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Abstract

This paper formulates and solves the problem of robust compensation of multiport active network. This is an
important engineering problem as networks designed differ in parameter values due to tolerance during manufacture
from their actual realizations in chips and hardware. Parameters also undergo changes due to environmental factors.
Hence, practical use of networks requires compensation which is only possible by connecting compensating network
at the ports. The resulting interconnection is then required to be stable over a range of parameter values. This is
called robust compensation. This paper formulates such a problem using an extension of the coprime factorization
theory well known in feedback control theory to the situation of multiport network interconnection developed in
[1] and formulates the robust stabilization problem as an H∞ optimization problem. The port interconnection of
networks does not confirm with computation of the function of the interconnected network analogous to that of
the feedback interconnection using signal flow graph. Hence the well known stabilization and stability theory of
feedback systems cannot be utilized for such a problem. A new formulation of stabilization theory of network
interconnection was formulated and developed by the authors in [1]. The variations of parameters of the network
are used to define a worst case neighborhood of the network in terms of its coprime fractions at the nominal values
of parameters. The solution of the optimization problem is then carried out by the standard procedure of converting
such a problem to the Nehari optimization problem [2]. This methodology of solving the robust compensation of
multiport networks using feedback control theory is believed to be novel.

Index Terms

Active networks, Coprime factorization, Feedback stabilization, Multiport network connections, Robust stabi-
lization.

I. INTRODUCTION

ROBUST stabilization problem is one of the most practical problems of engineering. Engineering
dynamical systems in practice almost always have uncertainty about values of parameters of their

models or also have slow variations. Moreover such models also neglect dynamics at high frequencies
causing fluctuation in a nominal model. Robust stabilization is concerned with designing feedback con-
trollers of such plants so that the resultant dynamical system is stable in the entire worst case range
of parameters and model fluctuations. Such a problem was definitively solved in the 1980s in feedback
control theory by Kimura [3]. The factorization approach to systems [6]1 provided systematic approaches
to solving robust stabilization problem using the H∞ norm minimization.

A. Previous work and contribution of this paper
In this paper we propose another novel application of the factorization approach and the H∞ optimiza-

tion, to robust stabilization of active analog, multiport electrical circuits by port compensations. Such a
solution, to the author’s knowledge has never been proposed in circuit design or multiport network theory
and constitutes solution of this important engineering problem which is novel for both control theory as
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1It is important to realize that the classical feedback control techniques of loop shaping only allowed stability analysis in terms of gain

and phase margin with respect to known feedback. These techniques could not solve the problem of existence and design of controllers for
given extent of variation in the model. Hence the solution obtained using factorization theory was a major theoretical advance and had great
practical relevance.
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well as network theory. However it must be pointed out that the importance of robust stabilization and
analysis of robust stability in terms of feedback control theory of VLSI networks was proposed in [4].
This is paper is of great importance to application of feedback stability theory to VLSI networks but stops
short of solving the stabilization (synthesis) problem while solving the robust stability (analysis) problem.
Hence our paper can be considered as an advancement of the theory proposed by [4]. However, there are
major technical differences in formulation of the network interconnection model and mathematical format
of our paper relative to that in [4]. Our paper develops the stabilization theory in terms of port model of the
interconnected network which does not utilize the feedback signal flow graph model. Moreover, we make
use of the stable coprime factorization theory which is well known for its computational advantages over
the polynomial coprime factorization theory used in [4]. Contributions in this paper can be understood
as next steps than achieved in [4] on the issue of robust stability and stabilization problems of VLSI
synthesis.

To appreciate the nature and importance of this problem it is necessary to consider the situation
of multiport compensation in networks analogous to feedback control in systems theory. The robust
stabilization is then analogous to compensation with robust stability of interconnected network. Active
multiport networks have uncertainties of parameters from their design values, slow variations in parameters
due to aging, modeling errors due to neglected structures or stray capacitances etc. A mathematical model
of a network at the nominal parameter values is usually known and a worst case percentage variation
(tolerance) in parameters may be prescribed after manufacture. Even if such a network is designed for
prescribed performance specifications, the performance and stability also undergo variation with changes
in the physical network due to variations. It is thus an import engineering challenge to compensate the
network at the ports by another multiport network. However, unlike in the case of passive networks, such
interconnections are not guaranteed to be stable. Hence designing a stable interconnection of linear time
invariant (LTI) multiport networks (which includes active networks) is an important problem which we
term as the robust stabilization problem of multiport networks.

B. Stabilization in network interconnection a new problem
Question then arises what new difficulties such a problem posed to direct application of feedback

stabilization theory ? The answer lies in the difference in the nature of network interconnection as compared
to feedback systems. In multiport networks, the interconnection is in terms of physical voltage and current
quantities at the ports. Here algebraic sums of variables occur for physically same type (voltage or
current) variables and must follow Kirchhoff’s laws at ports. These are not mathematical identifications
and summations of variables as in signal flow graphs. Essentially, the connection between plant and
controller in feedback systems occurs at two distinct signal points at the input and output. On the other
hand port interconnection takes place at the same signal point the input being the source and output being
the response of the same source. Due to this physical nature of control by port compensation, the traditional
two input two output formulation of closed loop stability cannot be applied to stability of interconnection
of networks. Even if one seeks to carry out such a formulation it turns out that the feedback signal flow
graph of the interconnected network is extremely inconvenient to determine for multiport networks. Hence
it is necessary to pose the stabilization problem of multiport interconnections from a fresh point of view.
In [1] authors realized that the feedback signal flow graph was not necessary to formulate this stabilization
problem and proposed an approach using factorization theory to multiport feedback stabilization. A detailed
account of this theory is reported in [1]. Recently, the Bode sensitivity concept of feedback control [7],
[8] is also extended to multiport compensation in [9] as a first successful application of this approach
using H∞ approach to sensitivity optimization by port compensation in networks. In the present paper we
propose the second important engineering application of this stabilization theory of networks viz. to the
robust stabilization by compensation of a network at the ports when the network has prescribed extent of
variation of the model in frequency domain.
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C. Background: Stable factorizations and multiport networks
We shall extensively refer to background of stable factorization approach for LTI systems as in [5], [6],

[8] and network theory from [10]. The ring of stable proper rational functions is denoted as S. A multiport
network has each port indexed and a source of voltage or current type to be connected at each of the
ports is fixed. Let the vector of sources defined as functions of time over [0,∞) at the ports be denoted
us and the vector of responses at the ports of same indices be denoted as yr over the same interval. The
driving point function of the network is then the matrix H(s) of rational functions with real coefficients
which relates the vectors of Laplace transforms Us(s), Yr(s) of sources us and responses yr when the
network has zero internal initial conditions of its capacitor voltages and inductor currents, as

Yr(s) = H(s)Us(s) (1)

Thus H(s) is always a square matrix. A basic assumption about the matrix function H(s) we shall
make is that the network response at the ports matches that obtained from a doubly coprime fractional
representation of H(s) as in (8) below. Such an assumption is an algebraic equivalent of the dynamical
assumption that the network has no unstable hidden modes. Unstable hidden modes for single port networks
are discussed in [10]. For multiport networks our description using doubly coprime fractions of H(s) is
a generalization.

