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Abstract

The dyadic adaptive control architecture evolved as a solution to the problem of designing control laws

for nonlinear systems with unmatched nonlinearities, disturbances and uncertainties. A salient feature of

this framework is its ability to work with infinite as well as finite dimensional systems, and with a wide

range of control and adaptive laws. In this paper, we consider the case where a control law based on the

linear quadratic regulator theory is employed for designing the control law. We benchmark the closed-

loop system against standard linear quadratic control laws as well as those based on the state-dependent

Riccati equation. We pose the problem of designing a part of the control law as a Nehari problem. We

obtain analytical expressions for the bounds on the sub-optimality of the control law.

1 Introduction

In this paper, we are concerned with the control of semilinear systems of the form v̇(t) = Av(t) + Bu(t) +
f(t, v), y(t) = Cv(t), where v(t) denotes the system state, u(t) is the control input, and y(t) is the output.
The underlying state space may be finite or infinite dimensional, so that the system in question could consist
of partial and/or ordinary differential equations (PDEs and/or ODEs). The operators A, B and C are the
drift, control, and output operators, respectively. The forcing term f(t, v) may or may not be known to the
control designer a priori.

In this paper, we are interested in the case wherein f(t, v) is potentially nonlinear, not entirely known,
and f(t, v) /∈ range(B). In our earlier papers [19, 18], we introduced a dyadic adaptive control architecture
for a class of such systems. An extension was later proposed [17] for incorporating optimality into this dyadic
adaptive control (DAC) architecture. The specific objective of this paper is to analyze the optimality of the
architecture formally. For brevity, we refer to this architecture as the sub-optimal DAC (SDAC) architecture.

1.1 Background

The DAC architecture evolved primarily for addressing boundary control problems in systems of partial
differential equations [19]. In such systems, distributed forcing terms are naturally unmatched. It offered
an alternative to Lyapunov-based techniques [6, 10, 13, 21, 22] which are naturally suited mainly to well-
characterized systems with a small number of degrees of freedom.

In contrast, DAC is able to work readily with systems with an arbitrarily large number of degrees of
freedom, while avoiding the need for a finite-dimensional approximation of the PDE as part of the formulation
itself. At the same time, it relies on its linear terms (which could be destabilizing) to enable its dyadic
structure.
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The DPO architecture, shown in Fig. 1, uses the linear term Aw(t) as a pivot and decouples the system
into two components, or halves. The particular half filters and estimates the nonlinearity, and its dynamics
are not driven by the control signal. The homogeneous half is linear and contains the entire control signal (the
term Bu) as part of its dynamics. The control law is designed to ensure that the output of the homogeneous
half yh → (r − yp), where r denotes the reference signal and yp is the output of the particular half. This is
sufficient for ensuring that y tracks r. The two halves are implemented in the form of observers which use
full state feedback (i.e., w) to estimate the states of the two halves. The SDAC uses, in particular, the linear
quadratic regulator (LQR) theory to design the control signal for the homogeneous half.

H(s)

Particular Half Plant

Homogeneous Half

r(t) u(t)

v(t)

−

ŷp(t)

v̂h(t)

Figure 1: A block diagram of the DAC framework, with the subscripts p and h denoting signals from the
particular and homogeneous components. The symbols v(t), y(t), and r(t) denote the system state, output
and reference signal, respectively.

In this paper, we investigate the inclusion of optimality in the DAC framework. The theory of optimal
control for linear infinite dimensional systems is well-developed (see Chapter 6, [4], for instance). It has been
used for solving problems such as determining the actuator schedule in parameter-varying systems [7] and
for determining an optimal placement of actuators [15].

Optimal control techniques rely on some knowledge of the future state of the system. This requirement,
for fully-known and linear systems, is absorbed fully in the Riccati equation. Since this is generally not
the case for uncertain, nonlinear systems, designing optimal controllers for such systems can be challenging.
Techniques based on the state-dependent Riccati equation [16, 3] have been developed to accommodate a
class of nonlinearities, but proving robustness can be difficult for such systems. Causal approximations have
been developed for a class of systems, such as those where the reference input is known for only a part
of the time window [2, 1], or where the reference input is the output of a potentially unknown but linear
exogenous system [8, 14]. Techniques based on reinforcement learning (RL), or motivated by it, have also
been proposed [12, 14, 9]. Techniques based on RL, however, require an adequate amount of “training” in
order to ensure, informally, that they stabilize the system and do not inadvertently excite the unstable modes
beyond a point. In contrast, the SDAC [17] uses a dynamic system to generate a causal approximation.

