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ABSTRACT 
Over 30 million tons of deicing salt is applied on U.S. roads annually at a cost of roughly $1.2 
billion and with significant negative environmental impact. Therefore, it is desirable to reduce 
salt use while maintaining winter road safety. Automatic adjustment of application rate in 
response to road, weather, traffic, and other conditions has the potential to achieve this goal.  
 

In the US, salt application rates are typically pre-set manually based on roadway 
classification, cycle time, desired level of service (LOS), and expected traffic, road, and weather 
conditions. The operators can temporarily change the application rate manually based on their 
experience and observations. Current spreader automation mostly involves adjusting discharge 
rate in response to spreader speed, although pavement temperature sensors are likely to be 
adopted in the future.  
 

This paper explores extending spreader automation for adjusting salt discharge rate on 
curves, inclines, and other areas with historically high accident concentrations. First, we propose 
the use of gyroscopic sensors and inclinometers on board the spreader to adjust discharge rate in 
real time in response to curves and inclines. The second part of the proposed solution includes 
the installation of roadside Radio-Frequency Identification (RFID) tags that can communicate 
the length and the severity of the hazard zone to an RFID reader on board the spreader to 
automatically adjust discharge rate accordingly.  

 
Our proposed methods have the potential to reduce salt use and operator fatigue, while 

increasing winter road safety without adding excessive cost or complexity to the existing 
spreader systems in the US. 
 
 
Keywords: Winter Road Maintenance, Spreader Automation, Gyroscopic Sensors, RFID Reader, 
Road Salt 
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1. INTRODUCTION 
Over 30 million tons of deicing salt is applied on the US roads every winter at a cost of roughly 
$1.2 billion and with significant negative environmental impact [1,2,3]. As a result, 
transportation agencies, such as state departments of transportation (DOTs), are trying to reduce 
their salt use without compromising driver safety [4]. 
 

Automatic adjustment of application rate in response to road, weather, traffic, and other 
conditions has the potential to reduce salt use while maintaining or enhancing safety for the 
vehicles on the road [5] and for the snow plow equipment operators [6]. In the US, application 
rates are typically pre-set manually based on roadway classification, expected traffic, road, and 
weather conditions, cycle time, and the desired level of service (LOS). Often, the operators can 
temporarily increase the application rate manually based on their experience and their 
observation of the road conditions. Current spreader automation in the US mostly involves 
adjusting discharge rate based on spreader speed, although pavement temperature sensors are 
considered highly desirable and are likely to be adopted in the future [5].  
 

In this paper, we explore relatively simple and inexpensive spreader automation to 
prevent or minimize overapplication of salt due to manual rate adjustment during the beat. In our 
proposed method, the spreader would increase discharge rate automatically on portions of a road 
where accidents are more likely to occur, such as curves, inclines, and other areas with a history 
of a higher concentration of accidents. We propose using gyroscopic sensors and inclinometers 
on board the spreader to detect the sharpness of curves and the steepness of inclines in real time 
and adjust the discharge rate automatically in response [7]. We also propose installation of 
stationary roadside Radio-Frequency Identification (RFID) tags near known accident-prone 
zones. These tags can convey the length and the severity of the hazard zone to an RFID reader on 
board the spreader to automatically adjust discharge rate and increase the LOS in such zones.  
 

The proposed gyroscopic sensors, inclinometers, and RFID readers are inexpensive and 
can be connected to existing spreader controllers via the CAN (Controller Area Network) bus, 
which is standard on the spreaders. Enhancing the controllers’ software to take the additional 
sensor and RFID input into account would complete the proposed automation. Our proposed 
methods have the potential to reduce salt use and operator fatigue, while increasing winter road 
safety without adding excessive cost or complexity to the existing spreader systems in the US. 
 

