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Abstract: Power grid data are going “big” with the deployment of various sensors. The big data in 

power grids creates huge opportunities for applying artificial intelligence technologies to improve 

resilience and reliability. This paper introduces multiple real-world applications based on artificial 

intelligence to improve power grid situational awareness and resilience. These applications include 

event identification, inertia estimation, event location and magnitude estimation, data 

authentication, control, and stability assessment. These applications are operating on a real-world 

system called FNET/GridEye, which is a wide-area measurement network and arguably the world-

largest cyber-physical system that collects power grid big data. These applications showed much 

better performance compared with conventional approaches and accomplished new tasks that are 

impossible to realized using conventional technologies. These encouraging results demonstrate that 

combining power grid big data and artificial intelligence can uncover and capture the non-linear 

correlation between power grid data and its stabilities indices and will potentially enable many 

advanced applications that can significantly improve power grid resilience. 
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1. Introduction of the AI Application Platform — FNET/GridEye 

The power grid is a large-scale cyber-physical system. It’s also critical infrastructure that many 

other industries and facilities depend upon. Due to its importance, many sensors, including the 

SCADA system sensors, fault recorders, smart meters, power plant sensors, and synchrophasor 

measurements, etc. have been deployed to the power grid to increase its situational awareness. With 

the increasing number of high-data-rate sensors, power grid monitoring systems provide 

unprecedented detailed wide-area information to assist real-time situational awareness and decision 

making in smart grids [1, 2].  

With the increase of the number of sensors and the growing demand of high-quality situational 

awareness from the industry, the limitations of conventional methods to process and digest data 

started to emerge across multiple dimensions, such as accuracy, speed, robustness, and scalability [3, 

4]. With extensive experience on the power grid, sensor development, and data analytics, the 

FNET/GridEye team (http://fnetpublic.utk.edu/) has been intensively exploring, developing, and 

deploying artificial intelligence (AI) technologies in FNET/GridEye for a decade. Many successful 

applications based on AI have been developed on FNET/GridEye and used by U.S. power utility 

companies and regulatory entities [5-7].  
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Developed using synchrophasor measurement technologies, FNET/GridEye is a wide-area 

power system monitoring system that covers worldwide power grids. (Its predecessor is called 

FNET, which is the abbreviation of Frequency Monitoring Network [8].) The sensor of FNET/GridEye 

is called Frequency Disturbance Recorder (FDR) [9-12], as shown in Figure 1. Plugged into outlets, 

FDRs take frequency, voltage magnitude and phase angle, and power quality measurements from 

the power grid. Additionally, FDR has a GPS module to provide accurate timestamps to its time-

series measurement data [9]. The data collected by the FDR are sent through the Internet to the data 

center, and then processed in the data server and digested in web servers, real-time application 

servers, post-event analysis and storage servers, and backup servers [13]. Figure 2 shows the overall 

architecture of FNET/GridEye. As of 2020, it has around 300 sensor units deployed around the world 

(around 200 of them are in the U.S.). The distribution of FDRs in the continental U.S. and the 

worldwide coverage of FNET/GridEye are shown in Figure 3. 

 

Figure 1. Frequency disturbance recorder (FDR). 

 

Figure 2. FNET/GridEye architecture. 

 

(a) FDRs deployed in North America. 



 

 

(b) Countries with FDRs deployed. 

Figure 3. FDR deployment in the U.S. and worldwide. 

FNET/GridEye measurement contain valuable information that can indicate the system dynamic 

behaviors and system health. Based on the distribution-level frequency and voltage measurement 

collected by FNET/GridEye, a series of applications has been developed to assist power grid 

situational awareness. As an example of these applications, Figure 4 shows the event report 

automatically generated by the FNET/GridEye system after a generation trip event followed by 

electromechanical oscillations. This event report visualized the frequency measurements from each 

location, and more importantly, provided the estimated event location and magnitude. The frequency 

measurement collected near the generation trip location had a large dip down to around 59.96Hz, 

and quickly bounced back due to the support from the rest of the grid. Meanwhile, the system 

frequency declined to 59.98Hz before frequency regulation facilities (Automatic Generation Controls) 

brought the frequency back 60Hz gradually. Other applications on FNET/GridEye include the 

frequency and voltage phase angle monitoring, oscillation detection, model validation, islanding 

detection, generation trip and load shedding detection, line trip detection, load control, data 

statistical analysis, and cyber-attack detection, etc. [13-27]. 

