
Noname manuscript No.
(will be inserted by the editor)

A Modular Framework for Distributed Model
Predictive Control of Nonlinear Continuous-Time
Systems (GRAMPC-D)

Daniel Burk · Andreas Völz · Knut
Graichen

Received: date / Accepted: date

Abstract The modular open-source framework GRAMPC-D for model pre-
dictive control of distributed systems is presented in this paper. The modular
concept allows to solve optimal control problems (OCP) in a centralized and
distributed fashion using the same problem description. It is tailored to com-
putational efficiency with the focus on embedded hardware. The distributed
solution is based on the Alternating Direction Method of Multipliers (ADMM)
and uses the concept of neighbor approximation to enhance convergence speed.
The presented framework can be accessed through C++ and Python and also
supports plug-and-play and data exchange between agents over a network.

1 Introduction

Model predictive control (MPC) is a modern control concept that attained
increasing attention during the last decades [1,2] as it is capable to handle
nonlinear systems while considering constraints on both states and controls.
It is based on solving an optimal control problem (OCP) on a finite horizon
and applying the first part of the control trajectory to the actual plant, cor-
responding to the sampling time ∆t of the controller. At the next sampling
instant, the horizon is shifted and the OCP is solved again. This iterative
scheme is executed repetitively to stabilize the plant on an infinite horizon.

A main difficulty is the computational complexity of solving the OCP in
real-time, which in turn requires an efficient implementation of suitable MPC
algorithms. In the recent past, several toolboxes were published that provide
adequate software frameworks such as ACADO [3] and ACADOS [4], VIATOC
[5] or GRAMPC [6,7]. In case of distributed systems with a high number of
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controls and states, the classic centralized approach is not capable of solving
the overall OCP in real-time anymore. Hence, algorithms for distributed model
predictive control (DMPC) [8,9] have been in the focus over the last years.
Their basic idea is to decouple the centralized OCP and to split it into multiple
local OCPs that can be solved in parallel. The expectation is to compensate
the higher computational complexity due to the decoupled formulation as well
as the increased communication effort by the parallel structure. There are mul-
tiple approaches to distributed algorithms for optimal control problems, such
as sensitivity-based algorithms [10], the augmented Lagrangian based alter-
nating direction inexact Newton method (ALADIN) [11,12] or the alternating
direction method of multipliers (ADMM) [13] that is also used in the presented
framework.

The difficulty of an efficient implementation is drastically higher in case of
DMPC than for classic MPC algorithms, as a potentially high number of sub-
systems, so-called agents, have to be managed. Several toolboxes for DMPC
have been published as well. Linear discrete-time systems are considered in
the DMPC-Toolbox [14] that is implemented in Matlab. The PnPMPC-
TOOLBOX [15] focuses on the plug-and-play functionality and provides an
implementation in Matlab that considers continuous-time and discrete-time
linear systems. Several algorithms are implemented in the Python-Toolbox
DISROPT [16] regarding distributed optimization problems. ALADIN-α [17]
is the most recent published toolbox that provides a Matlab implementation
of the ALADIN algorithm. However, there is a lack of a DMPC framework that
provides an implementation tailored to embedded hardware with the focus on
real-time capable distributed model predictive control. Many real-world prob-
lems such as smart grids or cooperative robot applications are only equipped
with weak hardware on the subsystem level that is not able to handle com-
plex computation tasks in an appropriate time. Hence, for realizing distributed
controllers on actual plants, an implementation optimized on execution time
is required to enable real-time control. Furthermore, providing the possibil-
ity of communication between agents over a network is essential for a DMPC
framework designed to control actual plants. The restriction to neighbor-to-
neighbor-communication decouples the agents communication effort from the
overall system size by bounding it to the cardinality of its neighborhood. The
focus on real-world plants requires the system class to cover nonlinear dynam-
ics including couplings between the agents in both dynamics and constraints.

The presented framework, in the following GRAMPC-D, provides an open-
source C++ implementation that is capable of solving optimal control problems
in a distributed manner with a per-agent computation-time in the millisec-
ond range. The underlying minimization problems are solved with the MPC
toolbox GRAMPC that is suitable for embedded hardware implementations.
However, other toolboxes for solving the local minimization problem can be
used as well. To enable actual distributed optimization, a socket-based TCP
communication is provided to allow agents to exchange data over a network.
Furthermore, a Python interface is provided in addition to the C++-interface
using the software module Pybind11 [18]. The Python interface combines both
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the functionality of Python and the performance of C++ as it only wraps the
C++ interface while the actual code executing the DMPC algorithm is still
running in C++. Furthermore, it allows for fast and efficient prototyping when
developing a controller for a distributed system as both a centralized as well as
a distributed controller can be derived based on the same problem description.
The convergence behavior of distributed controllers can be improved by op-
tionally using the concept of neighbor approximation. Thereby, the generated
problem description of each agent is adapted to additionally approximate parts
of its neighbors OCP and by this to improve the solution of its local OCP in
each iteration, leading to an enhanced convergence behavior of the overall al-
gorithm. The modular structure of GRAMPC-D enables modifying the overall
system in the sense of plug-and-play by including or removing agents or cou-
plings at run-time. Supporting plug-and-play features is a core functionality
for a DMPC framework with focus on embedded systems, as the assumption
of a static system description does not hold for a large number of real-world
plants.

The paper is structured as follows. Section 2 outlines the considered class of
coupled systems and OCP formulation. The DMPC framework GRAMPC-D
is introduced in Section 3 including the ADMM algorithm as the method of
choice for the algorithm. In addition, the concept of neighbor approximation
is explained and the implemented algorithm for the crucial task of penalty
parameter adaption is presented. The modular structure of the framework is
presented in Section 4. Finally, simulation examples in Section 5 show the
effectiveness and modularity of the DMPC framework, before conclusions are
drawn in Section 6.