1.2 Contribution and Organization

It was explained earlier in this section how the SDAC brings together LQR and a dynamic causal approxia-
tion. The purpose of this paper is to investigate the sub-optimality of this architecture systematically.

We start by presenting the preliminaries in Sec. 2 and the problem formulation in Sec. 3, including further
details of DAC. We design an optimal control law for SDAC in Sec. 4. In its “pure” form (i.e., without
invoking any causal approximations), we benchmark it against LQR (tracking) and SDRE-based control
laws. We show, in particular, that the SDAC-based law converges exponentially fast to the LQR-based law,
in the sense of Definition 7. In Sec. 5, we consider the problem of designing a causal approximation. We
argue that it can be cast into a Nehari problem, and use it to provide guarantees on its sub-optimality when
compared to the “pure-form” SDAC law. We summarize the results of stability and robustness analysis in
Sec. 6.



2 Preliminaries

2.1 Norms

Definition 1 (L2 norm) We define the space L2([0, T ];R
n), where T > 0, as the set of functions q(t) ∈ R

n

for t ∈ [0, T ] satisfying

‖q‖L2;T
,

∫ T

0

q(t)⊤q(t) dt < ∞

This includes the case where T → ∞. The norm of q ∈ L2([0, T ];R
n) will be denoted succinctly by ‖q‖L2

(i.e., without T ) unless there is room for ambiguity.

Definition 2 We define the Hilbert space Z with the inner product 〈z1, z2〉 for z1, z2 ∈ Z and the norm
‖z‖Z = 〈z, z〉 for z ∈ Z. Corresponding to the space Z, we define the Banach space W = L∞(R+, Z) with
the norm ‖v‖W = ess supt≥0 ‖v(t)‖Z. We also define the truncated norm ‖v‖W,τ = ess sup0≤t≤τ ‖v(t)‖Z.

2.2 Operators

Definition 3 The domain of an operator V is denoted by D(V). If V : X → Y where X and Y are Banach
spaces, (obviously, D(V) ⊂ X), then we denote the induced norm of V by ‖V‖(X,Y ). If V : W → W, then we
use the short-hand notation ‖V‖i in place of ‖V‖(W,W) for ease of representation.

Definition 4 ([20], Definition 1.1, Ch. 6) Let A be the infinitesimal generator of the C0 semigroup
T (t). The mild solution of v̇ = Av + f(t, v), v(0) = v0 ∈ Z is given by

v(t) = T (t)v0 +

∫ t

0

T (t− τ)f(τ, v(τ)) dτ, (1)

We succinctly denote eAt , T (t).

Definition 5 (Convolution) Given a C0 semigroup T (t) with the infinitesimal generator A, we define the

operator ΓA(t) : ΓA(t)f(t, v(t)) =
∫ t

0
T (t − τ)f(τ, v(τ)) dτ. We further define the induced norm ‖ΓA‖i ,

ess sup(t≥0) ‖ΓA(t)‖i

Definition 6 (Inverse) Let A be the infinitesimal generator of a C0 semigroup T (t) which we also denote
as eAt. The inverse of A, denoted A−1, is defined as follows:

A−1z , −

∫ ∞

0

eAτz dτ, z = constant

when the right hand side exists.

The proof of the next lemma is straight-forward, and omitted for brevity.

Lemma 1 Suppose the operator ΓA ∈ H∞; i.e., ΓA maps L2([0, T ];Z) → L2([0, T ];Z) for some T ∈ (0,∞].
Then, the adjoint of the operator ΓA in Definition 5 is given by

Γ∗
Af(t) =

∫ T

t

e−A∗(t−τ) f(τ) dτ, f(t) ∈ Z∀ t (2)

The dependence of the adjoint on T (via the definition of the inner product) is omitted in this sequel, unless
it is absolutely necessary.

