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Abstract. We introduce the notion of Worst-Case Sensitivity, defined as the worst-case

rate of increase in the expected cost of a Distributionally Robust Optimization (DRO)

model when the size of the uncertainty set vanishes. We show that worst-case sensitivity

is a generalized measure of deviation and that a large class of DRO models are essentially

mean-(worst-case) sensitivity problems when uncertainty sets are small, unifying recent

results on the relationship between DRO and regularized empirical optimization with

worst-case sensitivity playing the role of the regularizer. More generally, DRO solutions

can be sensitive to the family and size of the uncertainty set, and reflect the properties of

its worst-case sensitivity. We derive closed-form expressions of worst-case sensitivity for

well known uncertainty sets including smooth φ-divergence, total variation, “budgeted”

uncertainty sets, uncertainty sets corresponding to a convex combination of expected value

and CVaR, and the Wasserstein metric. These can be used to select the uncertainty set

and its size for a given application.

Key words: Distributionally robust optimization, worst-case sensitivity, generalized mea-

sure of deviation, model uncertainty, uncertainty sets, regularizer.

1. Introduction

Consider a cost function f(x, Y ) where x is the decision and Y is a discrete random vari-

able with (nominal) distribution P = [p1, · · · , pn]. For example, P could be the empirical

distribution associated with a historical sample of Y ’s generated iid from some unknown

distribution. We would like to find a decision that performs well out-of-sample, a candidate
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for which is the minimizer of the sample average approximation (SAA)

min
x

EP[f(x, Y )].

In many situations, the solution of this problem does not perform well out-of-sample because

the in-sample model is misspecified. If the expected cost of the in-sample optimizer is

sensitive to perturbations of this model, the out-of-sample expected cost may increase

significantly because of differences between the in- and out-of-sample distributions. One

approach to account for model misspecification is Distributionally Robust Optimization

(DRO), where decisions are obtained by optimizing the worst-case expected cost over a

family of alternative models. More generally, we would like to find a decision that performs

well (in-sample) and continues to perform well when the in-sample model is incorrect.

Distributionally Robust Optimization (DRO). Let Q(ε) be an uncertainty set of size ε,

specifically, a set of probability distributions containing the nominal distribution P that is

increasing in ε and degenerates to the nominal distribution Q(0) = {P} when ε = 0. For

example, Q(ε) could be a set of the form {Q |d(Q |P) ≤ ε} where d(Q |P) is φ-divergence or

the Wasserstein metric. The worst-case expected cost with respect to Q(ε) is

V (ε; f(x, ·)) := max
Q∈Q(ε)

EQ[f(x, Y )]. (1.1)

Distributionally Robust Optimization (DRO) is the worst-case problem

min
x
V (ε; f(x, ·)) ≡ min

x
max

Q∈Q(ε)
EQ[f(x, Y )].

We refer to V as the value function of the worst-case problem which, under the assumptions

in this paper, is increasing, continuous and concave in ε. When it is clear from the context,

we write V (ε) ≡ V (ε; f(x, ·)) if f and x are fixed and we are concerned about the dependence

of V on ε, or V (ε, x) ≡ V (ε; f(x, ·)) if we are interested in an optimization problem over x.

The solution of the DRO problem is denoted by x(ε).

Worst-case Sensitivity. Suppose x is fixed and V (ε, x) has a finite right derivative in ε at

ε = 0. The worst-case sensitivity is the right derivative of the value function at ε = 0:

SP[f(x, ·)] = V ′(0+; f(x, ·)) = lim
ε↓0

V (ε; f(x, ·))−
∑n

i=1 pif(x, Yi)

ε
. (1.2)

When the sensitivity is large, small deviations from the nominal distribution can result in

a large increase in the expected cost; such a decision is not robust.
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Table 1.1. Worst case sensitivities

Type of divergence/worst-case objective Worst-case sensitivity

φ-divergence with any smooth φ-function
√

2Vp(f)
φ′′(1)

Total variation (or φ-div. with φ(z) = |z − 1|) 1
2

(
max(f)−min(f)

)
budgeted uncertainty (or φ-div. with φ = δ[0,1+ε]) Ep(f)−min(f)

(1− δ)“expected cost”+δ“max cost” max(f)− Ep(f)

φ-divergence with φ = δ[ 1
1+ε

,1+ε] CVaRp, 1
2
(f)− Ep(f)

(1− δ)“expected cost”+δ“α-CVaR” CVaRp,α(f)− Ep(f)

Wasserstein distance with f(zi)− f(Yi) ≤ L‖zi − Yi‖p max
i=1,··· ,n

max
zi

f(zi)−f(Yi)
‖zi−Yi‖p

Summary of contributions. We show under mild conditions that a large class of DRO

problems can be interpreted as multi-objective problems that tradeoff between expected cost

and some measure of sensitivity. This measure of sensitivity is bounded above by worst-

case sensitivity (1.2) where the bound is tight when ε vanishes. This shows that DRO is

fundamentally a tradeoff between mean and sensitivity, generalizing an interpretation of the

“variance regularizer” from [16] where the penalty form of DRO with smooth φ-divergence

was shown to be equivalent to a mean-variance problem when uncertainty sets were small,

and unifying recent results connecting various DRO models and “regularized SAA”.

We derive explicit expressions for worst-case sensitivity (1.2) for a number of popular un-

certainty sets including smooth φ-divergence, total variation, “budgeted uncertainty” (i.e.

hard constraints on the likelihood ratio), and the Wasserstein distance, which are sum-

marized in Table 1.1. Under standard assumptions, worst-case sensitivity is a generalized

measure of deviation [28]. Intuitively, sensitivity is large if small errors in the nominal

model—particularly, the probability of extreme costs—have a big impact on the mean,

which will be the case if the spread of the cost distribution is large. Sensitivity can be

reduced by selecting a decision with a smaller spread, and the equivalence between DRO

mean-sensitivity (spread) optimization shows that this is precisely what it is doing. Dif-

ferent uncertainty sets correspond to different measures of spread, which determines the

nature of the DRO solutions, while the tradeoff between expected cost and sensitivity is

determined by the size of the uncertainty set.

The closed-form expressions we derive for worst-case sensitivity can be used to select the

uncertainty set that is most appropriate for any given application. For example, DRO

with “budgeted uncertainty” controls the spread of the “good” side of the cost distribution
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(Table 1.1). Doing so, however, may result in solutions that increase the length of the “bad”

side of the tail, making it a poor choice in applications where losses can be large. Indeed, it

is possible for the DRO solution under one uncertainty set (e.g., “budgeted uncertainty”)

to be less robust than SAA from the perspective of another (e.g., smooth φ-divergence);

an inappropriate choice of uncertainty set can result in the SAA optimizer being replaced

by a decision that is even less robust. Finally, for the inventory problem, L1 Wasserstein

sensitivity is independent of the decision, which makes it a poor choice of uncertainty set

for this application.

Overview of paper. We review the relevant literature in Section 2. In Section 3, we

show how well-known duality results for DRO allow us to view all DRO problems as a

tradeoff between mean cost and worst-case sensitivity when uncertainty sets are small.

Under standard assumptions, these sensitivity measures are also measures of spread. We

derive explicit expressions for worst-case sensitivity for a number of different uncertainty

sets in Section 4. Examples are presented in Section 5.

Remark 1.1. There are uncertainty sets where the right derivative V ′(0+) of the worst-

case problem is unbounded. For example, when d(Q |P) is sufficiently smooth φ-divergence,

V (ε) − V (0) is O(
√
ε) and V ′(0+) is unbounded, so the definition (1.2) is not helpful. If

V (ε)−V (0) ∼ O(g(ε)), where g(ε) is strictly concave and increasing in ε with g(0) = 0, we

define worst-case sensitivity (with growth rate g(ε)) as

SP[f ] = lim
ε↓0

V (ε)−
∑n

i=1 pif(Yi)

g(ε)
, (1.3)

in which case

V (ε, x) =
n∑
i=1

pif(x, Yi) + g(ε)SP[f(x, ·)] + o(g(ε)), ε > 0. (1.4)

As in (3.3), optimizing the worst-case cost V (ε, x) is again a tradeoff between expected

cost and sensitivity, the only difference being that that robustness parameter ε no longer

appears linearly. Since V (ε) is concave and increasing, so too is g(ε), and g(0) = 0.

2. Literature Review

While the DRO (and robust optimization) literature is very large, the focus has been on

methodology for solving worst-case problems for a diverse range of uncertainty sets and

applications [4, 5, 7, 11, 18, 22, 23, 25, 26]. While the motivation for DRO is to find

decisions that are insensitive to model uncertainty, worst-case solutions can be sensitive

to the choice of the uncertainty set, and “robust” solutions under one uncertainty set can
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be less robust than the SAA solution under another. There is little guidance on how the

uncertainty set should be chosen for a given application.