Throughout the paper, each vector x ∈ Rn is written in bold style. Stan-

dard p-norms ‖x‖p = (
∑n
i=1 |xi|

p
)

1
p will be used as well as the weighted

squared norm defined by ‖x‖2P = xTPx with a positive (semi-)definite square
matrix P . The stacking of individual vectors xi, i ∈ V from a set V is de-
noted by x =

[
xi
]
i∈V . As far as time trajectories are concerned, the explicit

dependency on time t may be omitted to ease readability. The derivative with
respect to time is written using the dot notation ẋ(t) = d

dtx(t).

2 Problem Description

The presented DMPC framework considers multi-agent systems that can be
described by a graph G = (V, E) with the sets of edges E and vertices V. Each
vertex represents an agent, while each edge between two vertices stands for a
coupling between the corresponding agents. The couplings may be both uni-
and bi-directional.
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Fig. 1 The neighborhood N1 = {2, 3, 4} of agent 1 is composed of sending neighbors
N←1 = {2, 3} and receiving neighbors N→1 = {2, 4}.

The considered optimal control problem for the coupled nonlinear system
is given by

min
ui,i∈V

∑
i∈V

Ji(ui;xi,0) (1a)

s.t. ẋi = f i(xi,ui, t) +
∑
j∈N←i

f ij(xi,ui,xj ,uj , t), i ∈ V (1b)

xi(0) = xi,0, i ∈ V (1c)

0 = gi(xi,ui, t), i ∈ V (1d)

0 = gij(xi,ui,xj ,uj , t), j ∈ N←i , i ∈ V (1e)

0 ≥ hi(xi,ui, t), i ∈ V (1f)

0 ≥ hij(xi,ui,xj ,uj , t), j ∈ N←i , i ∈ V (1g)

ui ∈ [ui,min, ui,max] , i ∈ V (1h)

with

Ji(ui;xi,0) = Vi(xi(T ), T ) +

∫ T

0

li(xi,ui, t) dt, (2)

states xi(t) ∈ Rnx,i , controls ui(t) ∈ Rnu,i and the horizon length T > 0. Each
agent may have a general nonlinear cost function li : Rnx,i × Rnu,i × R→ R
and terminal cost Vi : Rnx,i × R → R. The overall cost function (1a) is
given by the sum over the individual cost functions. The subsystem dynamics
(1b) are defined by the functions f i : Rnx,i × Rnu,i × R → Rnx,i and f ij :
Rnx,i × Rnu,i × Rnx,j × Rnu,j × R → Rnx,i . The OCP additionally considers
nonlinear equality constraints (1d)-(1e) and inequality constraints (1f)-(1g)
with the functions gi : Rnx,i × Rnu,i × R → Rng,i , gij : Rnx,i × Rnu,i ×
Rnx,j × Rnu,j × R → Rng,ij and hi : Rnx,i × Rnu,i × R → Rnh,i , hij :
Rnx,i ×Rnu,i ×Rnx,j ×Rnu,j ×R→ Rnh,ij as well as box constraints (1h) for
the control input ui of each agent i ∈ V.

The neighborhood Ni of agent i ∈ V is given by two sets that differ in
the direction of the coupling, sending neighbors N←i and receiving neighbors
N→i , see Figure 1 for an example. States and controls of sending neighbors
have an explicit influence on the dynamics of the agent i in form of functions
f ij , see (1b). Receiving neighbors are neighbors of agent i that are explicitly
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influenced by this agent, hence states or controls of the agent are part of a
function f ij of receiving neighbors. While a neighbor can be both, receiving
and sending, this separation is going to be beneficial in the ADMM algorithm
by reducing unnecessary computation and communication effort.

The dynamics (1b) of each agent i ∈ V are neighbor affine in the sense
that the dynamics consists of a function f i that depend only on states and
controls of the agent and a sum of functions f ij that depend on states and
controls of the agent and one neighbor. The constraints (1d)-(1h) on each
agent are separated into constraints that depend on states and controls of the
agent, given by gi, hi and the box constraints (1h), and constraints gij and
hij depending on states and controls of the agent and one neighbor, similar
to the dynamics.

The considered OCP formulation (1) covers a wide class of distributed
systems, e.g. cooperative transport [19] and scalable systems such as smart
grids [20]. This generic system description combined with the focus on a time-
efficient implementation opens a wide spectrum of usability for the presented
DMPC framework.

3 Distributed model predictive control

Optimal control problems for coupled systems as in (1) contain a large num-
ber of states and controls. This leads to a significant computational effort
that is challenging for standard MPC algorithms to be handled in real-time.
DMPC algorithms instead assume that each of the distributed subsystems are
equipped with a dedicated control unit that is capable of solving a reduced
optimal control problem. The idea based on this assumption is to decouple
the global OCP and spread the computation effort over the set of agents in
parallel. Overlying algorithms ensure convergence of the local solutions to an
optimal solution for the overall system. While the computational complex-
ity and communication effort of algorithms for DMPC is higher than solving
the central problem, the expectation is to compensate this disadvantage by the
parallel structure. In the presented DMPC framework, the well-known ADMM
algorithm [13] is employed in a continuous-time setting [21].

3.1 ADMM algorithm

The ADMM algorithm enables to spread the computation effort of the global
OCP (1) completely on distributed agents. As a starting point, the global OCP
(1) is brought into a decoupled form for each agent i ∈ V by introducing local
copies x̄ji(t) ∈ Rnx,j and ūji(t) ∈ Rnu,j for the states xj and controls uj of
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each sending neighbor j ∈ N←i , i.e.

min
w,z

∑
i∈V

Ji(ui;xi,0) (3a)

s.t. ẋi = f i(xi,ui, t) +
∑
j∈N←i

f ij(xi,ui, x̄ji, ūji, t), i ∈ V (3b)

xi(0) = xi,0, i ∈ V (3c)

0 = gi(xi,ui, t), i ∈ V (3d)

0 ≥ hi(xi,ui, t), i ∈ V (3e)

0 = gij(xi,ui, x̄ji, ūji, t), j ∈ N←i , i ∈ V (3f)