In this paper, we also make the case that an RFID-based solution [8] might be able to 
reduce some of the cost and complexity and improve accuracy in some of the advanced GPS-
based automation that is currently being pursued in Europe [9,10]. Transportation agencies in the 
US may prefer sensor- and RFID-based automation in the future, because of its simplicity and 
lower cost. 
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2. PROBLEM 
Optimum salt application rate depends on many factors, including pavement temperature and 
road geometrics.  According to snow and ice control guidelines [11] from New York State 
Department of Transportation (NYSDOT), the factors that influence application rates include 
steep grades, sharp curves, bridge decks, and cold spots, etc. Some of these situations determine 
the application rate for a whole beat, and others require the drivers to make adjustments during 
their run.  The reason is that the goal of normal spreading operations is not to achieve black 
pavement, but to achieve effective anti-icing; i.e., preventing the snow or ice from adhering to 
the pavement. However, even a small amount of loose snow or ice could be hazardous on curves 
and inclines and the operators may decide to increase the LOS on such portions of the roadway. 
 

Increasing the application rate or the LOS for an entire beat to compensate for hazardous 
portions on the route likely results in over-application, because even the safer straight and flat 
portions of the route are subject to the increased application rate, beyond what is necessary for a 
successful anti-icing operation.  Manual adjustments are also likely to result in over-application, 
because the operators are likely to err on the side of safety.  The current practice of using the 
“blast” button increases the discharge rate dramatically for a short period of time (usually around 
10 seconds) and may result in excess salt application in an area where a smaller increase would 
have sufficed.  In addition, manual adjustments for expected pavement temperature based solely 
on operator experience can be tricky, as the location and intensity of cold spots depend on a 
number of factors.  Finally, frequent application rate adjustments on a beat can result in 
distraction and fatigue for the operator, which appears to be a matter of concern [12].   
 

3. POSSIBLE SOLUTIONS 
We believe that spreader automation can reduce the overall amount of salt used, while 
maintaining or improving safety. Automation is also likely to reduce operator fatigue and 
improve the safety of snow removal or deicing operations by letting spreader drivers focus on 
vehicle operation, instead of manually adjusting the application rate [6]. A lot of manual 
adjustments to the application rate on a beat are made by the operators based on their experience 
with the route. Spreader automation can help make snow removal or deicing operations more 
flexible, because with automation, any driver would be able to handle any route. In this section, 
we propose a number of simple and inexpensive sensor-based automation techniques. Almost all 
sensors, including RFID readers, can communicate with a spreader’s controller over the CAN 
bus either directly, or through an inexpensive intermediate microprocessor system. 
 

3.1. Gyroscopic Sensors, Inclinometers, and Temperature Sensors 
Current automation in most spreaders in the US takes only the speed of the spreader truck 

into account. Operators set a default application rate mostly based on their experience with the 
route and on expected road, weather, and traffic conditions [11]. If the operator sets the desired 
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application rate at A pounds/mile and the spreader is moving at a speed of s miles/hour, then salt 
is discharged at the rate of d pounds/hour based on the simple equation: 
 

 d = s • A.                                                   (1) 
 

In the near future, it is expected that automation in US spreaders will include adjusting 
the discharge rate based on pavement temperature as well. Inexpensive and accurate infrared 
pavement temperature sensors are readily available. If ∆T is the difference between the expected 
and actual pavement temperature, then the original equation (1) can be modified as follows: 
 

d = s • A • (1 + k1∆T).                           (2) 
 

If the pavement is colder than expected, then ∆T would be positive, causing the discharge 
rate to increase.  If the pavement temperature is higher than expected, then ∆T would be 
negative, causing the discharge rate to decrease. The constant k1 determines how sensitive 
discharge rate d is to ∆T.  

