
Cognitive Preadaptation for Resilient Adaptive Control

Deepan Muthirayan ∗ and Pramod P. Khargonekar †

University of California, Irvine, CA.

In this paper, we investigate a novel control architecture and algorithm for incorporating
preadaption functions. We propose a preadaptation mechanism that can augment any adaptive
control scheme and improve its resilience. We also propose a preadaptation learner that learns
the preadaption function with experience, which removes the complexity of designing and fine
tuning the preadaptation function specific to the system to be controlled. Through simulations
of a flight control system we illustrate the effectiveness of the preadaptation mechanism in
improving the adaptation. We show that the preadaptation mechanism we propose can reduce
the peak of the response by as much as 50%. The scenarios we present also show that the
preadaptation mechanism is effective across a wide range of scenarios suggesting that the
mechanism is reliable.

I. Introduction
Adaptability is a key capability of intelligent and autonomous systems. Adaptability enables such systems to learn

and optimize for better efficiency, performance, reliability, and resiliency to uncertainties and external changes [1]. But
there are challenges to the design of adaptive systems. In the classical adaptive control setting a well known trade-off in
the design of adaptive control algorithms is the trade-off between rate of adaptation and robustness restricting the scope
for increasing the rate of adaptation [2]. Methods for improving the rate of adaptation while maintaining robustness
such as L1 adaptive control [3–6] and others such as [7, 8] have been proposed earlier.
Over the last two years, we have been exploring a vision for the future of intelligent and autonomous systems as

cognitive cyber-physical systems [9, 10]. The main idea is to endow cyber-physical systems with cognitive capabilities
such as memory, attention, learning, problem solving, etc. [11–14]. In this paper, we will explore the idea that the
human brain functions as a “preadaptive organ” endowing the human the ability to adapt proactively by anticipating
changes instead of reactively [15, 16]. This concept also aligns well with ideas from memory systems and the notion of
“premembering expereince” as articulated in [17]. This preadaptation is a feature of cognitive capabilities of the human
brain and thus fits into the future cognitive cyber-physical systems.
More specifically, in this paper we investigate control architecture and algorithm for incorporating preadaption

functions. Our goal is to investigate the hypothesis that preadaptation allows the closed loop system to adapt more
resiliently without increasing the risks of adaptation. In this paper, we propose a preadaptation mechanism that can
augment any adaptive control scheme and improve its resilience. For illustration of the idea, we consider the standard
MRAC control framework [18].
In Section I.A we describe the problem setting. In Section II we introduce the novel control architecture with the

preadaptation module. In Section II.B we introduce the preadapation mechanism. Here we discuss the sub-functions
that constitute the preadaptation mechanism. Finally, in Section III we provide simulation examples to illustrate the
preadaptation mechanism.

A. Problem Setting
We consider the following class of plants:

¤𝑥(𝑡) = 𝐴𝑥(𝑡) + 𝐵
(
𝜃𝑇 𝑥(𝑡) + 𝑢(𝑡)

)
+ 𝐵1,𝑟𝑟 (𝑡), 𝑥(0) = 𝑥0, 𝑦 = 𝑥𝑖 , (1)

where 𝑥 is the state vector and is assumed to be measurable, and 𝑥 ∈ R𝑛, 𝑥𝑖 denotes the 𝑖th component of the state,
𝑢 ∈ R is the control input, 𝜃 ∈ R𝑛 is an unknown parameter vector that belongs to a known compact convex set Ω ⊂ R𝑛,
𝐴 ∈ R𝑛×𝑛, 𝐵 ∈ R𝑛×1, the pair (𝐴, 𝐵) is controllable, 𝐵1,𝑟 ∈ R𝑛, the matrices 𝐴, 𝐵, 𝐵1,𝑟 are known and 𝑟 (𝑡) ∈ R is a
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Fig. 1 Control Architecture: Adaptive control with Preadaptation

bounded reference signal. The objective is to choose 𝑢(𝑡) such that all signals in the closed-loop system are uniformly
bounded and 𝑥(𝑡) tracks the state vector of the desired reference model,

¤𝑥𝑟 (𝑡) = 𝐴𝑟𝑥𝑟 (𝑡) + 𝐵1,𝑟𝑟 (𝑡) + 𝐵2,𝑟𝑟 (𝑡), 𝑥𝑟 (0) = 𝑥0. (2)

both in transient and in steady-state, where 𝐵2,𝑟 = 𝑘0𝐵, 𝐴𝑟 = 𝐴 − 𝐵𝐾, 𝐾 ∈ R1×𝑛 is a stabilizing control gain, and
𝑘0 ∈ R. The main goal is to design a preadaptation mechanism for the adaptive controller such that the response of the
closed loop system to track the reference model is resilient.

B. Contribution
Themain contribution of this work is proposing a novel adaptive control architecture based on cognitive preadaptation

for resiliency in adaptation and designing a preadaptation mechanism for the setting in Section I.A.