0 ≥ hij(xi,ui, x̄ji, ūji, t), j ∈ N←i , i ∈ V (3g)

ui ∈ [ui,min, ui,max] , i ∈ V (3h)

0 =

[
zx,i
zu,i

]
−
[
xi
ui

]
, i ∈ V (3i)

0 =

[
zx,j
zu,j

]
−
[
x̄ji
ūji

]
, j ∈ N←i , i ∈ V. (3j)

These local copies (x̄ji, ūji) represent new control inputs for the agent i and
can be seen as a proposal of agent i for its neighbors j ∈ N←i . Equivalence
between the local copies and the original variables is ensured by introducing the
consistency constraints (3i) and (3j) with the coupling variables zx,i(t) ∈ Rnx,i

and zu,i(t) ∈ Rnu,i . In (3) and the following, the notation

wi =

 ui[
x̄ji
ūji

]
j∈N←i

 , zi =

[
zx,i
zu,i

]
, z-i =

[
zx,j
zu,j

]
j∈N←i

, i ∈ V (4a)

w =
[
wi

]
i∈V , z =

[
zi
]
i∈V (4b)

is used.
The ADMM method is based on the Augmented Lagrangian formulation

[21,22]. Regarding the continuous-time setting used in this paper, the consis-
tency constraints (3i) and (3j) are accounted for in the cost functional

Jρ,i(ui,µi, zi, z-i;xi,0)

= Ji(ui;xi,0)

+

∫ T

0

[
µx,ii
µu,ii

]T([
zx,i
zu,i

]
−
[
xi
ui

])
+

1

2

∥∥∥∥[zx,izu,i

]
−
[
xi
ui

]∥∥∥∥2
Ci

+
∑
j∈N←i

[
µx,ji
µu,ji

]T([
zx,j
zu,j

]
−
[
x̄ji
ūji

])
+

1

2

∥∥∥∥[zx,jzu,j

]
−
[
x̄ji
ūji

]∥∥∥∥2
Cji

dt

(5)

subject to (3b)-(3h) with the Lagrange multipliers µx,ii(t) ∈ Rnx,i , µu,ii(t) ∈
Rnu,i , µx,ji(t) ∈ Rnx,j , µu,ji(t) ∈ Rnu,j and penalty parameters ρx,i(t) ∈
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Rnx,i , ρu,i(t) ∈ Rnu,i , ρx,ji(t) ∈ Rnx,j and ρu,ji(t) ∈ Rnu,j . To ease notations,
the multipliers and penalty parameters are stacked according to

µi =


µx,ii
µu,ii[

µx,ji
µu,ji

]
j∈N←i

 , i ∈ V, µ =
[
µi
]
i∈V (6a)

Ci = diag

[
ρx,i
ρu,i

]
, i ∈ V Cji = diag

[
ρx,ji
ρu,ji

]
, j ∈ N←i , i ∈ V. (6b)

The corresponding dual problem to (3) can be written as

max
µ

min
w,z

∑
i∈V

Jρ,i(ui,µi, zi, z-i;xi,0) (7a)

s.t. ẋi = f i(xi,ui, τ) +
∑
j∈N←i

f ij(xi,ui, x̄ji, ūji, t), i ∈ V (7b)

xi(0) = xi,0, i ∈ V (7c)

0 = gi(xi,ui, t), i ∈ V (7d)

0 ≥ hi(xi,ui, t), i ∈ V (7e)

0 = gij(xi,ui, x̄ji, ūji, t), j ∈ N←i , i ∈ V (7f)

0 ≥ hij(xi,ui, x̄ji, ūji, t), j ∈ N←i , i ∈ V (7g)

ui ∈ [ui,min, ui,max] , i ∈ V (7h)

with the primal variables (w, z) and the dual variables µ. The ADMM al-
gorithm solves the max-min-problem (7) by repetitively executing the three
steps

min
w

∑
i∈V

Jρ,i(ui,µ
q−1
i , zq−1i , zq−1-i ;xi,0), s.t. (7b)− (7h) (8a)

min
z

∑
i∈V

Jρ,i(u
q
i ,µ

q−1
i , zi, z-i;xi,0) (8b)

µqi = µq−1i + diag

[
Ci[

Cji

]
j∈N←i

] zqi −
[
xqi
uqi

]
[
zqj −

[
x̄qji
ūqji

]]
j∈N←i

 , i ∈ V (8c)

with the iteration counter q. The minimization with respect to the coupling
variables z (8b) can be solved analytically while the steepest ascent is used in
(8c). Important to note is that each step can be subdivided into fully decoupled
steps for either agent i ∈ V. Hence, the algorithm is fully distributable which
allows to spread the computation effort over all agents.

The resulting ADMM algorithm for each agent is given in Algorithm 1. It
consists of the computation steps 1, 3, 5, the communication steps 2, 4, 6, and
the evaluation of a convergence criterion in Step 7. The algorithm starts with
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Algorithm 1 Alternating direction method of multipliers

Initialize w0
i , z0i , µ0

i , choose Ci, Cji, ε, set q = 1

1: Compute local variables wq
i by solving

min
wi

Vi(xi(T ), T ) +

∫ T

0
li(xi,ui, t) +

[
µq−1
x,ii

µq−1
u,ii

]T(
zq−1
i -

[
xi

ui

])
+

1

2

∥∥∥∥zq−1
i -

[
xi

ui

]∥∥∥∥2
Ci

+
∑

j∈N←i

[
µq−1
x,ji

µq−1
u,ji

]T (
zq−1
j -

[
x̄ji

ūji

])
+

1

2

∥∥∥∥zq−1
j -

[
x̄ji

ūji

]∥∥∥∥2
Cji

dt

(9a)

s.t. ẋi = f i(xi,ui, t) +
∑

j∈N←i

f ij(xi,ui, x̄ji, ūji, t), xi(0) = xi,0 (9b)

0 = gi(xi,ui, t), 0 = gij(xi,ui, x̄ji, ūji, t), j ∈ N←i (9c)