Definition 7 (Control laws) A control law is a map u : Z → U, and we say that two control laws u1 and
u2 are equal if and only if u1(z) = u2(z) for all z ∈ Z.



We distinguish a control law from a control signal u(t). The latter is a map from R → U, obtained by
running (or simulating) the system from a given initial condition. Thus, when starting from different initial
conditions, the resulting control signals u1(t) and u2(t) need not be identical.

Definition 8 (Further notation on operators) Given a semilinear system in the standard (infinite or
finite dimensional) form v̇ = Av + Bu+ f(t, v), y = Cw, we define the input-output operator

G(A,B, C)u = CΓABu

Furthermore, we define G∗(A,B, C) = B∗Γ∗
AC

∗.

3 Problem Formulation

3.1 Plant Model

This paper is concerned with semilinear systems of the form

v̇ = Av + Bu+ f(v), v(0) = v0

y(t) = Cv (3)

where u ∈ R
nu , y ∈ R

ny and v0 ∈ Z, a suitably chosen Hilbert space consisting of Rn-valued functions. The
operators B and C are bounded on their respective domains. The operator A is the infinitesimal generator of
an exponential semi-group. The control objective is to design u(t) so that (i) the quadratic penalty function

J =
∫ T

0
((y − r)⊤(y − r) + u⊤Ru) dt, where R > 0, is minimized, and (ii) the resulting closed-loop system is

stable and robust (in a sense which will be made precise later).
The minimization of the cost function does not guarantee asymptotic tracking by itself. One way to get

around this problem is to add
∫ t

0
(y− r) dt as a state in the spirit of the internal model principle (see [3], for

instance). We will use a different approach in the paper.

Assumption 1 The system (A, B) is exponentially stabilizable. Moreover, the initial conditions are re-
stricted to ‖v0‖Z < ρ0 and v0 ∈ D(A).

Assumption 2 The nonlinearity can be expressed as

f(v) = αφ(v)

where φ(·) is a C1 function of v and α ∈ R
n is constant, but unknown with a known bound ‖α‖∞ < να. We

also assume that its rate of change is also bounded.
Moreover, for every ρ > 0, we assume that there exist νφ,1(ρ), νφ,2(ρ) ∈ K(ρ) such that if ‖v(t)‖Z < ρ

for some t > 0, then ‖φ(v)‖Z ≤ νφ,1(ρ)‖v(t)‖Z + νφ,2(ρ). It follows that if ‖v‖W,τ < ρ for some τ > 0, then
‖f(v)‖W,τ ≤ ν1(ρ)‖v‖We,τ + ν2(ρ), for some constants ν1(ρ) and ν2(ρ).

We note that our control design technique is applicable readily [18] to more general linear combination

of known basis functions: f(v) =
∑N

i=1 αi(t)φi(v). Since this “extension” would makes our presentation
cumbersome without adding to our primary objective, we adhere to Assumption 2.

3.2 Dyadic Adaptive Control

Suppose that we design a control signal of the form u(t) = −Kv(t) + uR(t) for (3), where the term uR(t) is
added for tracking purposes. Let us write Am = A − BK (see Definition 2 for further details), where Am

generates an exponentially decaying semi-group. The resulting closed-loop system can be viewed as the sum
of two sub-systems creating using Am as the pivot:

v̇p = Amvp + f(v), yp = Cevp (4)

v̇h = Amvh + BuR(t), yh = Cevh (5)



The two systems (4) and (5) are referred to as the particular and homogeneous halves, respectively. The
states of these sub-systems can be estimated readily using observers, which rely on knowing the value of the
actual state, v. The dynamics of the observers for the two halves, with the observed states denoted by v̂p
and v̂h respectively, are given by

˙̂vp=Amv̂p + α̂(t)φ(v), ŷp = Cv̂p (6)

˙̂vh=Amv̂h + BuR(t), ŷh = Cev̂h (7)

with the initial conditions at t = 0 set to suitable values.
The next assumption asserts the existence of a Lyapunov function corresponding to the generator Am,

which we need for constructing the adaptation law.