II. Preadaptation and Adaptive Control Algorithm
The proposed adaptive control architecture with preadaptation is shown in Fig. 1. The adaptive control module is

the standard adaptive control module and is discussed below. The preadaptation mechanism has an attention function
that can identify the occurence of a sudden disturbance in 𝜃 by observing the deviation of the error in the response.
When such an occurence is identified by the attention function, the preadaptation function reinitializes the adaptation
mechanism that outputs the estimate 𝜃 of the unknown parameter 𝜃, with 𝜃𝐼 . Part of the preadaptation mechanism is a
preadaptation learner that learns a suitable preadaptation function with experience.

A. Control Law and Adaptation Algorithm
The final control input 𝑢 is the summation of the baseline control 𝑢𝑏𝑙 and the adaptive control input 𝑢𝑎𝑑:

𝑢 = 𝑢𝑏𝑙 + 𝑢𝑎𝑑 . (3)

The baseline control for the system in Eq. (1) is given by

𝑢𝑏𝑙 = −𝐾𝑥 (4)

The adaptive control law and the adaptation law are the standard laws for the setting described in Section I.A (please
see [5]), given by,

𝑢𝑎𝑑 = −𝜃𝑇 𝑥 + 𝑘0𝑟 (𝑡), (5)
where the notation 𝑣𝑇 denotes the transpose of the vector 𝑣 and

¤̂𝜃 = 𝛾𝑥𝑒𝑇𝑣 𝑃𝐵, 𝑒𝑣 = 𝑥 − 𝑥𝑟 , (6)

where 𝑃 > 0 and is the solution of the Lyapunov equation 𝑃𝐴𝑟 + 𝑃𝐴𝑇𝑟 = −𝐼.
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B. Preadaptation Mechanism
The preadaptation mechanism we propose has two sub-functions: (i) an attention function, and (ii) a preadaptation

function. Below, we discuss the two functions in detail.

1. Attention Function
Denote the output of the velocity estimator in Fig. 1 by ¤̂𝑒, where ¤̂𝑒 is an estimate of ¤𝑒 and 𝑒 is the output error. The

attention function flags the occurence of a disturbance in the unknown parameter 𝜃 at the moment ( |𝑒 | − 𝑐𝑒) crosses
zero from below and if | ¤̂𝑒 | > 𝑐𝑒𝑑 > 0 and similarly flags that the system has recovered after a disturbance exactly when
the opposite happens. Denote the indicator of the instance when ( |𝑒 | − 𝑐𝑒) crosses zero from below (( |𝑒 | − 𝑐𝑒) ↑ 0) and
| ¤̂𝑒 | > 𝑐𝑒𝑑 > 0 by 𝐸𝑢 . Then

𝐸𝑢 =

{
1 when ( |𝑒 | − 𝑐𝑒) ↑ 0 and | ¤̂𝑒 | > 𝑐𝑒𝑑
0 otherwise.

Similarly, denote the indicator of the instance when ( |𝑒 | − 𝑐𝑒) crosses zero from above (( |𝑒 | − 𝑐𝑒) ↓ 0) and | ¤̂𝑒 | < 𝑐𝑒𝑑 by
𝐸𝑑 . Then

𝐸𝑑 =

{
1 when ( |𝑒 | − 𝑐𝑒) ↓ 0 and | ¤̂𝑒 | < 𝑐𝑒𝑑
0 otherwise.

Thus the attention function Att(𝑒, ¤̂𝑒) is given by

Att(𝑒, ¤̂𝑒) =
{
1, if 𝐸𝑢 (OR)𝐸𝑑 = 1
0 otherwise.

(7)

where 𝑐𝑒 > 0 and 𝑐𝑒𝑑 > 0 are constants. Essentially, the attention function indicates the occurence of a disturbance
when the magnitude of the error in the output crosses a threshold and at a rate that exceeds a certain threshold. And
similarly indicates that the closed loop system is nearly tracking the reference model when the magnitude of the error
drops below a threshold and at a rate less than a certain threshold. The mechanism we propose is also easy to implement,
because the only parameters that would have to be fine tuned are the 𝑐𝑒 and 𝑐𝑒𝑑 parameters and the simulations reveal
that it is effective.

2. Preadaptation Function
The preadaptation function computes 𝜃𝐼 to reinitialize 𝜃 to 𝜃𝐼 whenever the attention functions identifies the

occurence of a disturbance, i.e., when Att = 1 and 𝐸𝑢 = 1. In this work we choose the function to compute 𝜃𝐼 to
be a two layer neural network given by the weights 𝑊𝑝𝑎 and 𝑉𝑝𝑎, where 𝑊𝑝𝑎 and 𝑉𝑝𝑎 are matrices of appropriate
dimensions. Thus, the output 𝜃𝐼 is computed by

𝜃𝐼 = 𝑊
𝑇
𝑝𝑎𝜎

(
𝑉𝑇
𝑝𝑎

[
𝑒 | ¤̂𝑒 |

]𝑇 )
,

and the final action of the preadaptation function is given by{
𝜃 ← 𝜃𝐼 When Att = 1 and 𝐸𝑢 = 1,
No action otherwise,

where 𝜃 ← 𝜃𝐼 denotes the action of 𝜃 being reinitialized to 𝜃𝐼 . We choose a general function such as a neural network
(NN) for the preadaptation function because this allows the preadaptation function to be learned with experience. This
reduces the complexity of designing and fine tuning the preadaptation function specific to the system to be controlled.

