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Abstract

This article examines the problem of Lithium-Sulfur (Li-S) battery state estimation. Such

estimation is important for the online management of this energy-dense chemistry. The

literature uses equivalent circuit models (ECMs) for Li-S state estimation. This article’s

main goal is to perform estimation using a physics-based model instead. This approach is

attractive because it furnishes online estimates of the masses of individual species in a given

Li-S cell. The estimation is performed using an experimentally-validated, computationally

tractable zero-dimensional model. Reformulation converts this model from differential alge-

braic equations (DAEs) to ordinary differential equations (ODEs), simplifying the estimation

problem. The article’s first contribution is to show that this model has poor observability,

especially in the low plateau region, where the low sensitivity of cell voltage to precipitated

sulfur mass complicates the estimation of this mass. The second contribution is to exploit

mass conservation to derive a reduced-order model with attractive observability properties

in both high and low plateau regions. The final contribution is to use an unscented Kalman

filter (UKF) for estimating internal Li-S battery states, while taking constraints on species

masses into account. Consistent with the article’s observability analysis, the UKF achieves

better low-plateau estimation accuracy when the reduced-order model is used.
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1. Introduction

This article examines the problem of using input/output measurements of current and

voltage to estimate the internal state of a Lithium-Sulfur (Li-S) battery. State estimation is

a broad term from the control systems literature that refers to the estimation of unknown

time-varying quantities governing the behavior of a dynamic system. Examples of state

estimation problems include estimating a given battery’s state of charge (SOC), state of

health (SOH), and state of power (SOP). The main goal of this article is to estimate the

masses of the different species that participate in Li-S battery redox reactions. Species mass

estimation is valuable because it provides a more detailed picture of what is occurring inside

an electrochemical battery compared to, say, SOC estimation alone.

The motivation for Li-S state estimation is twofold. First, the Li-S chemistry is impor-

tant because it provides a theoretical specific capacity of 1672 Ah/kg, significantly higher

than more traditional Lithium-ion chemistries [1, 2, 3]. This makes Li-S batteries poten-

tially attractive for applications requiring high specific energies. Second, the Li-S chemistry

exhibits fundamentally different behaviors compared to more traditional Lithium-ion bat-

teries, including self-discharge through the shuttle effect. Fundamental insights from the

existing Lithium-ion battery state estimation literature are, therefore, not always directly

applicable to the Li-S state estimation problem. Consider, for example, the question of

whether or not the internal state of an electrochemical battery is observable (i.e., can be

estimated from input-output data). The answer to this question depends partly on the given

battery’s internal dynamics, and can therefore change significantly based on whether or not

the battery experiences self-discharge.

There is an extensive literature on Li-S batteries, with at least two broad focus ar-

eas. First, the literature examines the problem of optimizing the underlying materials and

chemistries in Li-S batteries. Much of this literature focuses on addressing key challenges

such as improving cycle life and inhibiting self-discharge [4, 5, 6, 7, 8], based on a fundamen-

tal understanding of the underlying reactions in Li-S batteries [9, 10, 11, 12, 13, 14, 15, 16].

Second, the literature also examines the problem of designing Li-S battery management sys-

tems (BMSs). An effective BMS is important for protecting cells from damage, prolonging

battery cycle life, and increasing battery performance metrics such as output power. Typ-

ical components of a BMS include a computationally affordable model, a state estimator,

and ultimately an optimal control strategy. This article focuses on state estimation, a key
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element within battery management system design.

Estimating the state of a dynamic system requires a representation, or model, of the

system’s underlying dynamics. This representation or model can be derived from the fun-

damental laws of electrochemistry. It can also be fitted to experimental data using either

equivalent circuit methods or machine learning. The literature provides at least three dif-

ferent types of Li-S battery models, as discussed in [17], namely: equivalent circuit models

(ECMs) [18, 19, 20, 21], zero-dimensional electrochemical models [15, 16], and spatially-

distributed electrochemical models [9, 10, 11, 12, 13, 14]. These models fall on a spectrum

of fidelity and complexity levels. Spatially-distributed electrochemical models, for instance,

have the advantage of providing higher-fidelity representations of the underlying battery

physics compared to equivalent circuit models, at the cost of higher computational com-

plexity. Spatially-invariant zero-dimensional models provide an attractive middle ground

between these two extremes by modeling the underlying redox reactions in Li-S batteries

while minimizing computational complexity.

