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Adaptive Optimal Trajectory Tracking Control
Applied to a Large-Scale Ball-on-Plate System

Florian Köpf*, Sean Kille*, Jairo Inga, Sören Hohmann

Abstract— While many theoretical works concerning Adap-
tive Dynamic Programming (ADP) have been proposed, appli-
cation results are scarce. Therefore, we design an ADP-based
optimal trajectory tracking controller and apply it to a large-
scale ball-on-plate system. Our proposed method incorporates
an approximated reference trajectory instead of using setpoint
tracking and allows to automatically compensate for constant
offset terms. Due to the off-policy characteristics of the algo-
rithm, the method requires only a small amount of measured
data to train the controller. Our experimental results show that
this tracking mechanism significantly reduces the control cost
compared to setpoint controllers. Furthermore, a comparison
with a model-based optimal controller highlights the benefits of
our model-free data-based ADP tracking controller, where no
system model and manual tuning are required but the controller
is tuned automatically using measured data.

I. INTRODUCTION

Model-free Adaptive Dynamic Programming (ADP) is a
promising approach to control dynamical systems whenever a
system model is unavailable, inaccurate or difficult to achieve
[1]–[4]. While many control applications require to track
desired reference trajectories, this is non-trivial to incorporate
into the ADP formalism adequately [5], [6].

Assuming that the reference trajectory is generated directly
by an unknown command system (cf. [7]–[9]) limits the flex-
ibility of the reference trajectory that can be commanded1.
Alternative approaches extend the system state by the desired
state [10]–[12] or the current and next desired state [13].
Shi et al. [13] take into account the desired position of
an underwater vehicle model at the current and next time
step and train their controller using pseudo-averaged Q-
learning in simulation. Although the learned (projected)
setpoint controller for an autonomous helicopter [10] and the
setpoint controller for a quadrotor [11] have been applied
to real systems, in [10] and [11] the training procedure is
based on simulations, thus requiring a model of the system
to be controlled. Puccetti et al. [12] use model-free ADP for
the speed tracking control of a real car, where a velocity
setpoint is incorporated into the state-action value function.
Nevertheless, these representations of the reference trajectory
have limited [10], [13] or no preview capabilities [11], [12],
which results in a controller that tends to lag behind.

Therefore, in our previous works, we have incorporated the
reference trajectory over a finite horizon into the Q-function
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1If the reference trajectory does not result from this unknown command

system during training, these methods fail.

Fig. 1. Large-scale ball-on-plate system for ADP-based trajectory tracking
control.

[5] or used an approximated reference trajectory [6]. Instead
of assuming an unknown underlying command system, the
controller approximates an arbitrary reference trajectory in a
way that is compatible with ADP allowing flexible reference
trajectories. However, [1]–[9], [13] only provide simulation
results and no application to a real system—an essential step
that is missing in order to validate ADP methods.

In this paper, we propose an ADP tracking controller
which incorporates an approximated reference trajectory and
apply it to a real large-scale ball-on-plate system (depicted in
Fig. 1). The ball-on-plate system is a widely used example
for benchmarking controllers. Existing controllers are either
fully model-based [14]–[18] or model-based with additional
fuzzy supervision [19]. Thus, our work is the first application
of a model-free ADP-based controller to a ball-on-plate
system. Furthermore, instead of incorporating the reference
trajectory, existing controllers either perform no tracking of
the ball position at all [14], [15], [18] or simply consider the
current deviation from a setpoint causing a trajectory that
lags behind [16], [17], [19].

