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Abstract—High penetration of renewable generation poses
great challenge to power system operation due to its uncertain
nature. In droop-controlled microgrids, the voltage volatility
induced by renewable uncertainties is aggravated by the high
droop gains. This paper proposes a chance-constrained optimal
power flow (CC-OPF) problem with power flow routers (PFRs)
to better regulate the voltage profile in microgrids. PFR refer
to a general type of network-side controller that brings more
flexibility to the power network. Comparing with the normal CC-
OPF that relies on power injection flexibility only, the proposed
model introduces a new dimension of control from power network
to enhance system performance under renewable uncertainties.
Since the inclusion of PFRs complicates the problem and makes
common solvers no longer apply directly, we design an iterative
solution algorithm. For the subproblem in each iteration, chance
constraints are transformed into equivalent deterministic ones
via sensitivity analysis, so that the subproblem can be efficiently
solved by the convex relaxation method. The proposed method
is verified on the modified IEEE 33-bus system and the results
show that PFRs make a significant contribution to mitigating
the voltage volatility and make the system operate in a more
economic and secure way.

Index Terms—Power flow router, droop-controlled microgrid,
chance constraints, optimal power flow, voltage regulation.

I. INTRODUCTION

Microgrids (MGs) refer to low-voltage or medium-voltage
power networks integrated with renewable distributed gen-
erations (DGs), loads and other control devices [1], which
can operate in either grid-connected mode or islanded mode.
MGs have drawn much attention in the recent decades due
to its flexibility for arbitrary configurations with different
sizes and functionalities. However, the high penetration of
renewable DGs has brought many challenges to MG operators
in handling the economic and security issues. Commonly,
islanded MGs adopt droop control schemes for autonomous
power sharing between the dispatchable DGs [2]. High droop
gains are usually used for better transient response and proper
power sharing [3]. However, this feature makes the voltages
and frequency even more sensitive to power injection changes
and thus leads to highly volatile voltages under renewable
uncertainties [4].

Optimal power flow (OPF) is a fundamental tool for voltage
regulation and economic dispatch in power system operations.
Traditionally, OPF is formulated as a deterministic prob-
lem, which optimizes an objection function (e.g., generation
cost) subjected to operational constraints such as voltage and
line flow limits [5]. However, the deterministic OPF is not
sufficient to ensure an economic and secure operation with
the presence of uncertainties, especially for droop-controlled
MGs where the voltage volatility (i.e., the degree of voltage
variance under uncertainties) is further aggravated by the high
droop gains. Recently, chance-constrained OPF (CC-OPF) has

become a powerful tool for addressing the challenges brought
by high penetration of renewables [6], [7]. Different from
the deterministic OPF, CC-OPF replaces the hard constraints
by chance constraints to guarantee that the probabilities of
constraint violations under uncertain disturbances are kept
within pre-defined values. Existing studies have shown the
effectiveness of CC-OPF in accommodating renewable energy
in low voltage systems. For example, the reactive power
support from DG inverters are utilized to mitigate voltage
variations under renewable uncertainties by chance constrained
optimization [8]–[10]. Controllable loads are also utilized
through chance constrained framework to achieve a more
economic generation and reserve scheduling [11] or reduce the
power losses while maintaining an acceptable voltage profile
[12]. In another line of work, multi-period optimization [13]
and model predictive control [14] are designed with chance
constraints using battery energy storage systems (BESSs) to
hedge the negative impacts of renewable uncertainties.

The above CC-OPF models mainly rely on the power injec-
tion flexibility provided by node-side devices. The potential of
network flexibility in CC-OPF has not been much exploited
yet. Nowadays power systems have increasing network flex-
ibility enabled by advanced power electronic devices where
power flow router (PFR) is a representative example. PFR was
first proposed in [15] as a general type of controller installed
at lines that makes the power network more flexible. PFR
introduces a new mechanism into system control that tunes
the routing of power injections rather than the conventional
node-side flexibility which modifies the power injections. In
our previous work [16], PFR was introduced as an effective
way to reduce the BESS capacity required for accommodating
renewable energy. The obtained results in [16] indicate that
the network flexibility makes great contribution to the voltage
regulation in the corresponding multi-period OPF problem. It
inspires us to apply PFRs in CC-OPF problems to address the
voltage volatility caused by renewable uncertainties.

The contributions of this paper are twofold:
1) To the authors’ knowledge, this is the first formulation of

AC CC-OPF considering MG droop characteristics and
network flexibility. We combine the CC-OPF model with
the droop characteristics and PFRs; PFRs introduce a new
dimension of control which is shown to make significant
contribution to the voltage volatility reduction. It leads
to a more economic and secure operating status against
renewable uncertainties.

2) We design an iterative algorithm which is tailored for
the proposed optimization problem. For the subproblem
in each iteration, the chance constraints are reformu-
lated into deterministic equivalents by sensitivity analysis,
which enables the subproblem to fully utilize the effi-
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ciency of existing AC-OPF algorithms, e.g., semidefinite
programming (SDP) relaxation.

The reminder of the paper is organized as follows. Section II
provides the system modelling and the optimization problem
formulation. Section III describes the solution methodology.
In Section IV, case studies are presented to evaluate the
performance of the proposed model and algorithm. Finally,
conclusions and future work are given in Section V.