0 ≥ hi(xi,ui, t), 0 ≥ hij(xi,ui, x̄ji, ūji, t), j ∈ N←i (9d)

ui ∈
[
ui,min, ui,max

]
(9e)

2: Send local copies x̄q
ji and ūq

ji to sending neighbors j ∈ N←i
3: Compute coupling variables

zqi =
1

1 +
∣∣N→i ∣∣

[xq
i
uq
i

]
−C−1

i

[
µq−1
x,ii

µq−1
u,ii

]
+

∑
j∈N→i

[
x̄q
ij

ūq
ij

]
−C−1

ij

[
µq−1
x,ij

µq−1
u,ij

] (10)

4: Send coupling variables zqi to receiving neighbors j ∈ N→i
5: Compute Lagrange multipliers

µq
i = µq−1

i + diag [Ci,Cji]

 zqi −
[
xq
i
uq
i

]
[
zqj −

[
x̄q
ji

ūq
ji

]]
j∈Ni←

 (11)

6: Send Lagrange multipliers µq
i to sending neighbors j ∈ N←i

7: if if q = qmax or

∥∥∥∥[zqi − zq−1
i

µq
i − µ

q−1
i

]∥∥∥∥ ≤ ε, ∀ i ∈ V then

8: STOP
9: else

10: set q = q + 1 and go to Step 1.
11: end if

an initialization of corresponding variables. The local OCP (9) is minimized in
Step 1 with respect to the local variables wi. This minimization represents the
main computation effort of the overall algorithm. In Step 2, the trajectories
of the local variables are sent to the sending neighbors j ∈ N←i of each agent
i ∈ V. The analytic solution for the minimization with respect to the coupling
variables (8b) is given in Step 3 of the ADMM algorithm, before they are
sent to the receiving neighbors j ∈ N→i of each agent in Step 4. The third
computation step is given in Step 5 by a maximization with respect to the
Lagrange multipliers µ. In Step 6, the result of the maximization step is sent
to the sending neighbors j ∈ N←i of each agent i ∈ V. A convergence criterion
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is checked in Step 7. If it is satisfied or the iteration counter has reached its
maximum, the algorithm stops and returns the current trajectories. Otherwise,
the iteration counter is increased and the algorithm returns to Step 1.

3.2 Neighbor approximation

In practice, the convergence speed of the ADMM algorithm can be enhanced
by anticipating the actions of the neighbors in the own agents optimization.
The concept of neighbor approximation was introduced in [19] and extended
in [23] and relies on the neighbor affine structure of the dynamics (1b)-(1c)
and constraints (1d)-(1h).

The basic idea is to use the already introduced local copies x̄ji and ūji to
approximate parts of the neighbors OCP. The expectation is that the addi-
tional information about the neighborhood improves the local solution of each
agent and thus the convergence behavior of the overall algorithm. This also
reduces the number of required ADMM iterations until convergence is reached,
which has been confirmed in numerical evaluations in [19] and [23]. In practical
experience, the reduced number of ADMM iterations can compensate for the
increased complexity of the extended OCP which can lead to a significantly
decreased computational effort [23].

The neighbor approximation implemented in GRAMPC-D is modular in
the sense that the neighbors cost, constraints, dynamics and each combination
of the three can be considered.

3.2.1 Neighbor cost

The global cost to be mininized (2) consists of the single cost functions of the
agents i ∈ V. The local copies of the neighbor variables x̄ji and ūji, j ∈ Ni,
can be used to anticipate the neighbors cost Jj(ūji;xj,0) on the local level of
agent i ∈ V, i.e.

J̃i(ui;xi,0) = ηiJi(ui;xi,0) +
∑
j∈Ni

ηjJj(ūji;xj,0), i ∈ V . (12)

The normalization with the factors

ηi =
1

1 + |Ni|
, i ∈ V (13)

is necessary in order to avoid that the neighbors cost function would appear
in the overall cost function multiple times. Approximating the neighbor costs
is especially beneficial in examples with a strong dependency on the other
agents costs and enables the agent to anticipate the neighbors control action
to minimize its local costs. It is recommended to combine the neighbor cost
approximation with the approximation of the neighbor dynamics introduced
in the following lines.
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3.2.2 Neighbor dynamics

Similar to the neighbor cost consideration, the neighbor affine structure of the
dynamics (1b)-(1c) can be exploited to approximate the neighbor dynamics
and therefore to improve the quality of the local copies x̄ji and ūji. To this
end, the local dynamics (1b)-(1c) are extended by the approximate neighbor
dynamics

˙̄xji = f j(x̄ji, ūji, t) + f ji(x̄ji, ūji,xi,ui, t) + v̄ji, j ∈ Ni, i ∈ V (14)

with the initial condition x̄ji(0) = xj,0. The dependencies of the neighbor’s
states and controls in f j and f ji are decoupled using the local copies x̄ji
and ūji. However, it is not possible to decouple further functions f js as these
depend on states and controls of agents s for which agent i has in general no
local copies. For consistency, the external influence

vij =
∑

s∈N←i \{j}

f is(xi,ui,xs,us, t), j ∈ Ni, i ∈ V (15)

is introduced with vij(t) ∈ Rnx,i that captures the remaining terms of the
neighbors dynamics. The external influence is considered in the approximated
neighbor dynamics (14) by introducing local copies v̄ji(t) ∈ Rnx,j . Thereby, the
whole dynamics of neighbor j is approximated in (14). To ensure convergence
of the local copies v̄ji to the original variables vij , the consistency constraints

zv,ij = vij , j ∈ Ni, i ∈ V (16a)

zv,ji = v̄ji, j ∈ Ni, i ∈ V (16b)

are introduced and replace the consistency constraints in (3i)-(3j) regarding
the states. Note that the local copies of the states x̄ji are not considered
as control variables anymore, but are determined by the differential equation
(14). Instead, the local copies of the external influence v̄ji serve as new local
control variables. In summary, the stacked notations (4) and (6) are adapted
according to

wi =

 ui[
ūji
v̄ji

]
j∈Ni

 , i ∈ V zi =

[
zu,i[

zv,ij
]
j∈Ni

]
, i ∈ V (17a)