Existing research on Li-S battery state estimation relies predominantly on either equiv-

alent circuit models or machine learning methods or both. For example, state estimation

techniques have been applied to Li-S ECMs in [22, 23, 24] and to machine learning models

in [25]. In [22], the extended Kalman filtering (EKF), unscented Kalman filtering (UKF) and

particle filtering techniques are applied and compared for experimental Li-S SOC estimation.

In [23], an adaptive neuro-fuzzy inference systems algorithm is developed to estimate the

SOC based on real-time cell model ECM parameterization. In [24], a dual Kalman filtering

technique is used for combined Li-S state and parameter estimation, Finally, in [25], a Long

Short-Term Memory Recurrent Neural Network model is built and calibrated for online Li-S

state estimation.

The above literature, while encouraging, does not address the problem of estimating the

masses of the various species participating in Li-S battery redox reactions. This is an impor-

tant problem because unlike traditional Lithium-ion batteries, where Lithium intercalates

into and out of the cathode/anode materials, the Li-S chemistry involves multiple reduction

reactions that convert S8 gradually to S2− during discharge. This makes the definition

of SOC in Li-S batteries a little ambiguous, in the sense that one can potentially define

multiple “states of charge” associated with different reacting species. One possible solution

to this problem is: instead of estimating a single overall SOC, one can estimate internal
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state variables such as the active masses of dissolved sulfur species using a physics-based

model. Such state estimation provides a more detailed picture of the internal state of the

battery. This, in turn, is potentially useful for predicting and managing phenomena such as

the dependence of Li-S discharge capacity on applied current [26].

The main goal of this article is to use a zero-dimensional, physics-based model for the

online estimation of species masses in an Li-S battery. The particular model used in this

paper builds on earlier research in the literature, including previous work by the authors

on the experimental parameterization and validation of the model. The model consists of

both differential equations and algebraic constraints, but a reformulation casts it into the

more commonly-used state-space form, thereby simplifying the estimation problem. To the

best of the authors’ knowledge, this article’s use of a zero-dimensional, physics-based model

for online species mass estimation is a novel contribution to the literature. Key elements of

this contribution include: (i) an observability analysis for the selected Li-S battery model,

(ii) the use of model reduction to improve this model’s observabiltiy, especially in the low

plateau region, and (iii) the development of the desired Li-S state estimator using unscented

Kalman filtering.

The remainder of this article is organized as follows. Section 2 describes the zero di-

mensional model structure adopted from [15, 16], and reformulates this model from a set of

differential algebraic equations (DAEs) to a set of ordinary differential equations (ODEs).

Section 3 analyzes the model’s observability using the empirical observability gramian, and

relates the observability gramian to Fisher information matrix in order to obtain the best

achievable estimation error bounds on initial states. Moreover, when mass conservation is

considered, the number of state variables can be reduced by two and the observability is

improved, especially in the low plateau region. Section 4 presents and discusses the simu-

lation results of the UKF-based state estimation for both the full-order and reduced-order

ODE models. Finally, Section 5 summarizes the article’s conclusions.

2. Lithium-Sulfur Battery Model

A typical Li-S battery discharge voltage curve consists of high and low plateaus. In the

high plateau region, the active material, S8, in the cathode accepts electrons to produce

the polysulfide, S2−
x (x can be 8, 6, 4). Further polysulfide reduction takes place in the

lower voltage plateau region [27]. In parallel, lithium is oxidized in the anode to furnish
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Table 1: Reactions and Dissolved Species Considered in the Model

Indices Reactions and Species

Reaction Index

j = 1, 2, 3, 4

1
2S8 + e− 
 1

2S
2−
8

3
2S

2−
8 + e− 
 2S2−

6

S2−
6 + e− 
 3

2S
2−
4

1
6S

2−
4 + e− 
 2

3S
2−

Reaction Index

i = 1, 2, ..., 5
S8, S

2−
8 , S2−

6 , S2−
4 , S2−

lithium ions. This section presents a zero-dimensional Li-S battery model, based on earlier

research in the literature [15, 16]. The model makes the following assumptions: (i) there is

an unlimited lithium supply in the cell with a negligible overpotential on the anode side,

as in [10]; (ii) the shuttle effect of polysulfides is not included due to this article’s focus

on the voltage performance instead of capacity fade [16]; (iii) only the lowest polysulfide’s

precipitation reaction (2Li+ + S2− 
 Li2S ↓) is modeled [16, 15]; and (iv) only the redox

reactions in Table 1 are considered. Although there exist different simplifications of the

reaction chain on the cathode side, such as the two-step reduction S8 → S2−
4 → S2− [28]

and the four-step reduction S8 → S2−
8 → S2−

6 → S2−
4 → S2− [12], our choice of the

reaction chain is based on previous work by the authors [29]. This previous work involved

both estimating this model’s parameters from experimental cycling data and validating the

model’s accuracy in capturing Li-S battery discharge dynamics.