When it comes to size, much of the literature suggests that ε be chosen so that the un-

certainty set Q(ε) contains the true model with high probability (e.g., 95%). This ignores

the multi-objective nature of DRO, and there is also little reason to believe that a pre-

ordained confidence level selected independently of data and objective always leads to a

“good” decision for all applications1. A second approach treats ε as a free parameter, like

the regularization parameter in regression, chosen to optimize an estimate of out-of-sample

expected cost obtained from cross-validation or the bootstrap. While this accounts for both

data and the objective, it ignores the sensitivity reduction objective intrinsic to DRO. It

is easy to construct examples with high levels of model uncertainty where ε = 0 (SAA)

optimizes the resampled estimate of the out-of-sample cost [17]. If sensitivity is ignored,

this approach recommends that it is optimal not to be robust.

Worst-case sensitivity (1.2) is defined in [21] where it is used to study the accuracy of

simulated estimates of the mean of a random variables. However, this paper does not

consider implications for robust optimization, and only considers uncertainty sets defined

in terms of relative entropy (a special case of smooth φ-divergence).

The connection between worst-case sensitivity and “minimally robust” DRO with smooth

φ-divergence penalty functions is discussed in [16, 17], with [16] showing that worst-case sen-

sitivity corresponds to the variance of the reward, and [17] studying the out-of-sample prop-

erties of the associated mean-variance frontier. The paper [12] derives high-probability per-

formance bounds for the out-of-sample expected reward for solutions of variance-regularized

loss minimization. The present paper derives worst-case sensitivity for uncertainty sets be-

yond smooth φ-divergence, provides elementary arguments linking DRO and mean-sensitivity

optimization under very mild assumptions, and shows that worst-case sensitivity is gener-

ally a measure of spread. The mean-sensitivity connection shows that DRO is intrinsically

a tradeoff between minimizing the expected cost and controlling the spread of the cost dis-

tribution under the nominal, with different uncertainty sets giving rise to different measures

of spread. Closed form expressions for worst-case sensitivity make this tradeoff explicit, and

can also be used to select the family and size of the uncertainty set in any given application.

Several papers discuss the relationship between DRO and “regularized SAA”. For ex-

ample, [8, 14, 20, 29] show that worst-case regression and classification problems with the

1Indeed, extensive calculations with a state of the art data science methods and otherworldly computa-

tional power [1] suggests that the answer is more likely to be 42%.
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Wasserstein metric are equivalent to regularized versions of these problems. More generally,

[6, 8, 12, 14, 20, 29, 31] consider worst-case optimization for a particular uncertainty set

and derive the corresponding “regularized SAA” problem. We unify these ideas by show-

ing that the “regularizer” is worst-case sensitivity. We also show that it is a “generalized

measure of deviation” [28] and derive an explicit expression for several popular uncertainty

sets. These expressions show how an uncertainty set affects the solution of a DRO model,

and can be used to select the family and size of the uncertainty set in a given application.

Variance (sensitivity) reduction properties of DRO solutions have also been observed em-

pirically in the literature. In a network model of project management [2], simulations show

that robustness prioritizes reducing the variance of the cost (activity duration) over its

mean, while [19] shows variance reduction of the out-of-sample cost under the solution of a

dynamic DRO problem. The solution of a worst-case newsvendor application [10] is shown

to be optimal for a risk-neutral model with a heavy-tailed demand distribution for the

demand, thus controlling the impact of extreme events on the cost.

As a final note, while DRO controls the spread (sensitivity) of the cost, robustness can

reduce but also increase the out-of-sample variance of the solution (e.g. solution variability

decreases for robust classification and regression models that are equivalent to Lp solu-

tion regularization [6, 8, 14, 29, 31] while [16] gives an example where solution variability

increases).

3. DRO and sensitivity

We reinterpret duality results from the perspective of mean-sensitivity tradeoffs and show,

under mild conditions, that DRO problems are mean-sensitivity problems, that worst-case

sensitivity is a tight upper bound of “DRO sensitivity” being equal in the limit ε ↓ 0, and

that worst-case sensitivity is a measure of the spread of the cost distribution. The purpose

of this section is to motivate our study of worst-case sensitivity by putting it in the context

of classical results and highlighting the cost-sensitivity tradeoff is intrinsic to DRO.

Mean-sensitivity problems. Recall the worst-case objective (1.1). Since uncertainty

sets Q(ε) are increasing in ε and contain the nominal P, the worst-case expected cost is

equal to the nominal expected cost when ε = 0 and monotonically increasing in ε (see

Figure 3.1). It follows that there is a function A
(
ε; f(x, Y )

)
, which we refer to as the
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ambiguity cost, that is non-negative and increasing in ε such that A
(
0; f(x, Y )

)
= 0 and

V (ε, x) = EP[f(x, Y )] +A
(
ε; f(x, Y )

)
(3.1)

worst-case sensitivity
Sp(f) ≡ V ′(0+; f)

A(θ; f)

slope

S(ε, f) = A(ε;f)
ε

V (0; f) ≡ Ep(f)

ε

V (ε; f)

ε

V (ε; f)

Figure 3.1. Worst-case sensitivity is the right derivative of V (ε; f) at ε =

0.

For every ε, we define average sensitivity

S
(
ε; f(x, Y )

)
≡ 1

ε
A
(
ε; f(x, Y )

)
.

It follows that the worst-case problem is a mean-sensitivity problem:

min
x
V (ε, x) ≡ min

x
EP[f(x, Y )] + εS

(
ε; f(x, Y )

)
. (3.2)

When ε = 0, the robust decision maker optimizes the SAA. As ε increases, he/she absorbs

a larger expected cost in return for a lower sensitivity, as illustrated in Figure 3.2.

Suppose that V (ε) is right differentiable at ε = 0. By (1.3), average sensitivity equals

worst-case sensitivity in the limit as ε ↓ 0

SP
[
f(x, Y )

]
= lim

ε↓0
S
(
ε; f(x, Y )

)
= lim

ε↓0

1

ε
A
(
ε; f(x, Y )

)
.

In particular, DRO is a tradeoff between mean and worst-case sensitivity when ε is small

min
x
V (ε, x) ≡ min

x
EP[f(x, Y )] + εSP

[
f(x, Y )

]
+ o(ε). (3.3)

In many situations, A
(
ε; f(x, Y )

)
is also concave in ε in addition to being increasing and

non-negative. This is true for all models considered in this paper2. In this case, average

2V (ε; f(x, ·)), and hence A
(
ε; f(x, Y )

)
, is concave in ε if the set of alternative probability measures can

be written in the form Q(ε) = {Q | d(Q) ≤ ε} for some convex function d of Q.
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ε

V (ε)

εS(ε, x1)
εS(ε, x2)

Ep[f(x1, Y )]

Ep[f(x2, Y )]

slope S(ε, x2)

slope S(ε, x1)

ε

V (·, x2)

V (·, x1)

Figure 3.2. DRO is a tradeoff between expected cost EP[f(x, Y )] and av-

erage sensitivity S(ε;x). x1 is optimal when ε = 0, but x2 is optimal when ε

is sufficiently large. Although the nominal cost under x2 is higher, average

sensitivity is lower, S(ε;x2) < S(ε;x1).

sensitivity S
(
ε; f(x, Y )

)
is decreasing in ε and worst-case sensitivity is a tight upper bound:

SP
[
f(x, Y )

]
≥ S

(
ε; f(x, Y )

)
for all ε ≥ 0.

Sensitivity is a measure of deviation. A Generalized Measure of Deviation [28] mea-

sures the spread of a random variable, generalizing the notion of the standard deviation.

Definition 3.1. Let f be a random variable. H[f ] is a Generalized Measure of Deviation

or a Generalized Measure of Spread of f if

(1) H[f ] ≥ 0 with equality if and only if f is constant;

(2) H[βf ] = βH[f ] for every constant β ≥ 0;

(3) H[α+ f ] = H[f ] for every constant α ∈ R.

For the rest of the paper, we focus on discrete random variables, which allows us to treat

a random variable as an n-vector. Let fi := f(Yi), and denote f := (f1, ..., fn)> and

p := (p1, ..., pn)>, where pi is the probability mass on fi. Without loss of generality, we

assume that pi > 0 for all i = 1, ..., n. Likewise, we reserve q := (q1, ..., qn)> for an

alternative probability distribution Q. Furthermore, Ep(f) := p>f, Vp(f), and Sp(f) denote,

respectively, expectation EP[f ], variance VP[f ], and worst-case sensitivity SP[f ] of f ≡ f

under p ≡ P. Many of our results have generalizations to more complex settings, though

the intuition from the discrete setting carries across. The restriction to discrete random

variables enables us to communicate our message with minimal technical fuss.
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The following result shows that worst-case sensitivity is a generalized measure of deviation,

and hence, measures the spread of the cost distribution under the nominal. It is well

known that A(ε; f) and S(ε; f) are generalized measures of deviation, which we include in

the statement for completeness. The proof is in the Appendix.