 
In addition to pavement temperature, we also propose detecting and measuring the curves 

and grade of the roadway in real time. Inclinometers on the spreader truck can measure the 
steepness of slopes, and gyroscopic sensors can detect sharpness of curves by measuring the 
truck’s angular velocity. If θ is the angle of incline or decline of the roadway, and ω is the 
spreader’s angular velocity, then the spreader’s controller can calculate discharge rate using the 
following equation: 

 
 d = (s + k3|ω|) • A • (1 + k1∆T) • (1 + k2|θ|).                     (3)  

 
The constants k2 and k3 determine the relative weights of grade and sharpness of a curve 

in increasing the discharge rate. Note that in equation (3), we consider linear dependencies 
between discharge rate and ∆T, θ, and ω. We use absolute values of θ and ω, because we 
consider only the magnitudes of the grade and curve. It is also possible to come up with different 
equations with nonlinear dependencies and different weights for inclines and declines. The 
equation must revert to the original d = s • A when ∆T, θ, and ω are 0. 

 
3.2. RFID Devices 
Some areas of high accident concentrations have hazards that cannot be detected easily 

using sensors. Examples of these include highway sections near high-volume exits and entrances, 
roadway sections with narrow or no shoulder, sections with seasonal morning or evening solar 
glare, etc. To enhance automation in salt spreaders to take such situations into account, we 
propose the use of inexpensive and proven RFID technology [8]. Our solution includes having 
the spreaders equipped with RFID readers and installation of compatible roadside RFID tags at 
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the beginning of known accident-prone sections without readily detectable hazards such as 
curves, inclines, or cold spots. A roadside RFID tag would transmit simple instructions to a 
passing spreader, such as numerical values indicating the severity and the length of the accident-
prone section. These instructions would direct the spreader to alter the effective application rate 
by a situation-specific percentage over a specific distance or time. Similarly, RFID tags can 
direct spreaders to reduce application rates in environmentally sensitive sections, or stop the 
application on bridges that are treated using alternative chemicals or methods. 
 

4. EXPERIMENTAL EVALUATION 
We experimentally evaluated part of our solution on a 10-mile stretch of Taconic State Parkway 
(TSP) from Commerce Street in Valhalla, NY to Route 134 in Ossining, NY. We describe our 
experiments and insights in the following subsections. 
 

4.1. Parameter Setting 
 We used reasonable guesstimates for the constants k1, k2, and k3 for the discharge rate 
equation (3) in Section 3.1. Based on a simple linear regression on application rates suggested 
for different temperatures in various guidelines, including those by NYSDOT [11] (Appendix C), 
we arrived at a value of 0.05 for k1. This means, that for every 1oF change in temperature, the 
discharge rate increases by about 5%.  However, the focus of our experiments was road 
geometrics, so we assumed ∆T to be 0, and the value of k1 did not factor into the calculations.  

 
We initially treated inclines and declines differently, with a higher weight for declines. 

We used k2 = 0.04 for inclines (when θ was positive) and k2 = 0.08 for decline (when θ was 
negative). This translated to roughly 27.5% increase in discharge rate on a 6% downhill grade, 
which is equivalent to a θ of -arctan(0.06) or -3.43o. The value of k3 was set to 2.5 for increasing 
the discharge rate based on the angular velocity ω. We discuss the relationship between speed s, 
angular velocity ω, and roadway curvature in more detail in Section 5.1. 
 

4.2. Initial Testing 
We built a simple setup consisting of gyroscopic sensors and a microcontroller to 

simulate a spreader going over the highway. We measured and recorded real-time incline and 
angular velocity data. Using this data and the final discharge rate equation (3) in Section 3.1, we 
calculated the effective application rate every two feet. Figure 1 contains a visual representation 
of the incline, angular velocity, and the calculated effective application rate on this stretch of 
highway. The third bar from the left shows how the effective application rate increases from its 
baseline value in response to changes in incline and angular velocity, which are depicted by the 
first two bars. 
 

NYSDOT guidelines [11] suggest a general application rate of 160 pounds/lane-mile of 
pre-wetted salt under light or moderate snow with temperatures above 23°F. Since the test 
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portion of Taconic State Parkway (TSP) has curves and grades, and has a relatively high accident 
rate, an operator may find it safer to apply salt at 200 pounds/lane-mile, resulting in 2000 pounds 
of salt use per lane over the 10 miles. Assuming a fixed spreader speed and ∆T = 0, our system 
was able to vary the application rate between 150 and 350 pounds/lane-mile, and yet use only 
about 1700 pounds of salt per lane over the 10-mile stretch.  The extreme rate of 350 
pounds/lane-mile was used only on the ramps, mimicking the use of the manual “blast” button. 