Assumption 3 There exists a self-adjoint coercive operator P > 0 and a constant λP > 0 such that ∀t,

〈Amz(t),Pz(t)〉Z+〈Pz(t),Amz(t)〉Z ≤ −λP〈z(t),Pz(t)〉Z,

∀ z(t) ∈ D(Am) (8)

The predicted values α̂(t) is found using the projection operator [11]:

˙̂αj(t) = γ Proj (α̂j , −〈P ṽ(t), φj(v)ej〉Z) ,

|α̂j(t)| < να(1 + ǫ) (9)

where ǫ ∈ R
+ is arbitrarily small; ṽ = v̂p + v̂h − v; α̂j ∈ R is the jth component of α̂, ej denotes the jth

column of the n× n identity matrix, and γ > 0 is the adaptation gain.
The control design described in this section constitutes the dyadic adaptive control (DAC) architecture.

It remains to determine K and uR(t), for which we turn to tools from optimal control.

3.3 Optimal Control Problem Formulation

We show in Sec. 6 that the observer states v̂p and v̂h converge to vp and vh, respectively. In order to
design and analyse our optimal control law, we confine our analysis to the following system inspired by the
converged observer:

v̇p = Amvp + f(v)

v̇h = Avh + Bu(t) (10)

We note the use of A (rather than Am) in the dynamics of vh. We formulate the control design problem as
follows: design u(t) to ensure that yh tracks σ = r − yp while minimizing

J=

∫ T

0

(

(yh(t)−σ(t))⊤(yh(t)−σ(t))+u(t)⊤Ru(t)
)

dt

where R > 0 and T ≫ 1. In Sec. 6, we argue that the resulting closed-loop system is stable and robust. We
refer to two classes of problems as an aid to our analysis:

1. Non-adaptive regulation: the reference signal r(t) ≡ r (a constant) and f(v) is known.

2. Complete problem: r(t) as well as f(v) are not identically zero.

4 Optimal Control Design and Analysis

To facilitate the design of an optimal control law, we define an extended state space Zf = Z
e⊕R, and define

ẇ(t)=

[

A 0
0 0

]

w(t)+

[

B
0

]

u(t), w(0)=

[

vh,0
1

]

(11)



The control problem is equivalent to designing u(t) to minimize

min
u

∫ T

0

(〈w(t), Q(t)w(t)〉 + 〈u(t), Ru(t)〉) dt

Q(t) = [C − σ(t)]∗[C − σ(t)]; (12)

The control design mirrors the approach in ([4], Chapter 6). Ideally, we would like T → ∞ in (12). However,
since the reference signal σ(t) is arbitrary, the optimal cost may be infinite as T → ∞. We avoid introducing
a discount e−µt (µ > 0) in the cost function.

The solution to (12) is given by

u(t) = −R−1B∗ (Π(t)v(t) + q(t)) (13)

where Π(t) is the solution of the Riccati equation

d

dt
(z2, Π(t)z1) = −〈z2, Π(t)Az1〉 − 〈Az2, Π(t)z1〉

−〈Cez1, C
ez2〉+ 〈Π(t)BR−1B∗Π(t)z1, z2〉 (14)

Π(T ) = 0, z1, z2 ∈ D(A)

and q(t) is the mild solution of

q̇(t) = −
(

A− BR−1B ∗Π(t)
)∗

q(t) + Ce∗σ(t), q(T ) = 0 (15)

The first part of (13) is identical to the regulation problem with σ ≡ 0. Therefore, we set Π(t) ≡ Π, the
(steady state) solution to the algebraic Riccati equation, under the assumption that T is large, and write
the control signal as

u(t) = −R−1B∗Πvh(t)−R−1B∗q(t) (16)

q̇(t)=−
(

A−BR−1B ∗Π
)∗

q(t) + C∗σ(t), q(T )=0 (17)

Lemma 2 (Theorem 5.1.5, Theorem 6.2.7, [4]) The operator Am , A−BR−1B∗Π generates an expo-
nentially stable semigroup, denoted by eAmt; i.e., there exist constants M, β > 0 such that ‖eAmt‖i ≤ Me−βt.
Moreover, ‖ΓAm

‖∞ is bounded, and (sI −Am)−1 ∈ H∞.

Definition 9 We denote Gm , G(Am, B, C), and Gm(0) = −BA−1
m C. Note that Gm ∈ H∞.