3. Learning the Preadaptation function
A suitable function to compute the optimal 𝜃𝐼 to reinitialize 𝜃 can be learnt by fine tuning the weights 𝑊𝑝𝑎

and 𝑉𝑝𝑎 based on how effective the reinitializing was. Hence, the performance metric we choose for updating the
preadaptation function should reflect how resilient the adaptation was after reinitializing 𝜃 to 𝜃𝐼 . In this work we choose
the performance metric to be the integral of the magnitude of error 𝑒 from the instance when the attention mechanism
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identifies an event of disturbance to the instant when system is adjudged to be tracking the reference model, i.e., when
𝐸𝑢 = 1 and 𝐸𝑑 = 1 respectively. Denote the respective time instants by 𝑡𝑢 and 𝑡𝑑 . Then the performance metric for the
preadaptation function is given by

𝐸 =

∫ 𝑡𝑑

𝑡𝑢

|𝑒 |𝑑𝜏. (8)

The preadaptation function is updated after every adpatation phase as demarked by 𝐸𝑢 = 1 and 𝐸𝑑 = 1. When the
attention mechanism flages 𝐸𝑑 = 1, notifying that the system has recovered and is tracking the reference model, the
performance of preadaptation is computed as in Eq. 8 and the weights𝑊𝑝𝑎 and 𝑉𝑝𝑎 are fine tuned by the gradient of 𝐸
as given below:

𝑊𝑝𝑎 |𝑡𝑑 ← 𝑊𝑝𝑎 |𝑡𝑢 − 𝛾𝑝𝑎
(
𝜕𝐸

𝜕𝑊𝑝𝑎

)𝑇
,

𝑉𝑝𝑎 |𝑡𝑑 ← 𝑉𝑝𝑎 |𝑡𝑢 − 𝛾𝑝𝑎
(
𝜕𝐸

𝜕𝑉𝑝𝑎

)𝑇
. (9)

The gradient based update allows the preadapation function to be learned with experience that is effective for the specific
system to be controlled.

4. Gradient Calculation

In this section we derive
(

𝜕𝐸
𝜕𝑊𝑝𝑎

)𝑇
and

(
𝜕𝐸

𝜕𝑉𝑝𝑎

)𝑇
. Consider the following dynamics:

¤̂𝜃 = 𝑔(𝜃, 𝑒𝑣 , 𝑥𝑟 ), ¤𝑒𝑣 = ℎ(𝜃, 𝑒𝑣 , 𝑥𝑟 ), ¤𝑥𝑟 = 𝑓 (𝜃, 𝑒𝑣 , 𝑥𝑟 ).

We will specify these functions later. Let the values of 𝜃 and 𝑒𝑣 at the instant 𝑡𝑢 be denoted by 𝜃0 and 𝑒𝑣,0 respectively.
From this definition it follows that

𝑒𝑣 (𝑡) = 𝑒𝑣,0 +
∫ 𝑡

𝑡𝑢

ℎ(𝜃, 𝑒𝑣 , 𝑥𝑟 )𝑑𝜏, 𝜃 (𝑡) = 𝜃0 +
∫ 𝑡

𝑡𝑢

𝑔(𝜃, 𝑒𝑣 , 𝑥𝑟 )𝑑𝜏.

In the deriviation that follows it is understood that the partial derivatives are of appropriate dimensions. Using the fact
that 𝑥𝑟 is independent of 𝜃0 and taking the partial deriative w.r.t 𝜃0 we get that

𝜕𝑒𝑣 (𝑡)
𝜕𝜃0

=

∫ 𝑡

𝑡𝑢

(
𝜕ℎ

𝜕𝜃

𝜕𝜃

𝜕𝜃0
+ 𝜕ℎ

𝜕𝑒𝑣

𝜕𝑒𝑣

𝜕𝜃0

)
𝑑𝜏,

𝜕𝜃 (𝑡)
𝜕𝜃0

= 𝐼 +
∫ 𝑡

𝑡𝑢

(
𝜕𝑔

𝜕𝜃

𝜕𝜃

𝜕𝜃0
+ 𝜕𝑔

𝜕𝑒𝑣

𝜕𝑒𝑣

𝜕𝜃0

)
𝑑𝜏.