To define the stabilization problem of network interconnection one first needs to define the notion of
stability of a multiport network. This definition is reproduced from [1] called as Bounded Source Bounded
Response stability analogous to the bounded input bounded output (BIBO) stability of LTI systems.

Definition 1 (BSBR stability). A multiport network with the vector of port sources denoted us and the
vector of port responses (in same order of indices of ports) denoted yr is BSBR stable if, when the initial
voltages and currents in the capacitors and inductors inside the network are zero, then for any uniformly
bounded sources us in time t ≥ 0 the responses yr are also uniformly bounded for t ≥ 0.

A well known result from systems theory which applies to networks which do not have unstable
hidden modes shall be our basis of mathematical characterization of BSBR stable networks in terms of
their network functions. We shall omit a detailed proof of this result which follows from well known LTI
systems theory given in the modern texts [6] while a single port characterization of stability is discussed
in [10, chapter 4].

Lemma 1. A multiport network without unstable hidden modes and represented by (1) is BSBR stable
iff the network function matrix H(s) has no poles in the closed right half complex plane denoted as RHP.

D. Source series and source parallel connections of multiport networks
One of the important aspects of the stabilization problem of multiport networks is that the response

of the network is not affected by a compensation unless it is connected at the ports in a specific way.
The externally connected network called compensator affects the original network only when at least one
port of both networks is connected in what we shall describe below as source series form. Hence the
stabilization problem and subsequently the robust stabilization problem is meaningful when the networks
have ports connected in this fashion. We define two types of connections at a port. Let two networks
be N and Nc and let us, ucs denote the sources of these networks respectively at an identified port on
each network and yr, ycr denote the responses of these sources. Following interconnections are possible
between the networks only when 1) the source types at any port where interconnection is to be made are
the same, i.e. either both are voltage sources or both are current source and 2) the port connections obey
the Kirchhoff’s law at the cutset of the two port terminals. We assume that the port Kirchhoff’s laws are
not violated by the interconnection.

1) The networks are said to be in source parallel connection at the ports if the two sources are equal to
a common source us applied to the connected network at the port while the response at the port is
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the algebraic sum yr +ycr. When all the ports of N and Nc under a fixed indexing have same source
type and are connected this way at all the ports of respective index we denote the interconnected
network as p(N,Nc).

2) The networks are said to be in source series connection at the ports if the source applied to the
connected network at the port is the algebraic sum us + ucs while the response at the port is the
common response yr = ycr. When all the ports of N and Nc under a fixed indexing have same source
type and are connected this way at all the ports of respective index we denote the interconnected
network as s(N,Nc).

An important point is that the responses of the individual networks remain unaltered when all the port
connections are source parallel. Hence if the compensating network Nc is required to affect response of
the given network N then the interconnection has to be source series type at least for one port. Hence
our formulation of the stabilization problem is defined only for source series connection s(N,Nc). We
shall make following assumption in all our connections at ports.

Assumption 1. A multiport network N which is under consideration for stabilization is connected by
a compensating network Nc which has the same number of ports with same type of sources at each of
the indices and is connected in source series form at all the ports at corresponding indices. Thus our
assumption excludes problems in which number of source series connections at ports are less than the
total number of ports.

Problem 1. Let N be a given multiport network with a fixed indexing of its ports and let the type of
sources at these ports be fixed. Consider that a compensating network Nc with same number of ports and
same type of sources at the same indices, is connected to N in source series form at all the ports to form
the interconnection s(N,Nc). Then what is the characterization of the set of all multiport networks Nc

such that 1) The interconnected network s(N,Nc) is BSBR stable with respect to independent sources
at the interconnections and responses of the sources at each port and 2) the interconnection s(Ñ ,Nc) is
also BSBR stable for all Ñ in a sufficiently small neighborhood of N . When networks Nc exist they are
called stabilizing compensators of N .

Remark 1. This question is analogous to that of the question in feedback system theory, ”what are all
possible stabilizing feedback controllers of a LTI plant?” However unlike the system theory formulation at
a fixed parameter the stabilization problem above also requires stability of interconnection to be satisfied
even for sufficiently small perturbations of the original network. An important difference of the stabilization
problem from the feedback stabilization problem is as follows. In the feedback theory the notion of internal
stability of a feedback system in terms of the signal flow graph originally defined in [11] is BIBO stability
with respect to two external inputs and two external outputs in the feedback loop. Such an injection of
external inputs is possible in feedback systems because the output and input are at two different places in
the signal flow graph. On the other hand in the case of network interconnection, external source at a port
and the response due to it are at the same port. Hence the two input two output notion of stability is not
even meaningful for port interconnection. Hence we made an alternative formulation of the stabilization
problem as above.

In Systems Theory the question of characterizing all stabilizing controllers led to landmark new
developments in recent decades [6], [8], [12] broadly known as factorization approach based H∞ control.
However for network interconnections such a problem appears never to have been posed formally as far
as known to the authors although stability of a single port connection of active networks has been well
known [10, chapter 11].

In [1] the above problem is solved for multiport networks by first establishing conditions for BSBR
stability of multiport networks in terms of their hybrid functions and prove existence of Nc given N
when there are no unstable hidden modes in N . The coprime fractional framework turns out to be highly
appropriate for formulating and solving this problem. The results of the paper are presented in subsequent
section to build background for describing the robust network stabilization problem.
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II. STABILIZATION AND ROBUST STABILIZATION BY NETWORK INTERCONNECTION

As stated in the introduction, the stabilization problem for interconnection of networks N and Nc

is defined only for source series connection of ports. We thus consider the two networks N , Nc with
following assumptions.