II. PROBLEM FORMULATION

Consider an islanded microgrid with the set of buses N :=
{1, 2, ..., n} and the set of lines E ⊆ N × N . Each bus
may connect a dispatchable DG, a renewable DG and a load.
For bus i, the active and reactive power generations of the
dispatchable DG are denoted as PGi

and QGi
; the active and

reactive power generations of the renewable DG is denoted as
PWi and QWi ; the active and reactive power loads are denoted
as PLi

and QLi
. For bus k without DG generations or loads,

the respective notations PGk
, QGk

, PWk
, QWk

, PLk
, QLk

are
always zero. Also, denote Vi and θi as the voltage magnitude
and voltage angle at bus i. A line connecting bus i and bus
j is denoted by an unordered pair (i, j) ∈ E and some lines
are installed with PFRs. In the following, we detail the system
models and the optimization problem formulation.

A. Droop-Controlled Dispatchable DGs

A dispatchable DG refers to a DG unit whose output can
be adjusted by the operators. We denote the set of buses with
dispatchable DG generations as NG ∈ N . The dispatchable
DGs are assumed to adopt the conventional P-ω and Q-V
droop control [4], which is expressed as

ω = ω∗ −Kpi(PGi
− P ∗Gi

), i ∈ NG (1a)
Vi = V ∗i −Kqi(QGi

−Q∗Gi
), i ∈ NG (1b)

where ω is the angular frequency of the system; ω∗ and V ∗i
are the set points of frequency and voltage magnitude; Kpi

and Kqi are the frequency and voltage droop gains; P ∗Gi
and

Q∗Gi
are the set points of active and reactive power generation.

B. Renewable DGs and Uncertainty Modelling

A renewable DG is considered as a non-dispatchable source.
We assume the renewable DGs follow the maximum power
point tracking mode which introduce uncertainties into the
power network. The active power generation of renewable DG
at bus i is modelled as sum of the forecasted value P fWi

and
forecast error ξi

PWi
(ξ) = P fWi

+ ξi, (2)

where ξ = [ξi] ∈ Rn is a vector of forecast errors which
follows a multivariate distribution featured by zero mean and
known covariance matrix Σ ∈ Rn×n. For bus k without
renewable DG generation, the corresponding k-th row and
column of Σ is set to zero. Moreover, we assume a constant
power factor λi so that the reactive power generation at bus i
follows the active power generation:

QWi
(ξ) = λi(P

f
Wi

+ ξi), (3)

PFR ij PFR ji

yij

PFR

ijS PFR

jiS

j jV 
j ji iV 

i ij jV 
i iV 

Fig. 1. A diagram for a line with PFRs.

where λi = tanφi determines the reactive power control of
renewable DG at bus i. Similar to above, for bus k without
renewable DG generation, λk is always zero. For simplicity,
we consider the renewable DGs as the only source of power
injection uncertainties and our model can be easily extended
to include load uncertainties.

C. Power Flow Equations with Power Flow Routers

The AC power flow equations are adopted for accurately
describing the behaviours under renewable uncertainties. For a
normal line (i, j) without PFRs, the active and reactive branch
power flows Pij and Qij are given as

Pij = gij(V
2
i − ViVj cos θij)− bijViVj sin θij , (4a)

Qij = −bij(V 2
i − ViVj cos θij)− gijViVj sin θij , (4b)

where yij = gij + jbij represents the admittance of line (i, j);
the notation θij is the short for θi − θj .

PFRs are installed at some lines to bring network flexibility
to the system and enlarge the feasible region of OPF problems
[15], [17]. The diagram of a line with PFRs is shown in Fig. 1,
where PFRs refer to a pair of series voltage regulators (tuning
both magnitude and phase) installed at two terminals of the
line. A typical implementation of PFR is power electronic
transformer, which has been used in both high-voltage and
low-voltage systems. It is natural to introduce PFRs into
microgrids as power electronics devices are more and more
ubiquitous. Literature [15]–[17] have investigated the value of
PFRs in different OPF formulations for loadability enhance-
ment, cost reduction and voltage regulation. Further, it will be
seen later that PFRs can benefit CC-OPF for voltage regulation
by tuning both the mean values and standard deviations of
voltages, while power injection dispatch is only effective in
tuning the mean values.

The branch power flow with PFRs is presented as follows.
As shown in Fig. 1, Vij∠φij and Vji∠φji refer to the complex
voltages of the secondary sides of the PFRs. The relations
between Vij∠φij , Vji∠φji and Vi, Vj are given by

Vij∠φij = T ∗ijVi∠(θi + β∗ij ) (5a)

Vji∠φji = T ∗jiVj∠(θj + β∗ji) (5b)

where T ∗ij and T ∗ji are the tap ratio set points of PFR ij and ji;
β∗ij and β∗ji are the phase shift set points of PFR ij and ji. The
PFRs are assumed to have no conversion losses [15]. Thus, for
a line (i, j) with PFRs, the active and reactive branch power
flows are expressed as

PPFRij = gij(V
2
ij − VijVji cos(φij − φji))

− bijVijVji sin(φij − φji)
= gij(T

∗2
ij V

2
i − T ∗ijT

∗
jiViVj cos(θij + β∗ijji))

− bijT ∗ijT
∗
jiViVj sin(θij + β∗ijji) (6a)
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QPFRij = −bij(V 2
ij − VijVji cos(φij − φji))