We note that 𝜃0 = 𝜃𝐼 . Hence

𝜕𝑒𝑣 (𝑡)
𝜕𝜃𝐼

=

∫ 𝑡

𝑡𝑢

(
𝜕ℎ

𝜕𝜃

𝜕𝜃

𝜕𝜃𝐼
+ 𝜕ℎ

𝜕𝑒𝑣

𝜕𝑒𝑣

𝜕𝜃𝐼

)
𝑑𝜏,

𝜕𝜃 (𝑡)
𝜕𝜃𝐼

= 𝐼 +
∫ 𝑡

𝑡𝑢

(
𝜕𝑔

𝜕𝜃

𝜕𝜃

𝜕𝜃𝐼
+ 𝜕𝑔

𝜕𝑒𝑣

𝜕𝑒𝑣

𝜕𝜃𝐼

)
𝑑𝜏.

Differentiating w.r.t 𝑡 we get that

𝜕 ¤𝑒𝑣
𝜕𝜃𝐼

=
𝜕ℎ

𝜕𝜃

𝜕𝜃

𝜕𝜃𝐼
+ 𝜕ℎ

𝜕𝑒𝑣

𝜕𝑒𝑣

𝜕𝜃𝐼
,
𝜕 ¤̂𝜃
𝜕𝜃𝐼

=
𝜕𝑔

𝜕𝜃

𝜕𝜃

𝜕𝜃𝐼
+ 𝜕𝑔

𝜕𝑒𝑣

𝜕𝑒𝑣

𝜕𝜃𝐼
.

Combining both equations in to a single equation, they can be written as
𝜕 ¤𝑒𝑣
𝜕𝜃𝐼

𝜕 ¤̂𝜃
𝜕𝜃𝐼

 =


𝜕ℎ
𝜕𝑒𝑣

𝜕ℎ

𝜕𝜃

𝜕𝑔

𝜕𝑒𝑣

𝜕𝑔

𝜕𝜃




𝜕𝑒𝑣

𝜕𝜃𝐼

𝜕𝜃

𝜕𝜃𝐼

 . (10)

For the setting described in Section I.A we have that

ℎ(𝜃, 𝑒𝑣 , 𝑥𝑟 ) = 𝐴𝑟 𝑒𝑣 + 𝐵
(
−𝜃𝑇 (𝑒𝑣 + 𝑥𝑟 ) + 𝜃𝑇 (𝑒𝑣 + 𝑥𝑟 )

)
, 𝑔(𝜃, 𝑒𝑣 , 𝑥𝑟 ) = 𝛾(𝑒𝑣 + 𝑥𝑟 )𝑒𝑇𝑣 𝑃𝐵.
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From here it follows that

𝜕ℎ

𝜕𝑒𝑣
= 𝐴𝑟 + 𝐵(𝜃 − 𝜃)𝑇 ,

𝜕ℎ

𝜕𝜃
= −𝐵(𝑒𝑣 + 𝑥𝑟 )𝑇 ,

𝜕𝑔

𝜕𝑒𝑣
= 𝛾𝑒𝑇𝑣 𝑃𝐵𝐼 + 𝛾(𝑒𝑣 + 𝑥𝑟 )𝐵𝑇 𝑃𝑇 ,

𝜕𝑔

𝜕𝜃
= 0.

Substituting the above two expressions in Eq. (10) we get that
𝜕 ¤𝑒𝑣
𝜕𝜃𝐼

𝜕 ¤̂𝜃
𝜕𝜃𝐼

 =


𝐴𝑟 + 𝐵(𝜃 − 𝜃)𝑇 −𝐵(𝑒𝑣 + 𝑥𝑟 )𝑇

𝛾𝑒𝑇𝑣 𝑃𝐵𝐼 + 𝛾(𝑒𝑣 + 𝑥𝑟 )𝐵𝑇 𝑃𝑇 0




𝜕𝑒𝑣

𝜕𝜃𝐼

𝜕𝜃

𝜕𝜃𝐼

 . (11)

Let

Π(𝑒𝑣 , 𝑥𝑟 , 𝜃 − 𝜃) =


𝐴𝑟 + 𝐵(𝜃 − 𝜃)𝑇 −𝐵(𝑒𝑣 + 𝑥𝑟 )𝑇

𝛾𝑒𝑇𝑣 𝑃𝐵𝐼 + 𝛾(𝑒𝑣 + 𝑥𝑟 )𝐵𝑇 𝑃𝑇 0

 .
Then 

𝜕𝑒𝑣 (𝑡)
𝜕𝜃𝐼

𝜕𝜃 (𝑡)
𝜕𝜃𝐼

 = exp
{∫ 𝑡

𝑡𝑢

Π(𝑒𝑣 , 𝑥𝑟 , 𝜃 − 𝜃)
} 

𝜕𝑒𝑣 (0)
𝜕𝜃𝐼

𝜕𝜃 (0)
𝜕𝜃𝐼

 . (12)