1) Assumption 1. The two networks N , Nc have same number of ports and same type of sources at
the ports of same indices hence the source series interconnection s(N,Nc) is defined.

2) Assumption 2. The assumption stated in introduction section that all ports of N and Nc of same
indices are connected in source series form.

3) Assumption 3. Both N , Nc have no unstable hidden modes and have driving point functions given
respectively by (1) for N and

Ycr = HcUcs (2)

for Nc.
4) Assumption 4. Both H and Hc are nonsingular, proper and have nonsingular and proper inverses

H−1, H−1c .
In the interconnection s(N,Nc) the sources satisfy the equation

Ûs = Us + Ucs (3)

while the common response vector Ŷr of the two networks at the ports is given by the following equation.

Ŷr = HUs = HcUcs (4)

Hence, the source vectors reflected on ports of each network are given by the following equations.

Us = H−1Ŷr, Ucs = H−1c Ŷr (5)

Therefore, for the interconnected network, the source response relationship is given by the following
equation.

Ŷr = (H−1 +H−1c )−1Ûs (6)

which is the hybrid representation of the interconnected network. It can be observed that the interconnected
network is BSBR stable iff the hybrid matrix of interconnection (H−1 + H−1c )−1 is in M(S). The
stabilization problem is defined under the restriction that the hybrid matrices of the interconnection arising
from all H̃ , due to uncertainties and perturbations, in sufficiently small neighborhood of H are also stable.
The stabilization problem now translates to the following.

Problem 2 (Multi-port Hybrid Stabilization). Given a multi-port hybrid matrix function H of an LTI
network, find all hybrid network function matrices Hc of the compensating network such that the source
series interconnection s(N,Nc) satisfies

1) Ĥ = (H−1 +H−1c )−1 is in M(S).
2) ˜̂

H = (H̃−1 +H−1c )−1 is in M(S) for all H̃ in a neighbourhood of H .
The matrix functions Hc shall be called stabilizing hybrid compensators of H .

This problem can be solved using doubly coprime fractional (DCF) representation and the notion of
neighborhood of a network function. For a comprehensive formulation of the multi-port stabilization we
resort to the matrix case of coprime factorization theory over the S developed in [6]. The doubly coprime
representation of H is given as

1) H is expressed by right and left fractions H = NrD
−1
r = D−1l Nl where Nr, Dr, Nl, Dl are matrices

over M(S), Dr, Dl are square and have no zeros at infinity,
2) There exist matrices Xl, Yl and Xr, Yr in M(S) which satisfy the following equation.[

Xl Yl
Dl −Nl

] [
Nr Yr
Dr −Xr

]
=

[
I 0
0 I

]
(7)
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We describe the doubly coprime fractional representation of a compensating network with hybrid
network function Hc by the respective matrices of fractions and identities by Ncr, Dcr, Ncl, Dcl and
Xcr, Ycr, Xcl, Ycl. It is also useful to recall that a square matrix U in M(S) is called unimodular if
U−1 also belongs to M(S). This is true iff detU is a unit or an invertible element of S.

Next, an open neighbourhood of H is specified in graph topology in terms of neighbourhoods of the
doubly coprime fractional representation of H . Any H̃ in a neighbourhood of H is specified by a doubly
coprime fractional representation with fractions H̃ = ÑrD̃

−1
r = D̃−1l Ñl and matrices X̃l, Ỹl and X̃r, Ỹr

in M(S) satisfying the identities as given in equation (7) in which the fractions Ñr, D̃r, D̃l, Ñl are in
respective neighbourhoods of the fractions of H .

In terms of the doubly coprime fractional (DCF) representation and the notion of neighbourhoods we
have the preliminary.

Theorem 1. Consider the port interconnection s(N,Nc). Then Hc is a stabilizing compensator of H iff
for a given doubly coprime fractions as above of H there exist a doubly coprime fractions of Hc that
satisfy the following equation. [

Dcl Ncl

Dl −Nl

] [
Nr Ncr

Dr −Dcr

]
=

[
I 0
0 I

]
(8)

The structure of stabilizing compensators Hc now follows from the equation (8) in terms of the DCF
of H as follows.

Corollary 1. Given a DCF (7) of H the set of all stabilizing compensators Hc are given by any of the
following alternative formulae.

Hc = (Xl −QDl)
−1(Yl +QNl)

Hc = (Yr +NrQ)(Xr −DrQ)−1
(9)

for all Q in M(S) such that functions det(Xl −QDl) and det(Xr −DrQ) have no zero at infinity.

A. Robust Stabilization Problem
Consider Nl and Dl to be matrices over M(S) at nominal parameter values of a given network. Due

to uncertainties, perturbations and model errors, these matrices differ from their nominal values such that
Ñl and D̃l form the neighborhood of Nl and Dl. Solving the robust stabilization problem involves finding
a compensating network, Hc with right coprime fractions Ncr, Dcr such that the interconnection remains
stable even in the neighborhood of Nl and Dl. Let ∆ be the matrix representing the neighborhood of Nl

and Dl and is as given below.

∆ =
[
Ñl −Nl D̃l −Dl

]
=
[

∆N ∆D

]
(10)

Thus Ñl and D̃l can be expressed as,

Ñl = Nl + ∆N

D̃l = Dl + ∆D (11)

Now, consider [
Ñl D̃l

] [ Dcr

Ncr

]
=
[
Nl + ∆N Dl + ∆D

] [ Dcr

Ncr

]
=
( [

Nl Dl

]
+
[

∆N ∆D

] ) [ Dcr

Ncr

]
But NlDcr + DlNcr = I and ∆ =

[
∆N ∆D

]
. Therefore, the above equation can be simplified as

shown below. [
Ñl D̃l

] [ Dcr

Ncr

]
= I + ∆

[
Dcr

Ncr

]
(12)
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With nominal parameter values, the identity NlDcr +DlNcr = I is satisfied but with perturbations and

disturbances I + ∆

[
Dcr

Ncr

]
must also belong to M(S) so as to achieve robust stabilization. For this,

following equation must be satisfied. ∥∥∥∆

[
Dcr

Ncr

] ∥∥∥
∞
< 1 (13)