µi =


µu,iiµv,ijµu,ji

µv,ji


j∈Ni

 , i ∈ V z-i =

[
zu,j
zv,ji

]
j∈Ni

, i ∈ V (17b)

Ci = diag
[
ρu,i

]
, i ∈ V Cji = diag

ρv,ijρu,ji
ρv,ji

 , j ∈ Ni, i ∈ V (17c)
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and

w =
[
wi

]
i∈V , z =

[
zi
]
i∈V , µ =

[
µi
]
i∈V (18)

with Lagrangian multipliers µv,ij(t) ∈ Rnx,i , µv,ji(t) ∈ Rnx,j , coupling vari-
ables zv,ij(t) ∈ Rnx,i , and penalty parameters ρv,ij(t) ∈ Rnx,i , ρv,ji(t) ∈ Rnx,j .

3.2.3 Neighbor constraints

In addition to the consideration of the neighbor cost and dynamics within the
local OCP of agent i ∈ V, the constraints (1d)-(1h) of each neighbor j ∈ Ni
of agent i ∈ V can be taken into account by adding

0 = gj(x̄ji, ūji, t), 0 = gij(x̄ji, ūji,xi,ui, t), j ∈ Ni, i ∈ V (19a)

0 ≥ hi(x̄ji, ūji, t), 0 ≥ hij(x̄ji, ūji,xi,ui, t), j ∈ Ni, i ∈ V (19b)

ūji ∈ [uj,min, uj,max] , j ∈ Ni, i ∈ V (19c)

to the local OCP (9). Again, the constraints are decoupled from the neighbors
states and controls xj and ui by using the local copies x̄ji and ūji.

As discussed before, this concept is restricted to the agent constraints of
each neighbor j ∈ Ni and the coupling constraints between neighbors j and
agent i, while further coupling constraints between neighbor j and its neighbors
s ∈ N←j \ {i} depend on states and controls of agents s for which in general
agent i has no local copies.

3.3 Penalty parameter adaption

The update of the penalty parameters in the matrices Ci and Cji in (7) is
crucial for a fast convergence of the ADMM algorithm. The adaptation method
implemented in GRAMPC-D follows a proposal in [13, Section 3.4.1] for the
optimization problem

min
x,z

f(x) + g(z) (20a)

s.t. Ax+Bz = c . (20b)

The proposed adaption algorithm is given by

ρq =


τ incrρq−1 if

∥∥rq−1∥∥
2
> µ

∥∥sq−1∥∥
2

ρq−1

τdecr if
∥∥sq−1∥∥

2
> µ

∥∥rq−1∥∥
2

ρq−1 otherwise

(21)

with the primal residual rq = Axq+Bzq−c, the dual residual sq = ρATB(zq−
zq−1). The basic idea is to keep both within a factor of µ of one another. Fol-
lowing this idea for the OCP (7), the primal and dual residuals are given by
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Algorithm 2 Adaption of penalty parameters
Calculate |sq | and |rq |
1: if |sq | > ε0 then

2: γq =
|rq|
|sq|

3: if γq > γmax then
4: γq = γmax

5: else if γq < γmin then
6: γq = γmin

7: end if
8: else
9: γq = 1

10: end if
11: ρq = γqρq−1

rqi =


xqi
uqi[

x̄ji
q

ūqji

]
j∈N←i

−


zqx,i
zqu,i[

zqx,j
zqu,j

]
j∈N←i

 , i ∈ V (22a)

sqi = diag

 Cq−1
i[

Cq−1
ji

]
j∈N←i




zqx,i − z
q−1
x,i

zqu,i − z
q−1
u,i[

zqx,j − z
q−1
x,j

zqu,j − z
q−1
u,j

]
j∈N←i

 , i ∈ V. (22b)

To reduce the number of tuning parameters, µ = 1 is chosen which results in
an equality instead of the inequality in (21). To further simplify the imple-
mentation, the equality is evaluated element-wise and at each discrete time
step δk = T

N−1 with N as discretization of the predicted horizon. This results
in the condition

‖rqi (δk)‖2
!
= ‖sqi (δk)‖2 (23)

for each discrete time step δk and the norm evaluated element-wise. The con-
dition (23) can be reformulated in form of the update law

ρqm(δk) = ρq−1m (δk)
|rqm(δk)|
|sqm(δk)|

= ρq−1m (δk)γqm(δk) (24)

with m as index for an arbitrary element in (23). The implementation is pre-
sented in Algorithm 2. At first, the division through small numbers, especially
zero, is caught to prevent numerical issues. The factor γq is computed after-
wards and bound between γmin and γmax, before the new penalty parameter
is calculated by ρq = γqρq−1.
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4 Modular framework

GRAMPC-D is implemented in a modular fashion in order to achieve a scalable
and flexible implementation. At first, the modular structure is explained before
the capability for plug-and-play scenarios is laid out.

4.1 Modular structure

The main parts of GRAMPC-D and their interaction are presented in the fol-
lowing. Due to the modular concept, the implementation of GRAMPC-D can
be subdivided into single modules that are composed depending on the chosen
type of controller, centralized or distributed, as the structure of GRAMPC-D
differs between the two cases. Both are visualized in Figure 2. Either struc-
ture is generated automatically by choosing the corresponding controller type
without further required interaction of the user. Both the distributed and
centralized structure are scalable due to the modular concept and therefore
suitable to handle large or complex systems.