− gijVijVji sin(φij − φji)
= −bij(T ∗2ij V

2
i − T ∗ijT

∗
jiViVj cos(θij + β∗ijji))

− gijT ∗ijT
∗
jiViVj sin(θij + β∗ijji) (6b)

where the notation β∗ijji is the short for β∗ij − β∗ji . For
simplicity, branch power flows without PFRs (4a)-(4b) can
be transformed into (6a)-(6b) by setting T ∗ij = T ∗ji = 1 and
β∗ij = β∗ji = 0. Thus, the active and reactive power balance at
each bus i can be given by the unified expression below

PGi
+ PWi

(ξ)− PLi
=

∑
(i,j)∈E

PPFRij (V ,θ,T ∗,β∗) (7a)

QGi +QWi(ξ)−QLi =
∑

(i,j)∈E

QPFRij (V ,θ,T ∗,β∗) (7b)

where PLi
and QLi

are the active and reactive power loads at
bus i; V ∈ Rn and θ ∈ Rn stack Vi and θi, respectively;
T ∗ := (T ∗ij , T

∗
ji
, (i, j) ∈ E), β∗ := (β∗ij , β

∗
ji
, (i, j) ∈ E).

We also define the vectors PG,QG,PW (ξ),QW (ξ) ∈ Rn
stacking PGi , QGi , PWi(ξ), QWi(ξ), respectively.

D. Optimization Problem Formulation

As stated in the previous section, given the set points
{P ∗G,Q∗G, ω∗,V ∗,T ∗,β∗} and renewable power generation
PW , QW , we can determine the values of {PG,QG,V ,θ, ω}
based on (1a)-(1b) and (6a)-(7b). Since PW and QW are func-
tions of uncertainty ξ, {PG,QG,V ,θ, ω} are not only subject
to one possible realization of ξ but to a variety of renewable
power realizations. Thus, they can also be expressed as the im-
plicit functions of ξ, say {PG(ξ),QG(ξ),V (ξ),θ(ξ), ω(ξ)},
which describe the system responses to the uncertainty re-
alizations. Hence, we can formulate the CC-OPF with PFRs
(CC-OPF-PFR) as follows

min E[
∑
i∈NG

c2iPGi
(ξ)

2
+ c1iPGi

(ξ) + c0i], (8a)

s.t. (6a)− (6b), (8b)
PGi(ξ) + PWi(ξ)− PLi =∑
(i,j)∈E

PPFRij (V (ξ),θ(ξ),T ∗,β∗),∀i ∈ N (8c)

QGi
(ξ) +QWi

(ξ)−QLi
=∑

(i,j)∈E

QPFRij (V (ξ),θ(ξ),T ∗,β∗),∀i ∈ N (8d)

ω(ξ) = ω∗ −Kpi(PGi
(ξ)− P ∗Gi

),∀i ∈ NG (8e)
Vi(ξ) = V ∗i −Kqi(QGi

(ξ)−Q∗Gi
),∀i ∈ NG (8f)

P(PGi
(ξ) ≤ Pmax

Gi
) ≥ 1− εP ,∀i ∈ NG (8g)

P(PGi
(ξ) ≥ Pmin

Gi
) ≥ 1− εP ,∀i ∈ NG (8h)

P(QGi
(ξ) ≤ Qmax

Gi
) ≥ 1− εQ,∀i ∈ NG (8i)

P(QGi
(ξ) ≥ Qmin

Gi
) ≥ 1− εQ,∀i ∈ NG (8j)

P(Vi(ξ) ≤ V max
i ) ≥ 1− εV ,∀i ∈ N (8k)

P(Vi(ξ) ≥ V min
i ) ≥ 1− εV ,∀i ∈ N (8l)

P(ω(ξ) ≤ ωmax) ≥ 1− εω, (8m)

P(ω(ξ) ≥ ωmin) ≥ 1− εω, (8n)

Pmin
Gi
≤ P ∗Gi

≤ Pmax
Gi

,∀i ∈ NG (8o)

Qmin
Gi
≤ Q∗Gi

≤ Qmax
Gi
,∀i ∈ NG (8p)

V min
i ≤ V ∗i ≤ V max

i ,∀i ∈ N (8q)

ωmin ≤ ω∗ ≤ ωmax, (8r)

γmin
ij ≤ T

∗
ij ≤ γ

max
ij ,∀(i, j) ∈ E (8s)

βmin
ij ≤ β

∗
ij ≤ β

max
ij ,∀(i, j) ∈ E (8t)

θ1 = 0. (8u)

In this formulation, the objective function (8a) is to min-
imize the expected generation cost of the dispatchable DGs,
where c2i, c1i, c0i are the cost coefficients. Constraints (8b)–
(8f) describe the power balance equations with PFRs and
droop characteristics. Constraints (8g)–(8j) are the chance
constraints for active power and reactive power generation
of dispatchable DGs. Constraints (8k)–(8n) are the chance
constraints for voltage magnitudes and system frequency. The
chance constraint restricts the feasible region of OPF to a
desired confidence region. In other words, it ensures the
probability of constraint violation under any realization of un-
certainties to be lower than a pre-specified level ε. Constraints
(8o)–(8r) give the limits for set points of power outputs of
dispatchable DGs, voltage magnitudes and system frequency,
respectively. Constraints (8s)–(8t) represent the upper and
lower limits for tuning variables of PFRs. We denote bus 1
as the reference bus and make θ1 fixed to zero in (8u).