2.1. Model Derivation

The model adopted in this work captures the physics of key reactions and precipitation

phenomena in Li-S batteries. Moreover, by its very nature as a zero-dimensional model,

it neglects diffusion/migration dynamics for simplicity. These dynamics lead to the time

evolution of the model’s state variables, namely: the masses of the various sulfur species and

the porosity of the cathode material. The resulting differential algebraic equation (DAE)

model (where positive current denotes discharge) is shown in Fig 1, including the state

equations (Eqn. 1-3), algebraic constraints (Eqn. 4-7) and the information flow.

The input of the system is current I, and the output of the system is the voltage measure-

ment across the battery V . The state variables include: the masses of the dissolved sulfide
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Zero-dimensional Model

Mass of dissolved sulfur species   𝒎𝒊

ሶ𝒎𝒊 = ൞

σ𝑗
𝑛𝑆𝑖 𝑀𝑆

𝑛𝑗𝐹
𝑠𝑖,𝑗𝑰𝒋 for 𝑖 = 1,… , 4

σ𝑗
𝑛𝑆𝑖 𝑀𝑆

𝑛𝑗𝐹
𝑠𝑖,𝑗𝑰𝒋 − ሶ𝒎𝒔𝒑 for 𝑖 = 5

(1)

Mass of precipitated sulfur 𝒎𝒔𝒑

ሶ𝒎𝒔𝒑 = 𝑘𝑝𝒎𝒔𝒑 (𝒎𝟓 − 𝑆𝑠𝑎𝑡) (2)

Relative porosity 𝜶
ሶ𝜶 = −𝜔 ሶ𝒎𝒔𝒑 (3)

ሶ𝒎𝒔𝒑

Nernst equation for reduction potential 𝑬𝒋

𝑬𝒋 = 𝐸𝑗
0 −

𝑅𝑇

𝑛𝑗𝐹
σ𝑖 𝑠𝑖,𝑗 𝑙𝑛(

𝒎𝒊

𝑛𝑆𝑖𝑀𝑠𝑣
) (4)

Butler-Volmer equation for reaction current 𝑰𝒋

𝑰𝒋 = −𝑎𝑣
0𝜶𝛾 𝐼𝑗

0 ς𝑖(
𝒎𝒊

𝑚𝑖
0)
𝑝𝑖,𝑗 𝑒

𝐹

2𝑅𝑇
𝜼𝒋 −ς𝑖 (

𝒎𝒊

𝑚𝑖
0)
𝑞𝑖,𝑗 𝑒

−
𝐹

2𝑅𝑇
𝜼𝒋 (5)

Where 𝜼𝒋 = 𝑽 − 𝑬𝒋 (6)

Matching condition: Current

σ𝑗 𝑰𝒋 = 𝑰 (7)

𝒎𝒊

𝑬𝒋

Output 𝑽

Input 𝑰

𝜶

State Equations Constraints

𝒊𝒋

𝒎𝟓

𝒊𝒋

Figure 1: The structure of the zero-dimensional Li-S battery model

species mi (i = 1, ..., 5), the mass of the precipitated sulfur mSp , and the relative porosity of

the cathode material α. The rates of mass change for higher-order dissolved sulfide species

relate to the current Ij generated by reaction j (j = 1, ..., 4). For the last dissolved species

S2−, one needs to consider its mass generation from the last reduction reaction and its mass

loss due to precipitation as in Eqn. 1, where i and j are the indices of the species and

reactions. The nucleation and growth phenomenon is described by Eqn. 2. The parameters

kp and Ssat are the precipitation rate constant and the saturation mass of S2−. The rate

of change of the mass of the precipitate is driven by the precipitated mass. This reflects

the fact that the existing precipitate serves as a nucleus for further precipitation/growth, as

long as the mass in the electrolyte is above a given saturation mass Ssat. Relative porosity

equals the current porosity of the cathode material divided by initial porosity, and has a

direct effect on the active reaction area [9]. Its rate of change is described in Eqn. 3, with a

rate constant ω. When the porosity decreases to zero, all the reactants are blocked by the

precipitate from the cathode material surface. This can be one of the indicators of the cell’s

full discharge, another full discharge scenario being the reduction of all polysulfides to S2−.