Proposition 3.2. Let f ∈ Rn denote the support of a random variable f , and let p ∈ Rn

satisfy 1>p = 1, p ≥ 0. Suppose that d(q|p) : Rn × Rn → R is convex and continuous in q

and d(q|p) = 0 if q = p. Then the ambiguity cost (3.1) satisfies

A(ε; f) = max
q∈Q(ε)

n∑
i=1

qi

(
fi − EP[f ]

)
,

Q(ε) =
{

q = (q1, · · · , qn)> ∈ Rn
∣∣∣ 1>q = 1, q ≥ 0, d(q|p) ≤ ε

}
.

For every ε > 0, the ambiguity cost A(ε; f) and average sensitivity S(ε; f) = 1
εA(ε; f) are

generalized measures of deviation of f . If there is a constant k > 0 such that

d(p + δ∆|p) ∼ O(δk) when δ → 0, (3.4)

for every ∆ ∈ Rn such that 1′∆ = 0, then A(ε; f) ∼ O(ε
1
k ) and worst-case sensitivity

SP[f(x, Y )] defined by (1.3) is a generalized measure of deviation with g(ε) = ε
1
k .

When the uncertainty set is a constraint on smooth φ-divergence, g(ε) =
√
ε in the definition

(1.3) of worst-case sensitivity and (3.4) holds with k = 2. It is linear in ε in all other cases

considered in this paper. Proposition 3.2 shows that g(ε) is determined by the continuity

property (3.4) of the uncertainty set.

4. Worst-case sensitivity: Explicit formulas

We derive explicit expressions for worst-case sensitivity for uncertainty sets associated with

smooth φ-divergence, Total Variation, budgeted uncertainty sets, uncertainty sets corre-

sponding to a convex combination of the nominal distribution and a CVaR-type uncertainty

set, and the Wasserstein metric. For the purposes of readability, all proofs can be found in

the Appendix.

4.1. Smooth φ-divergences. Consider the worst-case objective

Vφ(ε; f) := max
q∈Qφ(ε)

n∑
i=1

qifi, (4.1)
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where

Qφ(ε) :=
{

q := (q1, ..., qn)> ∈ Rn
∣∣∣ n∑
i=1

piφ
( qi
pi

)
≤ ε, 1>q = 1, q ≥ 0

}
.

We assume the following.

Assumption 4.1. φ(z) is strictly convex, twice continuously differentiable in z, with φ(1) =

0, φ′(1) = 0 and φ′′(1) > 0.

Since pi > 0 for all i, Assumption 4.1 and convex duality imply that for small ε > 0,

Vφ(ε) = min
δ>0, c

max
q>0

n∑
i=1

qif +
1

δ

(
ε−

n∑
i=1

piφ
( qi
pi

))
+ c
( n∑
i=1

qi − 1
)
.

The following result characterizes the solution (c(ε), δ(ε)) of the dual problem and the

associated worst-case distribution q(ε) =
(
q1(ε), · · · , qn(ε)

)>
when ε is small.

Proposition 4.2. Suppose that φ satisfies Assumption 4.1. Then

c(ε) = −Ep(f) +O(
√
ε), (4.2)

δ(ε) =
√
ε

√
2φ′′(1)

Vp(f)
+ o(
√
ε). (4.3)

The family of worst-case distributions {q(ε) | ε ≥ 0} satisfies

qi(ε) = pi

{
1 +

√
2ε

Vp(f)
(fi − Ep(f))

}
+ o(
√
ε). (4.4)

The worst-case expected cost is the expected cost under the worst-case distribution

Vφ(ε) = Eq(ε)(f)

= Ep(f) +
√
ε

√
2Vp(f)

φ′′(1)
+ o(
√
ε). (4.5)

It follows that Vφ(ε)− Vφ(0) is O(
√
ε), so worst-case sensitivity (1.3) with g(ε) =

√
ε is as

follows.

Proposition 4.3. Suppose Assumption 4.1 is satisfied. Then

Sp(f) = lim
ε↓0

Vφ(ε)− Vφ(0)√
ε

=

√
2Vp(f)

φ′′(1)
. (4.6)

A closely related result for the case φ(z) is relative entropy was derived in [21], while [16]

derives worst-case sensitivity for the “penalty formulation” of the DRO model.
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Example 4.4. When φ-divergence is modified modified χ2, φ(z) = 1
2(z − 1)2

c(ε) = −Ep(f), δ(ε) =

√
2ε

Vp(f)

and the worst-case distribution is

qi(ε) = pi
{

1 + δ(fi + c)
}

= pi

{
1 +

√
2ε

Vp(f)

(
fi − Ep(f)

)}
.

This holds for all ε ≥ 0 as long as qi(ε) ≥ 0, and not just when it is small. It follows that

Vφ(ε) =
n∑
i=1

pifi +
√
ε
√

2Vp(f).

Clearly, Vφ(ε)− Vφ(0) ∼ O(
√
ε) and worst-case sensitivity is

Sp(f) =
√

2Vp(f). (4.7)

Example 4.5. In [16], the penalty version of the worst-case problem is used to define

worst-case sensitivity. Specifically, a family of worst-case distributions {q̃(δ) | δ ≥ 0} is

given by the solutions of the worst-case problem

q̃(δ) :=

 arg max
q

{ n∑
i=1

qifi −
1

δ

n∑
i=1

piφ
( qi
pi

)}
, δ > 0,

p, δ = 0,

(4.8)

where the parameter δ determines the penalty on deviations from the nominal. In partic-

ular, δ = 0 gives the nominal and increasing δ is analogous to increasing the size of the

uncertainty set in (4.1). When the penalty version is used to define the set of worst-case

measures, the worst-case expected cost under q̃(δ) is linear in the ambiguity parameter

V (δ) ≡ Eq̃(δ)(f) = Ep(f) +
δ

φ′′(1)
Vp(f) + o(δ),

so the standard definition of sensitivity (1.2) can be used:

Sp(f) = lim
δ↓0

Eq̃(δ)(f)− Ep(f)

δ
=

1

φ′′(1)
Vp(f). (4.9)

While this leads to a different sensitivity measure, the qualitative nature is the same as

(4.6).

4.2. Total Variation. Consider the worst-case expected cost

VTV(ε; f) := max
q∈QTV(ε)

Eq(f)

with uncertainty set

QTV(ε) :=
{

q ∈ Rn
∣∣∣ 1>|q− p| ≤ ε, 1>q = 1, q ≥ 0

}
,
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for ε ≥ 0, where |z| := (|z1|, ..., |zn|)>. (We can focus on ε ≤ 2 since the set coincides with

the unit simplex {q ∈ Rn|1>q = 1, q ≥ 0} otherwise.) This uncertainty set is equivalent

to a constraint on φ-divergence with φ(z) = |z − 1|. Note however that φ(z) it is not

differentiable at z = 1 so the results from Section 4.1 do not apply.

Consider an ordering of the components of the cost vector f = (f1, ..., fn)> ∈ Rn from

largest to smallest and denote the ith largest component by f(i), i.e.,

f(1) ≥ · · · ≥ f(n), (4.10)

and let p(i) denote the probability mass corresponding to f(i). The following lemma char-

acterizes the worst-case objective for sufficiently small ε.

Lemma 4.6. Suppose that f corresponds to a nonconstant random variable and ε ∈
(0,min(p)). Then a worst-case probability distribution is

(q(1), q(2), ..., q(n−1), q(n)) =
(
p(1) +

ε

2
, p(2), ..., p(n−1), p(n) −

ε

2

)
(4.11)

and the worst-case objective is

VTV(ε; f) = Ep(f) +
ε(max(f)−min(f))

2
,

where q(i) denotes the worst-case probability mass corresponding to f(i).

The expression for worst-case sensitivity follows immediately.

Proposition 4.7. For the Total Variation uncertainty set QTV(ε), worst-case sensitivity

Sp(f) =
max(f)−min(f)

2
≡ 1

2
× “Range of f.” (4.12)

It is known (e.g. [30]) that for any f and p = 1/n,√
Vp(f) ≤ 1

2
Range(f),

and, accordingly, we have √
φ′′(1)

2
V ′φ(0+) ≤ V ′TV(0+). (4.13)

This suggests that when ε is small, the solution of the DRO problem with the Total Variation

uncertainty set will be close to optimal for DRO with smooth φ-divergence.
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4.3. Budgeted uncertainty. Consider the uncertainty set

Qb(ε) =
{

q ∈ Rn
∣∣∣ 1>q = 1, 0 ≤ q ≤ (1 + ε)p

}
(4.14)

and worst-case expected cost

Vb(ε; f) := max
q∈Qb(ε)

Eq(f), (4.15)

for ε ≥ 0. (We can focus on ε ≤ maxi{ 1
pi
− 1} since Qb(ε) is a set of probability distribu-

tions otherwise.) For ε ∈ (0,mini{ 1
pi
− 1}), the worst-case distribution is given by

(q(1), ..., q(k), q(k+1), q(k+2), ..., q(n)) =
(
(1 + ε)p(1), ..., (1 + ε)p(k), 1− (1 + ε)

k∑
i=1

p(i), 0, ..., 0
)
.