One major advantage of the CC-OPF-PFR model is that the
generation dispatch is coordinated with PFR tuning to regulate
voltages under renewable uncertainties. According to [3], the
values of droop gains are usually large in MGs. However, this
setting may result in volatile voltages and even make CC-
OPF infeasible. On the other hand, it will be seen that the
employment of PFRs considerably reduces voltage volatility.

Note that the set points {P ∗G,Q∗G, ω∗,V ∗,T ∗,β∗} are de-
termined by problem (8) and remain constant under renewable
generation fluctuations. Hence, the chance constraints (8k)–
(8n) refer to the system responses with the fixed set points
under different renewable power scenarios and need to be
satisfied with the prescribed violation probabilities.

III. SOLUTION METHODOLOGY

The difficulty of solving problem (8) is that the non-linearity
of power flow equations introduces significant challenges
to quantify the system behaviours under uncertainties. This
is different from the linear power flow model by which
we can explicitly model the system responses to renewable
uncertainties. It also explains why most literature consider
linear power flow model [13], [18]–[20] by which chance
constraint can be reformulated to an analytical form so that the
problem can be more easily solved. However, the linear power
flow models cannot accurately describe voltage behaviours
under uncertainties, which necessitates the adoption of non-
linear AC power flow equations. To ensure the tractability
of the AC CC-OPF problem, literature have proposed several
methods. For instance, authors in [21] develop a method to
get the approximate analytical form of chance constraints
by iteratively linearizing around the operating point. On the
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other hand, authors in [22] propose a SDP relaxation of
AC CC-OPF and introduce piecewise affine approximation to
achieve the tractability of chance constraints. But this method
assumes fixed network parameters, which does not apply to our
model where both network parameters and power injections
are variables. Moreover, authors in [10] adopt the scenario
approach to address the chance constraints but it suffers from
the computational burden of power flow calculations for a large
number of scenarios.

Similar to [21], we linearize the AC power flow equations
around a given operating point to model the system responses
under uncertainties. This linearization is based on the fact
that the renewable forecast techniques have been developed
with satisfactory performance so that the forecast errors are
quite small. Thus, the chance constraints can be transformed
into analytical forms and this also leads to a more tractable
reformulation of problem (8). Based on the chance constraint
reformulation via linearization, we design an iterative algo-
rithm to solve the optimization problem which will be detailed
in the following subsections.

A. Chance Constraint Reformulation by Power Flow Lin-
earization

As stated in Section II, we can obtain a operating point
(V ,θ, ω) under the forecasted renewable power scenario
ξ = 0 and certain set points {P ∗G,Q∗G, ω∗,V ∗,T ∗,β∗}. This
operating point satisfies the power flow equations (8b)-(8f)
which are rewritten into a compact form for simplicity

f(PW (0),QW (0),V (0),θ(0), ω(0)) = 0. (9)

Linearizing (9) around the given operating point gives the
relation between the change of renewable power generations
(i.e., ξ with small values) and the change of voltages and
frequency  ∆PW

∆QW

0

 = JPF

 ∆θ
∆V
∆ω

 , (10)

where the notation ∆ denotes the deviation from the given
operating point and we define ∆PW = [∆PWi ], ∆QW =
[∆QWi

], ∆V = [∆Vi], ∆θ = [∆θi] ∈ Rn. Also, we denote
JPF ∈ R(2n+1)×(2n+1) as the Jacobian matrix which can be
expressed as

JPF =

 A B SP
C D + SQ 0
e1 0 0

 . (11)

where the last row of JPF represents the reference bus angle
is fixed to zero; SP = [SPi

] ∈ Rn is defined such that SPi
=

K−1Pi
, i ∈ NG and SPi

= 0, i ∈ N \ NG . For simplicity, a
diagonal matrix H = diag{h1, h2, ...hp} ∈ Rp×p is denoted
as H = diag{hi} ∈ Rp×p. Then, we define SQ as SQ =
diag{SQi} ∈ Rn×n such that SQi = K−1Qi

, i ∈ NG and SQi =
0, i ∈ N\NG . The sub-matrix e1 represents the vector with the
first entry being one and the other entries being zero. The sub-
matricesA,B,C,D ∈ Rn×n are derived from the power flow

equations (1a)–(1b) and (7a)–(7b). The detailed expressions of
(A)ij , (B)ij , (C)ij , (D)ij are as follows