In contrast to existing controllers, our method does not
require a model of the ball-on-plate system as we train our
optimal tracking controller directly through a policy iteration
(PI) mechanism [20] using measured data from a real system.
This avoids tedious model design followed by manual tuning.
By using an off-policy algorithm, the measured data can be
re-used, reducing the effort to record training data2. Further-
more, instead of the widely-used setpoint tracking, our ADP
controller incorporates information on the course of the ref-
erence trajectory which allows predictive rather than reactive
behavior and avoids lagging behind. Our automatically tuned
controller is also able to learn static offsets to compensate

2In contrast, on-policy learning would require new data to be collected
after each policy improvement step and the estimates would be biased when
(indispensable) exploration noise is used [21].
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for asymmetries. In summary, our main contributions include
an ADP tracking controller which is

∙ data-efficient as it works off-policy and uses a flexible
and compact local approximation of arbitrary reference
trajectories that is compatible with ADP

∙ trained on a real system using measured data, requiring
neither system parameters nor manual tuning

∙ compared to a model-based and a setpoint controller.
The remainder of this paper is structured as follows: In

Section II, the system and problem description are given.
The theoretical background to our ADP tracking formalism
is given in Section III. In Section IV, we present our method.
Results are given in Section V, before we conclude the work.

II. SYSTEM AND PROBLEM DESCRIPTION

In the following, the ball-on-plate system that is used as
an application example for our ADP tracking method and
the problem formulation are given.

A. Ball-on-Plate System

The system used in this work is a custom-built large-
scale ball-on-plate system (see Fig. 1). Its centerpiece is a
1m2 square plate with a mass of 16.3 kg. The plate can
be tilted in two dimensions (denoted by 𝑋 and 𝑌 ) that are
orthogonal to each other. Each dimension is actuated by its
own designated motor. The plate angles (𝛼[𝑋], 𝛼[𝑌 ]) and
angular velocities (𝜔[𝑋], 𝜔[𝑌 ]) are measured every 10ms.
A ball with a mass of 0.042 kg and a radius of 0.02m is
located on the plate. Its position in plate-fixed coordinates
is tracked via a camera, providing an updated ball position
(𝑠[𝑋], 𝑠[𝑌 ]) and ball velocity (𝑣[𝑋], 𝑣[𝑌 ]) every Δ𝑡 = 40ms.
For a detailed description of the system architecture and the
hardware, see [18]3. Thus, the resulting system states

𝑥
[𝑑]
𝑘 =

[︁
𝑠
[𝑑]
𝑘 𝑣

[𝑑]
𝑘 𝛼

[𝑑]
𝑘 𝜔

[𝑑]
𝑘

]︁ᵀ
(1)

are defined for both dimensions 𝑑 ∈ 𝒟 = {𝑋,𝑌 }. The
system input 𝑢[𝑑]

𝑘 = 𝐼
[𝑑]
𝑘 is the current for the motor driver

controller.
As the two dimensions 𝑋 and 𝑌 only slightly depend on

each other, they are usually controlled separately (see [14],
[15], [17], [18]). Since the controllers for the two dimensions
are trained in the same way, the index 𝑑 is omitted in the
following for the sake of readability.

B. Problem Formulation

Consider the discrete-time controllable system dynamics

𝑥𝑘+1 = 𝑓 (𝑥𝑘,𝑢𝑘) (2)

where 𝑘 ∈ N0 describes the discrete time step, 𝑥𝑘 ∈ 𝒳 ⊆
R𝑛 the system state (1), 𝑢𝑘 ∈ 𝒰 ⊆ R𝑚 the control input
𝐼
[𝑑]
𝑘 and 𝑓 is unknown. From Section II-A, the system order
𝑛 = 4 and number of control inputs 𝑚 = 1 follows for each
dimension in 𝒟. At each time step 𝑘, an approximation of
the desired ball position trajectory is denoted by

𝑟(𝑝𝑘, 𝑖) = 𝑝ᵀ
𝑘𝜌(𝑖), (3)

3Note that we use a heavier plate and a different ball in the present work.

𝑖 ∈ N0, where 𝑟(𝑝𝑘, 𝑖) is the desired ball position at time 𝑘+𝑖
(i.e. 𝑖 denotes the time step on the reference from the local
perspective at time 𝑘), 𝑝𝑘 ∈ Θ ⊆ R𝑛p a parameter vector
and 𝜌(𝑖) a basis function vector (cf. [6]). The following
problem formalizes that the ball position should follow a
desired reference trajectory while keeping other system states
and the control effort small.