The distributed control structure in the left part of Figure 2 assumes that
each agent only has access to its local variables and communication is re-
quired to acquire data from other agents. Thus, the central part in the dis-
tributed setup is the communication interface. While it enables to exchange
data between agents, the actual implementation depends on the chosen type
of communication interface. If the DMPC is simulated on a single proces-
sor, there is no need to actually send data over a network. Instead, a central
communication interface is provided that exchanges data pointers, which is a
significant difference in performance. If the ADMM algorithm is implemented
in an actual distributed setup, each agent creates its own local communication
interface that enables to exchange data over a network. The corresponding
protocol is encapsulated into the local communication interface due to the
modular concept that enables implementing multiple protocols and switching
between them. In either case, each agent creates a local solver that contains
the local OCP depending on the neighborhood and the chosen optimization
parameters such as neighbor approximation. Hence, tasks like decoupling the
global OCP by introducing local copies are done automatically in the back-
ground. The ADMM algorithm is implemented inside the local solver with an
abstract implementation of the minimization problem with respect to the local
variables. This enables implementing multiple solvers and switching between
them without changing other parts of the software, although GRAMPC is cho-
sen as default. The remaining two important modules are the coordinator and
the simulator. The ADMM algorithm assumes a fully synchronized execution,
which has to be guaranteed even in a distributed setup. This synchronization
is handled by the coordinator by triggering each step of the algorithm and
waiting for a response of each agent before sending the following trigger. The
last module is an integrated simulator that enables simulations independent
of the chosen controller or the specific system.
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A more simple structure is generated if a centralized controller is chosen,
see right part of Figure 2. In this case, the global OCP (1) is solved in a
centralized manner including all agents dynamics and having knowledge of all
variables. The centralized setup implicitly synchronizes the execution of the
algorithm without the need for a coordinator. The only remaining module is
the simulator that is used to simulate the overall system.

Each part of GRAMPC-D is interchangeable by alternative software. As
already mentioned, the MPC toolbox GRAMPC is used by default to solve
both the global OCP (1) in case of a centralized controller and the underlying
reduced OCP (9) in Step 1 of the ADMM algorithm in case of a distributed
controller. GRAMPC is tailored to embedded hardware and by this a natural
choice, but if another solver is desired, e.g. with a stronger focus on precision
instead of computational speed, then the only required change is to overload
the class regarding the solver with a new implementation. The same holds for
each part of the framework such as the implemented communication protocol.
The TCP protocol is provided by default, but alternative protocols can be
implemented by overloading the local communication interface.

Agent i

Local solver

Agent j

Local solver

Coordinator Simulator

Communication
Interface

Agent i

Central solver

Agent j

Simulator

Structure of GRAMPC-D
for a distributed setup

Structure of GRAMPC-D
for a centralized setup

Fig. 2 The communication interface is the central part of GRAMPC-D in case of distributed
optimization. Each agent has its own local solver that handles the steps of the ADMM algo-
rithm. The coordinator provides a synchronization of all agents while the simulator handles
the simulation of the overall system. If a centralized controller is chosen, GRAMPC-D is
centered around the central solver that knows all agents and can access their variables.
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4.2 Rapid prototyping

Both the local and global OCPs are dynamically generated at run-time based
on the same problem description provided by the user, see Figure 3. In case
of a centralized controller, the global OCP is generated by the central solver
while in case of a distributed controller, the local OCP is generated for each
agent individually based on its neighbors and the optimization parameters.
Therein, the corresponding flags for neighbor approximation are defined that
state whether additional variables have to be initialized, e.g. local copies x̄ji
and ūji or the external influence vij , see Section 3.2. This results in a conve-
nient prototyping process while designing controllers, as each type of controller
can be automatically generated and evaluated based on the same problem de-
scription. To further support the efficiency of prototyping, the possibility of
multi-threading can be activated to spread the computation effort on each
available core of the processor and thus to speed-up the computations.

4.3 Plug-and-play functionality

Plug-and-play is a core feature for the usability of a framework in the field
of DMPC, see e.g. [24,25,26], where the OCP structure and size may change
dynamically due to the removal or plug-in of agents. The generation of the
OCPs (9) during run-time and the modular structure of the framework allows
to integrate plug-and-play functionality in the network. If an agent enters the
system in the distributed control setting (left part of Figure 2), the coordinator
informs the direct neighbors of the agents to include the corresponding vari-
ables. Hence, only the OCPs (9) of the direct neighbors are updated and the
new agent is integrated into the network. If an agent leaves the network, the

Problem description

G
en
er
at
e

ce
nt
ra
l O

CP
G
enerate

local O
C
Ps

MPC DMPC

Default Neigh. approx.

Fig. 3 Based on the same problem description, the global OCP is generated for a centralized
controller and the local OCPs in the distributed case. The local OCPs are automatically
extended by corresponding terms if neighbor approximation is enabled for the distributed
controller.
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agents and the coordinator delete the agent from their internal lists of active
agents. This results in a smooth transition between two problem formulations.

5 Simulation examples

The modular framework GRAMPC-D is evaluated for different examples. The
scalability is shown for a coupled spring-mass system. The plug-and-play func-
tionality and the concept of neighbor approximation are demonstrated for a
smart grid and a coupled water tank network, respectively. Finally, a dis-
tributed hardware implementation for a system of coupled Van der Pol oscil-
lators is considered by communicating over an actual network using the TCP
protocol.

In each example, the terminal and integral cost in (2) are chosen quadrat-
ically

Vi(xi, T ) =
1

2
‖xi(T )− xi,des(T )‖2P i

li(xi,ui, t) =
1

2
‖xi − xi,des‖2Qi

+
1

2
‖ui‖2Ri

(25)

with the positive (semi-)definite weighting matrices P i ∈ Rnx,i×nx,i , Qi ∈
Rnx,i×nx,i and Ri ∈ Rnu,i×nu,i . The desired state to be controlled is given by
xi,des. The computation times are measured on an Intel i5 CPU with 3.4 GHz
using Windows 10. The communication effort is neglected if not stated other-
wise.