The set (4.14) can be referred to as the budgeted uncertainty set and is related to the

Conditional Value-at-Risk with parameter α ∈ (0, 1) (α-CVaR)

CVaRp,α(f) = max
q

{
f>q

∣∣∣ 1>q = 1, 0 ≤ q ≤ 1

1− α
p
}

(4.16)

Obviously, Vb(ε) = CVaRp, ε
1+ε

(f).

Vb(ε) is piecewise linear, concave, and increasing in ε. The following result characterizes

the slope of the worst-case expected cost Vb(ε) for all values of ε.

Proposition 4.8. Let ε > 0. Suppose k ∈ {1, ..., n} is an integer such that

ε ∈
[∑n

i=k+1 p(i)∑k
i=1 p(i)

,

∑n
i=k p(i)∑k−1
i=1 p(i)

)
, (4.17)

where p(i) is the probability mass of the i-th largest cost, f(i), and
n∑

i=n+1
p(i) =

0∑
i=1

p(i) = 0

and 1/0 =∞. For ∆ > 0 satisfying ε+ ∆ <
∑n
i=k p(i)∑k−1
i=1 p(i)

, we have

Sb(ε) :=
Vb(ε+ ∆)− Vb(ε)

∆
=

k∑
i=1

p(i)

(
f(i) − f(k+1)

)
(4.18)

=
1

1 + ε

(
CVaRp, ε

1+ε
(f)−VaRp, ε

1+ε
(f)
)
. (4.19)

(4.18) defines the constant slope of the linear piece over the interval (4.17). Let

ε(h) =

∑n
i=n−h+1 p(i)∑n−h
i=1 p(i)

, h = 1, 2, ..., n.
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For ε ∈ [ε(k), ε(k+1)),

Vb(ε) = Vb(0) +
k−1∑
h=0

Sb(εh)(ε(h+1) − ε(h)) + Sb(εk)(ε− ε(k))

= Vb(0) +

k−1∑
h=0

p(h)

1 + ε(h)

(
CVaR

p,
ε(h)

1+ε(h)

−VaR
p,

ε(h)
1+ε(h)

)
(ε(h+1) − ε(h))

+
p(k)

1 + ε(k)

(
CVaR

p,
ε(k)

1+ε(k)

−VaR
p,

ε(k)
1+ε(k)

)
(ε− ε(k)).

Since Vb(ε) is concave and increasing, its slope is the largest over the left-most piece

(0,
p(n)

1−p(n)
). For ε ∈ (0,

p(n)

1−p(n)
) and ∆ sufficiently small, (4.19) becomes

Vb(ε+ ∆)− Vb(ε)

∆
= Ep(f)−min(f).

The following expression for worst-case sensitivity follows immediately.

Corollary 4.9. For (4.15), we have

Sp(f) = Ep(f)−min(f). (4.20)

While worst-case sensitivity (4.20) is a measure of spread, it only depends on the “good”

side of the cost distribution. In contrast, smooth φ-divergence (4.6) and Total Variation

(4.12) depend on the entire distribution. We now see an uncertainty set where worst-case

sensitivity depends on the spread of the “bad” part of the cost-distribution.

4.4. Convex Combination of Expected Loss and CVaR. Let p be the nominal dis-

tribution, α ∈ [0, 1) be a fixed parameter, and consider the uncertainty set

Qc(ε) := (1− ε){p}+ εQCVaR(α) (4.21)

parameterized by ε ∈ [0, 1] where

QCVaR(α) :=
{

q ∈ Rn
∣∣∣ 1>q = 1, 0 ≤ q ≤ 1

1− α
p
}

is the feasible set of (4.16). The worst-case expected cost is

Vc(ε; f) := max
q∈Qc(ε)

Eq(f). (4.22)

Observe that Qc(0) = {p}, so there is no robustness if ε = 0 and the worst-case expected

cost is SAA. The uncertainty set (4.21) was considered in [3] and is equivalent to

Qc(ε) :=
{

q ∈ Rn
∣∣∣ 1>q = 1, p(1− ε) ≤ q ≤ p(1− ε) +

ε

1− α
p
}
.
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Adopting the convention (4.10), the worst-case probability distribution is given by(
q(1), ..., q(k), q(k+1), q(k+2), ..., q(n)

)
≡ arg max

q∈Qc(ε)
Eq(f)

= (1− ε)
(
p(1), ..., p(k), p(k+1), p(k+2), ..., p(n)

)
+ ε
( 1

1− α
p(1), ...,

1

1− α
p(k), 1−

1

1− α

k∑
i=1

p(i), 0, ..., 0
)

=
(

(1 +
αε

1− α
)p(1), ..., (1 +

αε

1− α
)p(k), (1− ε)p(k+1) + ε

(
1− 1

1− α

k∑
i=1

p(i)

)
,

(1− ε)p(k+2), ..., (1− ε)p(n)

)
.

It can be shown that the worst-case objective satisfies

Vc(ε; f) := (1− ε)Ep(f) + εCVaRp,α(f).

It follows that for any non-uniform vector f and ε ∈ (0, 1], the function Vc(ε) is linearly

increasing at a rate of its CVaR Deviation [28]

Vc(ε)− Ep(f)

ε
= CVaRp,α(f)− Ep(f). (4.23)

The following expression for worst-case sensitivity is obtained by letting ε↘ 0.

Corollary 4.10. For (4.22), we have

Sp(f) = CVaRp,α(f)− Ep(f) ≡ “CVaR Deviation of f.” (4.24)

Since CVaRp,α(f) = max(f) := max{f1, ..., fn} for α ∈ [1 − p(1), 1), worst-case sensitivity

is the spread of the “bad” part of the cost distribution, Sp(f) = max(f) − Ep(f), which

contrasts with (4.20).

Remark 4.11. If 0 ≤ L ≤ 1 ≤ U , the uncertainty set

Qw(L,U) :=
{

q ∈ Rn
∣∣∣ 1>q = 1, Lp ≤ q ≤ Up

}
is equivalent to φ-divergence with φ(z) = δ[L,U ](z). The worst-case expected cost is

Vw(L,U ; f) := L · Ep(f) + (1− L) · CVaRp, U−1
U−L

(f).

If (L,U) = (0, 1
1−α), Vw(L,U) is α-CVaR. If (L,U) = (1 − ε, 1−(1−ε)α

1−α ), Vw(L,U) is Vc(ε).

While the parameter α is usually fixed (e.g., at 0.95 or 0.99), it can be viewed as another

hyperparameter, in addition to ε, that defines the uncertainty set. A reasonable option
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to merge the two parameters into a single one is to set as U = 1
L = 1 + ν > 0, and the

uncertainty set becomes

Qs(ν) :=
{

q
∣∣∣ 1>q = 1,

1

1 + ν
p ≤ q ≤ (1 + ν)p

}
=
{

q
∣∣∣ 1>q = 1,

1

1 + ν
q ≤ p ≤ (1 + ν)q

}
.

It is easy to see that the worst-case sensitivity is then Sp(f) = CVaRp, 1
2
(f)− Ep(f).

We can associate CVaR deviation with the standard deviation.

Proposition 4.12. Let f ∈ Rn and α ∈ (0, 1). For p = 1/n, we have

“CVaR Deviation of f” ≡ CVaRp,α(f)− Ep(f) ≤ Cα,n
√

Vp(f), (4.25)

where

Cα,n :=

√
n
{
bκc+

(
κ− bκc

)2}− κ2

κ

with κ := n(1−α). The inequality (4.25) is tight, i.e., there is a vector f which attains the

equality.

Note that Cα,n ≤
√

α
1−α for all α ∈ [0, 1), and especially when n(1 − α) ∈ Z, the equal-

ity holds. Accordingly, (4.25) suggests a relation between α-CVaR and Mean-Standard

Deviation:

CVaRp,α(f) ≤ Ep(f) +

√
α

1− α

√
Vp(f),

or

Vb(ε; f) ≤ Ep(f) +
√
ε
√
Vp(f).

Remark 4.13. While Proposition 1 of [27] shows a similar bound for random variables in

the L2-space, their coefficient is 1/
√

1− α, which is larger than Cα,n.

The inequality (4.25) is applicable to the worst-case sensitivity results. First of all,

V ′c (0+) ≤ Cα,n

√
φ′′(1)

2
V ′φ(0+) ≤

√
φ′′(1)α

2(1− α)
V ′φ(0+) (4.26)

where V ′φ(0+) is the worst sensitivity of the DRO objective with the smooth φ divergence.