(A)ij =


∑n
k=1(gikT

∗
ik
T ∗kiViVk sin(θik + β∗ikki)−

bikT
∗
ik
T ∗kiViVk cos(θik + β∗ikki)), i = j

gijT
∗
ij
T ∗jiViVj sin(θij + β∗ijji)+

bijT
∗
ij
T ∗jiViVj cos(θij + β∗ijji), i 6= j

(B)ij =


∑n
k=1(gik(2T ∗ikVi − T

∗
ki
Vk cos(θik + β∗ikki))−

bikT
∗
ki
Vk sin(θik + β∗ikki)), i = j

gij(−T ∗ijVi cos(θij + β∗ijji))−
bijT

∗
ij
Vi sin(θij + β∗ijji), i 6= j

(C)ij =


∑n
k=1(−bikT ∗ikT

∗
ki
ViVk sin(θik + β∗ikki)−

gikT
∗
ik
T ∗kiViVk cos(θik + β∗ikki)), i = j

−bijT ∗ijT
∗
ji
ViVj sin(θij + β∗ijji)+

gijT
∗
ij
T ∗jiViVj cos(θij + β∗ijji), i 6= j

(D)ij =


∑n
k=1(−bik(2T ∗ikVi − T

∗
ki
Vk cos(θik + β∗ikki))−

gikT
∗
ki
Vk sin(θik + β∗ikki)), i = j

−bij(−T ∗ijVi cos(θij + β∗ijji))−
gijT

∗
ij
Vi sin(θij + β∗ijji), i 6= j.

(12)

From the above equations we derive the expressions for the
changes of system frequency and voltages with respect to
renewable power fluctuations: ∆θ

∆V
∆ω

 = Jinv

 ∆PW
∆QW

0

 . (13)

Substituting (3) to (13) and dividing Jinv to sub-matrices give ∆θ
∆V
∆ω

 =

 J11
inv J12

inv J13
inv

J21
inv J22

inv J23
inv

J31
inv J32

inv J33
inv

 ∆PW
λ∆PW

0

 , (14)

where λ = diag(λi) ∈ Rn×n; Jinv is the inversion
of Jacobian matrix JPF and it can be divided into sub-
matrices J11

inv,J
12
inv,J

21
inv,J

22
inv ∈ Rn×n, J31

inv,J
32
inv ∈ R1×n,

J13
inv,J

23
inv ∈ Rn and J33

inv ∈ R. The above equations allow us
to obtain the following expressions for ∆V and ∆ω

∆V = LV ∆PW , ∆ω = Lω∆PW , (15)

where LV ∈ Rn×n and Lω ∈ R1×n represent the sensitivities
of voltage magnitudes and frequency to ∆PW , respectively;
LV and Lω can be calculated by

LV = J21
inv + λJ22

inv, Lω = J31
inv + λJ32

inv. (16)

Based on the chain rule and the droop characteristics we have

∆PG =
∂PG
∂ω

∆ω = SPLω∆PW , LP∆PW , (17)

∆QG =
∂QG

∂V
∆V = SQLV ∆PW , LQ∆PW , (18)

where LP ∈ Rn×n and LQ ∈ Rn×n represent the sensitivities
of active and reactive power generation of dispatchable DGs.

Based on above equations, the sensitivity matrices
LP ,LQ,LV ,Lω can be derived, which characterize the sys-
tem responses under small uncertainties ξ. Note that the
sensitivity matrices are implicit and nonlinear functions of
decision variables {V ,θ,T ∗,β∗} since they are given by the
inversion of JPF .
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B. Analytical Reformulation of Chance Constraints
Next, we further derive an analytical reformulation of the

chance constraints based on the assumption that the renewable
uncertainty ξ follows a multivariate normal distribution, with
zero mean value and known covariance matrix Σ. First, using
the sensitivity matrices LP ,LQ,LV ,Lω , chance constraints
(8g)–(8n) can be approximated as linear functions of renew-
able uncertainties

P(PGi
(0) +LP (i,·)ξ ≤ Pmax

Gi
) ≥ 1− εP , ∀i ∈ NG (19)

P(PGi
(0)−LP (i,·)ξ ≥ Pmin

Gi
) ≥ 1− εP , ∀i ∈ NG (20)

P(QGi
(0) +LQ(i,·)ξ ≤ Qmax

Gi
) ≥ 1− εQ, ∀i ∈ NG (21)

P(QGi
(0)−LQ(i,·)ξ ≥ Qmin

Gi
) ≥ 1− εQ, ∀i ∈ NG (22)

P(Vi(0) +LV (i,·)ξ ≤ V max
i ) ≥ 1− εV , ∀i ∈ N (23)

P(Vi(0)−LV (i,·)ξ ≥ V min
i ) ≥ 1− εV , ∀i ∈ N (24)

P(ω(0) +Lω(1,·)ξ ≤ ωmax) ≥ 1− εω, (25)

P(ω(0)−Lω(1,·)ξ ≥ ωmin) ≥ 1− εω, (26)

where the notations with subscript (i, ·) refer to the i-th row
of the respective matrices. Then, based on the property of nor-
mal distribution, (19)–(26) are equivalent to the deterministic
constraints as

PGi
(0) + κPDev{PGi

(ξ)} ≤ Pmax
Gi

, ∀i ∈ NG (27)

PGi
(0)− κPDev{PGi

(ξ)} ≥ Pmin
Gi
, ∀i ∈ NG (28)

QGi
(0) + κQDev{QGi

(ξ)} ≤ Qmax
Gi
, ∀i ∈ NG (29)

QGi
(0)− κQDev{QGi

(ξ)} ≥ Qmin
Gi
, ∀i ∈ NG (30)

Vi(0) + κV Dev{Vi(ξ)} ≤ V max
i , ∀i ∈ N (31)

Vi(0)− κV Dev{Vi(ξ)} ≥ V min
i , ∀i ∈ N (32)

ω(0) + κωDev{ω(ξ)} ≤ ωmax, (33)