Problem 1. Assume given basis functions 𝜌(𝑖) for ref-
erence trajectory approximation and measurement tuples
{𝑥𝑖, 𝑢𝑖,𝑥𝑖+1}, 𝑖 = 𝑘, . . . , 𝑘+𝑁−1. Let the system dynamics
𝑓(𝑥𝑘, 𝑢𝑘) be unknown. Find the control law 𝜋*(𝑥𝑘,𝑝𝑘)
such that ∀𝑥𝑘,𝑝𝑘 the control 𝑢*

𝑘 = 𝜋*(𝑥𝑘,𝑝𝑘) minimizes
the objective function

𝐽𝑘 =

∞∑︁
𝑖=0

𝛾𝑖

⎛⎜⎜⎝
⎡⎢⎢⎣
𝑥1,𝑘+𝑖 − 𝑟(𝑝𝑘, 𝑖)

𝑥2,𝑘+𝑖

𝑥3,𝑘+𝑖

𝑥4,𝑘+𝑖

⎤⎥⎥⎦
ᵀ

𝑄

⎡⎢⎢⎣
𝑥1,𝑘+𝑖 − 𝑟(𝑝𝑘, 𝑖)

𝑥2,𝑘+𝑖

𝑥3,𝑘+𝑖

𝑥4,𝑘+𝑖

⎤⎥⎥⎦

+ 𝑢ᵀ
𝑘+𝑖𝑅𝑢𝑘+𝑖

⎞⎟⎟⎠ =:

∞∑︁
𝑖=0

𝛾𝑖𝑐(𝑥𝑘+𝑖, 𝑢𝑘+𝑖, 𝑟(𝑝𝑘, 𝑖)),

(4)
where 𝛾 ∈ (0, 1) denotes a discount factor, 𝑄 is assumed to
be positive semi-definite and 𝑅 positive definite.

III. ADP TRACKING THEORY

In this section, we briefly summarize the theoretical back-
ground on our ADP tracking formalism related to Problem 1.

Lemma 1. Define

𝑝
(𝑖)
𝑘

ᵀ
= 𝑝ᵀ

𝑘𝑇 (𝑖), (5)

where 𝑇 (𝑖) is chosen such that

𝑟
(︁
𝑝
(𝑖)
𝑘 , 𝑗

)︁
= 𝑟(𝑝𝑘, 𝑖+ 𝑗), ∀𝑖, 𝑗 ∈ N0 (6)

holds and
𝑄*(𝑥𝑘, 𝑢𝑘,𝑝𝑘) = 𝑐(𝑥𝑘, 𝑢𝑘, 𝑟(𝑝𝑘, 0))

+

∞∑︁
𝑖=1

𝛾𝑖𝑐
(︁
𝑥𝑘+𝑖, 𝜋

*
(︁
𝑥𝑘+𝑖,𝑝

(𝑖)
𝑘

)︁
, 𝑟(𝑝𝑘, 𝑖)

)︁
= 𝑐(𝑥𝑘, 𝑢𝑘, 𝑟(𝑝𝑘, 0))

+ 𝛾𝑄*
(︁
𝑥𝑘+1, 𝜋

*
(︁
𝑥𝑘+1,𝑝

(1)
𝑘

)︁
,𝑝

(1)
𝑘

)︁
.

(7)
Then,

𝑢*
𝑘 = argmin

𝑢𝑘

𝑄*(𝑥𝑘, 𝑢𝑘,𝑝𝑘) (8)

is a solution to Problem 1.

Proof. See [6, Lemma 1].

Note 1. 𝑄*(𝑥𝑘, 𝑢𝑘,𝑝𝑘) is the accumulated discounted cost
if the system is in state 𝑥𝑘, the control 𝑢𝑘 is applied at
time step 𝑘 and the optimal control 𝜋*(·) thereafter. Using
the shifted reference trajectory approximation 𝑝

(𝑖)
𝑘 (cf. (5))

ensures that the Q-function 𝑄*(·) is compatible with ADP
(cf. [6, Note 1]).