The parameters nSi
, nj , R, T , v, Ms, F and si,j represents the number of sulfur atoms

in species i, number of electrons exchanged in reaction j, gas constant, temperature, cell

volume, molar mass of a sulfur atom, Faraday’s constant, and stoichiometric coefficients of

the reactions, respectively. The coefficients pi,j and qi,j represent the positive and negative

elements of si,j .

The reduction potential of each reaction Ej is given by the Nerst equation (Eqn. 4),
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Table 2: Key Parameter Values in Simulations

Notations Values Units

E0
j 2.4673, 2.3742, 2.3420, 2.0693 V

I0j 2.00, 0.02, 0.02, 0.02 A/m2

m0
i 3.0377, 1.83E-05, 1.83E-05 g

1.83E-05, 3.26E-06

v 0.0114 L

Ssat 0.0001 g

a0v 1 m2

γ 0.4832 -

ω 0.6133 1/g

kp 22 1/(g s)

Ms 32 g/mol

nSi
8, 8, 6, 4, 1 -

nj 1, 1, 1, 1 -

R 8.3145 J/(K mol)

F 9.649×104 C/mol

T 298 K

sij



−1/2 0 0 0

1/2 −3/2 0 0

0 2 −1 0

0 0 3/2 −1/6

0 0 0 2/3


-
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assuming that E0
j is the corresponding reference potential [16]. The current generated by

the corresponding reduction reaction is described by the Butler–Volmer equation (Eqn. 5),

where ηj is the overpotential, I0j is the exchange current density, γ is a morphology parameter

serving as the power of the relative porosity and m0
i is the initial mass of species i. All these

currents sum to the external discharge current I. The parameters shown in Table 2 are

obtained from [29].

2.2. Model Reformulation

The Li-S battery model developed in Section 2.1 is a differential algebraic equation

(DAE) model. State estimators exist for such models [30, 31], but the fundamental theoret-

ical foundations of estimation theory are more established for traditional explicit ordinary

differential equation (ODE) models. One method of converting a DAE model to ODEs is

to solve for the algebraic variables explicitly. With this in mind, this section analytically

resolves the algebraic loop in the above DAE model, thereby reformulating it into an ODE

model. This reformulation also eliminates the need for determining consistent initial con-

ditions for the DAE model, thereby also simplifying the estimation problem. From the

information flow described in Fig. 1, one can identify that solving Eqn. 7 analytically is

sufficient for the model reformulation. The goal is to solve for the reaction current Ij in

Eqn. 7. To do so, we first solve for the output voltage measurement V using the following

steps:

Firstly, substitute Eqn. 4 and 6 into Eqn. 5 and rearrange to get Eqn. 8:

Ij = −a0vαγ
(
Y

Ω1j

∏
i

m
pi,j+

1
2 si,j

i − Y −1

Ω2j

∏
i

m
qi,j− 1

2 si,j
i

)
(8)

where

Y = e
F

2RT V (9)

Ω1j =
1

I0j
e(

F
2RT E

0
j )
∏
i

m
pi,j
i (nSiMsv)

1
2 si,j (10)

Ω2j =
1

I0j
e(−

F
2RT E

0
j )
∏
i

m
qi,j
i (nSiMsv)−

1
2 si,j (11)

Now, substitute Eqn. 8 into Eqn. 7 to get:

∆1Y −∆2Y
−1 +

I

av
= 0 (12)
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where

∆1 =
∑
j

(∏
im

pi,j+
1
2 si,j

i

Ω1j

)
(13)

∆2 =
∑
j

(∏
im

qi,j− 1
2 si,j

i

Ω2j

)
(14)

One can solve for Y from the quadratic function in Eqn. 12. Since Y is an exponential

function, it is always a positive scalar. This makes it possible to finally determine an analytic

solution for the voltage measurement, V :

V =
2RT

F
ln

− I
av

+
√

I2

a2v
+ 4∆1∆2

2∆1

 (15)

In this way, the algebraic loop is broken, and the resulting model can be expressed in the

following standard explicit state-space form:

Ẋ = f(X, I) (16)

V = h(X, I) (17)

where the state variables form a 7-by-1 vector:

X = [m1, ...,m5,mSp
, α]T (18)

The above model serves as a foundation for the observability analysis and estimation

study presented in the remainder of this article. One important note is that the precipitated

mass mSp
does not directly affect the output battery voltage V . Instead, the impact of

precipitation on this output voltage takes place indirectly, through the dynamics of other

species masses. This causes the observability of the precipitated mass to be fairly weak,

especially in the low plateau region, as shown in the following sections.