∆ represents various matrices based on uncertainties which should satisfy ‖∆(jω))‖ ≤ R(jω) ∀ ω ∈
[0,∞) where R(jω) represents the uppermost bound on ∆. In worst case, ∆ can be considered to be
equal to R being one of the possible functions. Thus, the robust stabilization problem now reduces to the
following. ∥∥∥R [ Dcr

Ncr

] ∥∥∥
∞
< 1 (14)

But Dcr and Ncr, from corollary are respectively given as (Xr −DrQ) and (Yr +NrQ) in terms of a
free parameter matrix Q. Thus, the robust stabilization problem can further be simplified as below.∥∥∥R [ Xr −DrQ

Yr +NrQ

] ∥∥∥
∞
< 1 (15)

Simplifying equation (15) further gives,∥∥∥R [ Xr

Yr

]
−R

[
Dr

−Nr

]
Q
∥∥∥
∞
< 1 ≡ ‖T1 − T2Q‖∞ < 1 (16)

Hence, the robust stabilization problem can be solved iff there a solution to the following optimization
problem,

min
Q∈M(S)

‖T1 − T2Q‖∞ < 1 (17)

This formulation of the robust stabilization problem is mathematically identical to the well known for-
mulation in feedback control theory and also has well known approaches for solution [8], [2].

III. SOLUTION TO ROBUST STABILIZATION PROBLEM

The solution to robust stabilization problem is explored in this section. Here, Ti’ s are matrix valued
functions. The problem is lot harder to solve as compared to when they are scalar valued. This problem
is typically a model matching problem which computes a matrix Q in S so as to minimize ‖T1 − T2Q‖
from known matrices T1 and T2.
Let γ denote the infimal model matching error as given below.

γ := inf{‖T1 − T2Q‖∞ : Q ∈ S} (18)

It can be solved by computing the upper bound β for γ such that β−γ is less than a pre-specified tolerance
and then Q in S can be computed which satisfies the given robust stabilization problem as below.

min
Q∈M(S)

‖T1 − T2Q‖∞ ≤ β (19)

Q obtained after solving this problem may not be optimal but it will be as near optimality as desired.
For solving such a problem in scalar case, one of the approaches as described in [2], is to reduce it

to a Nehari problem which approximates RL∞ matrix2 by a matrix belonging to S. The problem can

2A RL∞ matrix is a real rational matrix which is proper and has no poles on imaginary axis.
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be simplified by bringing in an inner-outer factorization of T2 as T2 = T2iT2o. For Q in S, following
simplification can be carried out.

‖T1 − T2Q‖ = ‖T1 − T2iT2oQ‖
= ‖T2i(T−12i T1 − T2oQ‖
= ‖T−12i T1 − T2oQ‖
= ‖R−X‖

This simplification is possible due to the property of the inner factor |T2i(jω)| = 1. The inner factor
does not affect the infinity norm and can be taken out from the norm.

The Nehari problem can be posed as:- Given R in RL∞ with dist (R, S) < 1, find all X ′s in S such
that ‖R−X‖∞ ≤ 1. Only some of these are closest to R that satisfy ‖R−X‖∞ = dist(R, S).

It is required to find the distance from an L∞ matrix R to S. In systemic terms, a given unstable transfer
function in L∞ norm is to be approximated by a stable one. Nehari’s theorem is an elegant solution to
this problem. A lower bound for the distance can be easily obtained. Fix X in S then ‖R−X‖∞ = ‖ΓR‖
where ΓR is the Hankel operator. ‖ΓR‖ is a lower bound for the distance R to S. Nehari’s theorem states
that there exists a closest matrix X in S to a given matrix R in L∞ and ‖R−X‖ = ‖ΓR‖.

In general, there are many X’s nearest R. The time domain interpretation of Nehari’s theorem states that
the distance from a given noncausal system to the nearest causal linear and time invariant one equals the
norm of the Hankel operator. Alternatively, the norm of the Hankel operator is a measure of non-causality.

To see the systematic development for the solution to robust stabilization problem in matrix case, first
an inner-outer factorization of T2 can be carried out as T2 = UiUo where Ui is inner and Uo is outer.
Define RL∞ matrix Y as Y := I − UiU

∗
i T1 where U∗i is complex conjugate transpose of the matrix

Ui. For defining the spectral factorization of a matrix, consider a square matrix G(s) which satisfies the
following properties.

G,G−1 ∈ RL∞
G∗ = G

G(∞) > 0

Such a matrix has pole and zero symmetry about the imaginary axis. G can be factored as G = G∗−G
where G−, G−1− ∈ S. This is called a spectral factorization of G and G− is a spectral factor.

If β is a real number greater than ‖Y ‖∞, then the matrix β2− Y ∗Y has a spectral factor Yo where Y ∗

is complex conjugate transpose of the matrix Y . Let R be defined as a RL∞ matrix as R := U∗i T1Y
−1
o .

Thus, R depends on β. It is now required to find a closest matrix X in S to a given matrix R in L∞.
Following are the two preliminary technical facts that need to be considered before stating the main

theorem for finding X in S in the form of lemmas as found in [2] without proofs and used in the derivation
of the main theorem.

Lemma 1. If U is an inner matrix and E is an RL∞ matrix

E :=
∥∥∥ [ U∗

I − UU∗
] ∥∥∥
∞

then ‖EG‖∞ = ‖G‖∞ for all matrices G in RL∞ matrix.

Lemma 2. If F and G are RL∞ matrices with equal number of columns and if∥∥∥ [ F
G

] ∥∥∥
∞
< β

then ‖G‖∞ < β and ‖FG−1o ‖∞ < 1 where Go is a spectral factor of β2−G∗G. Conversely, if ‖G‖∞ < β
holds and ‖FG−1o ‖∞ < 1, then ∥∥∥ [ F

G

] ∥∥∥
∞
≤ β
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With these preliminary results, the main theorem can now be stated which gives X in S such that
‖R−X‖∞ < 1 from which Q in S can be obtained. The proof for the theorem as given in [2] indicates
the approach for finding the solution to robust stabilization problem.

Theorem 2. 1) γ := inf{β : ‖Y ‖∞ < β, dist(R, S) < 1}
2) Suppose β > γ, Q,X ∈ S, ‖R−X‖∞ ≤ 1 and X = UoQY

−1
o

Then ‖T1 − T2Q‖∞ ≤ β

Proof. Part (1) of this theorem provides a method for computing an upper bound β for γ while part (2)
yields a procedure for computation of a nearly optimal Q.