Since q(T ) = 0, we get

q(t) =

∫ t

T

e−A∗

m(t−s)C∗σ(s) ds = −Γ∗
Am

C∗σ (18)

Let us define uR = −R−1B∗q(t), which serves the purpose of tracking (as against stabilization). It follows
that

uR = R−1G∗
mσ, yh = GmR−1G∗

mσ + CeAmtvh(0) (19)

where G∗
m is defined (with respect to Gm) through Definition 8. The optimal cost can be written, with the

inner product defined over L2([0, T ]) as

J1 = 〈yh − σ, yh − σ〉 + 〈u, Ru〉 (20)

where we have used the symbol J1 to facilitate a comparison later in the paper. It is straight-forward to
show that

J1 = 〈σ, (P∗P + I − P)σ〉+ vh(0)
∗Wovh(0)

+〈CeAmtvh(0), (I − P)σ〉+ 〈(I − P)σ, CeAmtvh(0)〉

P = GmR−1G∗
m (21)

Notice that σ depends on vh when f(v) 6= 0 for some v.



Lemma 3 Let T < ∞ denote the terminal time. Then, the optimal cost J1 is bounded if and only if
σ ∈ L2([0, T ]).

Proof: We have that ‖Gm‖∞ < ∞, from Lemma 2. Moreover, ‖G∗
m‖∞ = ‖Gm‖∞ (Proposition 3.15, [5]), as

a result of which ‖P‖∞ < ∞. �
Next, we investigate the optimality of the closed-loop system with the control law (16) and (17) when

compared to traditional linear quadratic regulators. This entails a static causal approximation for q(t), and
provides the first glimpse into the optimality of the DAC architecture. In particular, we compare it directly
with standard LQR, LQT and SDRE-based control laws.

Remark 1 We note three important points in connection with the comparisons below. First, although the
comparisons are carried for relatively simple systems compared to (10), their value lies in benchmarking the
SDAC. Second, we are more interested in benchmarking the control law rather than the actual cost. This is
because the cost in most optimal control problems is, informally speaking, a means to an end (stability and
robustness) rather than an end in itself. Third, the difference between SDAC and other architectures arises,
primarily, due to the feedback of yp rather than xp.

4.1 Comparison with LQR/LQT

Consider the regulation problem, with f(v) ≡ 0 and r ≡ 0. In this special case, the equation for q(t) in (15)
can be simplified further. We recall Eq. (18):

q(t) =

∫ t

T

e−A∗

m(t−s)C∗σ(s) ds

We now let T → ∞ and make the coordinate transform τ = s− t. We also note that v(s) = eAm(s−t)vp(t).
This gives

q(t) =

(
∫ ∞

0

eA
∗

mτC∗CeAmτ dτ

)

vp(t) = Wovp(t)

where Wo is the observability Grammian for the closed-loop system. Thus, it follows that the optimal
regulator is given by

ureg(t) = −K vh(t)−R−1B∗Wovp(t)

= −K v(t) +R−1B∗(Π−Wo)vp(t) (22)

The classic LQR control law for the LTI system v̇ = Av + Bu is given by ulqr = −R−1B∗Π v, as in (16).
This gives us the first result for the sub-optimality of the DAC.

Lemma 4 Consider the system (10) with f(·) ≡ 0 and r ≡ 0. The optimal control law, given by (16) and
(22), converges exponentially fast to the classic LQR-based law. Moreover, the error between them is bounded
if B∗ is bounded.

Proof: Let v⋆ denote the trajectory generated by the classic LQR controller. We note that ureg(t)−ulqr(t) =
−K(v(t) − v⋆(t)) +R−1B∗(Π−Wo)vp(t).

It follows from the dynamics of vp in (10), together with Definition 2, that ‖vp(t)‖Z is bounded for all t
and ‖vp‖Z → 0 exponentially fast. Thus, ureg converges exponentially fast to ulqr, in the sense of Definition 7.