As the optimal Q-function 𝑄*(𝑥𝑘, 𝑢𝑘,𝑝𝑘) is unknown,
linear function approximation (FA) (cf. [1]–[9], [12], [20],
[22]) is commonly used4. Thus, suppose �̂�(𝑥𝑘, 𝑢𝑘,𝑝𝑘) =
�̂�ᵀ𝜑(𝑥𝑘, 𝑢𝑘,𝑝𝑘), where �̂� ∈ R𝑛w is a weight vector to be
adapted and 𝜑(·) ∈ R𝑛w a vector of activation functions. A
common approach in order to tune �̂� is given by a PI (see
e.g. [1], [20], [22]). In this iterative procedure, each iteration
𝑙 consists of two steps. The policy evaluation step estimates
the Q-function

�̂��̂�𝑙(𝑥𝑘, 𝑢𝑘,𝑝𝑘) = �̂�ᵀ
𝑙 𝜑(𝑥𝑘, 𝑢𝑘,𝑝𝑘) (9)

of the current policy �̂�𝑙, i.e. adapts �̂�𝑙 in order to solve

�̂��̂�𝑙(𝑥𝑘, 𝑢𝑘,𝑝𝑘) = 𝑐(𝑥𝑘, 𝑢𝑘, 𝑟(𝑝𝑘, 0))

+ 𝛾�̂��̂�𝑙

(︁
𝑥𝑘+1, �̂�𝑙

(︁
𝑥𝑘+1,𝑝

(1)
𝑘

)︁
,𝑝

(1)
𝑘

)︁
.

(10)
The policy improvement step then greedily updates the policy
�̂�𝑙+1 based on �̂��̂�𝑙 :

�̂�𝑙+1(𝑥𝑘,𝑝𝑘) = argmin
𝑢𝑘

�̂��̂�𝑙(𝑥𝑘, 𝑢𝑘,𝑝𝑘). (11)

Convergence results of a Q-function-based PI are given in
e.g. [20, Theorem 3.1], [8, Theorem 1].

IV. ADP TRACKING ON THE BALL-ON-PLATE SYSTEM

The ADP tracking formalism introduced in Section III is
applied to the ball-on-plate system described in Section II-A.

A. Quadratic Polynomial Reference Approximation

We choose the reference trajectory to be approximated by
means of a quadratic polynomial

𝑟(𝑝𝑘, 𝑖) = 𝑝ᵀ
𝑘𝜌(𝑖) = 𝑝𝑘,2(𝑖Δ𝑡)2 + 𝑝𝑘,1𝑖Δ𝑡+ 𝑝𝑘,0, (12)

with the basis functions 𝜌(𝑖) =
[︀
(𝑖Δ𝑡)2 𝑖Δ𝑡 1

]︀ᵀ
and the

parameter vector 𝑝𝑘 =
[︀
𝑝𝑘,2 𝑝𝑘,1 𝑝𝑘,0

]︀ᵀ
, where Δ𝑡 denotes

the sampling time.
The transformation needed to obtain the propagated ver-

sion 𝑝
(𝑖)
𝑘 of 𝑝𝑘 according to (3) and (6) is given by

𝑟
(︁
𝑝
(𝑖)
𝑘 , 𝑗

)︁
= 𝑝ᵀ

𝑘𝜌(𝑖+ 𝑗) = 𝑝ᵀ
𝑘

⎡⎣((𝑖+ 𝑗)Δ𝑡)2

(𝑖+ 𝑗)Δ𝑡
1

⎤⎦
= 𝑝ᵀ

𝑘

⎡⎣1 2𝑖Δ𝑡 (𝑖Δ𝑡)2

0 1 𝑖Δ𝑡
0 0 1

⎤⎦
⏟  ⏞  

=:𝑇 (𝑖)