 

Figure 4. Event identification report from FNET/GridEye. 



 

This paper will introduce several AI-based applications based on the FNET/GridEye platform. 

These applications include event identification, inertia estimation, event location estimation, data 

authentication, frequency control, and stability assessment (Figure 5). These AI-based applications 

are operating on FNET/GridEye servers (each with 2 Intel Xeon CPU E5-2470 processers and 128 GB 

memory) shown in Figure 2. 

 
Figure 5. AI-based applications on FNET/GridEye 

2. Event Identification Based on AI [28] 

Power grid events, for example, generator trips, occur on a daily basis [29]. One of the 

FNET/GridEye real-time applications is to detect power grid events and provide stake holders real-

time event reports, including detailed information on event types, locations, and magnitudes. One 

challenge in real-time event identification is to distinguish actual grid events from regular power grid 

regulation processes as they have similar footprints seen from measurements [28]. For example, a 

generation trip is the disconnection of one or more generators due to a malfunction that triggers the 

protection relay; whereas frequency ramping up/down is caused by the regulation of generator 

governors to respond to system load changes. Figure 6 shows a comparison on the frequency and the 

unwrapped and aligned voltage phase angle for a generation trip event and a frequency ramping 

down event. It can be seen that they have similar patterns in both frequency and voltage phase angle 

footprints. In the generation trip event, the real and reactive power of the generator reduces to zero 

instantly after the trip. For the frequency ramping event, the system imbalance happens in a less 

abrupt way. Both events result in a decline in the system frequency within a short period. 

To improve the accuracy of grid event identification and mitigate the impact of interference from 

non-event incidents, an AI-based approach, which consists of two convolutional neural network 

models and classifier fusion, is used to detect the event in FNET/GridEye. The measurement data 

from FNET/GridEye, including frequency and angle data, are first constructed into an image, as 

shown in Figure 7. (Both colored and gray images can be utilized. The colored image codes the image 

by converting the input data into RGB values, whereas the gray image converts input data into gray 

grades.) Then, two convolutional neural networks (CNN) that separately intake the images 

constructed by rate-of-change-of-frequency (RoCoF) data and relative angle shift (RAS) data as 

inputs are developed to detect the event independently. Then, these two CNN classifiers are fused to 

synthesize their advantages in detecting different types of events to give the likelihood degree of 

whether an event belongs to a specific event type, which is the output of AI. (More details on 

constructing the CNN model can be found in [28].) The accuracy and time consumption for the 

proposed and conventional methods in event identification are shown in Table 1. It is seen that 

although AI spends a little more time on detecting each event, it is much more accurate than the 

conventional method, which is based on setting thresholds for the frequency deviation magnitude 

and the rate of change of frequency. 



 

 

(a) A generation trip event (left side: frequency; right side: unwrapped relative angle) 

 
(b) Frequency ramping down (left side: frequency; right side: unwrapped relative angle) 

Figure 6. Frequency and unwrapped voltage phase angle footprints of (a) a generation trip event and 

(b) a frequency ramping down event 

 

Figure 7. Color image (left) and gray image (right) converted using generation trip event data from 

FNET/GridEye. 

Table 1. Accuracy and time comparison for event identification. 

 Conventional method 
Proposed Model 

(Color image based) 

Proposed Model 

(Gray image based) 

Identification Accuracy 51.1% 97.8% 97.8% 

Identification Time (ms) 0.010 0.810 0.812 

3. AI-based Inertia Estimation Using Ambient Synchrophasor Measurement [30] 



 

Power system inertia is the kinetic energy stored in mechanical rotors of synchronous generators 

and motors. It is a critical system parameter that determines the power grid stability after major 

disturbances such as generation loss and load shedding. A power system with large inertia is more 

robust to disturbances, while a small power system or a high renewable system will have large 

frequency fluctuations after the same disturbances due to small inertia. This, in turn, will further 

result in under-frequency-load-shedding and generation trip. With the increase of renewable 

generation, inertia in most power grids is decreasing continuously and is commonly seen as an 

increasingly important attribute to monitor [5, 14, 31-34].  