Let βinf := inf{β : ‖Y ‖∞ < β, dist(R, S) < 1}. Choose ε > 0 and then choose β such that γ + ε >
β > γ. Then, there exists Q in S such that ‖T1 − T2Q‖∞ ≤ β. From lemma 1,∥∥∥ [ U∗i

I − UiU
∗
i

]
(T1 − T2Q)

∥∥∥ < β∥∥∥ [ U∗i
I − UiU

∗
i

]
T1 −

[
U∗i

I − UiU
∗
i

]
T2Q

∥∥∥ < β

Now, consider [
U∗i

I − UiU
∗
i

]
T2 =

[
U∗i

I − UiU
∗
i

]
UiUo =

[
Uo

0

]
Therefore, ∥∥∥ [ U∗i

I − UiU
∗
i

]
T1 −

[
Uo

0

]
Q
∥∥∥
∞
< β

∴
∥∥∥ [ U∗i T1 − UoQ

(I − UiU
∗
i )T1

] ∥∥∥
∞
< β

∴
∥∥∥ [ U∗i T1 − UoQ

Y

] ∥∥∥
∞
< β

From lemma (2),

‖Y ‖∞ < β (20)
‖U∗i T1Y −1o − UoQY

−1
o ‖∞ < 1 (21)

Inequality (21) implies dist (R, Uo SY −1o ) < 1. But, Uo is right invertible in S and Yo is invertible in
S. Therefore, Uo SY −1o = S and hence dist (R, S) < 1.

From ‖Y ‖∞ < β, dist (R, S) < 1 and definition of βinf , it can be concluded that βinf ≤ β. Thus,
βinf < γ + ε. Since ε is arbitrary, βinf ≤ γ.

Now for the reverse inequality, select ε > 0 and then choose β such that βinf + ε > β > βinf . Then,
‖Y ‖∞ < β, dist (R, S) < 1 hold. So, ‖U∗i T1Y −1o − UoQY

−1
o ‖∞ < 1 also holds for some Q in S. From

lemma (2), ∥∥∥ [ U∗i T1 − UoQ
Y

] ∥∥∥
∞
≤ β

This results in ‖T1 − T2Q‖∞ ≤ β. Therefore, γ ≤ β < βinf so γ ≤ βinf .

It is required to find X such that ‖R − X‖∞ ≤ 1 which gives Q such that ‖T1 − T2Q‖∞ ≤ β and
the optimization problem is solved. The algorithm as found in [2] for computing nearly optimal Q is as
given below.

Step 1 Compute Y and ‖Y ‖∞ where Y := (I − UiU
∗
i )T1. Ui is the inner factor of T2

Step 2 Find an upper bound γ1 for γ. The simplest bound is γ1 = ‖T1‖∞.
Step 3 Select a trial value for β in the interval (‖Y ‖∞, γ1). Binary search can be used to iterate on β.
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Step 4 Compute R and ‖ΓR‖. Then ‖ΓR‖ < 1 iff γ < β. Increase or decrease the value of β accordingly
and return to Step 3. With a sufficiently accurate upper bound for γ is obtained, continue to Step
5.

Step 5 Find a matrix X in S such that ‖R−X‖∞ ≤ 1.
Step 6 Solve for Q in S as X = UoQY

−1
o . It is easier to solve this equation for Q if Uo is square than

when it is not square.
The illustrative example solved in the next section shows the design of a compensator for a given network
such that the interconnected network is robustly stable under parametric variations.

IV. ILLUSTRATIVE EXAMPLE FOR ROBUST STABILIZATION PROBLEM

In this section, an illustrative example is solved to show the design of a robust compensator for a given
network in order to achieve the robust stability under parametric variations. To obtain such a compensating
network, it is required to solve the robust stabilization problem as posed in section III.

Consider the single port network as shown in the Fig.1 excited by a current source. The impedance for
this network can be found using Kirchhoff’s laws. Applying KCL at node 1,

Fig. 1. Single port network example for robust stabilization

i =
v

R1

+
v − v1
sL1

=
v

R1

+
v

sL1

− v1
sL1

=
( 1

R1

+
1

sL1

)
v −

( 1

sL1

)
v1 (22)

Applying KCL at node 2,
v − v1
sL1

=
v1(
1

sC1

) + 2i1 +
v1

sL2 +R2

= sC1v1 + 2
(v − v1
sL1

)
+

v1
sL2 +R2

∴ −v − v1
sL1

=
(
sC1 +

1

sL2 +R2

)
v1

∴ − v

sL1

=
(
sC1 +

1

sL2 +R2

− 1

sL1

)
v1

∴ v1 =
[ −(sL2 +R2)

L1L2C1s3 + L1C1R2s2 + (L1 − L2)s−R2

]
v (23)

Substituting v1 obtained in terms of v from equation (23) in equation (22), following equation can be
obtained.

i =
( 1

R1

+
1

sL1

)
v −

( 1

sL1

)[ −(sL2 +R2)

L1L2C1s3 + L1C1R2s2 + (L1 − L2)s−R2

]
v

∴ i =
[sL1 +R1

sL1R1

+
sL2 +R2

sL1(L1L2C1s3 + L1C1R2s2 + (L1 − L2)s−R2)

]
v (24)
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The admittance Y , of the single port network after simplifying equation (24), is as given below.

Y (s) =
I(s)

V (s)
=
L1L2C1s

3 + (L1C1R2 + L2C1R1)s
2 + (L1 − L2 + C1R1R2)s+ (R1 −R2)

R1L1L2C1s3 +R1R2L1C1s2 +R1(L1 − L2)s−R1R2

(25)

The impedance Z, of the single port network can be obtained by taking the reciprocal of the equation
(25) which is as given below.

Z(s) =
V (s)

I(s)
=

R1L1L2C1s
3 +R1R2L1C1s

2 +R1(L1 − L2)s−R1R2

L1L2C1s3 + (L1C1R2 + L2C1R1)s2 + (L1 − L2 + C1R1R2)s+ (R1 −R2)
(26)

At nominal parameter values R1 = 1Ω, R2 = 3Ω, L1 = 2H,L2 = 1H and C1 = 1F , following are the
expressions for Z(s) and Y (s).