It follows that the dynamics of e = v − v⋆ are given by ė = Ame + BR−1B∗(Π − Wo)vp. Since Am

is the generator of an exponentially stable semi-group, it follows that ‖e(t)‖Z is bounded for all t. Hence,
ureg(t)− ulqr(t) is bounded for all t. This completes the proof. �

When r(t) = r 6= 0 for all t, following a similar approach as above, (18) can be solved to obtain

q(t) = Wovp(t) + (A∗
m)−1C∗r, (23)



where the operator (A∗
m)−1 is defined as per Definition 6. Akin to (22), we get

utrk(t) = −K vh(t)−R−1B∗
(

Wovp(t) + (A∗
m)−1C∗r

)

= −K v(t)+R−1B∗(Π−Wo) vp −R−1B∗(A∗
m)−1C∗r (24)

The classic linear quadratic tracking control law, following [14], is given by

ulqt = −K v(t)−R−1B∗(A∗
m)−1C∗r (25)

This gives us the following lemma, which generalizes Lemma 4. The proof is identical to that of Lemma 4.

Lemma 5 Consider the system (10) with f(·) ≡ 0 and r(t) = r (a constant) for all t. The optimal control
law, given by (16) and (22), converges exponentially fast to the classic LQT-based law (25). Moreover, the
error between them is bounded in the sense of L∞ if B∗ is bounded.

4.2 Comparison with SDRE

Next, we consider the problem where f(v) is known and r(t) = r, a constant for all t. An SDRE-based
control law can be obtained, following the usual procedure as in [16]. One important modification that we
make to the process of deriving the SDRE is that we do not merge f(v) into Av. Rather, we introduce the
state w ≡ 1, with the dynamics ẇ = 0 and w(0) = 1.

In preparation for applying SDRE, we rewrite the dynamics of (10), with v = vp+vh and with the output
denoted as yvw, as

[

v̇
ẇ

]

=

[

A f(v)
0 0

] [

v
w

]

+

[

B
0

]

u, yvw = [C − r]

[

v
w

]

(26)

The control objective is essentially that of regulating yvw while minimizing a cost function of the form (12).
Since the dynamics of w are not stabilizable, we obtain the SDRE by introducing a small discount e−ǫt into
the cost function. Subsequently, we allow ǫ → 0. We skip the steps, but note that the procedure is similar
to [16] and Sec. 4. The Riccati operator can be written as

Π =

[

Π11 Π12

Π∗
12 Π22

]

of which Π11 and Π12 are of relevance to the present discussion. Using the shorthand notation introduced
earlier, we write the expressions for Π11 and Π12 as

A∗Π11 +Π11A+ C∗C −Π11BR
−1B∗Π11 = 0

A∗
mΠ12(v) + Π11f(v)− C∗r = 0 (27)

We get that Π12 = (A∗
m)−1(C∗r −Π11f(v)), which yields

usdre = −Kv −R−1B∗(A∗
m)−1C∗r

+R−1B∗(A∗
m)−1Π11f(v) (28)

Notice that the first two terms are identical to ulqt from (25), and the gain K is also identical to the optimal
controller in (16). To facilitate a comparison, as before, we define

uR,sdre=−R−1B∗(A∗
m)−1C∗r +R−1B∗(A∗

m)−1Π11f(v)

We recall the corresponding expression for uR from (19):

uR = R−1B∗Γ∗
Am

C∗r −R−1B∗Γ∗
Am

C∗CΓAm
f(v) (29)



where we have assumed that vp(0) = 0. Thus, we get

uR − uR,sdre = R−1B∗(Γ∗
Am

+ (A∗
m)−1)C∗r

−R−1B∗(ΓA∗

m
C∗CΓAm

f(v) + (A∗
m)−1Π11f(v)) (30)

Since we have assumed that r is constant, it can be shown that

(uR − uR,sdre)t→∞ = −R−1B∗(ΓA∗

m
C∗CΓAm

f(v)

+(A∗
m)−1Π11f(v))

Here, we have compared the two control laws rather than the time histories of the two control signals. It is
clear that, unlike the LQR/LQT case, the two control laws need not converge to each other.

The static approximation works well when the dynamics of the particular half and the reference signal
are known a priori: this completely mitigates the anti-causal nature of the boundary value problem (17).
When these are unknown, the typical course of action (in the context of optimal control) has been to use
some form of dynamic approximation [14, 9]. We opt for an alternate approach, which seeks to approximate
the backward-in-time equation dynamics of q in (16) by a forward-in-time approximation.