To monitor system inertia in real-time, an AI-based inertia estimation method is developed using 

FNET/GridEye frequency measurement data. This application takes advantage of the ambient 

variations in the frequency measurement obtained from multiple locations. The change of the system 

inertia will influence the relative magnitudes and phases of these oscillations, which can be quantified 

by the minimum volume enclose ellipsoid (MVEE) method. Then, the quantitative metrics of the 

MVEE can be utilized as input features of the AI model. An example of the system ambient 

oscillations and MVEEs at different inertia levels are shown in Figure 8. The system inertia in Figure 

8 (a) is two times of the system inertia in Figure 8 (b). It can be seen that MVEEs (on the right side of 

Figure 8) can extract the differences in the system states from the ambient frequency variations. These 

differences can be further utilized as inputs by random forests to estimate the system inertia, which 

is the AI output. The predicted and actual inertia of the WECC system are shown in Figure 9. (The 

actual inertia is obtained by adding the inertia of all on-line units together.) It can be seen that AI can 

obtain accurate inertia estimation for the power system. Since the inertia estimation method uses 

ambient oscillation information, it is more accurate and effective in large-scale power systems. 

 

(a) 100% inertia 

 
(b) 50% inertia 

Figure 8. Ambient frequency variation (left) and characteristic ellipsoids (right) at (a) 100% and (b) 

50% inertia level. 



 

 

Figure 9. Comparison of measured and estimated inertia in the WECC system during heavy and light 

load seasons. 

4. AI-based Event Location and Magnitude Estimation 

The location and magnitude of power grid events are important information for system 

operators [35-39]. AI technologies can also be utilized to estimate event location and magnitude. 

Figure 10 shows MVEEs constructed for four time segments of event frequency measurement data 

from FNET/GridEye during a generation trip event. W1 is the measurement at the beginning of the 

event. W2 is the initial period of the event. W3 and W4 are the intermediate and the settling periods 

of the event respectively. MVEEs are applied to frequency measurements to extract quantitative 

information from multiple measurements at different stages of an event. Then, the extracted 

information from MVEE is used as inputs in random forests to learn the relation between the 

quantitative information and event location/magnitude. The outputs of random forests are event 

location and magnitude. Figure 11 shows the accuracy comparison of the AI-based event location 

method and the conventional method based on Time-Delay-of-Arrival (TDOA) [18]. Table 2 and 

Table 3 show the disturbance location and magnitude estimation accuracy compared with 

conventional methods. It can be seen that the AI-based method has higher accuracy in both event 

location estimation and magnitude estimation. 

 

Figure 10. Frequency ellipsoids during the generation trip starting at 4 second. 



 

  

(a) Event 1 on March 12, 2016 (b) Event 2 on February 1, 2016 

Figure 11. Comparison of disturbance locations estimated by TDOA-based and AI method. 

Table 2. Disturbance location estimation comparison. 

Location estimation error (miles)  
TDOA-based method  AI-based method 

(percentage of events) 

0  30%  70% 

<50  50%  98% 

<100  65%  100% 

Table 3. Power mismatch estimation comparison. 

Mismatch estimation error (%) 
Beta value-based method  AI-based method 

(percentage of events) 

<10  45%  80% 

<20  70%  95% 

<30  95%  100% 

5. Model-Free Data Authentication Using AI [40] 

The importance the cybersecurity increases with the wide applications of wide-area 

measurement systems in system situational awareness and control. As data are collected from sensors 

installed at grid edges and transmitted through the wide-area network, these data are vulnerable to 

various cyber-attacks [18, 41, 42]. This is also one of the reasons that the conventional communication 

infrastructure for remote monitoring and control is physically isolated from other civil 

communication networks. With the development of internet-of-things, more sensors and controllers 

are integrated into the public communication network such as the Internet. This physical isolation is 

being broken and the security of the power grid measurement system is under an increasing risk of 

cyber-attacks. 