Y (s) =
2s3 + 7s2 + 4s− 2

2s3 + 6s2 + s− 3
=

(s+ 2.5707)(s+ 1.2424)(s− 0.3131)

(s+ 2.5811)(s+ 1)(s− 0.5811)
(27)

Z(s) =
2s3 + 6s2 + s− 3

2s3 + 7s2 + 4s− 2
=

(s+ 2.5811)(s+ 1)(s− 0.5811)

(s+ 2.5707)(s+ 1.2424)(s− 0.3131)
(28)

The pole-zero plot of Z(s) at nominal parameter values is as shown in the Fig.2. The left half plane
pole (zero) of Y (s) (Z(s)) at s = −2.5811 and zero (pole) of Y (s) (Z(s)) at s = −2.5707 are located
approximately at the same location. Hence, they can be cancelled so as to obtain the minimal realization
for Y (s) and Z(s)) which are, respectively given by the following equations.

Fig. 2. Pole-zero plot of Z

Y (s) =
s2 + 0.9293s− 0.389

s2 + 0.4189s− 0.5811
=

(s+ 1.2424)(s− 0.3131)

(s+ 1)(s− 0.5811)
(29)

Z(s) =
s2 + 0.4189s− 0.5811

s2 + 0.9293s− 0.389
=

(s+ 1)(s− 0.5811)

(s+ 1.2424)(s− 0.3131)
(30)
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A model of the compensating network shall be determined which under parametric variations of the given
network ensures the stability of the interconnected network.

The given one port network at nominal parameter values is neither open circuit stable as the pole
at s = 0.3131 of its impedance function Z(s) lies in open RHP nor short circuit stable as the pole at
s = 0.5811 of its admittance function Y (s) lies in open RHP. A compensating network can be designed so
as to make the resultant network open circuit stable under the variations in parameters. For this, consider
that ±5% variations occur in the parameters of the given single port network.

The stabilizing compensator Yc = Z−1c is a parallel admittance and set of all such stabilizing Zc

has parametrization as Zc = (Y + QN)(X − QD)−1 where Q is an arbitrary element of S such that
X − QD 6= 0. It is required to find Q such that the interconnected network is robustally stable under
parametric variations.

In this case, the port relation is V = ZI . Hence, H = Z, H−1 = Y = 1/Z. H is represented by
coprime fractions, Z = ND−1 where N,D are in S. Using the coprime factors,N,D of Z, it is possible
to obtain two rational functions X and Y such that NX+DY = 1 holds. The source series compensation
is provided by an admittance Yc = 1/Zc connected in parallel with Y . Such a compensator has coprime
representation Zc = NcD

−1
c .

The coprime fractions N and D for Z as given by equation (30) at nominal parameter values are as
below.

N(s) =
s2 + 0.4189s− 0.5811

s2 + 3s+ 2
=
s− 0.5811

s+ 2
(31)

D(s) =
s2 + 0.9293s− 0.389

s2 + 3s+ 2
=

(s+ 1.2424)(s− 0.3131)

(s+ 1)(s+ 2)
(32)

The solutions to Bezout’s identity XN + Y D = 1 give Y (s) and X(s) as below.

X(s) =
−16.9s− 20.92

s2 + 3s+ 2
(33)

Y (s) =
s+ 20.97

s+ 2
(34)

The solution to robust stabilization problem involves finding R(jω) which represents an uppermost
bound on uncertainties represented by ∆. To find this uppermost bound, it is required to consider the
network functions with parametric variations. Consider ±5% variations occur in the parameters of this
network. For each set of variations, Z̃ and its respective coprime fractions Ñ and D̃ needs to be computed.
With N and D as coprime fractions at nominal parameter values and Ñ and D̃ as coprime fractions at
each set of parameter variations, following matrix can be formed.[

Ñ −N
D̃ −D

]
(35)

There are five parameters and each of these parameters can take +5% and −5% apart from its nominal
value. Thus, each of these parameters undergoes three possible states (−5%, nominal value and +5%)
which forms 35 = 243 possible combinations of the perturbed network impedances and corresponding
coprime fractions for each need to be computed.

In order to obtain the uppermost bound, it is required to compute ∞ norm of each matrix as given
by the equation (35) where Ñ represents the coprime fraction of the perturbed network impedance for
each of the parameter variations while N represents the coprime fraction of the network impedance with
nominal parameter values. Thus, 35 − 1 = 243 − 1 = 242 matrices are required to be considered for
computing the ∞ norm at various frequency points wherein the robust stabilization problem needs to be
solved. Calculations for one of the variations in the parameters out of different possible combinations of
parametric variations is shown here as an illustration.
In the network function Z, let each of the parameter is undergoing a variation of say +5% from its
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nominal value so that R̃1 = 1.05Ω, R̃2 = 3.15Ω, L̃1 = 2.1H, L̃2 = 1.05H and C̃1 = 1.05F , following
expression for perturbed impedance, Z̃(s) is obtained.

Z̃ =
2.4310s3 + 7.2930s2 + 1.1025s− 3.3075

2.3152s3 + 8.1033s2 + 4.5228s− 2.1
=

1.05(s+ 2.631)(s+ 0.9268)(s− 0.5579)

(s+ 2.624)(s+ 1.171)(s− 0.2951)

∴ Z̃ =
1.05(s+ 0.9268)(s− 0.5579)

(s+ 1.171)(s− 0.2951)
(36)

The coprime fractions Ñ and D̃ for Z̃ as given by equation (36) for +5% parameter variation are as
below.

Ñ =
1.05s2 + 0.3874s− 0.543

s2 + 3s+ 2
=

1.05(s+ 0.9268)(s− 0.5579)

(s+ 1)(s+ 2)
(37)

D̃ =
s2 + 0.8759s− 0.3456

s2 + 3s+ 2
=

(s+ 1.171)(s− 0.2951)

(s+ 1)(s+ 2)
(38)

The solutions to Bezout’s identity X̃Ñ + Ỹ D̃ = 1 give Ỹ and X̃ as below.

X̃ =
−17.9s− 20.92

s2 + 3s+ 2
=
−17.9(s+ 1.1687)

(s+ 1)(s+ 2)
(39)

Ỹ =
s2 + 23.92s+ 21.29

s2 + 3s+ 2
=

(s+ 22.99)(s+ 0.9259)

(s+ 1)(s+ 2)
(40)

Thus, following equations are obtained.