In our case, 𝑒 is the 𝑖th component of 𝑒𝑣 . Hence,

𝜕𝐸

𝜕𝜃𝐼
=

∫ 𝑡𝑑

𝑡𝑢

𝑒

|𝑒 |
𝜕𝑒𝑣 (𝑖)
𝜕𝜃𝐼

𝑑𝜏, (13)

where 𝜕𝑒𝑣 (𝑖)
𝜕𝜃𝐼

is given by Eq. (12). In the simulations we implement the integrals in Eq. (13) and Eq. (12) by an
approximate summation.
Denote the 𝑖th element of 𝜃𝐼 by 𝜃𝐼 (𝑖). Similarly, denote the element at the 𝑗 th row and 𝑖 th column of 𝑊𝑝𝑎 by

𝑊𝑝𝑎 ( 𝑗 , 𝑖) and the 𝑖th column of𝑊𝑝𝑎 by𝑊𝑝𝑎 (:, 𝑖). The partial derivative

𝜕𝐸

𝜕𝑊𝑝𝑎 (:, 𝑖)
=

𝜕𝐸

𝜕𝜃𝐼 (𝑖)
𝜕𝜃𝐼 (𝑖)

𝜕𝑊𝑝𝑎 (:, 𝑖)
.

The term 𝜕𝐸

𝜕𝜃𝐼 (𝑖)
is the 𝑖th component of 𝜕𝐸

𝜕𝜃𝐼
and

𝜕𝜃𝐼 (𝑖)
𝜕𝑊𝑝𝑎 (:, 𝑖)

= 𝜎

(
𝑉𝑇
𝑝𝑎

[
𝑒 | ¤̂𝑒 |

]𝑇 )𝑇
.

Substituting these expressions we get that

𝜕𝐸

𝜕𝑊𝑝𝑎 (:, 𝑖)
=

𝜕𝐸

𝜕𝜃𝐼 (𝑖)
𝜎

(
𝑉𝑇
𝑝𝑎

[
𝑒 | ¤̂𝑒 |

]𝑇 )𝑇
.

Hence, it follows that
𝜕𝐸

𝜕𝑊𝑝𝑎

=
𝜕𝐸

𝜕𝜃𝐼

𝑇

𝜎

(
𝑉𝑇
𝑝𝑎

[
𝑒 | ¤̂𝑒 |

]𝑇 )𝑇
. (14)

The partial derivative
𝜕𝐸

𝜕𝑉𝑝𝑎 (:, 𝑗)
=
∑︁
𝑖

𝜕𝐸

𝜕𝜃𝐼 (𝑖)
𝜕𝜃𝐼 (𝑖)

𝜕𝑉𝑝𝑎 (:, 𝑗)
.

And

𝜕𝜃𝐼 (𝑖)
𝜕𝑉𝑝𝑎 (:, 𝑗)

=

𝜕𝑊𝑇
𝑝𝑎 (:, 𝑖)𝜎

(
𝑉𝑇
𝑝𝑎

[
𝑒 | ¤̂𝑒 |

]𝑇 )
𝜕𝑉𝑝𝑎 (:, 𝑗)

= 𝑊𝑇
𝑝𝑎 (:, 𝑖)

𝜕𝜎

(
𝑉𝑇
𝑝𝑎

[
𝑒 | ¤̂𝑒 |

]𝑇 )
𝜕𝑉𝑝𝑎 (:, 𝑗)

.
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Note that 𝑑𝜎 (𝑥)
𝑑𝑥

= diag{𝜎(𝑥) � (1 − 𝜎(𝑥))}, where diag{𝑣} refers to the matrix with the diagonal entries given by the
vector 𝑣 and the rest of the elements zero, and the notation � refers to the element wise product. Denote 𝑑𝜎 (𝑥)

𝑑𝑥
by 𝜎′(𝑥).

Then
𝜕𝜎

(
𝑉𝑇
𝑝𝑎

[
𝑒 | ¤̂𝑒 |

]𝑇 )
𝜕𝑉𝑝𝑎 (:, 𝑗)

= 𝜎′
(
𝑉𝑇
𝑝𝑎

[
𝑒 | ¤̂𝑒 |

]𝑇 ) 𝜕 (
𝑉𝑇
𝑝𝑎

[
𝑒 | ¤̂𝑒 |

]𝑇 )
𝜕𝑉𝑝𝑎 (:, 𝑗)

.

That is

𝜕𝜎

(
𝑉𝑇
𝑝𝑎

[
𝑒 | ¤̂𝑒 |

]𝑇 )
𝜕𝑉𝑝𝑎 (:, 𝑗)

= 𝜎′
(
𝑉𝑇
𝑝𝑎

[
𝑒 | ¤̂𝑒 |

]𝑇 )  0, ...︸︷︷︸
𝑗−1 columns

,
[
𝑒 | ¤̂𝑒 |

]𝑇
, 0, ...︸︷︷︸
𝑛− 𝑗 columns


𝑇

.