5.1 Scalable system

The scalability of GRAMPC-D is shown for a system consisting of a set of
masses that are coupled by springs. Each mass is represented by an agent
i ∈ V and is described by the differential equations[

p̈x,i
p̈y,i

]
=

[
ux,i
uy,i

]
+
∑
j∈Ni

c

m

(
1− δ0

δij(px,i, py,i)

)[
px,j − px,i
py,j − py,i

]
(26)

with the position (px,i, py,i) of the respective mass in the x− and y-axis and
the respective controls (ux,i, uy,i). This results in the state and control vectors

xi =
[
px,i ṗx,i py,i ṗy,i

]T
(27a)

ui =
[
ux,i uy,i

]T
. (27b)

The spring is relaxed at the length δ0 = 1 m. The spring constant is given
by c = 0.5 N m−1 and each agent has a mass of mi = 7.5 kg. The function
δij(px,i, py,i) =

√
(px,i − px,j)2 + (py,i − py,j)2 computes the distance between

two agents i and j. The dynamics (26) can be split into functions f i and f ij
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Fig. 4 Global cost trajectory of the scalable spring-mass system with 40 × 40 agents for
the central MPC and DMPC case.

corresponding to the neighbor-affine form (1b). The weighting matrices are set
to (SI units are omitted for simplicity)

P i = diag [1, 1, 1, 1] , Qi = diag [5, 2, 5, 2] , Ri = diag [0.01, 0.01] (28)

with the desired state

xi,des =
[
px,i,des 0 m s−1 py,i,des 0 m s−1

]T
. (29)

It was shown in [27] that the computation time per agent is nearly independent
of the system size, whereas in the central MPC case the computation time rises
drastically. The simulation results for a system with 40× 40 agents are given
in Figure 4. It can be seen that the trajectories of the cost are quite similar.
While the distributed solution is slightly suboptimal, it would converge to
the centralized solution by increasing the number of ADMM iterations. The
computation time for each time step, however, is 1072.58 ms for the centralized
controller, while the distributed controller requires a maximum of 9.59 ms and
an average of 2.23 ms per agent.

5.2 Plug-and-play

The plug-and-play capability of GRAMPC-D is presented using an exemplary
setup of a smart grid. The network is described by a set of coupled agents that
represent non-controllable power sinks and sources, such as private households,
industry or renewable energy as well as controllable power plants. The dynam-
ical behavior of the agents is generalized by describing them as generators with
a mechanical phase angle θi(t) ∈ R that may differ from the phase of the grid.
The corresponding dynamics

φ̈i =
1

IΩ

(
ui + Psource,i − κΩ2

)
− 2

κ

I
φ̇−

∑
j∈N←i

Pmax,ij

IΩ
sin (φj − φi) (30)

with friction constant κ > 0 and the moment of inertia I is given in a
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Power plant Power sink Power sink

Fig. 5 The plug-and-play capability of GRAMPC-D is presented using the simulation of
a smart grid. At the beginning of the simulation, only one power sink is connected to the
power plant. During run-time, the second power sink is connected to the first one, i.e. the
power plant has to supply both using the same connection.

neighbor-affine form and describes the dynamical behavior of the phase shift
φi(t) ∈ R given by

φi = θi −Ωτ (31)

between the phase Ωτ of the grid with frequency Ω and the mechanical angle
θi, see [28]. Hence, the state vector is given by

xi =
[
φi φ̇i

]T
. (32)

In (30), Psource,i describes the generalized non-controllable power, e.g. the de-
manded power for private households and industry or the generated power by
renewable energy. The coupling between two agents consists of the maximum
transferable power Pmax,ij that depends on the phase shift angle φj − φi be-
tween agent i ∈ V and its neighbors j ∈ N←i . Agents that describe power
plants have a controllable input ui that is used to stabilize the grid. A nor-
malized parameterization is used with Ω = 1 Hz and I = 1 J s2, the fric-
tion term set to κ = 1× 10−3 J s and the maximum transferable power to
Pmax,ij = 0.1 J s−1. The weighting matrices are set to

P i = diag
[
0 s2, 0.1 s4

]
, Qi = diag

[
0 s2, 1 s4

]
, Ri = 0.01 s2 J−2 (33)

with the desired state

xi,des =
[
× 0 s−2

]T
. (34)

The first element of the desired state xi,des is set arbitrary, as there is no
desired value for the phase and the first state is not weighted in the cost
functional.

The implemented setup is visualized in Figure 5. At the start of the simu-
lation, one power plant is given that supplies one non-controllable power-sink
such as a private household. During run-time, an additional power sink is cou-
pled to the first one, i.e. the power plant has to supply both using the same
connection. The simulation results are shown in Figure 6, starting with the
first power sink that is connected to the power plant. It can be seen that the
phase difference between the power plant and the household converges to a
stationary value that leads to a transmission of the demanded power. Further-
more, the angular velocity of the phase shift converges to zero. At simulation
time t = 20 s, the second power sink is plugged in, leading to an additional
power demand. Consequently, the phase shift between the power plant and
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Fig. 6 The Plug-and-play functionality of GRAMPC-D for the smart grid example is shown.
The plot at the top shows the trajectory of the global cost, the plot in the middle the
frequencies of the single agents and the plot in the bottom the phase shift between the
agents. The additional power sink is plugged in at simulation time t = 20 s.

the first power sink increases and the additional power is transmitted. The
phase shift between the first and second power sink is adapted accordingly.
The computation time for the distributed controller is given by a maximum of
84.67 ms and an average of 4.78 ms per agent using a step size of ∆t = 100 ms.
The average time is significantly lower due to the convergence criterion of the
ADMM algorithm.