 
 

 
Figure 1: Real-time incline and angular velocity measurements and effective application rate 
calculations based on our solution over a 10-mile northbound stretch of Taconic State Parkway 
(TSP), NY. 
  

4.3. Preliminary Accident Analysis 
We obtained 20 years of accident location data from NYSDOT for our test stretch.  From 

this data, we extracted the locations of all the accidents that occurred when the pavement had 
slush or snow and mapped these locations alongside our incline and angular velocity 
measurements and effective application rate calculations.  For better clarity, we divided our test 
stretch into three segments from north to south and in order of increasing overall traffic volume. 
These segments are shown in Figures 2(a), 2(b), and 2(c). Each red dot on the map represents a 
single accident under slushy or snowy conditions between 1998 and 2017. 
 

Although more data and more rigorous statistical analysis would be required to calculate 
the exact correlation of winter-weather accidents with curves or inclines, a visual inspection of 
our accident maps suggests a strong link. Many areas of relatively higher concentration of 
accidents are located where there is a sharp curve, a steep grade, or both. As a result, these are 
also the areas, where our calculated effective application rate is higher.  Many of these areas are 
marked by dotted lines in Figures 2(a), 2(b), and 2(c).  
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Figure 2(a): Accident map with our initial calculated effective application rate on the northern 
one-third of the TSP test stretch. 
 
 

 
Figure 2(b): Accident map with our initial calculated effective application rate on the middle 
one-third of the TSP test stretch. 
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Figure 2(c): Accident map with our initial calculated effective application rate on the southern 
one-third of the TSP test stretch. 
 

In our accident maps, we also observed some areas of high accident concentration on 
relatively straight and flat portions of the highway. In our figures, these areas are shown with 
slightly shaded ellipses. These areas were the motivation behind our RFID-based automation 
idea described in Section 3.2, which can compensate for the inadequacy of sensor data in such 
areas. 
 

 Closer observation shows that some of these areas are near high-volume exits and 
entrances, where slowing or merging traffic and lane changes could be contributing factors.  
Examples of these include A3.1 (exit for Route 9) and A3.2 (exit for Route 117) in Figure 2(c). 
Some of these accident-prone segments are on bridge decks, where cold spots or a lack of 
adequate shoulder could be contributing factors. Examples of these include A1.1 (Route 133 
overpass) in Figure 2(a) and A3.3 (Sawmill Parkway exit and overpass; no shoulder) in Figure 
2(c).  One area, A2.1 in Figure 2(b), does not seem to have any obvious hazard.   

 
4.4. Improvements Based on Accident Data 
After mapping the accidents and comparing their concentrations with our calculated 

effective application rates, we changed the value of k2 (from 0.04 for incline and 0.08 for 
decline) to 0.06 for both inclines and declines. With this modification, we improved the 
correlation between the effective application rate and the concentrations of accidents that 
occurred under wintry road conditions. Thus, studying the accidents helped us improve our 
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discharge rate model. Figures 3(a), 3(b), and 3(c) show the effective application rates on our test 
stretch of TSP with the modified constants. A comparison of the northbound sides in Figures 2(a) 
and 3(a) shows that increasing the weight for incline had the effect of discharging more salt in 
the most accident-prone zones in the section of highway covered in these figures.  

 
Figures 3(a), 3(b), and 3(c) show that accident data can be used to tune the constants that 

decide the weightage of incline, decline, and angular velocity. This can allow for additional 
safety to be taken into consideration because more salt will be spread in the areas of higher 
accident concentration. We also noticed that our change did not increase the total amount of salt 
discharged; it only improved the distribution of salt. 
 