Ñ −N =
0.05(s2 − 0.632s+ 0.765)

(s+ 1)(s+ 2)
(41)

D̃ −D =
−0.053s+ 0.0433

s2 + 3s+ 2
=
−0.05343(s− 0.817)

(s+ 1)(s+ 2)
(42)

Using above equations, following matrix can be obtained.[
Ñ −N
D̃ −D

]
=


0.05(s2−0.632s+0.765)

(s+1)(s+2)

−0.05343(s−0.817)
(s+1)(s+2)

 (43)

In the matrix given by equation (43), various frequencies over which robust stabilization problem is
required to be solved can be substituted and at each frequency, infinity norm of the matrix can be computed.
The variation of this infinity norm with frequency can then be plotted.

For each of the parameter variations, it is required to compute first the matrix as given by equation (35)
and then its infinity norm for various frequency points. The variation of this infinity norm with frequency
for each of the matrix can then be plotted. Such a plot is as shown in the Fig.3. The same plot with db
values plotted on Y-axis is as shown in the Fig.4. From the family of loci, the uppermost bound R(jω)
can be computed.

All the other functions will lie below this uppermost bound. Such a function R(s) can be found and is
given by the following equation with its Bode magnitude plot as shown in the Fig.5.

R(s) =
0.06(s+ 6)

s+ 3.4
(44)

As seen from equation (16),

T1 = R

[
Xr

Yr

]
=

0.06(s+ 6)

s+ 3.4

[ −16.9s−20.92
s2+3s+2

s+20.97
s+2

]
=

[
−1.014(s+1.238)(s+6)
(s+1)(s+2)(s+3.4)
0.06(s+20.97)(s+6)

(s+2)(s+3.4)

]
(45)
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Fig. 3. Variation of infinity norms of perturbed matrices (absolute value) with frequencies

Fig. 4. Variation of infinity norms of perturbed matrices (in db) with frequencies

T2 = R

[
Dr

−Nr

]
=

[
0.06(s+1.242)(s+6)(s−0.3131)

(s+1)(s+2)(s+3.4)
−0.06(s−0.5811)(s+6)

(s+2)(s+3.4)

]
(46)

The robust stabilization problem can now be solved iff there a solution to the following optimization
problem

min
Q∈M(S)

‖T1 − T2Q‖∞ < 1 (47)
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Fig. 5. Bode magnitude plot of R(s)

Converting this problem to Nehari problem which can be posed as for a given R in RL∞ with dist
(R, S) < 1, find all X ′s in S such that ‖R −X‖∞ ≤ 1 where R = U∗i T1Y

−1
o . Applying the steps in the

algorithm from [2], nearly optimal Q can be computed. First, the inner-outer factorization of T2 can be
computed as T2 = T2iT2o = UiU0.

Ui =

[
0.70711(s+1.242)(s−0.3131)

(s+1.141)(s+0.4334)
−0.70711(s−0.5811)(s+1)

(s+1.141)(s+0.4334)

]
(48)

Uo =
0.084853(s+ 0.4334)(s+ 1.141)(s+ 2)(s+ 3.4)(s+ 6)

(s+ 1)(s+ 2)2(s+ 3.4)2
(49)

As discussed in the step 1 of the algorithm for solving the robust stabilization problem in matrix case, it
is required to compute RL∞ matrix Y which is given by, Y = (I − UiU

∗
i )T1.

Y =

[
0.03(s+1)(s+0.5811)(s−1)(s+6)(s2+4s+4.001)

(s+1.141)(s−1.141)(s+0.4334)(s−0.4334)(s+2)(s+3.4)
0.03(s+1)(s+6)(s+0.3131)(s−1.242)(s2+4s+4.001)

(s+1.141)(s−1.141)(s+0.4334)(s−0.4334)(s+2)(s+3.4)

]
(50)

From above equation, ‖Y ‖∞ = 0.3028. Next, an upper bound γ1 for γ can be found which is γ1 =
‖T1‖∞ = 1.5682. Thus, β lies in the interval (‖Y ‖∞, γ1) = (0.3028, 1.5682). For selecting a trial value
for β in this interval, binary search can be used.

If β > ‖Y ‖∞, then the matrix β2 − Y ∗Y has a spectral factor Yo where Y ∗ is complex conjugate
transpose of the matrix Y . Let R be RL∞ matrix defined as R := U∗i T1Y

−1
o . R depends on the value of

β selected. It is now required to find a closest matrix X in S to a given matrix R in L∞. The table I
below shows the variation of ‖ΓR‖ for different values of β.

For each value of selected β, R and ‖ΓR‖ is computed. For β = 1.2123, ‖ΓR‖ = 0.9916 so this value
of β can be considered for which, (β2 − Y ∗Y ) has a spectral factor Yo which is as given below.

Yo =
1.2116(s+ 3.397)(s+ 1.14)(s+ 0.4208)

(s+ 0.4334)(s+ 1.141)(s+ 3.4)
(51)
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β ‖ΓR‖
0.9355 1.3004
1.2518 0.9593
1.0937 1.1035
1.1728 1.0263
1.2123 0.9916

TABLE I
TABLE SHOWING ‖ΓR‖ FOR VARIOUS VALUES OF β

From the spectral factor Yo, R = U∗i T1Y
−1
o can be easily computed which is given by the following

equation.

R =
−0.03501(s+ 37.99)(s+ 6)(s+ 1.141)(s+ 1.139)(s+ 0.433)(s+ 0.4226)(s− 1.101)

(s− 1.141)(s− 0.4334)(s+ 1.14)(s+ 1)(s+ 2)(s+ 3.397)(s+ 0.4208)
(52)

Since R is a scalar valued function, following theorem as found in [2] can be applied to find the closest
function X in S.

Theorem 3. The infimal model matching error in model matching error equals ‖ΓR‖, the unique optimal
X equals R− γ(f

g
) and for the optimal Q, T1 − T2Q is all pass.

The algorithm to compute X , when R is scalar valued, can be found in [2]. It is given below for
reference and applicable for this example.

Step 1 Factor R as R = R1 +R2 where R1 is strictly proper and analytic in Re s ≤ 0 while R2 belongs to
S. R1 has a minimal state space realization with A,B,C as its matrices and matrix A is antistable.

Step 2 Solve the following equations for Lc and Lo.

ALc + LcA
T = BBT

ATLo + LoA = CTC

Step 3 Find the maximum eigenvalue λ2 of LcLo and a corresponding eigenvector w. Defining v : λ−1Low
so that from equation LcLow = λ2w, following pair of equations can be obtained. Solve the equation
for v.