This plug-in and plug-out functionality of agents is supported at any mo-
ment during the simulation even if the controllers run on distributed hardware
and communicate over a network. GRAMPC-D can handle planned changes
in the system such as shown in this simulation example as well as spontaneous
disconnections due to a broken network connection.
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5.3 Neighbor approximation

The concept of neighbor approximation is evaluated for a system of water
tanks that are coupled by pipes, see Figure 7. Only the first water tank has
a controllable input u1(t) ∈ R. The last water tank has a constant outflow
d5 = 0.01 m3 s−1 and the desired water height x5,des = 3 m. In addition, the
inequality constraint hi ≤ 3 m of a maximum water height has to be satisfied
by all tanks. The dynamics of each water tank is given by

ḣi =
1

Ai
(ui − di) +

∑
j∈N←i

aij
Ai

sign (hj − hi)
√

2g |hj − hi| (35)

with the water height hi(t) ∈ R and the state vector xi = hi. The area of
each water tank is given by Ai = 0.1 m2 and the diameter of the pipes by
aij = 0.005 m2. The weights for the cost functions are set to

P1 = 0 m−2, Q1 = 0 m−2, R1 = 0.1 s2 m−6 (36a)

Pi = 0 m−2, Qi = 0 m−2, Ri = 0 s2 m−6, i ∈ {2, 3, 4} (36b)

P5 = 1 m−2, Q5 = 1 m−2, R5 = 0 s2 m−6. (36c)

The simulation is run with a distributed controller both with and without
neighbor approximation using the same set of parameters for the ADMM al-
gorithm and GRAMPC. The convergence of the ADMM algorithm is shown
in Figure 8 for both simulations. The simulation with neighbor approxima-
tion converges smoothly to the optimal solution and satisfies the convergence
criterion after 7 iterations while 89 ADMM iterations are required without
neighbor approximation. Note that the cost is rising instead of falling as the
solution is infeasible until the algorithm converges. The improved convergence
behavior with neighbor approximation comes with a higher computational
complexity per ADMM iteration. However, if a convergence criterion is used,
the decreased number of ADMM iterations per time step compensate for the
higher computational complexity. The required computation time for the 89
ADMM iterations without neighbor approximation is 955.6 ms and for the 7
iterations using neighbor approximation 203.8 ms. Note that the same config-
uration for the ADMM algorithm and GRAMPC is used in this evaluation to
provide a comparable result. The standard ADMM algorithm may converge
within less iterations if more computation effort is spent per iteration while the

1 2 3 4 5

Fig. 7 The concept of neighbor approximation is shown at a simulation example of coupled
water tanks. Only the first one has an input and only the last one has a desired water height
while being disturbed by a constant outflow.
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Fig. 8 Convergence behavior of the ADMM algorithm with and without neighbor approxi-
mation. The algorithm converges within 89 ADMM iterations without neighbor approxima-
tion opposed to 7 iterations if neighbor approximation is used.

algorithm may require even less time if the parameters are tuned for neighbor
approximation.

5.4 Distributed hardware implementation

This section shows the capability of GRAMPC-D to solve the ADMM algo-
rithm on distributed embedded hardware. The following simulation is run on
four Raspberry Pi 3B+ using Raspberry Pi OS that are connected via Eth-
ernet. Each agent runs on an individual Raspberry Pi while the coordinator
and the simulator use the same hardware. The local communication interface
from GRAMPC-D based on the TCP protocol is used. The simulation example
consists of three coupled Van der Pol oscillators [29]

p̈i = α1

(
1− p2i

)
− pi + ui +

∑
j∈N←i

α2 (pj − pi) (37)

with state pi(t) ∈ R, control ui(t) ∈ R, the uncoupled oscillator constant
α1 = 1 m−1 s−2, and the coupling constant α2 = 1 s−2. The state vector and
desired state are given by

xi =
[
pi ṗi

]T
(38a)

xi,des =
[
0 m 0 m s−1

]T
(38b)

with the weighting matrices set to

P i = diag
[
1 m−2 1 m−2 s2

]
, (39a)

Qi = diag
[
1 m−2 1 m−2 s2

]
, (39b)

Ri = 0.1 m−2 s4. (39c)

The simulation is run for 10.000 time steps using a fixed number of qmax = 5
ADMM iterations.
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Figure 9 shows the required time for computation and communication in
each time step. The computation time to execute 5 ADMM iterations amounts
to 10 ms per agent while the average time required to solve the ADMM algo-
rithm in a distributed manner using the TCP protocol for the communication
is 66.51 ms. Hence, the average effort for the communication is 56.51 ms in-
cluding 72 communication steps. Since all agents have to be synchronized for
the ADMM algorithm, either of them has to wait for the slowest agent at each
step of the algorithm. All five ADMM iterations can be executed in 48 ms
with the worst case time of 114 ms. This results in the minimum time for each
communication step of 0.53 ms, an average time of 0.79 ms and a maximum
time of 1.44 ms. This time includes preparing the data to be sent, sending
and receiving it and recreating the sent data structure from the byte array.
These are plausible values as a ping to the loopback address 127.0.0.1 already
requires 0.14 ms in average and 0.22 ms at maximum. These results show that
the main effort in distributed optimization is the communication effort that
requires 82.3% of the overall time in average for this simulation example.
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Fig. 9 Communication effort of the ADMM algorithm on distributed hardware with 48 ms
(minimum), 66.51 ms (average), and 114 ms (maximum) compared to the computation time
of 10 ms.

6 Conclusions

The open-source, modular DMPC framework GRAMPC-D is presented in
this paper that enables to solve scalable optimal control problems in a conve-
nient way and to stabilize plants using distributed model predictive control.
This problem description can be used for both a centralized and a distributed
controller. In the distributed setting, the global optimal control problem is
automatically decoupled and solved in a distributed manner using the ADMM
algorithm. The convergence behavior of the ADMM algorithm can be im-
proved by sugint he concept of neighbor approximation that allows the agents
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to anticipate the actions of their neighbors. The presented DMPC framework
supports plug-and-play to connect and remove agents at run-time. Besides
solving the ADMM algorithm on a single processor, it is possible to solve the
local optimal control problems on distributed hardware. The local communi-
cation interface enables communication between agents over a network using
the TCP protocol. By default, GRAMPC-D uses the MPC toolbox GRAMPC
for solving the local optimal control problems on agent level, which is suitable
for real-time and embedded implementations.

GRAMPC-D is licensed under the Berkeley Software Distribution 3-clause
version (BSD-3) license. The complete source-code is available at Github
https://github.com/grampc-d/grampc-d. Future work will use the modular
structure to extend GRAMPC-D. For example, communication protocols be-
sides TCP can be provided or alternative solvers to GRAMPC for the underly-
ing minimization problem implemented to increase the usability and flexibility
of the framework.
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