ω(0)− κωDev{ω(ξ)} ≥ ωmin, (34)

where κP = Φ−1(1− εP ) denotes the inverse cumulative dis-
tribution function of normal distribution evaluated at (1−εP );
similar interpretations apply to κQ, κV , κω; Dev{Vi(ξ)} is the
standard deviation of voltage magnitude at bus i

Dev{Vi(ξ)} =
√
LV (i,·)Σ(LV (i,·))T . (35)

Similar interpretations apply to Dev{PGi
(ξ)}, Dev{QGi

(ξ)},
Dev{ω(ξ)} for generation outputs and system frequency. From
(27)–(34), we observe that the effect of renewable uncertainties
in the chance constraint is equivalent to reducing the upper
bound or increasing the lower bound by a uncertainty margin
in the deterministic constraint. This transform of chance con-
straints is extendable to other types of distributions by using
the same expression for standard deviation and a different Φ
corresponding to that distribution.

C. Reformulation of CC-OPF-PFR
Similar to the transform of chance constraints, the objective

function (8a) can be re-expressed as

E[
∑
i∈NG

c2iPGi(ξ)
2

+ c1iPGi
(ξ) + c0i] =∑

i∈NG

c2i[(PGi
(0)

2
+LPΣ(LP )T ] + c1iPGi

(0) + c0i. (36)

If the power loss is neglected, LP is purely determined by
droop gains and hence remains constant. This is indeed the
case in low voltage systems such as MGs, where the power
loss is very small and negligible. Thus, the term LPΣ(LP )T

can be approximately regarded as a constant and excluded
from the objective function. The objective function can be
simplified into the total cost of dispatchable DGs under the
forecasted renewable power scenario ξ = 0. Then, we denote
P̄Gi

= PGi
(0) and the CC-OPF-PFR problem (8) can be

reformulated as follows

minimize
∑
i∈NG

(c2iP̄
2
Gi

+ c1iP̄Gi + c0i),

subject to (8b)− (8f) for ξ = 0,

(8o)− (8u), (27)− (34).

(37)

As shown above, the standard deviation terms Dev{·} in
(27)–(34) are determined by {V ,θ,T ∗,β∗}. Obviously, T ∗

and β∗ contribute more to the change of standard deviation
terms Dev{·} than V and θ because the per-unit values of
voltage magnitudes are close to one and the voltage angles
are close to zero in low voltage systems. To satisfy the more
stringent constraints (27)-(34), traditional CC-OPF mainly
relies on tuning the operating point by directly adjusting the
power injections. However, from the perspective of network
flexibility, we can expect that the PFRs not only tune the
operating point but also reduce the standard deviations of
voltage magnitudes (i.e., lower voltage volatility), which will
be seen in the case studies.

If the sensitivity matrices LP ,LQ,LV ,Lω keep constant
in (37), (37) is a deterministic OPF problem and can be
solved by SDP relaxation which is a well-established efficient
solver [23]. However, as stated above, the sensitivity matrices
are implicit and nonlinear functions of decision variables
{V ,θ,T ∗,β∗} which make the problem (37) difficult to solve.
To tackle this issue, the sensitivity matrices need to be deter-
mined at a given operating point and fixed in problem (37).
In this way, the analytical formulations of chance constraints
in (37) describe the case of the given operating point rather
than the optimal solution to (37). In other words, the optimal
solution to (37) may not satisfy the chance constraints since
there is a mismatch between the standard deviation terms
Dev{·} in (37) and their actual values at the optimal solution.
Therefore, an iterative algorithm is required to gradually
eliminate such kind of mismatch.

D. Solution Algorithm

For the convenience of algorithm statement, let us de-
note the uncertainty margin of Vi at the k-th iteration by
ΩkVi

= Φ−1(1 − εV )
√
LkV (i,·)Σ(LkV (i,·))

T . Similar interpre-

tations apply to ΩkPi
, ΩkQi

, Ωkω and we define the vectors
Ωk
P ,Ω

k
Q,Ω

k
V ∈ Rn stacking ΩkPi

,ΩkQi
,ΩkVi

, respectively. We
summarize the iterative algorithm as follows.
Step 1: Initialize the sensitivity matrices L0

P ,L
0
Q,L

0
V , L

0
ω as

zero matrices and the iteration count k = 0.
Step 2: Using modified SDP relaxation to solve the

problem (37) with specified sensitivity matrices
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Fig. 2. The diagram of modified IEEE 33-bus microgrid.

TABLE I
FORECASTED RENEWABLE-BASED DG OUTPUTS (MW)

Bus 4 7 8 14 30

PW 0.6 0.2 0.5 0.7 0.4

LkP ,L
k
Q,L

k
V , L

k
ω and obtain the solution xk+1 =

(V k+1, θk+1, ωk+1, P ∗kG , Q∗k+1
G , ω∗k+1, V ∗k+1,

T ∗k+1, β∗k+1).
Step 3: Calculate the sensitivity matrices Lk+1

P ,Lk+1
Q ,Lk+1

V ,

Lk+1
θ and margins Ωk = (Ωk

P ,Ω
k
Q,Ω

k
V ,Ω

k
ω) at

xk+1. Evaluate the maximum difference of Ω be-
tween current iteration and the last iteration: ∆Ω =
||Ωk+1 −Ωk||∞.