This inequality suggests that the sensitivity of the DRO with the convex combination of
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Figure 4.1. Cα,n,
√

α
1−α , and 1√

1−α

mean and CVaR is bounded above by that with any smooth φ divergence. Second, recalling

Corollary 4.9, we have a tight bound:

V ′b(0+) = Ep(f)−min(f) =
CVaRp, ε

1+ε
(f)− Ep(f)

ε

≤ ε−1/2
√
Vp(f) =

√
φ′′(1)

2ε
V ′φ(0+)

for p = 1/n. Since (4.20) holds for any ε ∈ (0,
p(n)

1−p(n)
) = (0, 1

n−1), taking ε = 1
n−1 , we have

a (loose) bound

V ′b(0+) <

√
(n− 1)φ′′(1)

2
V ′φ(0+).

From this we see that when n is large, the difference between the smooth φ and the budgeted

uncertainty φ = δ[0,1+ε] can be large for small uncertainty sets. In contrast, the bounds

(4.13) and (4.26) relating the sensitivities V ′TV(0+), V ′c (0+) and V ′φ(0+) are tight and in-

dependent of n. The potentially large difference likely reflects the fact that the sensitivity

of “budgeted uncertainty” depends only on the lower part of the cost distribution whereas

V ′φ(0+) depends on the entire distribution. More generally, this suggests the possibility that

solutions of DRO problems with “budgeted uncertainty” may differ quite substantially from

those for other uncertainty sets.
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4.5. Wasserstein metric. Consider the worst-case expected cost with a constraint on the

Wasserstein metric [8, 13, 14]:

Vw(ε) := max
γ∈X

{∫
z
f(x, z)

( n∑
i=1

γi(dz)
) ∣∣∣ n∑

i=1

∫
z
‖z − Yi‖pγi(dz) ≤ ε

}
, (4.27)

where

X =
{
γ
∣∣∣ ∫

z
γi(dz) = pi, i = 1, · · · , n, γi(dz) ≥ 0

}
.

We are thinking of 1 ≤ p ≤ ∞ for the norm in the Wasserstein metric. Note that the cost

and constraint functionals

F (γ) = max
γ

∫
z
f(x, z)

( n∑
i=1

γi(dz)
)

G(γ) :=
n∑
i=1

∫
z
‖z − Yi‖pγi(dz)

are linear in γ, so (4.27) is a convex optimization problem, and Vw(ε) is concave, increasing

and differentiable in ε almost everywhere [24].

Since solutions of the dual problem of (4.27) are supergradients of the value function Vw(ε)

[24], we study worst-case sensitivity V ′w(0+) by studying dual solutions when ε ↓ 0.

Let λ ≥ 0 be the Lagrange multiplier for the Wasserstein constraint. The dual problem is

min
λ≥0

max
γ∈X

{ n∑
i=1

∫
z
f(z)γi(dz) + λ

(
ε−

n∑
i=1

∫
z
‖zi − Yi‖pγi(dz)

)

= min
λ≥0

max
γ∈X

n∑
i=1

∫
zi

[
f(zi)− λ‖zi − Yi‖p

]
γi(dzi) + λε (4.28)

where to ease notation, we drop the decision variable from the notation and write f(z) ≡
f(x, z). This can be written

min
λ≥0

{ n∑
i=1

pi max
zi

{
f(zi)− λ‖zi − Yi‖p

}
+ λε

}
=

n∑
i=1

pif(Yi) + min
λ≥0

{ n∑
i=1

pi max
zi

{
f(zi)− f(Yi)− λ‖zi − Yi‖p

}
+ λε

}
.

Intuitively, for every given transportation cost λ, the inner maximization in (4.28) defines

a worst-case measure that moves probability mass pi from Yi to

z∗i = arg max
zi

{
f(zi)− λ‖zi − Yi‖p

}
.
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If λ(ε) is any solution of the dual problem at ε, λ(ε) is a super-gradient of Vw(ε) at ε [24],

so concavity of Vw(ε) means that worst-case sensitivity V ′w(0+) ≤ λ(0). We compute the

sensitivity at ε = 0 by characterizing the solutions of the dual problem of (4.27) when

ε = 0, and showing that one of these actually equals the right derivative V ′w(0+).

By Lemma B.1, strong duality holds when ε > 0. The following result shows that strong

duality also holds when ε = 0, and characterizes the set of optimal dual variables.

Proposition 4.14. Assume that there exists constant L such that |f(z)− f(Yi)| ≤ L‖z −
Yi‖p for every z and i = 1, · · · , n. Then

min
λ≥0

k∑
i=1

pi max
zi

{
f(zi)− f(Yi)− λ‖zi − Yi‖p

}
= 0

and strong duality holds when ε = 0

Vw(0) =
n∑
i=1

pif(Yi) + min
λ≥0

k∑
i=1

pi max
zi

{
f(zi)− f(Yi)− λ‖zi − Yi‖p

}
=

n∑
i=1

pif(Yi),

and hence for all ε ≥ 0. The set of optimal solutions of the dual problem when ε = 0 is{
λ
∣∣λ ≥ max

i=1,··· , n
max
zi

f(zi)− f(Yi)

‖zi − Yi‖p

}
= arg min

λ≥0

k∑
i=1

pi max
zi

{
f(zi)− f(Yi)− λ‖zi − Yi‖p

}
.

Proposition 4.14 implies that if

λ ≥ max
i=1,··· , n

max
zi

f(zi)− f(Yi)

‖zi − Yi‖p
,

then λ is a supergradient of Vw at ε = 0, and hence is an upper bound of the right derivative

V ′w(0+) ≤ max
i=1,··· , n

max
zi

f(zi)− f(Yi)

‖zi − Yi‖p
. (4.29)

The following result shows that this inequality is actually an equality, so V ′w(0+) is also a

solution of the dual problem at ε = 0. This allows us to identify the identify worst-case

sensitivity with the lower bound of the set of dual solutions at ε = 0. The proof can be

found in the Appendix.

Proposition 4.15. For (4.27), we have

SP[f ] = V ′w(0+) = max
i=1,··· , n

max
zi

f(zi)− f(Yi)

‖zi − Yi‖p
. (4.30)
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It follows that when ε is small

Vw(ε) =

n∑
i=1

pif(Yi) + ε
(

max
i=1,··· , n

max
zi

f(zi)− f(Yi)

‖zi − Yi‖p

)
+ o(ε).

and that the DRO problem is (almost) the same as the following mean-sensitivity problem:

min
x

max
γ∈X

∫
z
f(x, z)

( n∑
i=1

γi(dz)
)

= min
x

EP[f(x, Y )] + ε
{

max
i=1,··· , n

max
zi

f(x, zi)− f(x, Yi)

‖zi − Yi‖p︸ ︷︷ ︸
SP[f(x,·)]

}
+ o(ε).

Example 4.16. If f(z) is concave in z, then the set of optimal dual variables of (4.28) is{
λ
∣∣λ ≥ max

i=1,··· , n
‖∇f(Yi)‖q

}
= arg min

λ≥0

k∑
i=1

pi max
zi

{
f(x, zi)− f(x, Yi)− λ‖zi − Yi‖p

}
.

and worst-case sensitivity

SP[f ] = max
i=1,··· , n

‖∇f(Yi)‖q. (4.31)

Example 4.17. Consider the cost function

f(x, Y ) = −rmin{x, Y } − qmax(x− Y, 0) + smax(Y − x, 0) + cx (4.32)

where 0 ≤ q < c < r and s ≥ 0. The negative of this cost function is the reward function

for an inventory problem, so minimizing EP[f(x, Y )] is equivalent to maximizing expected

reward. If x ∈ (mini Yi,maxi Yi), it can be shown that for a Wasserstein metric with p = 1

SP[f(x, ·)] = max{r − q, s},

so the SAA optimizer is also the solution of the DRO problem for a large range of ε, beyond

which, the order quantity is either smaller than mini Yi or larger than maxi Yi, which is not

sensible. This suggests that the Wasserstein uncertainty set with p = 1 may not be a good

choice for the robust inventory problem.

5. Examples

5.1. Inventory control. Consider once again the inventory cost function (4.32). In this

experiment, we generated n = 100 demand realizations {Y1, · · · , Yn} by sampling from a

mixture of two exponential distributions with means µL = 10 and µH = 100, where the

probability of a sample from population L is 0.9. We assume r = 10, c = 2, q = 0 and

s = 4. Note that ε = 0 is equivalent to SAA.
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We begin by comparing the solutions of SAA, the robust inventory problem with a “bud-

geted” uncertainty set [15] (ε = 0.45), and the robust problem with a modified χ2 un-

certainty set (ε = 1.7). Note first that the order quantity under “budgeted” uncertainty

(x(ε) = 18) is smaller than SAA (x(0) = 24), while that for the modified χ2 uncertainty

set (x(ε) = 44) is larger. Indeed, the worst-case expected cost of the “budgeted” solution

(x(ε) = 18) is larger than that of SAA when evaluated under the modified χ2 uncertainty

set (and vice versa); in the eyes of the modified χ2 DRO model, solutions of the “budgeted”

DRO problem are less robust than SAA.