3. Observability Analysis

In control theory, observability is an indicator of whether or not the internal state of

a dynamic system can be estimated from input/output measurements. For linear systems,

the conditions for observability are uniquely/equivalently defined: a linear time invariant

system is observable, if and only if the observability matrix is full rank or equivalently

the observability gramian is non-singular. In contrast, there are multiple different tests for
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observability in nonlinear systems [32]. This section analyzes the so-called “weak observ-

ability” of the Li-S ODE model, defined as one’s ability to estimate the model’s state within

a local neighborhood of its true value. This analysis furnishes a Cramér-Rao bound on the

best-achievable state estimation accuracy for any give charge/discharge profile and time pe-

riod, assuming a known measurement noise distribution. The first goal of this analysis is to

confirm that the model is locally observable, thereby justifying the subsequent development

of an estimator. The second goal is to compare observability for different state variables

during different phases of battery operation (e.g., high plateau, low plateau, etc.).

One method to solve the problem of estimating the current state of a dynamic system can

be done in two steps: (i) estimating the system’s initial state and (ii) propagating the initial

state though the system model to obtain the current state. The empirical observability

gramian adopts this idea [33]. The observability gramian is calculated by perturbing the

initial state X0 along each state variable by a positive small value ε, and then simulating

the system for a time period τ to get the resulting differences in output measurements. This

furnishes the following equation for the observability gramian:

W ε
o (τ,X0, I) =

1

ε2

∫ τ

0

Φε(t,X0, I)TΦε(t,X0, I)dt (19)

where

Φε(t,X0, I) = [V +1 − V 1, ... , V +n − V n] (20)

V +i = h(X(t,X0 + εei), I) (21)

V i = h(X(t,X0), I) for i = 1, ..., n (22)

The vectors ei represent the elements of the standard basis in the state variable domain

Rn (e.g., e1 = [1 0 0 0 0 0 0]T ), and n equals 7. If the observability gramian is non-singular,

the nonlinear system is locally observable, which means that one can estimate the initial

values of its state variables from input/output measurements. The best theoretically achiev-

able accuracy with which such estimation can be performed is governed by the associated

Fisher information matrix [34]. This matrix is formally derived in [35]. Moreover, assum-

ing that the voltage output measurement noise process is white and Gaussian, this Fisher

information matrix can be simplified to the following expression:

FM =
1

σ2
v

N∑
k=1

[(
∂V

∂X0

)(
∂V

∂X0

)T]
(23)
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Figure 2: Observability check points along the voltage profile

In the above equation, N is the number of samples within the time period τ , (boldface) V

is a 1-by-N row vector of voltage measurements at every time step, and the sampling time

step is δt = τ
N . When the sampling time step is small enough, the above equation for the

Fisher information matrix can be approximated using the following integral [36]:

FM =
1

σ2
v δt

∫ τ

0

(
∂V

∂X0

)(
∂V

∂X0

)T
dt

=
1

σ2
v δt

W ε
o (τ,X0, I)

(24)

When the Fisher matrix is invertible (i.e. the system is locally observable), then the

inverse of the matrix provides a Cramér-Rao lower bound (CRLB) that represents the best

achievable estimation error covariance for the estimated initial state vector X0.

cov(X0) ≥ F−1
M = σ2

v δt W
ε
o (τ,X0, I)−1 (25)

Due to the nonlinearity and complexity of our system model, we evaluate the observ-

ability gramian and the Cramér-Rao lower bound numerically along the system’s discharge

trajectory, given a constant discharge C-rate of 0.3C. The parameters used in this observ-

ability analysis are the perturbation ε = 10−6, the sampling time step δt = 0.1 second,

the time period τ = 60 seconds and the standard deviation of the output measurement

σv = 5× 10−3 V.

We choose five representative points (two points at each plateau and the middle dip

point) to obtain the empirical observability gramian and CRLB along the voltage measure-

ment profile as shown in Fig 2. At all these 5 points, the empirical observability gramian

is invertible, leading to the conclusion that the system is indeed locally (or “weakly”) ob-
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Table 3: Standard deviation of the best achievable estimation error for the full-order model

std [g] Nr. 1 Nr. 2 Nr. 3 Nr. 4 Nr. 5

m1 0.028 0.014 0.006 0.039 0.029

m2 0.022 0.018 0.006 0.031 0.022

m3 0.014 0.017 0.009 0.094 0.088

m4 0.017 0.016 0.006 0.092 0.096

m5 0.002 0.003 0.005 0.063 0.072

mSp 0.076 0.071 0.046 0.282 0.367

α 0.033 0.024 0.009 0.098 0.106

servable. This means that if the estimated initial states are in the neighborhood of the

true values, one can construct an unbiased observer for the system (i.e., an observer that

converges to the true values in an average statistical sense). The best statistical accuracy

(i.e., statistical spread of initial state estimates) achievable by this observer is given by the

CRLB. Specifically, the square roots of the diagonal elements of the CRLB matrix represent

the standard deviations (std) of the best achievable estimation error for each initial state

variable. These standard deviations are listed in Table 3.