5 Dynamic Causal Approximation for Adaptive Systems

It is a well-known property of the solution to the LQR problem that the adjoint state evolves on the stable
manifold of the combined system-adjoint dynamics, and the stable eigenvalues are precisely those of Am.
This motivates us to express the control signal using the following finite-dimensional dynamic approximation:

u(t) = −R−1B∗Πvh(t) +R−1HCp(t), (31)

ṗ(t) = HAp(t) +HBσ(t), p(0) = p0 ∈ R
np

where HA ∈ R
np×np is Hurwitz, and HB, H

⊤
C ∈ R

np . We set p(0) = 0, which is in contrast to the approach
taken in other causal approximations, such as [2].

We define
GH = HCΓHA

HB (32)

We state the dynamic approximation problem as follows.

Problem 1 Determine the system (HA, HB, HC ; HA ∈ H∞) which minimizes the cost function and ensures
that the closed-loop system in stable.

From the dynamics of p in (31), with p(0) = 0, we get

uR(t) = R−1GHσ(t), yh = GmR−1GH σ(t) + CeAmtvh(0) (33)

A comparison with the expression for uR from (19) suggests that we compute a dynamic approximation by
solving the Nehari problem:

GN
H = arg min

X∈H∞

‖G∗
m −X‖∞ (34)

This allows us to bound the error in the cost function with the dynamic approximation when compared to
J1 in (20). Let J2 denote the cost function accumulated by employing the controller in (31). Then, we have
that

J2 = ‖(GmR−1GN
H − Iny

)σ‖L2
+ ‖R1/2u‖L2

(35)

where

u = uR −Kvh

= (Inu
−KΓAm

B)R−1GN
Hσ −KeAmtvh(0) (36)

Note that σ depends on vp and hence on vh (through the nonlinear function f(v).). This can complicate
the comparison of J2 and J1 substantially. A simple comparison can be obtained for the case where f(v) is
actually independent of v; i.e., where it is a pure exogenous disturbance.



Theorem 1 Let σ(t) ∈ L2([0, T ]) be an exogenous signal and independent of the system state vh, and T > 0.
Consider the cost functions J1 and J2, evaluated in (20) and (35) with vh(0) being identical in both cases.
We have that |J2 − J1| ≤ k‖σ‖L2

, where k < ∞.

Proof: We recall the triangle inequality: ‖z1‖ − ‖z2‖ ≤ ‖z1 − z2‖. We apply it to each of the two terms in
the cost functions J1 and J2. This gives

|J2 − J1| ≤ ‖(GmR−1GN
H − GmR−1G∗

m)σ‖

+‖R−1/2(G∗
m − GN

H )σ‖, (37)

from which it follows that

|J2 − J1| ≤ S‖σ‖L2
(38)

S = (‖Gm‖∞ + ‖R−1/2‖∞)‖θG∗

m
‖

where θG∗

m
is the Hankel operator for Gm. This completes the proof. �

Theorem 1 calculates an explicit formula for an upper bound on the sub-optimality induced by the
dynamic causal approximation, in comparison to the “pure form” control law of (19).

Remark 2 In Theorem 1, the effect of v on σ is implicitly ignored. In order to factor in the effect of v,
it is essential to prove that the closed-loop system is stable. This is the subject of the next section. We use
stability in the sense of L∞ rather than L2.

Remark 3 (Asymptotic tracking) Although we minimize the cost of tracking, it does not guarantee
asymptotic tracking even when the reference input is a constant. In order to ensure asymptotic tracking,
one can either extend the state space to include the tracking error yh − σ as a state (as in [3]), or one can
solve the constrained Nehari problem

GN
H = arg minX∈H∞;Gm(0)R−1X̂(0)=Iny

‖G∗
m −X‖∞ (39)

where X̂ denotes the Laplace transform of X. This option, of course, worsens the bound in Theorem 1.