For convenience, let us denote the 𝑗 th diagonal element of 𝜎′
(
𝑉𝑇
𝑝𝑎

[
𝑒 | ¤̂𝑒 |

]𝑇 ) by 𝜎′( 𝑗). Then
𝜕𝜎

(
𝑉𝑇
𝑝𝑎

[
𝑒 | ¤̂𝑒 |

]𝑇 )
𝜕𝑉𝑝𝑎 (:, 𝑗)

=

 0, ...︸︷︷︸
𝑗−1 columns

, 𝜎′( 𝑗)
[
𝑒 | ¤̂𝑒 |

]𝑇
, 0, ...︸︷︷︸
𝑛− 𝑗 columns


𝑇

.

Hence

𝜕𝐸

𝜕𝑉𝑝𝑎 (:, 𝑗)
=
∑︁
𝑖

𝜕𝐸

𝜕𝜃𝐼 (𝑖)
𝑊𝑇

𝑝𝑎 (:, 𝑖)

 0, ...︸︷︷︸
𝑗−1 columns

, 𝜎′( 𝑗)
[
𝑒 | ¤̂𝑒 |

]𝑇
, 0, ...︸︷︷︸
𝑛− 𝑗 columns


𝑇

.

That is

𝜕𝐸

𝜕𝑉𝑝𝑎 (:, 𝑗)
=
∑︁
𝑖

𝜕𝐸

𝜕𝜃𝐼 (𝑖)
𝑊𝑝𝑎 ( 𝑗 , 𝑖)𝜎′( 𝑗)

[
𝑒 | ¤̂𝑒 |

]
=
𝜕𝐸

𝜕𝜃𝐼
𝑊𝑇

𝑝𝑎 ( 𝑗 , :)𝜎′( 𝑗)
[
𝑒 | ¤̂𝑒 |

]
= 𝜎′( 𝑗)𝑊𝑝𝑎 ( 𝑗 , :)

𝜕𝐸

𝜕𝜃𝐼

𝑇 [
𝑒 | ¤̂𝑒 |

]
.

Hence, it follows that
𝜕𝐸

𝜕𝑉𝑝𝑎

= 𝜎′𝑊𝑝𝑎

𝜕𝐸

𝜕𝜃𝐼

𝑇 [
𝑒 | ¤̂𝑒 |

]
. (15)

This complets the derivation of the gradient. We note that 𝜕𝑒𝑣 (𝑖)
𝜕𝜃𝐼

is not calculable exactly because the matrix Π(.) is
a function of 𝜃 which is an unknown. Hence, we make the approximation where we use

Π̂(𝑒𝑣 , 𝑥𝑟 ) = Π(𝑒𝑣 , 𝑥𝑟 , 0) =


𝐴𝑟 −𝐵(𝑒𝑣 + 𝑥𝑟 )𝑇

𝛾𝑒𝑇𝑣 𝑃𝐵𝐼 + 𝛾(𝑒𝑣 + 𝑥𝑟 )𝐵𝑇 𝑃𝑇 0

 .
in place of Π(.) in Eq. (12). This approximation introduces an error in the computation of the gradient. We discuss the
effect of this approximation in the discussion section.

III. Simulation Results and Discussion
In this section we discuss preliminary results for a flight control problem. We consider the control of the flight’s

longitudinal dynamics. Denote the flight’s angle of attack by 𝛼, the flight’s pitch by 𝑞 and the elevator control input by 𝑢.
The flight’s angle of attack and the pitch constitute the state of the system. The output 𝑦 of the system is its angle of
attack, 𝛼. In addition, we append an integrator, where the output of the integrator is the integral of the error between the
output, i.e., the angle of attack and the command signal 𝑟 that the angle of attack has to track. Denote the output of the
integrator by 𝑒𝐼 , where 𝑒𝐼 =

∫
𝛼 − 𝑟 . The system equations for the longitudinal dynamics appended with the output of

the integrator is 
¤𝑒𝐼
¤𝛼
¤𝑞

 =
©­­«
0 1 0
0 𝑍𝛼

𝑚𝑈
1 + 𝑍𝑞

𝑚𝑈

0 𝑀𝛼

𝐼𝑦

𝑀𝑞

𝐼𝑦

ª®®¬

𝑒𝐼

𝛼

𝑞

 +
©­­«
0
𝑍𝛿

𝑚𝑈
𝑀𝛿

𝐼𝑦

ª®®¬ (𝜃𝑇 𝑥 + 𝑢) +
©­­«
−1
0
0

ª®®¬ 𝑟.
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The system parameters are that of B-747 flight. We assume that the flight is traveling at a speed of 𝑈 = 274 m/s
(0.8 Mach) and at an altitude of ℎ = 6000 m. The flight’s mass is 𝑚 = 288773 Kg, and its moment of inertia
𝐼𝑦 = 44877574 Kgm2. The baseline control is the LQR controller. The matrices that define the cost of the LQR
controller are given by 𝑄 = 𝐼 and 𝑅 = 1. The values for the other parameters in the system equation above are as follows,

𝑍𝛼

𝑚𝑈
= −0.32, 1 +

𝑍𝑞

𝑚𝑈
= 0.86,

𝑀𝛼

𝐼𝑦
= −0.93,

𝑀𝑞

𝐼𝑦
= −0.43, 𝑍𝛿

𝑚𝑈
= −0.02, 𝑀𝛿

𝐼𝑦
= −1.16.

