail
in the Supplementary Materials file, which includes the
following Sections: (A) Fractional-order calculus section pro-
vides an overview about the Fractional-order derivative and
its mathematical definitions; (B) Figures section represents
Fig. S1: The schematic diagram for the resistor, capacitor,
and fractional-order capacitor elements along with theirs i-
v characteristic relationships; Fig. S2: Modulus of (FOC
impedance ZC, left side), (the dissipation part ZD) and (the
storage part ZS) for Cα = 1; and Fig. S3: A map of all
the models with respect to the Deviation and the number of
parameters to estimate (complexity), and (C) Tables section
presents three tables: Table SI: Mean value of systolic blood
pressure (SBP), diastolic blood pressure (DBP), aortic pulse
pressure (APP = SBP−DBP), mean blood pressure (MBP),
and the maximum of the blood low (BF) at the level of



of ascending aorta for 4,374 virtual subject based in-silico
database; Table SII: Mean values of the goodness of fit
criterion (NRMSE, Deviation[%], and AICc of each age and
heart rate based-group, and Table SIII: Mean value of the
parameter estimates of the fractional-order models for each
age and heart rate based-group.
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