Two main observations are visible from Table 3. First, the best local observability shows

up at the dip point between the high and low plateau. Estimation errors are slightly worse

in the high plateau compared to this dip point, and the worst estimation errors occur in the

low plateau. This observation matches the intuition that the estimation problem is more

difficult during the low plateau due to the associated flatness of the measured voltage profile.

The smaller sensitivity of the output voltage with respect to underlying state variables in the

lower plateau regions increases the difficulty of the state estimation problem, and therefore

worsens estimation accuracy. Second, the largest standard deviation of the state estimation

error corresponds to the mass of precipitated sulfur mSp
. This is especially problematic

in the low plateau region, where this error can be as large as 0.367 g (compared to the

total active sulfur mass of 3.0377 g). This is due to the fact that the output voltage is not

directly governed by the precipitated mass mSp
, i.e. the variable mSp

does not show up in

the output equation, Eqn. 17. In practice, when performing state estimation during the

low plateau, if the initial estimated mSp
is not close to the true value, this error will persist.
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3.1. Improving Observability through Model Reduction

When a dynamic system suffers from poor observability, one potential remedy is to

estimate a subset of the system’s state variables. This subset can be selected to ensure that

it has attractive observability properties. Estimates of the remaining state variables must

then be computed through other means, such as the exploitation of prior information. The

principle of mass conservation provides an opportunity for improving the observability of

this article’s Li-S battery model. The basic idea is to assume that the total active sulfur mass

is accurately known a priori. Prior knowledge of this mass can be obtained from a number

of different sources, one of which is state estimation during the high plateau. Armed with

this prior knowledge, one can construct a reduced-order model where the principle of mass

conservation is used to eliminate two state variables, namely: the precipitated sulfur mass

and relative porosity. One can then construct an estimation algorithm for the remaining 5

state variables using the resulting reduced-order model.

Consider the mass conservation of all the sulfur species. The rate of change of the total

sulfur mass is zero. One can therefore eliminate the state variable mSp as follows:

mSp
= Mtot −

5∑
i=0

mi (26)

where Mtot represents the total sulfur mass, known a priori. Moreover, knowing that the

initial relative porosity for a fully charged cell equals 1 by definition, and assuming the

corresponding precipitated sulfur mass to be approximately 0, one can further reduce the

state variable α from the model as follows:

α = 1− ω(Mtot −
5∑
i=0

mi) (27)

The resulting reduced-order ODE model contains 5 state variables. The authors perform

the same observability analysis to obtain the standard deviations of the corresponding best

achievable estimation errors. The results of this analysis are listed in Table 4. The observ-

ability of the masses of the dissolved species in the 5th-order model is on the same order

of magnitude, and generally better, compared to the 7th-order model. More importantly,

relative porosity and precipitated sulfur mass are no longer being directly estimated in this

reduced-order model, the result being that their estimation accuracy is now a strong func-

tion of the fidelity of the prior estimate of total sulfur mass. Accurate prior knowledge of

this total mass can therefore benefit the estimation process, as demonstrated in the following
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Table 4: Standard deviation of the best achievable estimation error for the reduced-order model

std [g] Nr. 1 Nr. 2 Nr. 3 Nr. 4 Nr. 5

m1 0.007 0.009 0.005 0.027 0.030

m2 0.021 0.015 0.006 0.024 0.020

m3 0.014 0.013 0.006 0.059 0.088

m4 0.015 0.009 0.006 0.052 0.071

m5 0.002 0.002 0.003 0.062 0.056

sections of the article. The remainder of this article develops and simulated an unscented

Kalman filter for estimating the state variables of both of the above 7th-order full model

and 5th-order reduced model.

4. State Estimation using UKF

Kalman filtering is a popular and well-established approach for state/parameter estima-

tion. The traditional Kalman filter provides state estimates for linear dynamic systems,

but nonlinear extensions of this filter exist, including both the extended and unscented

Kalman filters. Compared to the extended Kalman filter (EKF), the use of sigma points for

propagating estimation covariance in unscented Kalman filters generally improves estima-

tion accuracy [37, 38, 39]. This section applies unscented Kalman filtering to the full and

reduced-order Li-S ODE models, and evaluates the performance of the resulting filters in

simulation.