4.5. Additional Insights from Accident Data 
 We tuned the weights based on only a visual inspection of accident maps. More data and 

more rigorous statistical techniques can be used for deriving a more precise equation for 
calculating effective application rate as a function of curves, inclines, and declines.  We also 
noted that on our test stretch, there appear to be more accidents on the northbound side on an 
average than on the southbound side.  This could be related to the timing of rush hours, which 
are at or after dusk on the northbound side, but well after dawn on the southbound side during a 
large part of the snow season. Also, drivers are likely to be more tired during the evening 
commute than in the morning. 

 
 

 
Figure 3(a): Accident map with our modified calculated effective application rate on the northern 
one-third of the TSP test stretch. 
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Figure 3(b): Accident map with our modified calculated effective application rate on the middle 
one-third of the TSP test stretch. 
 
 

 
Figure 3(c): Accident map with our modified calculated effective application rate on the southern 
one-third of the TSP test stretch. 
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4.6. Noise Reduction in Sensor Data 
The incline and angular velocity measurements from inclinometers and gyroscopic 

sensors may be susceptible to errors due to road bumps or spreader vibrations. We did not 
observe this problem in our experiments because the sensors were attached to a car and were 
cushioned. On board a spreader, the sensors may require better cushioning and the application of 
some noise reduction technique to the data they generate. Since typical gyroscopic sensors and 
inclinometers can generate one reading every 10 milliseconds, we believe that using moving 
averages would eliminate most noise without affecting precision. If needed, more advanced noise 
reduction techniques, such as Kalman filter algorithms, can be used.  

 

5. ADDITIONAL APPLICATIONS 
Some of the proposed solutions presented in this paper have applications beyond real-time 
adjustment of deicer application rate based on pavement temperature and road geometrics. 

 
5.1. Sensors for Fine-Grain Incline and Curvature Data 
Inclinometers and gyroscopic sensors on board a vehicle can be used for collecting and 

recording fine-grain road geometrics data. This data can be used to study the impact of 
geometrics on accidents and for deriving application rate adjustment formulae based on sensor 
readings. There are likely to be applications of this data beyond snow removal/deicing operations 
as well.  

 
The inclinometer can yield incline data every few feet, although the granularity can be 

increased if desired. The angular velocity measured by the gyroscopic sensors can be combined 
with the vehicle’s real-time speed to obtain lane curvature.  Curvature κ, a measure of the 
sharpness of a curve, is simply the ratio ω/s, where ω is the angular velocity and s is the speed of 
the vehicle in appropriate units. Statistical analysis to relate the incline and curvature data with 
accident data can be used to determine the role of road geometrics in accidents under various 
pavement conditions. This information can be used to formulate quantitative guidelines for 
adjusting deicer applications rates for future automated spreaders. 
 

5.2. RFID for Spreader Automation 
RFID technology can be useful in spreader automation beyond automatic application rate 

adjustment in known accident-prone areas. These use cases include the ability to handle 
temporary or nonstationary hazards and the ability to automate changes in spreading width, 
pattern, or material. 
 

RFID tags can be placed to change the effective application rate over a portion of a road 
in response to temporary situations. For example, the glare of the sun can reduce forward 
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visibility, which can be particularly dangerous if braking distance is compromised by slippery 
pavement. RFID tags can be placed at the beginning of areas with glare only during the days 
when glare is a problem. The tags can be moved with the location of glare as the angle of sun 
changes with the calendar. Other example of a temporary hazard is shoulder closure at a work 
area. 
 

RFID technology can also be used to change the width of spreading, if the road’s width 
or number of lanes change. This is illustrated in Figures 5 and 6. In these figures, the beige color 
represents the road, where salt is spread and the blue color represents an area, where salt isn’t 
applied. In Figure 5, the image on the left shows, what would happen when a spreader truck 
drives without changing the spreading width. Some European spreaders [9,10] use sophisticated 
GPS-based recorded route technology to address such situations. The use of such technology 
would result in the more desirable spreading pattern shown in the image on the right in Figure 5.  