Step 4: Check convergence: If ∆Ω ≤ δ, stop. Otherwise, set
k = k + 1 and go back to Step 2.

The iterative algorithm converges when the maximum de-
viation of uncertainty margins is smaller than δ, which has
a pre-defined value, e.g., 10−5. The physical meaning of the
converged solution is as follows: this solution takes the mini-
mal cost to satisfy all the constraints, including those chance
constraints in the form of (27)–(34) where the sensitivity
matrices are obtained by the linearization around this solution.

By applying the above iterative algorithm, the basic struc-
ture of AC-OPF can be retained so that a modified SDP-
based convex relaxation method on OPF with PFRs [15], [17]
can be fully utilized. It should be noted that SDP relaxation
of the subproblem in each iteration is not an equivalent
transformation. But literature have shown the exactness is
commonly satisfied so that the solution obtained by SDP relax-
ation is equivalent to the solution to the original subproblem,
which is also the situation in our case study. Furthermore,
the SDP relaxation can be replaced by any other fast OPF
solvers. This solution algorithm is always easy to implement
because the subproblem in each iteration has a simple form
which excludes the computational complexity introduced by
renewable uncertainties.

IV. CASE STUDY

We use the modified IEEE 33-bus system shown in Fig. 2 to
test the performance of the proposed CC-OPF-PFR model and
the solution method. The line parameters and the loads are the
same as those in Matpower [24]. PFRs are installed at lines
(8,21), (9,15) and (18,33). Seven dispatchable DGs and five

renewable DGs are installed in the system. Each renewable DG
operates at the pre-defined power factor tanφi = 0.95. Their
forecasted active power outputs are listed in Table I and the
covariance matrix is omitted here due to the space limit. Note
that the total active power load of the system is 3.72 MW and
the renewable penetration level is around 65%. Voltage limits
for all the buses are set to V min

i = 0.95 and V max
i = 1.05,

respectively. The PFR parameter specifications follow [17],
particularly γmin

ij
= 0.8, γmax

ij
= 1.2, βmax

ij
= −βmin

ij
= 20o. The

optimization computation is conducted on a 64-bit computer
with 3.2 GHz CPU and 16 GB RAM. The optimization
problem is solved by Mosek via CVX [25] in Matlab.

For comparison, we obtain the optimal solutions from the
following four versions of OPF: (a) Normal OPF without
PFRs and renewable uncertainties; (b) OPF-PFR (i.e., OPF
with PFRs and without renewable uncertainties); (c) CC-OPF
without PFRs; (d) CC-OPF-PFR.

For the base case, we set the violation probabilities as ε =
εP = εQ = εV = εω = 0.01 and the tolerance value for
convergence as δ = 10−5. Thus, the probability of satisfying
the chance constraints is no less than 99%. The droop gains
are set as KPi = 3 and KQi = 30 for dispatchable DGs.

To verify the proposed method, we also calculate the
empirical constraint violation probabilities and probability
density functions (PDFs) of voltage magnitudes by Monte
Carlo Simulation (MCS). In the MCS, we calculate the AC
power flow under 104 renewable power scenarios following
the prescribed multivariate normal distribution.

A. Merits of CC-OPF-PFR

We compare the generation costs, computational times,
iteration numbers, and the maximum empirical violation prob-
abilities Max.εemp of (a)–(d) and the results are listed in Table
II. The iterative algorithm normally converges in 3 iterations
and the computational time for two CC-OPF (c)–(d) problems
are both within 10 seconds. This highlights the efficiency of
the proposed iterative algorithm. For the optimal solutions
given by normal OPF and OPF-PFR, the maximum empirical
violation probabilities are over 50%, which indicates the
deterministic OPF is not sufficient to maintain an acceptable
voltage profile under renewable uncertainties. By comparison,
CC-OPF and CC-OPF-PFR control the maximum empirical
violation probabilities below the pre-specified level (1%). This
result verifies the effectiveness of chance constraints in secur-
ing the droop-controlled MGs against renewable uncertainties.
Moreover, the cost of CC-OPF-PFR is 2.0% lower than CC-
OPF and even sightly lower than normal OPF. It shows that
PFRs help the system in achieving better security without
deteriorating the operational economy.

To detail the contribution of PFRs, we define V max,cc
i =

V max
i − ΩVi

as the equivalent voltage upper limit in voltage
constraint (31) (i.e., Vi(0) ≤ V max,cc

i ,∀i ∈ N ) when the
iterative algorithm converges. Also, we denote V opt as the
voltage magnitudes at the optimal solution. Fig. 3 shows the
values of V max,cc and V max,cc − V opt obtained by CC-OPF
and CC-OPF-PFR, respectively. At most buses, the values of
V max,cc under CC-OPF-PFR are higher than that under CC-
OPF. It means that the voltage standard deviations of most
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TABLE II
RESULTS OF THE FOUR OPF APPROACHES

Methods (a) (b) (c) (d)

Cost ($/hr) 2898.31 2836.89 2920.62 2841.63

CPU time (s) 1.04 3.33 4.04 9.94

Iterations / / 3 3

Max.ε∗emp 52.46% 58.09% 0.83% 0.14%

*Max.εemp refers to the maximum empirical violation proba-
bility for all the constraints.

0 5 10 15 20 25 30
Bus Number

1.016

1.018

1.02

1.022

1.024

V
m

ax
,c

c  [p
.u

.]