4.1. The UKF Algorithm

The state and output equations of the nonlinear Li-S battery model can be discretized

in time and augmented with both process and measurement noise signals to give:

Xk = f(Xk−1, Ik) + vk (28)

Vk = h(Xk, Ik) + wk (29)

In the above discrete-time model, vk and wk are the process and measurement noise, re-

spectively, which are both uncorrelated zero-mean Gaussian white sequences with known
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variances. Then, the UKF algorithm is shown as follows.

(1) Initialization:

Define an initial state estimate X̂0 and covariance matrix P0. In this work, the initial

covariance matrix P0 is set as diag(P0) = 0.1X̂0.

(2) Generate sigma points at time step k-1:

χ0
k−1 = X̂k−1 (30)

χik−1 = X̂k−1 +
√

(N + λ)Pk−1 i = 1, ..., N (31)

χik−1 = X̂k−1 −
√

(N + λ)Pk−1 i = N + 1, ..., 2N (32)

where λ is a scaling factor

λ = β2(N + κ)−N (33)

Here β ∈ [0, 1] and κ ∈ [0,∞] are two tuning parameters that determine the spread of the

sigma points. In this study, we choose β = 0.01 and κ = 1.

(3) Time update:

The sigma points are propagated through the nonlinear discrete state equation to obtain

the estimated state matrix χi−k

χi−k = f(χik−1, Ik) i = 0, ..., 2N (34)

The a priori state estimate is then given by:

X̂−
k =

2N∑
i=0

Wm
i χ

i−
k (35)

Wm
0 =

λ

λ+N
(36)

Wm
i =

λ

2λ+ 2N
i = 1, ..., 2N (37)

Moreover, the a priori error covariance is calculated as

P−
k =

2N∑
i=0

W c
i [χi−k − X̂

−
k ][χi−k − X̂

−
k ]T +Qk (38)

W c
0 =

λ

λ+N
+ (1− β2 − µ) (39)

W c
i =

λ

2λ+ 2N
i = 1, ..., 2N (40)

In this work, a constrained version of the UKF which considers allowable limits on species

mass values is implemented. The sizing of the process noise covariance matrix is used for

15



adjusting the spread of the UKF sigma points. It does not necessarily imply or preclude the

existence of substantial process noise in the physical system. A bigger covariance matrix

leads to a broader spread of the sigma points. If Qk is too big, it is possible to generate

infeasible sigma points with negative species mass values. Hence, the authors enforce a cap

on the maximum values of the diagonal elements of Qk as below:

diag(Qk) = min[0.005, 0.005X̂k−1] (41)

The estimated measurement matrix Zk, is calculated by transforming the sigma points using

the nonlinear discrete output equation

Zik = h(χik−1, Ik) i = 0, ..., 2N (42)

Moreover, the estimated measurement V̂k is given by:

V̂k =

2N∑
i=0

Wm
i Z

i
k (43)

(4) Measurement update:

The Kalman gain Kk is calculated from the measurement covariance Pz and the cross-

correlation covariance Pxz

Pz =

2N∑
i=0

W c
i [Zik − V̂k][Zik − V̂k]T +Rk (44)

Pxz =

2N∑
i=0

W c
i [χi−k − X̂

−
k ][Zik − V̂k]T (45)

Kk = PxzP
−1
z (46)

where Rk = σ2
v , with the standard deviation of the output measurement σv = 5 × 10−3 V

defined as in Section III.

The state estimate is updated by the measurement

X̂k = X̂−
k +Kk(Vk − V̂k) (47)

Finally, the error covariance matrix is updated through

Pk = P−
k −KkPzK

T
k (48)
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Figure 3: High plateau state estimation with a constant discharge current for the full-order model

Figure 4: Low plateau state estimation with a constant discharge current for the full-order model
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4.2. Simulation Results and Discussions

The UKF algorithm is tested both in the high and low plateau regions in simulation,

for both the full- and reduced-order models. Although state estimation is performed at

different check points, consistent results are observed for points located in the same plateau

region. The authors therefore choose one initial state for each plateau as representatives for

demonstration and discussion. For the full-order ODE model, a constant current discharge

scenario is tested with the discharge current set to 1 Ampere (corresponding to a C-rate

of 0.3C). This simulated scenario is repeated for the reduced-order model. The article also

simulates the reduced-order model for a sinusoidal current input, as discussed below.