𝜌(𝑗) = 𝑝
(𝑖)
𝑘

ᵀ
𝜌(𝑗),

(13)

∀𝑖, 𝑗 ∈ N0. For any desired reference trajectory 𝑟𝑘, a
parameter vector 𝑝𝑘 is to be found at each time step 𝑘,
such that 𝑟(𝑝𝑘, 𝑖), 𝑖 ∈ N0, is an approximation of 𝑟𝑘+𝑖. The
desired reference trajectory is assumed to be known during
runtime over a horizon of ℎr ∈ N>0 timesteps. In each

4Compared to nonlinear FA, linear FA is easier to handle, usually requires
less training data and allows an analytical relation between the Q-function
and the optimal controller [22].

time step, 𝑝𝑘 is determined by a weighted least-squares (LS)
regression. Therefore, we define

𝑟𝑘:𝑘+ℎr−1 =
[︀
𝑟𝑘 𝑟𝑘+1 . . . 𝑟𝑘+ℎr−1

]︀
, (14)

𝑊 p = diag(1, 𝛽, . . . , 𝛽ℎr−1), (15)

𝜌0:ℎr−1 =
[︀
𝜌(0) 𝜌(1) . . . 𝜌(ℎr − 1)

]︀ᵀ
, (16)

with 𝑊 p being a weighting matrix with the discount factor
𝛽 ≤ 1, so that future time steps in the horizon are less
important for the fitting process than early time steps. The
parameter for the reference trajectory approximation is then
calculated with the weighted LS regression according to [6]
and given by

𝑝ᵀ
𝑘 = 𝑟𝑘:𝑘+ℎr−1𝑊 p𝜌0,ℎr−1

(︁
𝜌ᵀ
0,ℎr−1𝑊 p𝜌0,ℎr−1

)︁−1

. (17)

B. Q-Function Approximation
The approximated Q-function (9) is chosen as

�̂��̂�𝑙(𝑥𝑘, 𝑢𝑘,𝑝𝑘) =

⎡⎢⎢⎣
𝑢𝑘

𝑥𝑘

𝑝𝑘

1

⎤⎥⎥⎦
ᵀ
⎡⎢⎢⎢⎣
ℎ
(𝑙)
uu ℎ(𝑙)

ux ℎ(𝑙)
up ℎ

(𝑙)
u1

ℎ(𝑙)
xu ℎ(𝑙)

xx ℎ(𝑙)
xp ℎ

(𝑙)
x1

ℎ(𝑙)
pu ℎ(𝑙)

px ℎ(𝑙)
pp ℎ

(𝑙)
p1

ℎ
(𝑙)
1u ℎ

(𝑙)
1x ℎ

(𝑙)
1p ℎ

(𝑙)
11

⎤⎥⎥⎥⎦
⎡⎢⎢⎣
𝑢𝑘

𝑥𝑘

𝑝𝑘

1

⎤⎥⎥⎦
= 𝑧ᵀ

𝑘𝐻 𝑙𝑧𝑘 = �̂�ᵀ
𝑙 𝜑(𝑥𝑘, 𝑢𝑘,𝑝𝑘), (18)

with 𝐻 𝑙 = 𝐻ᵀ
𝑙 , i.e. 𝜑(𝑥𝑘, 𝑢𝑘,𝑝𝑘) consists of the non-

redundant elements of the Kronecker product 𝑧𝑘 ⊗ 𝑧𝑘

and �̂�𝑙 corresponds to the non-redundant elements of the
unknown matrix 𝐻 𝑙

5. This quadratic choice is motivated by
the successful control of our system using a model-based
linear quadratic (LQ) controller [18] and the fact that the
Q-function of LQ optimal control problems is quadratic [6].