The adaptive controller and the preadaptation mechanism constants are the following: 𝑟 = 0.1, 𝑘0 = 0, 𝛾 = 10, 𝑐𝑒 =

0.005, 𝑐𝑒𝑑 = 0.02, 𝛾𝑝𝑎 = 𝛾 and the number of hidden layer neurons of the neural network that computes 𝜃𝐼 is set as 3.
We use the approximated gradient discussed in the previous section in the preadaptation function update.
We present a couple of scenarios to illustrate. In the first scenario we present the unknown parameter changes as

follows:
𝜃 = 0.11, 𝑡 ≤ 5, 𝜃 = 11, 5 < 𝑡 ≤ 20, 𝜃 = 21, 20 < 𝑡 ≤ 45, 𝜃 = 41, 45 < 𝑡 ≤ 60, (16)

where 1 denotes a vector with all entries as 1. The response of 𝛼 for the regular adaptive control without any preadaptation
and for the adaptive control with preadaptation are shown in Fig. 2. The left plot in Fig. 2 shows the response of 𝛼 for
both the controllers when the preadaptation function is randomly initialized and is not fine tuned with experience. The
right plot in Fig. 2 shows the response of 𝛼 for both the controllers when the preadaptation mechanism is randomly
initialized and is fine tuned by the learning algorithm described earlier. In the plots, the vertical green line represents the
instances when Att = 1 and 𝐸𝑢 = 1 and the vertical black line represents the instances when Att = 1 and 𝐸𝑑 = 1. It is
evident from the plots that the attention function is correctly able to identify the onset of a disturbance (in this case a
shift) in 𝜃 and the instance after which the closed loop system nearly tracks the reference signal 𝑟 after the onset of a
disturbance.
From the left plot of Fig. 2 it is clear that for the adaptive controller with the preadaptation mechanism but no fine

tuning, the adaptation does not improve from one instance to the next instance of disturbance because the preadaptation
function is not fine tuned. Whereas for the adaptive controler with the fine-tuning option for the preadaptation function,
the improvement in adaptation from one instance to the next instance of disturbance is evident, in this case the
disturbances at 𝑡 = 20 and 𝑡 = 45 respectively, as shown in the right plot of Fig. 2. The recovery after the disturbance
at 𝑡 = 45 with preadaptation fine tuning is much improved and much better than the regular adaptive control with a
reduction in peak error by nearly as much as 50% from the peak error for the regular adaptive controller. This example
clearly illustrates the effectiveness of the proposed preadaptation mechanism in improving the recovery following a
disturbance.
In the next scenario we present, the unknown parameter undergoes the following changes:

𝜃 = 0.11, 𝑡 ≤ 5, 𝜃 = 11, 5 < 𝑡 ≤ 20, 𝜃 = 21, 20 < 𝑡 ≤ 45, 𝜃 = 11, 45 < 𝑡 ≤ 70,
𝜃 = 0.11, 70 < 𝑡 ≤ 95, 𝜃 = 21, 95 < 𝑡 ≤ 120, 𝜃 = 41, 120 < 𝑡 ≤ 140. (17)

We first highlight the differences between this scenario and the previous scenario. In this scenario, unlike the previous
scenario, the coefficient of the parameter drops after reaching 2 at the instant 𝑡 = 45, drops further by a factor 10 at
𝑡 = 70 and raises again at 𝑡 = 95. Since the learning algorithm wouldn’t have encountered a drop in magnitude of the
unknown parameter before 𝑡 = 45, the preadaptation mechanism may not induce a more resilient response after the
disturbance at 𝑡 = 45. But we can expect the response to be improved at the next instant when the magnitude drops
because it is likely to have learned how to preadapt to such an occurrence by then.
Figure 3 gives the response for this scenario. As anticipated the response after the first drop, which happens at 𝑡 = 45,

is not better then the regular adpative control. We find that, at the next instant when the magnitude of the parameter
drops, i.e. at 𝑡 = 70, the response is much improved compared to the regular adaptive control, suggesting that the
learning algorithm has been effective in updating the preadaptation function to respond to reductions in the parameter
value. We also observe that, at the next instants, i.e. at 𝑡 = 90 and 𝑡 = 120, when the magnitude of the parameter
increases again, the response after the disturbances continue to be better than the regular adaptive control suggesting
that the preadaptation function has retained the memory of how to respond to increases in the parameter value.