6 Analysis of the Complete Closed-Loop System

6.1 Summary of the Closed-Loop System

The closed-loop system consists of the original system (3) and the controller. If dynamic causal approximation
is employed, the controller consists of the primary control law

u(t) = −R−1B∗Πv(t) +R−1HCp(t) (40)

ṗ(t) = HAp(t) +HB(r(t) − ŷp(t)), p(0) = p0 (41)

and the observers equipped with the projection operator [11]:

˙̂vp=Amv̂p + α̂(t)φ(v), ŷp = Cv̂p
˙̂vh=Amv̂h − BR−1Hcp(t), ŷh = Cv̂h
˙̂αj(t) = γ Proj (α̂j , −〈P ṽ(t), φj(v)ej〉Z) ,

|α̂j(t)| < να(1 + ǫ)



6.2 Stability Analysis

We recall the following results from [17] and [18] for completeness. These results prove the stability of the
closed-loop system subject to a small gain condition.

Lemma 6 Suppose that ‖v‖W,t < ρw for some constant ρw > 0. Then, the observation error ‖ṽ(t)‖Z is
uniformly bounded and the bound can be made arbitrarily small by increasing γ. Furthermore, the observation
errors ‖ṽp(t)‖Z and ‖ṽh‖Z are uniformly bounded, and can be made arbitrarily small by increasing γ.

Next, we assert that the control input u(t) is bounded. Recall that the second term in the control signal
(40) by uR(t) = HCp(t). Let H(s) = HC(sI − HA)HB denote the transfer function between URr(s) and
(R(s)− Ŷp(s)).

Lemma 7 Let ‖v‖W,t < ρw for some t and ρw > 0. Then, the control input u(t) is bounded and a C1 function
of time. Moreover, there exist constants δiw ≡ δiw(H(s), ρ), δir ≡ δir(H(s), ρ) and δiu ≡ δiu(H(s), ρ) for
i = 0, 1 such that ‖uR‖L∞,τ ≤ δ0w‖v‖W,τ + δ0r‖r‖L∞,τ + δ0u.

Next, we define a small gain condition.

Assumption 4 (Small-gain condition) We assume that there exists a constant ρw, an arbitrarily small
ǫs > 0, and a stable strictly proper H(s) such that the following inequality is satisfied:

Mρ0 + ‖ΓAm
‖i(ν2(ρw)+δ0r‖r‖L∞

+δ0u)

1− ‖ΓAm
‖i(ν1(ρw) + ‖B‖i(δ0w)

≤ ρ− ǫs

where the constants have been defined in Assumption 2 and Lemma 7.

Finally, we state the main result of this section.

Theorem 2 The closed-loop system summarized in Sec. 6.1 is well-posed and bounded-input-bounded-state
stable in the sense of L∞ if Assumption 4 is satisfied.

Notice that the satisfaction of the small gain condition also endows the closed-loop system with robustness.
The proof of well-posedness relies on Theorems 6.1.4 and 6.1.5 from [20].

6.3 Bounds on the Cost

We would like to derive some bounds on the cost function. In a nonlinear setting, the baseline cost is J1
from the pure form solution of Sec. 4. Lemma 6 leads us to conclude that there exists a constant ρobs which
can be made arbitrarily small, such that

‖ŷ − y‖L∞,T ≤ ρobs

Thus, the cost calculated using Theorem 1 and (20) is a reasonable estimate of the cost incurred by the
closed-loop system. We note that an exact expression can be found when φ(v) = 1. When f(v) = Sv for
some linear S, expressions similar to (19) and (20) would feature a semigroup generated by the time-varying
operator Am + α̂(t)S. Even in that case, since the same semigroup would feature in the computation of J2,
the expression for the difference would be similar to (38).

7 Conclusion

We analyzed the optimality of LQR-based tracking control laws designed for semilinear systems in the dyadic
adaptive control (DAC) framework. We showed that a “pure form” law (i.e., without any dedicated causal
approximation) converges exponentially to standard LQR laws for LTI systems. We determined analytical
expressions for the cost function in the presence of a dynamic compensator for causal approximation for



a class of perturbed linear systems. The compensator design problem was posed, in particular, in the
framework of model-matching problems. While an exact expression for the cost function in the presence
of nonlinear forcing remains elusive, the present paper has amply demonstrated the utility of the dyadic
adaptive architecture for accommodating optimality, robustness and adaptation systematically in a single
framework.
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