To mitigate this risk, AI can be used to authenticate data collected from wide areas to ensure the 

data are not compromised and spoofed. The advantage of AI is that it can comprehensively identify 

multiple characteristics in measurements to authenticate the data source. The input pattern selection 

is based on the physical principles and testing on different input features. In this AI-based data 

authentication application, the measurement data components at different time scales are extracted 

using a time-frequency signal processing technology named ensemble empirical mode 

decomposition (EEMD) [40]. Then, the multiple extracted components at different frequency ranges 

are analyzed using Fast Fourier Transform (FFT). The frequency spectrum of FFT is used as input of 

the BP neural network as a classifier (Figure 12). The output is the match degree of the measurement 

with a specific FDR ID. 



 

A test was done using three closely-located FDRs. Figure 13 shows the locations of three FDRs 

deployed in Knoxville, Tennessee, U.S. The average distance of these three FDRs is 7.9 km. The 

frequency measurements from these FDRs with a 1.44 kHz data reporting rate are used for data 

authentication. A cyber-attack scenario is emulated by swapping the frequency measurement of these 

FDRs. Since all frequency measurements are real-time data and appear identical at adjacent locations, 

it is challenging to identify this data-spoofing attack. The proposed AI method achieved 80.9% 

accuracy in authenticating the data source, significantly higher than other methods, whose accuracy 

is around 60-70%.  

It is noted that in this application, the number of hidden layers can be adjusted based on the 

number of input data. A sensitivity study on the number of hidden layers shows that 2-hidden layer 

BP neural network has better performance than 1-hidden layer neural network (77% accuracy) in this 

case study. Further increasing the number of hidden layers will add little improvement but 

significantly increase the computational burden.  

 

Figure 12. Architecture and input features of the proposed BP neural network. 

 

Figure 13. Locations of three FDRs. 

6. AI-based Frequency Control [43, 44] 

AI can not only help situational awareness, but also further improve power grid controls [45, 

46]. With the increase of renewable generation and HVDC facilities, the frequency control of the 

power grid increasingly relies on more advanced technologies that can better utilize system 

information and prescribe corresponding control strategies as appropriate. Figure 14 shows the 

flowchart of an advanced PV farm frequency control using AI. In this frequency control, AI is used 

in two places: one is estimating system real-time inertia; the other is estimating the PV headroom 

requirement to ensure the system has enough power reserve to maintain frequency stability after the 

largest generation loss. The estimation of inertia using AI has been introduced in Section 3. The 

method to estimate the PV headroom reserve requirement is shown in Figure 15. In this method, the 

neural network is used to develop a model to predict the frequency control performance for a specific 

set of system parameters, which include system inertia, system governor response, and PV headroom 

reserve. The output of AI is the system frequency nadir. Then, the trained AI model is combined with 

a binary-search method to iteratively find the minimum reserve requirement for a specific control 

target. The performance of the AI-based frequency control method is shown in Figure 16. It 

demonstrates that the system frequency can be maintained above the 59.8 Hz threshold to avoid 

under-frequency-load-shedding (UFLS), regardless of the changes in system conditions, including 

PV output change shown by the yellow line in Figure 17. The difference between the green bars and 
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blue bars in Figure 17 represents the savings of PV power reserve for the AI-based frequency control. 

It shows that the proposed AI-based frequency control can save a substantial amount of solar energy. 

 

Figure 14. AI-based PV frequency control. 

 

Figure 15. AI-based PV headroom requirement estimation. 

 

Figure 16. AI-based PV frequency control performance for different hourly scenarios. 

 

Figure 17. PV headroom (curtailment) of AI-based frequency control and fixed PV headroom 

control. 

7. Stability Prediction Based on AI [47] 

Besides frequency stability, power system stability also includes transient stability, small signal 

stability, and voltage stability [48]. These stabilities are important metrics of the systems’ capability 

to maintain dynamic security after disturbances, such as short circuit faults, line tripping, and 

oscillations [49]. Quantifying the stability margin is helpful for operators and planners, because it can 

assist decision making to steer around these unstable and risky states to reduce system risk. The 



 

challenge of quantifying these stability margin is the availability of the dynamic models and the 

computation time for real-time stability assessment [50-52].  

Table 4. Input and output of stability assessment. 

Stability Input Output 

Frequency Generation dispatch results, inertia Frequency nadir 

Transient Generation dispatch results, transmission network Critical clearing time (CCT) 

Small-Signal Generation dispatch results, transmission network Damping ratio + frequency 

 

Figure 18. Framework of AI-based system stability prediction. 