For the policy evaluation step (10) we utilize least-
squares temporal-difference Q-learning (LSTDQ) [20] using
the fixed-point objective [20, Section 5.2]. Consequently, 𝑁
tuples

{︁
𝑥𝑘, 𝑢𝑘,𝑥𝑘+1,𝑝𝑘,𝑝

(1)
𝑘

}︁
are used in order to obtain a

least-squares solution of �̂�𝑙 from (10). Due to its off-policy
characteristic, the measured samples can be re-used in each
iteration of the PI which renders the method data-efficient.
Furthermore, the minimization in (11) requires

𝜕�̂��̂�𝑙

𝜕𝑢𝑘
= 2

(︁
ℎ(𝑙)

ux 𝑥𝑘 + ℎ(𝑙)
up 𝑝𝑘 + ℎ

(𝑙)
u1 + ℎ(𝑙)

uu 𝑢𝑘

)︁
!
= 0. (19)

This leads to the explicit6 policy improvement step (11)

�̂�𝑙+1(𝑥𝑘,𝑝𝑘) = −
(︁
ℎ(𝑙)

uu

)︁−1 [︁
ℎ(𝑙)

ux ℎ(𝑙)
up ℎ

(𝑙)
u1

]︁
⏟  ⏞  

𝐿𝑙

⎡⎣𝑥𝑘

𝑝𝑘

1

⎤⎦ , (20)

which sets a motor current 𝐼 [𝑑]𝑘 depending on 𝑥𝑘,𝑝𝑘 and a
static offset.

Note 2. The choice of �̂�(·) in (18) extends the approximation
used in [6] by an offset term. This allows the controller to
learn a static offset compensation, i.e. if the weight of the
plate is slightly unbalanced.

5Due to the symmetry of 𝐻𝑙, the weights corresponding to the off-
diagonal elements of 𝐻𝑙 are multiplied by 2.

6This analytic relation is a result of the quadratic penalty for 𝑢 in (4).



C. Training Procedure

The offline least-squares policy iteration (LSPI) algorithm
[20] utilized in this work iteratively improves a policy by
using offline recorded data tuples. These consist to one
part of system data extracted through interaction with the
system, and to the other part of a generated training reference
trajectory.

1) System Data: System data is collected by human
interaction with the system. Manual control elements allow to
set target plate angles which are controlled with a suboptimal
controller. The system states can then be excited by varying
the plate angle and data tuples {𝑥𝑘, 𝑢𝑘,𝑥𝑘+1} are collected.

2) Training Reference: The Q-function (18) represents the
cost of a chosen control 𝑢𝑘 not only referring to the current
state 𝑥𝑘, but also to a desired target trajectory 𝑟𝑘:𝑘+ℎr−1

which is approximated by 𝑝𝑘. Therefore, a training reference
trajectory is generated, which consists of a linear combina-
tion of multiple sine functions with varying frequencies. A
weighted LS approximation (17) is used to approximate the
training reference at each time step by means of a quadratic
polynomial (𝑛p = 3) with a discount factor of 𝛽 = 0.8 and
ℎr = 10, resulting in the parameter vector 𝑝𝑘. This parameter
vector is then propagated according to (13) to find 𝑝

(𝑖)
𝑘 .

The collected system data is smoothed (moving average of
length 5) and aggregated, together with the training reference
parameters, to the tuples

{︁
𝑥𝑘, 𝑢𝑘,𝑥𝑘+1,𝑝𝑘,𝑝

(1)
𝑘

}︁
. We use

𝑁 = 1200 data tuples for learning, which result with a
sampling time of Δ𝑡 = 40ms in 48 s of excitation data.
For numerical stability, we introduce a normalizing factor
𝑉N = 10 which is applied to the state vector and parameter
vector (�̄�𝑘 = 𝑉N𝑥𝑘, �̄�𝑘 = 𝑉N𝑝𝑘) such that the values of the
system state and control input are in a similar range.