These observations can be explained by considering the worst-case sensitivity associated

with each uncertainty set. For “budgeted” uncertainty, worst-case sensitivity is the spread

of the “good” part of the reward distribution (4.20), while for modified χ2 (and any smooth

φ-divergence) it is the standard deviation (4.6) which depends on the entire cost distribu-

tion. For “budgeted” uncertainty, DRO trades off expected cost in return for a reduction

in the spread of the good side of the reward distribution, which is achieved by reducing the

order quantity. This comes at the cost of a longer right tail, but this does not affect the

sensitivity measure; see Figure 5.1. On the other hand, the modified χ2 robust optimizer

controls the standard deviation of the cost distribution; a larger order quantity reduces the

standard deviation of the distribution and the length of the right tail, but the width of the

body increases.

We now compare solutions generated by all the uncertainty sets we have discussed. Let

{xu(ε) | ε ≥ 0} denote the family of worst-case solutions where the uncertainty set u is ei-

ther KL-divergence, modified χ2-deviation, Total variation, “budgeted” uncertainty, or the

convex-combination uncertainty set. In Figure 5.2 (a), we plot mean-sensitivity frontiers

for each family of solution where sensitivity is measured by the standard deviation (4.6)

(worst-case sensitivity for smooth φ-divergence). The other plots show frontiers with sen-

sitivity associated with (b) Total Variation (4.12), (c) “budgeted uncertainty” (4.20), and

(d) CV aR-deviation of the cost (4.24).

While DRO solutions reduce the worst-case sensitivity corresponding to its uncertainty set,

they may increase other measures of worst-case sensitivity. When the shortage cost s = 4,

“budgeted” uncertainty produces solutions that increase the other measures of worst-case

sensitivity (and vice versa). This can be seen in Figure 5.2 where frontiers for “budgeted”

uncertainty moves in the opposite direction to the others. Concurrently, robust order

quantities are decreasing in ε while those for other uncertainty sets are increasing. When

s = 0, however, the order quantities from all DRO models are decreasing in ε and the

resulting frontiers are the same, as seen in Figure 5.3. Finally, as shown in Example 4.17,
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Figure 5.1. This plot shows cost distributions under the SAA solution and

the solutions of DRO problems with “budgeted” and modified χ2 uncertainty

sets. Worst-case sensitivity for a “budgeted” uncertainty set is the spread

of the “good” side of the cost distribution. The DRO solution decreases the

order quantity (relative to SAA) as this reduces the width of the body of the

distribution (and hence the sensitivity), but this comes at the cost of a longer

right tail; this is indicated by the black arrows. On the other hand, worst-

case sensitivity for the modified χ2 uncertainty set is the standard deviation.

The associated DRO order quantity is larger than SAA, which reduces the

length of the right tail at the cost of a fatter body (red arrows). From the

perspective of the modified χ2 DRO model, the “budgeted” solution is less

robust than SAA (and vice versa); the worst-case expected cost is larger

than the SAA solution and it has a larger worst-case sensitivity.

the Wasserstein sensitivity is independent of the order quantity when p = 1, so the DRO

solution is the SAA optimizer.

Mean-sensitivity frontiers can also be used to select the size ε of an uncertainty set. For

example, we can use (a) from Figure 5.2 and the modified χ2 frontier to select ε for a

DRO model with a modified χ2 uncertainty set (the other frontiers are not needed). More

importantly, the uncertainty set is an important modelling choice in a DRO model as it

determines the measure of sensitivity that is being controlled when solving the worst-case

problem.
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Figure 5.2. Mean-sensitivity frontiers for the newsvendor problem when

s = 4

Figure 5.3. Mean-sensitivity frontiers for the newsvendor problem when

s = 0

5.2. Logistic regression. We now consider a higher dimensional example. Fig. 5.4 shows

the four mean-sensitivity frontiers of the seven DROs for the logistic regression using the

heart failure clinical records dataset [9], which consists of 299 samples having 12 covariates.
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The ordinary logistic regression is SAA where the cost of the i-th sample is defined as

f(w, (yi, xi)) := ln
(
1 + exp(−yiw>xi)

)
,

where xi ∈ Rd and yi ∈ {±1} denote the input vector and binary label of the i-th sample,

respectively, and w ∈ Rd is the vector of decision variables. (For the heart failure dataset,

the all-one vector is added to the covariates, and thus d = 13.) For details on the Wasser-

stein DRO model for this application, see Appendix C. For this example, all frontiers in

Figure 5.4 are similar, which suggests that solutions produced by the seven DRO models

we consider are similar.

Figure 5.4. Mean-sensitivity frontiers of solutions of the robust logis-

tic regression problem with the Heart Failure data set. Each frontier

corresponds to the family of DRO solutions for one of the seven uncer-

tainty sets. Worst-case sensitivity in all the frontier plots is measured by
√

2 × standard deviation (worst-case sensitivity of the modified χ2 uncer-

tainty set) of the associated in-sample cost distribution.

6. Conclusion

We have derived worst-case sensitivities for the expected reward for several commonly used

worst-case models. The results are summarized in Table 1.1.

Worst-case sensitivity is a measure of the spread of the cost distribution f(x, Y ). Mathe-

matically, this is a consequence of classical duality results for DRO. Intuitively, the expected

cost under the nominal distribution is sensitive to changes in the probability assigned to



WORST-CASE SENSITIVITY 25

extreme values so a cost distribution with a large spread is sensitive to misspecification and

not robust. DRO is a tradeoff between expected cost and sensitivity, where the measure of

sensitivity, and hence the resulting solution, depends on the uncertainty set.

Practically, our analysis provides a list of sensitivity measures, each corresponding to a

different uncertainty set, that can be used to compare the worst-case cost sensitivity for

different decisions. That is, worst-case sensitivity serves as a quantitative measure of ro-

bustness, which to our knowledge has not been proposed in the literature. The expressions

for worst-case sensitivity make explicit the measure of spread that DRO is trying to con-

trol for each uncertainty set, and can be used to select the uncertainty set for a given

application. Mean-sensitivity frontiers can also be used to select its size.
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Appendix A. Proofs from Section 3

A.1. Proof of Proposition 3.2. Without loss of generality, we assume EP[f(x, Y )] = 0

and that the fi’s are ordered such that f1 ≥ f2 ≥ · · · ≥ fn.

A(ε; f) and S(ε; f) are generalized deviation measures. Clearly, A(ε; f) satisfies properties

(2) and (3) of Definition 3.1. As for property (1), A(ε; f) ≥ 0 follows from the observation

that the nominal measure p ∈ Q(ε) is feasible so

A(ε; f) ≥
n∑
i=1

pifi = 0.

It is also clear that A(ε; f) = 0 if f ≡ 0. We now show the converse.

Suppose that A(ε; f) = 0 but that f is not equal to 0. Since f is non-zero with EP[f ] = 0,

f1 > 0 > fn. Let e(i) denote an n-dimensional vector with 1 in the ith entry and 0’s

elsewhere. Clearly, we can select δ > 0 such that

q = p + δ[e(1) − e(n)] > 0

and d
(
p + δ[e(1) − e(n)]

∣∣p) < ε, so

A(ε; f) ≥
n∑
i=1

qifi = δ(f1 − fn) > 0

which contradicts our initial assumption that A(ε; f) = 0. It follows that f must equal 0.

Since A(ε; f) is a measure of deviation, so too is S(ε; f).

Sp(f) is a generalized measure of deviation. We first establish the growth condition on

A(ε; f). Suppose there is a constant k > 0 such that the continuity condition (3.4) holds

for every ∆ ∈ Rn satisfying 1′∆ = 0. Given f and ε > 0, let q(ε) denote the solution of the

worst-case problem (1.1). Since d(q(ε)|p) = ε, it follows that q(ε)− p = O(ε
1
k ) so

A(ε; f) =
n∑
i=1

qi(ε)fi ∼ O(ε
1
k ).

We now show that Sp(f) is a generalized measure of risk. Clearly, Sp(f) satisfies conditions

(2) and (3) of Definition 3.1. As for Condition (1), it is easy to show that Sp(f) ≥ 0 and

that Sp(f) = 0 if f is equal to 0; these properties follow from those of A(ε; f). To prove the

converse, suppose that

Sp(f) := lim
ε↓0

A(ε; f)

ε
1
k

= 0 (A.1)
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but that f is not equal to 0. Since d(q|p) is continuous in q, there is a constant δ > 0 such

that

q(ε) ≡
(
q1(ε), · · · , qn(ε)

)>
:= p + ε

1
k δ[e(1) − e(n)] > 0

and

d
(

p + ε
1
k δ[e(1) − e(n)]

∣∣∣p) ≤ ε
for all ε > 0 sufficiently small. In particular, q1(ε) = p1 + ε

1
k δ > 0, qn(ε) = pn − ε

1
k δ > 0,

and qi(ε) = pi(ε) for i = 2, · · · , n− 1. Since q(ε) ∈ Q(ε), it follows that

0 <
n∑
i=1

qi(ε)fi = ε
1
k δ
(
f1 − fn

)
≤ A(ε)

so

A(ε)

ε
1
k

≥ δ
(
f1 − fn

)
> 0.