With AI, the assessment of power grid stability margins can be simplified [47, 53, 54]. AI can 

identify the nonlinear correlation between system stability margins and the system dispatch pattern, 

and then build a robust and accurate mapping between power flow data to stability margin indices 

[55]. Table 4 shows the inputs and outputs for stability prediction based on AI. These inputs are 

selected based on power system engineering principles and statistical results. AI algorithms to 

predict system stability can be commonly-used neural networks and random forests. Figure 18 shows 

the framework of the AI-based stability margin prediction, which follows a sequential process 

including feature extraction, model training, validation, and testing. The accurate stability margin in 

the training and testing dataset is obtained from the detailed time-domain simulation using dynamic 

models. 



 

 

Figure 19. The 18-bus test system for AI-based stability prediction. 

 

Figure 20. AI-based transient stability assessment results. 

 

Figure 21. AI-based frequency stability assessment result (inertia change). 

The AI-based stability assessment tool is tested on an 18-bus system shown in Figure 19. It 

includes four conventional synchronous generators and one PV power plant. It has 288 power flow 

scenarios (one scenario every 5 minutes for 1 day). 70 % of these scenarios, or 202 scenarios, are used 

in training, and the rest 30%, or 86 scenarios, are used for testing.  

The transient stability assessment results are shown in Figure 20. It can be seen that AI can 

accurately predict transient stability quantified by critical clearing time (CCT). The frequency stability 

assessment result is shown in Figure 21 and Figure 22. In Figure 21, AI is used to predict the frequency 

nadir using system inertia as inputs. In this case, it is assumed that only system inertia changes and 



 

governors’ statuses remain unchanged. In Figure 22, AI is used to predict the frequency nadir using 

both the inertia and the governors’ statuses. The results show that the AI can consider both inertia 

and governors’ statuses in predicting the system frequency nadir. Figure 23 and Figure 24 show the 

AI-based small-signal stability prediction performance. The result shows that AI can predict both the 

damping ratio and the oscillation frequency accurately.  

 

Figure 22. AI-based frequency stability assessment result (inertia and governor status change). 

 

Figure 23. AI-based small signal stability assessment result (damping ratio). 

 

Figure 24. AI-based small signal stability assessment result (oscillation frequency). 

Table 5 summarizes the accuracy of different AI-based stability assessment methods. It shows 

that in general, neural network has higher accuracy compared with random forests. One exception is 

in small signal stability assessment, in which random forests obtained slightly higher accuracy. To 

evaluate computation time savings, Table 6 compares the computation time of conventional model-

based time-domain simulation and the AI-based methods. It can be seen that AI can significantly save 



 

computation time. This fast evaluation feature is especially useful for real-time stability assessment 

since the dynamic model may be unavailable or detailed simulation is too time-consuming. 

Table 5. Accuracy of different testing of AI-based stability assessment. 

Stability Metric 
Estimation accuracy 

Random forests Neural network 

Frequency Nadir 98.30% 99.72% 

Transient CCT 98.44% 99.29% 

Small-Signal Damping ratio 98.61% 98.59% 

Table 6. Comparison of simulation time using simulation and AI. 

Stabilities 
Time for stability assessment (86 scenarios) 

Simulation AI-based 

Transient stability ~16 h 

~0.18 ms (with trained model) Frequency stability ~1 h 

Small signal stability ~1 h 

8. Conclusions 

This paper presented a series of AI-based power grid applications developed on FNET/GridEye. 

These applications cover a wide range of areas that help improve power grid reliability, including 

event identification, event location and magnitude estimation, inertia estimation, data authentication, 

frequency control, and stability assessment. These AI applications have better performance compared 

with conventional approaches developed based on human experience, and have a high accuracy 

comparable to model simulation, indicating huge potentials in improving power grids situational 

awareness and stability. The primary reason of this improved performance is AI’s capability in 

learning the non-linear relation between power grid measurements and stabilities indices from 

power grid big data. Further advancement of AI-based applications in power grids will rely on 

measurement data, accurate system modeling, next-generation AI and data analytics technologies. 

Future work will be continuing developing AI based applications to leverage more data from new 

sensors, next-generation AI technologies, to meet new demands and facilitate new paradigms for 

smarter grids. 
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