Our goal in this work is to track the position of the ball.
Additionally, we want the plate to preferably stay in a hor-
izontal position. Therefore, we set 𝑄 = diag(800, 0, 400, 0)
to strongly penalize the deviation of the ball position (i.e.
𝑥1) from the parametrized reference as well as a deviation
of the plate angle (i.e. 𝑥3) from its horizontal position 𝛼 = 0
(cf. (4)). We set the discount factor to 𝛾 = 0.9. For the initial
iteration, we set all weights �̂�0 to 1.

Using the LSPI algorithm, where the policy evaluation is
done using a least-squares fixed-point approximation [20,
Section 5.2], we obtain updated weights �̂�𝑙 in each itera-
tion7 𝑙. The algorithm converges towards a fixed-point and
is stopped when the stopping criterion

||�̂�𝑙 − �̂�𝑙−1||2 ≤ 𝜖 = 1× 10−6 (21)

is fulfilled. The final policy improvement step yields the
control matrix 𝐿 (cf. (20)), i.e. the final control policy

�̂�(𝑥𝑘,𝑝𝑘) = −
[︀
𝐿x 𝐿ref 𝐿off

]︀ [︀
𝑥ᵀ
𝑘 𝑝ᵀ

𝑘 1
]︀ᵀ

(22)

after being re-normalized. All steps are summarized in Fig. 2.

7The complexity of each iteration is dominated by the policy evaluation
step with 𝒪(𝑛3

w + 𝑛2
w𝑁).

system
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reference

𝜌(𝑖), 𝛽, 𝑛p, ℎr𝜑, �̂�0
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(see (17))

store 𝑁 tuples
{︁
𝑥𝑘, 𝑢𝑘,𝑥𝑘+1,𝑝𝑘,𝑝

(1)
𝑘

}︁
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𝑝
(1)
𝑘
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policy evaluation (10)
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�̂�(𝑥𝑘,𝑝𝑘)

Fig. 2. Training procedure to obtain the approximate optimal tracking
controller �̂�(𝑥𝑘,𝑝𝑘) for the ball-on-plate system.

V. RESULTS

To validate the learned ADP controller, we compare
a learned controller 𝐿ADP with a model-based controller
𝐿model. Since both dimensions are learned using the same
approach, we firstly focus on a comparison in one dimension.
The controllers are compared using a sine-like step function
as well as a composite validation trajectory. In the second
half of this section, we present the ability of two simultane-
ous controllers to follow a 2-dimensional trajectory.

We train a controller as described in Section IV-C. The
convergence of �̂�𝑙 is depicted in Fig. 3. The resulting learned
control matrix is

𝐿
[𝑌 ]
ADP = [64.8 32.3 145.3 16.2⏟  ⏞  

𝐿x

−27.9 −36.9 −60.7⏟  ⏞  
𝐿ref

−0.1⏟ ⏞ 
𝐿Off

].

(23)

The model-based solution is calculated according to [6,
Theorem 2] which solves the optimization problem described

2 4 6 8 10 12 14

−1

0

1
·104

iteration 𝑙

𝑤
𝑙

Fig. 3. Estimated weights over all iterations of the LSPI algorithm.



in Problem 1 but uses a system model established specifically
for our system (cf. [18]). The resulting model-based control
matrix is given by

𝐿
[𝑌 ]
model = [53.4 41.0 167.8 28.0⏟  ⏞  

𝐿x

−33.7 −41.0 −52.9⏟  ⏞  
𝐿ref

].

(24)

A. Setpoint Control: Step

In order to compare the model-free learned controller with
the model-based calculated controller, both controllers are to
follow a sine-like step function 𝑟. Fig. 4a depicts the average
ball position when using a learned (blue) and a model-based
(yellow) setpoint controller with 𝑛p = 1, over 11 repetitions.
The standard deviation is shown shaded. Both controllers
lag behind as they only have information about the current
setpoint. The learned controller shows a slightly faster step
response, which is reflected by lower accumulated one-step
costs

∑︀𝑘
𝜅=0 𝑐 (𝑥𝜅, 𝑢𝜅, 𝑟(𝑝𝜅, 0)) (see Fig. 4a).