This contradicts (A.1).

Appendix B. Proofs from Section 4

B.1. φ-divergence uncertainty sets: Proof of Proposition 4.2.

V (ε) = min
δ≥0, c

1

δ

n∑
i=1

pi max
qi

{ qi
pi
δ
(
fi + c

)
− φ

( qi
pi

)}
+
ε

δ
− c

=
n∑
i=1

pifi + min
δ≥0, c

1

δ

{ n∑
i=1

pi

[
φ∗
(
δ
(
fi + c

))
− δ(fi + c)

]
+ ε
}

where

φ∗(ζ) = max
z

{
ζz − φ(z)

}
is the convex conjugate of φ(z) and

qi = pi[φ
′]−1
(
δ(fi + c)

)
= arg max

qi

{ qi
pi
δ
(
fi + c

)
− φ

( qi
pi

)}
(B.1)

is the optimizer in the first equality. The worst-case measure q(ε) =
(
q1(ε), · · · , qn(ε)

)>
is

obtained by substituting the optimizers over δ and c.

Under the assumptions about φ(z) from [16], φ∗(ζ) is convex and twice continuously differ-

entiable with

φ∗(ζ) = ζ +
ζ2

2φ′′(1)
+ o(ζ2) (B.2)
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Differentiating with respect to c and δ, the first order conditions are

n∑
i=1

pi[φ
∗]′
(
δ[fi + c]

)
= 1 (B.3)

n∑
i=1

pi

{
φ∗
(
δ[fi + c]

)
− [φ∗]′

(
δ[fi + c]

)
δ[fi + c]

}
+ ε = 0. (B.4)

Clearly c(0) = −Ep(f). We can apply the Implicit Function Theorem to show that c(δ) is

continuously differentiable in δ in the neighborhood of δ = 0 so it follows from (B.2) and

(B.3) that

c(δ) = −Ep(f) +O(δ).

Together with the expansion of φ∗(ζ), (B.4) becomes

δ2

2φ′′(1)

n∑
i=1

pi
(
fi − Ep(f)

)2
+ o(δ2) = ε.

The Implicit Function Theorem can again be used to show that δ(ε) is continuously differ-

entiable on some open interval3 (0, b) and given by (4.3). It follows that c(ε) is given by

(4.2).

Finally, the worst-case distribution is obtained by substituting (4.2) and (4.3) into (B.1).

B.2. Proof of Lemma 4.6.

Proof. The worst-case objective is written by the following optimization problem:

maximize
q

f>q

subject to 1>q = 1,

q ≥ 0,

1>|p− q| ≤ ε,

Note that if ε > 0 is sufficiently small, the nonnegativity condition can be omitted (as long

as pi > 0 for all i). In addition, let us introduce nonnegative vectors u, v ≥ 0 such that

3Consider

y

2φ′′(1)

n∑
i=1

pi
(
fi − Ep(f)

)2
+ o(y) = ε

Observe that y = 0 when ε = 0. The Implicit Function Theorem implies that y(ε) is continuously differen-

tiable on an open interval containing ε = 0. Continuous differentiability of δ(ε) on some open interval (0, b)

follows from the observation that δ(ε) =
√
y(ε) for ε > 0.
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u − v = q − p. (Note that 1>p = 1.) So, under the condition of small ε, the worst-case

objective can be rewritten by

maximize
u,v

f>u− f>v + p>f

subject to 1>u− 1>v = 0,

1>u + 1>v ≤ ε,
u, v ≥ 0.

The dual LP problem is derived as

minimize
λ≥0,θ

ελ+ p>f

subject to 1θ + 1λ ≥ f,

−1θ + 1λ ≥ −f,

λ ≥ 0,

which can be reduced to

minimize
θ

εmax{|f1 − θ|, ..., |fn − θ|}+ p>f.

It is easy to see that its optimality attained at θ =
f(1)+f(n)

2 with the optimal value being
ε(f(1)−f(n))

2 + p>f.

By the strong duality theorem, the worst-case objective turns out to be

p>f +
ε(f(1) − f(n))

2
= Ep(f) +

ε(max(f)−min(f))

2
,

which is attained by the solution (4.11). Consequently, we complete the proof of Lemma

4.6. �

B.3. Proof of Proposition 4.8.

Proof. Solving LP (4.16) (by a greedy algorithm), a worst-case distribution is given as

q(i) =


(1 + ε)p(i), i = 1, ..., k,

1− (1 + ε)

k∑
i=1

p(i), i = k + 1,

0, i = k + 2, ..., n,

(B.5)
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where q(i) denotes the probability mass for the i-th largest cost f(i). Putting (B.5) into the

objective of (4.16)(≡
∑n

i=1 q(i)f(i)), we have

VCVaR(ε) = CVaRp, ε
1+ε

(f)

= (1 + ε)

k∑
i=1

p(i)f(i) +
(

1− (1 + ε)
k∑
i=1

p(i)

)
f(k+1).

With this formula,

VCVaR(ε+ ∆)− VCVaR(ε)

= CVaRp, ε+∆
1+ε+∆

(f)− CVaRp, ε
1+ε

(f)

= (1 + ε+ ∆)

k∑
i=1

p(i)f(i) +
{

1− (1 + ε+ ∆)

k∑
i=1

p(i)

}
f(k+1)

− (1 + ε)
k∑
i=1

p(i)f(i) −
{

1− (1 + ε)
k∑
i=1

p(i)

}
f(k+1)

=
∆

1 + ε

[
(1 + ε)

k∑
i=1

p(i)f(i) +
{

1− (1 + ε)
k∑
i=1

p(i)

}
f(k+1) − f(k+1)︸ ︷︷ ︸

VaRp, ε
1+ε

(f)

]
(B.6)

=
∆

1 + ε

(
CVaRp, ε

1+ε
(f)−VaRp, ε

1+ε
(f)
)
,

which proves (4.19). �

B.4. Proof of Proposition 4.12.

Proof. Note that the derivation of the tight inequality (4.25) is equivalent to showing the

reciprocal of the minimum of the following optimization problem is equal to 1/Cα,n

1
Cα,n

= minimize
f

√
Vp(f)

CVaRp,α(f)− Ep(f)

subject to f 6= C1 for any C,

(B.7)

where p = 1/n. Noting that both the denominator and numerator are positively homoge-

neous and that CVaR is translation invariant and, thus, CVaRp,α(f)−Ep(f) = CVaRp,α(f−
Ep(f)1), the fractional program (B.7) is equivalently rewritten as

1
C2
α,n

= minimize
f,z

1

n
z>z

subject to CVaRp,α(z) = 1,

z = f − 1
n11>f, f 6= C1 for any C,
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where the objective function is squared for the convenience. Noting that the final constraint

implies 1>z = 0, we consider the following relaxed optimization problem:

minimize
z

1
n(z2

1 + · · ·+ z2
n)

subject to
1

κ
{z1 + · · ·+ zk + (κ− k)zk+1} = 1,

z1 ≥ z2 ≥ · · · ≥ zn,
z1 + · · ·+ zn = 0,

(B.8)

where κ := n(1− α) and k := bκc.

Let us tentatively consider to remove the inequality constraints from (B.8):

minimize
z

1
n(z2

1 + · · ·+ z2
n)

subject to z1 + · · ·+ zk + (κ− k)zk+1 = κ,

(1− κ+ k)zk+1 + zk+2 + · · ·+ zn = −κ.

The Lagrangian of this is given by

L(z, λ, µ) = z2
1+· · ·+z2

n−2λ{z1+· · ·+zk+(κ−k)zk+1−κ}−2µ{(1−κ+k)zk+1+zk+2+· · ·+zn+κ}

and the optimality condition is given by

∂L

∂zj
(z, λ, µ) = 0, j = 1, ..., n,

∂L

∂λ
(z, λ, µ) = 0 ↔ z1 + · · ·+ zk + (κ− k)zk+1 = κ,

∂L

∂µ
(z, λ, µ) = 0 ↔ (1− κ+ k)zk+1 + zk+2 + · · ·+ zn = −κ.

Here the first condition is

∂L

∂zj
(z, λ, µ) =


2zj − 2λ = 0, 1 ≤ j ≤ k,
2zk+1 − 2(κ− k)λ− 2(1− κ+ k)µ = 0, j = k + 1,

2zj − 2µ = 0, k + 2 ≤ j ≤ n.