Lcv = λw

Low = λv

Step 4 Define the real rational functions f(s) and g(s) as shown below.

f(s) :=

[
A w
C 0

]
= C(sI − A)−1w

g(s) :=

[
−AT v
BT 0

]
= BT [sI − (−AT )]−1v

Step 5 Set the model matching error γ = λ so that X = R− γ(f
g
).

Step 6 Solve for Q in S using X as obtained in step 5.
Using these steps from the algorithm, X and hence Q as a solution to the robust stabilization problem

can be computed. From step 1, R can be factored as R = R1 +R2. R1 and R2 are respectively given by
following equations.

R1 =
−0.090464(s− 1.09)

(s− 0.4334)(s− 1.141)
(53)

R2 =
−0.035018(s+ 1.14)(s+ 1.097)(s+ 0.4206)(s2 + 19.11s+ 121)

(s+ 0.4208)(s+ 1)(s+ 1.14)(s+ 2)(s+ s+ 3.397)
(54)
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R1 has a minimal state space realization with matrix A antistable. The state space realization of R1 is as
given below.

A =

[
0.4334 0.8104

0 1.1410

]
B =

[
0
1

]
C =

[
0.7331 −0.9046

]
The Lyaupnov equations given in step 2 can be solved so as to obtain the controllability and observability
grammians which are as given below.

Lc =

[
0.4218 −0.2256
−0.2256 0.4382

]
Lo =

[
0.6201 −0.7405
−0.7405 0.8846

]
The largest eigenvalue of LcLo denoted as λ2 is 0.9833 and the corresponding eigenvector w such that
LcLow = λ2w holds is as given below,

w =

[
0.6782
−0.7349

]
v which is defined as λ−1Low can be computed by solving the equation Low = λv and is as given below.

v =

[
0.9729
−1.1620

]
The real rational functions f(s) and g(s) as defined in step 4 can now be computed and are given below.

f(s) =
1.162s− 1.292

s2 − 1.574s+ 0.4945
(55)

g(s) =
−1.162s− 1.292

s2 + 1.574s+ 0.4945
(56)

From step 5, the model matching error γ = λ =
√

0.9833 = 0.9916. Using this value of λ, X can be
obtained which is given below.

X = R− γ
(f
g

)
=

0.95658(s+ 4.27)(s+ 1.141)(s+ 1.141)(s+ 0.4331)

(s+ 1.112)(s+ 1)(s+ 2)(s+ 3.397)
(57)

Solving for Q using the equation X = UoQY
−1
o , it is possible obtain Q which is given below.

Q = U−1o XYo =
13.6584(s+ 1.141)(s+ 0.4208)(s+ 4.27)

(s+ 1.112)(s+ 6)(s+ 0.4334)
(58)

The compensating network Zc can be expressed in terms of the free parameter Q as below.

Zc =
Y +NQ

X −DQ
(59)

Using the expressions for N,D,X, Y and Q already computed, the compensating network Zc for the
given network Z can be computed which is given below.

Zc =
−1.0732(s+ 3.455)(s+ 1)

(s+ 1.231)(s+ 3.387)
(60)

The compensating network Zc as given by equation (60) ensures the robust stability of the interconnected
network under ±5% variations in the parameters of the given network.
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For this circuit example, it can now be shown that the impedance of the interconnected network Z̃T =
(Z̃−1 +Z−1c )−1 under parametric variations of ±5% is in S. Consider the perturbed impedance Z̃ as given
by equation (36) with each parameter undergoing a variation of say,+5%, as one of the possible variations.
Now, it can be shown that the impedance of the interconnected network Z̃T is in S.

Z̃T = (Z̃−1 + Z−1c )−1

=
{[1.05(s+ 0.9268)(s− 0.5579)

(s+ 1.171)(s− 0.2951)

]−1
+
[−1.0732(s+ 3.455)(s+ 1)

(s+ 1.231)(s+ 3.387)

]−1}−1
∴ Z̃T =

48.5413(s+ 3.455)(s+ 1)(s+ 0.9268)(s− 0.5579)

(s+ 16.24)(s+ 2.462)(s+ 1.462)(s+ 0.7239)

This shows that the perturbed impedance of the interconnected network Z̃T for one set of the parameter
variations is in S.

Perturbed impedance, Z̃T for one set of parameter variations is observed to be in S. For other set of
the parameter variations, Z̃ can similarly be computed and it can be shown that the perturbed impedance
of the interconnected network Z̃T with the compensating network, Zc connected in parallel with Z̃ is also
found to be in S. The pole-zero plot for Z̃T for each set of parametric variations is as shown in the Fig.6
and it can be seen that the all the poles of Z̃T lie in the left half plane. Thus, the compensator Zc robustly

Fig. 6. Pole-zero plot of Z̃T for all parameter variations

stabilizes the given network under uncertainties and perturbations due to parameter variations.

V. CONCLUSION

Robust stabilization problem in case of active multiport networks is formulated and solved in this
chapter. Robustness is an important consideration in multiport interconnections as network undergoes
perturbations and uncertainties due to parametric variations, model errors, disturbances and other parasitic
effects which are inevitable. It may be possible that the the interconnected network is unable to meet
the prescribed performance specifications or even become unstable if robustness is not considered during
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the design of a compensating network. The solution to robust stabilization problem can be obtained by
approaches well known in modern system theory. An illustrative circuit example considered in this chapter
shows that the compensating network obtained after solving the robust stabilization problem robustly
stabilizes the given network under parametric variations.

REFERENCES

[1] M.V.Bakshi, V.R.Sule, Maryam Shojaei Baghini, “Systems Theory Approach to Stabilization of Multiport Networks”, Journal of
Control and Systems Engineering, vol. 5, no. 1, pp. 48-63, 2017.

[2] B.A.Francis, Lecture notes in control and information sciences, Springer-Verlag, NY, 1987.
[3] H. Kimura “Robust stabilizability for a class of transfer functions”, IEEE Transactions on Automatic Control, vol. AC-29, no. 9,

pp. 788–793, 1984.
[4] Mao-Da Tong, Wai-Kai Chen, “Analysis of VLSI robust exponential stability with left coprime factorization,” Circuits Systems

Signal Processing, vol.17, No.3, pp. 335 -360, 1998.
[5] Panos J. Antsaklis, Anthony N. Michel, Linear Systems, Birkhäuser Bostan, 2nd corrected printing, 2006.
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