4.2.1. State Estimation for Full-order ODE Model

Fig. 3 and 4 show the simulation results for the full-order ODE model with a constant

current input of 1 Ampere. In the high plateau region, the masses of the three main species

S8, S2−
8 and S2−

6 demonstrate good convergence. The masses of both the sulfur precipitate

and dissolved S2− are small in this region, and so are the UKF estimates of these masses.

Broadly speaking, therefore, the performance of the full-state UKF estimator in the high

plateau region is reasonable. This is consistent with the article’s earlier analysis showing

good state observability in this region.

An obvious disadvantage shows up in the estimation of precipitated sulfur mass: this

precipitated mass is estimated with poor accuracy, especially in the low plateau region.

Errors in estimating this precipitated mass do not converge to negligible values even after

an hour of battery discharge, as shown in Fig. 4. This can be explained by the observability

analysis earlier in this article. The output voltage measurement only relates to the dissolved

sulfur species, as they affect the associated reduction potentials through the Nernst equation.

When performing state estimation in the low plateau region, if the initial estimated mSp
is

not close to the true value, the error will persist without substantial improvement. This is

a fundamental issue, rather than a problem specific to the filtering algorithm used in this

article, as evident from the earlier observability analysis.

4.2.2. State Estimation for Reduced-order ODE Model

Two simulation scenarios are examined for unscented Kalman filtering using the reduced-

order battery model, namely: a 1-Ampere constant-current discharge scenario and a sinu-

soidal input current scenario with I = 1 + sin(0.005t) Ampere. The simulation results
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Figure 5: High plateau state estimation with a constant discharge current for the reduced-order model

Figure 6: High plateau state estimation with a constant plus sinusoidal discharge current for the reduced-

order model
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Figure 7: Low plateau state estimation with a constant discharge current for the reduced-order model

for high plateau estimation with both of these current profiles are shown in Fig. 5 and 6,

respectively. One can observe the state estimates converge to the true value within about

5 minutes. The slow-changing current input does not lead to significant change in the

convergence rate.

Fig. 7 and 8 present the estimation results for the low plateau. The convergence of

the estimator takes more time in the low plateau region. This is because the low plateau

manifests less observability, and the estimator requires a longer time duration to gather

information. This poor observability can be explained in terms of the reduced sensitivity

of the output voltage to the values of the underlying states (i.e. the “flatness” of the

output voltage curve in the low plateau region). Significant differences between the initial

state estimates and the corresponding true values take longer to diminish because of this

reduced sensitivity. This slow convergence occurs even when the estimated voltage quickly

converges to the measured voltage: a sign of poor observability. Intuitively, because of

the poor sensitivity of the output voltage with respect to the underlying state estimates,

one cannot rely on the voltage measurement error to achieve fast convergence of the state

estimates.

Regardless of the above caveats, state estimation accuracy using the reduced-order model

is generally attractive. Better observability and estimation accuracy is achievable in the

high plateau region, compared to the low plateau region, for both the full and reduced-

order estimators. Therefore, it is recommended to launch estimation in the high plateau
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Figure 8: Low plateau state estimation with a constant plus sinusoidal discharge current for the reduced-

order model

region if possible, particularly if the total active sulfur mass is unknown. Then one can use

the information gathered in the high plateau region to estimate this total active mass and

construct a reduced-order state estimator for subsequent time periods.

5. Conclusions

This article shows that it is generally possible to construct an algorithm for estimating

the masses of various species in Li-S batteries. This is important because it provides a

more detailed picture of the internal state of the battery compared to a more traditional

“lumped” SOC estimate. Observability analysis reveals two fundamental challenges associ-

ated with such state estimation. The first challenge is that in the low plateau region, the

poor sensitivity of output voltage to species masses results in poor observability and slow

estimator convergence. The second challenge is that the mass of precipitated sulfur suffers

from particularly poor observability compared to other species masses. These two problems

compound, in the sense that estimating precipitate mass is especially challenging in the low

plateau region. Under the assumption that the total active sulfur mass is known a priori,

model reduction makes it possible to circumvent these challenges and obtain accurate state

estimates. This raises the possibility of perhaps using switching schemes where full state

estimation is performed in the high plateau region, and reduced-order state estimation is

performed in the low plateau region. The use of unscented Kalman filtering for estimating
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species masses in an Li-S battery furnishes simulation results that are consistent with the

fundamental discoveries of this article’s observability analysis.
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