 
 

  
Figure 5:1 Left: No automation; Right: GPS-controlled recorded route automation for width 
adjustment. 
 

GPS has an accuracy of about 3 meters, and its use requires customized GIS data specific 
to the spreader’s route. Some of the cost, complexity, and accuracy issues associated with GPS-
based recorded route automation can potentially be eliminated by using RFID devices, as shown 
in Figure 6. Roadside RFID devices can communicate with the RFID reader on the spreader and 
instruct it to change the width or pattern of spreading for specific distances. 

 
Similarly, RFID technology can be used to instruct a spreader to change the material 

being spread as needed, for example, on bridge decks.  The use of RFID does not require GIS 
data or pre-recording a route. 

                                                 
1 Picture courtesy [5] with permission.  
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Figure 6:2 Novel RFID-based width-controlled spreading. Blue area is without salt; beige area 
has had the salt applied. 

 
6. RECOMMENDATIONS FOR FUTURE WORK 

Based on our work and preliminary results, we would like to suggest some possible directions of 
future research for automating and fine-tuning application rates to reduce salt use and improve 
safety. Our recommendations can be grouped into two broad categories. 

 
6.1. Accounting for Road Geometrics 
Although some transportation agencies such as NYSDOT suggest that road geometrics 

have an effect on application rates [11], we did not find any quantitative guidelines for adjusting 
application rates based on road geometrics. We performed a limited analysis that shows that 
further research on this topic may lead to improvements in both manual and automatic 
application rate settings and adjustments.   

 
Our work shows that inclinometers and gyroscopic sensors can be used for improving the 

efficiency of salt spreading operations. First, such sensors on board a vehicle can be used for 
collecting fine-grain road geometrics data to study the impact of geometrics on accidents and for 
deriving application rate adjustment formulae based on sensor readings. Secondly, inclinometers 
and gyroscopic sensors on board spreader trucks can be used to adjust the application rate in real 
time based on these formulae. We recommend further research in both these directions. 

  
6.2. Use of RFID Technology 
As discussed in Section 3.2 and Section 5, RFID technology can play an important role in 

improving the efficiency of salt spreading operations. Either passive or active (with solar-
charged batteries) RFID tags can be inexpensively installed permanently around areas that need 

                                                 
2 Picture adapted from [5] with permission. 
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adjustment of application rate, width, pattern, or material. If needed, these tags can be easily 
reprogrammed to adjust to a change in conditions at a given location. In addition, RFID 
technology is attractive because temporary or mobile tags can help increase LOS precisely in 
response to temporary situations such solar glare (whose presence and location is highly calendar 
dependent) or temporary constructions or lane closures. Clear Roads recently conducted a 
detailed study of spreader automation that included a variety of methods and multiple levels of 
automation [5], and a cost benefit analysis of various winter road maintenance practices [13].  
We recommend that the use of RFID technology be considered in future research on automation 
and cost-benefit analysis. 

 

7. CONCLUSIONS 
In this paper, we present several proposed solutions that we hope are of interest to transportation 
agencies such as NYSDOT, spreader manufacturers such as Henderson, Swenson, Aebi-Schmidt, 
and Epoke, etc., and research consortiums like Clear Roads. 

 
In Sections 3, we show how inclinometers and gyroscopic sensors can be used to improve 

spreader automation. In Section 4, we demonstrate that in conjunction with historical accident 
location data, these sensors can help refine application rate guidelines to quantitatively 
incorporate road geometrics. We hope that DOTs will investigate and conduct future research in 
this area. Further, we have shown how this can be done without using a complex setup. 

 
Spreader automation in Europe appears to be more advanced than in the US [9,10]. We 

believe that some of this advanced automation can be achieved in the US with lower cost and 
complexity using onboard sensors and RFID technology. We hope that spreader manufacturers, 
transportation agencies, and research organizations would consider looking into the feasibility of 
using RFID technology in winter road maintenance operations.  
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