Gradient Approximation: Here we provide comparison between the preadaptation learner whose gradient is
approximated as discussed in Section II.B and the preadaptation learner without any approximation in its gradient based
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Fig. 2 Response of 𝛼 (angle of attack) for the scenario in Eq. (16). Left: reponse for the adaptive controller with
the preadaptation mechanism but without preadaptation learning, right: reponse for the adaptive controller
with the preadaptation mechanism and with preadaptation learning. RAC: regular adaptive control, AC:
adaptive control. Green line: 𝐸𝑢 = 1, black line: 𝐸𝑑 = 1.
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Fig. 3 Response of 𝛼 (angle of attack) for the scenario in Eq. (17). Left: response for 𝑡 ≤ 140, right: reponse
for 70 ≤ 𝑡 ≤ 140. Green line: 𝐸𝑢 = 1, black line: 𝐸𝑑 = 1. RAC: regular adaptive control, AC+Pre-Ad with
learner: adaptive control with the preadaptation mechanism and the preadaptation learner.
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Fig. 4 Response of 𝛼 (angle of attack) for the scenario in Eq. (18). Left: response for 𝑡 ≤ 80, right:
reponse for 65 ≤ 𝑡 ≤ 140. Green line: 𝐸𝑢 = 1, black line: 𝐸𝑑 = 1 for the preadaption learner without
gradient approximation. RAC: regular adaptive control, AC+Pre-Ad: adaptive control with the preadaptation
mechanism and the preadaptation learner.

update. The scenario we consider to illustrate is a more complex scenario and is given by

𝜃 = 0.11, 𝑡 ≤ 5, 𝜃 = 11, 5 < 𝑡 ≤ 20, 𝜃 = 51, 20 < 𝑡 ≤ 35, 𝜃 = 101, 35 < 𝑡 ≤ 50,
𝜃 = 51, 50 < 𝑡 ≤ 65, 𝜃 = 11, 65 < 𝑡 ≤ 80, 𝜃 = 51, 80 < 𝑡 ≤ 95,
𝜃 = 101, 95 < 𝑡 ≤ 110, 𝜃 = 51, 110 < 𝑡 ≤ 125, 𝜃 = 11, 125 < 𝑡 ≤ 140. (18)

The difference in this scenario is that compared to scenario 2 the magnitude of the jumps are larger. Figure 4 provides a
comparison of the response for the preadaptation mechanisms with and without gradient approximation in the learner.
We find that the response for the preadaption learner with gradient approximation is similar to the pattern we had
observed for the previous two scenarios, which is as expected.
We find that the response for the preadaptation learner without any approximation is worser in some cases and better

in other cases when compared to the preadaptation learner with the approximation in the gradient. We found this to be
the case for the two scenarios we had considered earlier as well. This suggests that we cannot draw a clear conclusion
whether the approximation of the gradient in the preadaptation learner affects the overall performance. We emphasize
that further understanding on how the approximation affects the preadaptation learner and the response is required and
this is a subject of future work.
Overall, what we find is that both the preadaptation mechanisms result in improved performance in comparison

to the regular adaptive controller. Another crucial observation is that the improved response did not result in high
frequency oscillations, which are typically observed when the learning rates in regular adaptive control are increased.

Hyperparameters: The key hyperparameters are the learning rate 𝛾𝑝𝑎 and the thresholds 𝑐𝑒 and 𝑐𝑒𝑑 . The learning
rate 𝛾𝑝𝑎 cannot be high or low. A higher learning rate is inappropriate because it will result in a very inaccurate
preadaptation mechanism. At the same time a lower learning rate may not update the preadapation mechanism at all. So
setting an appropriate value for the learning rate is essential. For the system we have presented, we found 𝛾𝑝𝑎 = 𝛾 = 10
to be a choice that was able to learn a preadaptation function that was effective. The thresholds are also critical because
they determine the point at which the parameter to be adapted is reset by the preadaptation mechanism and the end point
till which the adaptation phase that is used to update the preadaptation mechanism is recorded. The treshold values
cannot be high because then the attention mechanism can miss detecting the onset of an adaptation phase. On the other
hand, lower values are also not desirable because then smaller random fluctuations, which might arise from noise in the
measurements, might get wrongly detected as the onset of disturbance.

IV. Conclusion
In this paper, we proposed a novel control architecture and algorithm for incorporating preadaption functions. We

proposed a preadaptation mechanism that can augment any adaptive control scheme for a general linear system with
linear parametric uncertainty. We showed that the preadaptation mechanism is effective in improving the adaptation
across a wide range of scenarios and that it can reduce the peak of the response by as much as 50% in some cases.
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We also proposed a preadaptation learner that learns the preadaptation function with experience, thus removing the
complexity of designing and fine tuning the preadaptation function specific to the system to be controlled.
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