B. Trajectory Control: Step

A comparison between a learned trajectory controller (red)
and a model-based trajectory controller (green), both with
𝑛p = 3, is depicted in Fig. 4b. Both trajectory controllers al-
low a significantly better tracking of the reference trajectory
compared to the learned setpoint controller (blue), as they
receive information about the future course of the trajectory.
This leads to significantly lower accumulated one-step costs,
as seen in Fig. 4b. Similarly to the setpoint controllers, the

learned trajectory controller shows lower accumulated costs
compared to the model-based trajectory controller.

C. Trajectory Control: Validation Trajectory

Fig. 4c compares a learned trajectory controller (𝑛p = 3)
with the learned setpoint controller (𝑛p = 1) on a validation
reference trajectory, which is composed of overlaid sines,
step functions and ramps. Again, an evidently better tracking
of the trajectory is possible with the trajectory controller
than with the setpoint controller, which leads to significantly
lower accumulated one-step costs.

D. 2D Trajectory Control

In order to use the ball-on-plate system to its full extent,
we apply two separately learned controllers, one for each
plate dimension respectively. Learning with the same param-
eters as for the 𝑌 -dimension, but with system data tuples for
the 𝑋-dimension, we receive the learned control law:

𝐿
[𝑋]
ADP = [65.3 37.0 135.1 18.6⏟  ⏞  

𝐿x

−28.8 −38.2 −61.2⏟  ⏞  
𝐿ref

2.2⏟ ⏞ 
𝐿Off

].

(25)
𝐿
[𝑋]
off = 2.2 leads to a static offset current of −2.2A,

since the plate exhibits a mass-imbalance which needs to be
compensated. For a model-based solution, this current would
have to be determined heuristically, as the mass-imbalance is
not described by the system model. Not using a static offset
current leads to an asymmetric behavior of the ball position,
as depicted in Fig 5. In comparison, a learned controller that
allows the learning of an offset current leads to a symmetric

reference trajectory 𝑛p = 1, ADP 𝑛p = 1, model 𝑛p = 3, ADP 𝑛p = 3, model
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Fig. 4. (a) Setpoint controllers, learned in blue, model-based in yellow, compared on a sine-step function. Top: Average ball position and standard
deviation over 11 repetitions. Bottom: Average accumulated one-step cost; (b) Trajectory controllers, learned (red), model-based (green), compared to a
setpoint controller (blue) on a sine-step function. Top: Average ball position and standard deviation over 18, 13 and 11, repetitions. Bottom: Average
accumulated one-step cost; (c) Learned trajectory controller (𝑛p = 3, red) and learned setpoint controller (𝑛p = 1, blue) on a validation trajectory. Top:
Average ball position and standard deviation over 4 repetitions. Bottom: Average accumulated one-step cost.
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Fig. 5. Comparison of a learned setpoint controller with base functions
that allow the learning of a static offset current (blue) versus a controller
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(brown).
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Fig. 6. Trajectory control of a rectangle. Average ball position and standard
deviation over 4 repetitions.

behavior of the ball position. Fig. 6 displays the tracking of
a 2-dimensional reference trajectory.

VI. CONCLUSION

In this paper, we presented the application of an ADP-
based learned trajectory tracking controller on a large-scale
ball-on-plate system. With less than one minute of measured
real data, our model-free ADP-based method successfully
learned an optimal tracking controller which allows the track-
ing of 2-dimensional reference trajectories and outperforms
its model-based counterpart. In addition, the implemented
reference trajectory approximation led to a faster accelerated
ball, a smaller static error and therefore to overall reduced
accumulated costs compared to setpoint controllers. In sum-
mary, the experimental results show that our ADP method is
suitable for real systems. It includes the autonomous learning
of an offset correction and avoids tedious modeling and
manual tuning. The resulting control law was proved to
be more cost-effective in a real scenario, benefiting from
being trained with real measured data. Finally, due to the
flexibility of function approximation, other basis functions
can be studied in the future in order to allow for even more
complex control tasks.
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