Substituting zj ’s derived from this to the last two conditions, we have{
{k + (κ− k)2}λ +(κ− k)(1− κ+ k)µ = κ,

(κ− k)(1− κ+ k)λ +{n− k − 1 + (1− κ+ k)2}µ = −κ,

and 
λ =

κ(n− κ)

n{k + (κ− k)2} − κ2

µ =
−κ2

n{k + (κ− k)2} − κ2
,
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so 

zj =
κ(n− κ)

n{k + (κ− k)2} − κ2
, j = 1, ..., k,

zk+1 =
−κ2 + nκ(κ− k)

n{k + (κ− k)2} − κ2
,

zj =
−κ2

n{k + (κ− k)2} − κ2
, j = k + 2, ..., n,

(B.9)

and the objective value is then

1

n
z>z =

κ2

n{k + (κ− k)2 − κ2}
. (B.10)

The vector z = (z1, ..., zn)> given by (B.9) satisfies z1 ≥ · · · ≥ zn, and turns out to be

optimal to (B.8) as well. Furthermore, for the vector z given by (B.9) and any constant

C, we can reproduce a nonconstant vector f as f = z + C1, which satisfies z = f − 1
n11>f.

Consequently, the square root of (B.10) is the optimal value of (B.7). �

B.5. Wasserstein uncertainty sets.

Preliminaries: Some useful results from convex duality. We summarize general properties

of the dual problem and the relationship between optimal dual variables and super-gradients

of the value function for the optimization problem

V (ε) := max
x∈Ω

F (x) subject to: G(x) ≤ ε (B.11)

which we apply to (4.27). Here, we assume that F : X → R and G : X → R, where X is a

vector space and Ω is a convex subset of X . The associated dual problem is

D(ε) := min
λ≥0

max
x∈X

F (x) + λ
{
ε−G(x)

}
≡ max

λ≥0

{
H(λ) + λε

}
(B.12)

where λ ∈ R is the Lagrange multiplier and

H(λ) := max
x∈Ω

{
F (x)− λG(x)

}
.

Note that H(λ) is convex in λ.

We denote the derivative of H at λ by H ′(λ), and the directional derivaties

H ′(λ+) := lim
δ↓0

H(λ+ δ)−H(λ)

δ

H ′(λ−) := lim
δ↓0

H(λ− δ)−H(λ)

δ

(We refer to H ′(λ+) and H ′(λ−) as the right and left derivative of H at λ, respectively).

H(λ) is convex in λ so H ′(λ+) is increasing in λ and H ′(λ−) is decreasing in λ.
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Lemma B.1. Consider the optimization problem (B.11). Assume that F (x) is concave,

that G(x) is convex and non-negative, that there is an x ∈ Ω such that G(x) = 0, and that

V (ε) is finite for every ε. Then V (ε) is concave and increasing in ε ≥ 0, and differentiable

at almost every ε > 0. When ε > 0, strong duality holds (V (ε) = D(ε)) and the maximum

of the dual problem is achieved. If λ(ε) is a solution of the dual problem corresponding to

ε > 0, then λ(ε) is a super-gradient of V at ε. If V is differentiable at ε > 0, then the dual

problem has a unique solution and V ′(ε) = λ(ε).

Proof. When ε > 0 the Lagrange Duality Theorem [24] implies that strong duality holds

and that there exists a solution λ(ε) of the dual problem. �

Proposition B.2. Assume that F (x) is concave, that G(x) is convex and non-negative,

that there is an x ∈ Ω such that G(x) = 0, and that V (ε) is finite for every ε. Let {εi} be

sequence of positive numbers such that εi ↓ ε. Suppose that V is differentiable at εi, strong

duality holds at εi, and there is a solution λi ≡ λ(εi) of the dual problem at εi, for every i.

Then λi ≡ λ(εi) is increasing. If λi ↑ λ∗ <∞ when εi ↓ ε, then λ∗ is a solution of the dual

problem at ε.

Proof. Since strong duality holds at εi

V (εi) = min
λ≥0

{
H(λ) + λεi

}
= H(λ(εi)) + λ(εi)εi,

where H(λ) is a convex function of λ ≥ 0, and hence is differentiable at almost every λ ≥ 0.

Consider first the case that εi ↓ ε where ε > 0. Since λi ≡ λ(εi) is a solution of the dual

problem

H ′(λ+
i ) + εi ≥ 0

H ′(λ−i )− εi ≥ 0. (B.13)

Since εi ↓ ε and λi ↑ λ∗ as i→∞, and the right derivative is increasing in λ, it follows that

H ′(λ∗+) + ε ≥ lim
i→∞

{
H ′(λ+

i ) + εi

}
≥ 0.

On the other hand, the left derivative H ′(λ−) is left-continuous in λ so

H ′(λ∗−)− ε = lim
i→∞

{
H ′−(λ(εi))− εi

}
≥ 0.

It follows that λ∗ is optimal for the dual problem at ε.
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When ε = 0, we need only consider the derivative from the right at λ(0). In particular, it

follows from (B.13) that

H ′(λ∗+) ≥ lim
εi↓0

{
H ′+(λ(εi))− εi

}
≥ 0.

�

B.5.1. Proof of Proposition 4.14.

Proof. For every λ ≥ 0 we have

k∑
i=1

pi max
zi

{
f(zi)− f(Yi)− λ‖zi − Yi‖p

}
≥ 0.

We characterize the optimal dual variables by finding the values of λ such that the lower

bound is attained.

If

λ ≥ max
i=1,··· , n

max
zi

f(zi)− f(Yi)

‖zi − Yi‖p

it follows that

f(zi)− f(Yi)− λ‖zi − Yi‖p ≥ 0

for every i, with equality when zi = Yi. It follows that

k∑
i=1

pi max
zi

{
f(zi)− f(Yi)− λ‖zi − Yi‖p

}
= 0

so λ is a solution of the dual problem. If

λ < max
i=1,··· , n

max
zi

f(zi)− f(Yi)

‖zi − Yi‖p

then for every i such that

λ < max
zi

f(zi)− f(Yi)

‖zi − Yi‖p

we can find zi such that f(zi)− f(Yi)− λ‖zi − Yi‖p > 0. It follows that

k∑
i=1

pi max
zi

{
f(zi)− f(Yi)− λ‖zi − Yi‖p

}
> 0

so λ is not a solution of the dual problem. �
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B.5.2. Proof of Proposition 4.15.

Proof. Suppose that the right derivative of V at ε = 0 is finite (i.e., |V ′(0+)| <∞). Let {εi}
be any sequence such that εi > 0, εi ↓ 0 and V is differentiable at εi. The Lagrange Duality

Theorem [24] implies that strong duality holds and that there exists a unique solution

λi ≡ λ(εi) of the dual problem for each εi. Since {λ(εi)} is an increasing sequence that

is bounded above by 0 ≤ V ′(0+) < ∞ (we have selected {εi} such that V is differentiable

at εi, so λ(εi) = V ′(εi); in addition, 0 ≤ V ′(εi) ≤ V ′(0+) by the concavity of V (ε)), it

converges to a limit that is also bounded by V ′+(0)

λ∗ = lim
i→∞

λ(εi) = lim
i→∞

V ′(εi) ≤ V ′(0+) <∞.

By Proposition B.2, the limit λ∗ is a solution of the dual problem at ε = 0. Since[
max

i=1,··· , n
max
zi

f(zi)− f(Yi)

‖zi − Yi‖p
, ∞

)
is the set of Lagrange multipliers that solve the dual problem when ε = 0,

V ′(0+) ≥ λ∗ ≥ max
i=1,··· , n

max
zi

f(zi)− f(Yi)

‖zi − Yi‖p

Together with (4.29), it now follows that worst-case sensitivity satisfies (4.30). �

Appendix C. Comments on Wasserstein DRO in Example 5.2

For the Wasserstein DRO, [29] shows that when the transportation cost is given by c((xi, yi), (xj , yj)) =

‖xi − xj‖2 + κ|yi − yj | for a constant κ ≥ 0, the robust counterpart can be reduced to the

following convex optimization problem:

minimize
λ≥0,s,w

ελ+ 1
n

n∑
i=1

si

subject to si ≥ ln
(

1 + exp
(
− yi(x>i w)

))
, i = 1, ..., n,

si ≥ ln
(

1 + exp
(
yi(x>i w)

))
− κλ, i = 1, ..., n,

λ ≥ ‖w‖2.

Here κ balance the cost of the covariates and that of the binary label. If the user is not

interested in the mislabeling, s/he can set as κ =∞, so that the formulation results in the

regularized logistic regression:

minimize
λ≥0,s,w

ε‖w‖2 +
1

n

n∑
i=1

ln
(

1 + exp
(
− yi(x>i w)

))
.



WORST-CASE SENSITIVITY 39

Then the worst-case sensitivity is given by Sp(f) = ‖wSAA‖2 where wSAA is a solution to

the ordinary logistic regression.
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