0

0.01

0.02

0.03

0.04

0.05

V
m

ax
,c

c  -
 V

op
t  [p

.u
.]

Vmax,cc of CCOPF

Vmax,cc of CCOPF-PFR
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Fig. 3. V max,cc − V opt and equivalent voltage limits V max,cc in (37)

buses are reduced by tuning T ∗ and β∗ of the PFRs. As a
result, the feasible region of the optimization problem is also
enlarged. In particular, we refer to bus 14 as the critical bus
because the voltage magnitude at bus 14 hits the equivalent
voltage limit (i.e., V max,cc

14 − V opt
14 = 0) under both CC-OPF

and CC-OPF-PFR. The hitting under CC-OPF (see the red
dashed line) prevents the problem from seeking a further better
solution along this direction; the hitting under CC-OPF-PFR
(see the blue dashed line) means CC-OPF-PFR allows for
pursuing a better solution due to the enlarged feasible region
and this solution can be further improved by incorporating
more network flexibility, i.e., more PFRs.

To further illustrate the effects of PFRs, the empirical
voltage PDFs at bus 14 under (a)–(d) are shown in Fig. 4.
By comparing (a) with (b) and (c) with (d), we observe
that the empirical voltage PDFs have significantly narrower
shapes if PFRs are included in the system. This is consistent
with our previous analysis in Section III that tuning the PFR
parameters T ∗ and β∗ is effective in reducing the voltage
standard deviations. Thus, the voltage volatility levels under
OPF-PFR and CC-OPF-PFR are both lower than that without
PFRs. Moreover, by comparing (a) with (c) and (b) with (d),
we observe that the inclusion of chance constraints lead to left
shifts of the mean values which are mainly achieved by power
injection changes. On the other hand, the power injections do
not make significant contribution to voltage volatility reduction
as the PDF curves in (a) and (c) have almost the same shape.
From the above discussion, we reveal that power injections and
PFRs have different mechanisms in voltage regulation under
uncertainties. Power injections mainly contribute to the change
of voltage mean values, while PFRs mainly contribute to the
reduction of voltage variance. Therefore, the proposed CC-
OPF-PFR outperforms the traditional CC-OPF by introducing
a new dimension of control mechanism.
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Fig. 4. Empirical voltage PDFs at bus 14 under (a)-(d)(KPi = 3,KQi = 30)

B. Performance under Different Droop Gains

To further illustrate the merits of the CC-OPF-PFR model,
we compare its performance with CC-OPF under another two
types of droop gains in terms of generation costs, and voltage
volatility. We set KPi = 1,KQi = 10 referring to low droop
gains and KPi = 5,KQi = 50 referring to high droop gains.

1) Generation cost. For CC-OPF, the generation costs are
2898.89 $/hr under low droop gains and 3007.42 $/hr under
high droop gains. For CC-OPF-PFR, the generation costs are
2838.94 $/hr under low droop gains and 2849.33 $/hr under
high droop gains. We observe that higher droop gains always
lead to higher generation cost and this kind of cost increase
is more notable for CC-OPF because it relies on tuning the
power injections only. In addition, CC-OPF-PFR introduces
2.07% and 5.25% cost reduction compared to CC-OPF under
low and high droop gains, respectively. This again highlights
the economic merits brought by PFRs and this value is more
remarkable under higher droop gains.

2) Voltage volatility. Similar to the previous subsection, Fig.
5 and Fig. 6 show the empirical voltage PDFs of bus 14
under low and high droop gains. We observe that the voltage
volatilities are low for both CC-OPF and CC-OPF-PFR under
low droop gains. However, under high droop gains, CC-OPF
introduces a rather high voltage volatility level while CC-OPF-
PFR still keeps a relatively small voltage volatility level.

We further discuss the results as follows.
(a) Under low droop gains, the voltage standard deviations

Dev{V (ξ)} are naturally small. This property leads to
small voltage margins ΩV and the chance constraints can
be easily satisfied without PFRs. Even with PFRs, their
capabilities on Dev{V (ξ)} reduction by tuning T ∗ and β∗

is limited to a small range. Therefore, the voltage volatility
levels under CC-OPF and CC-OPF-PFR are similarly low
as shown in Fig. 5.

(b) Under high droop gains, the voltage standard deviations
Dev{V (ξ)} are relatively large and thus lead to more
stringent voltage constraints (31)–(32). In this case, the
value of PFRs is also amplified. Different from the CC-
OPF which can only adjust the power injections to satisfy
the constraints, PFRs can meet the voltage constraints by
tuning T ∗ and β∗ for smaller voltage standard deviations.
Therefore, the voltage volatility under CC-OPF-PFR is
much lower than that under CC-OPF as shown in Fig. 6.
Furthermore, with the help of PFRs, the voltage volatility
levels under high droop gains can even be close to the
case under low droop gains.
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Fig. 5. Empirical voltage PDFs at bus 14 under (c)(d) (KPi = 1,KQi = 10)
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Fig. 6. Empirical voltage PDFs at bus 14 under (c)(d) (KPi = 5,KQi = 50)

From the above discussion, we conclude that if high droop
gains are adopted for islanded MGs, it could lead to serious
volatile voltages under traditional CC-OPF. But the high droop
gains also amplify the capability of PFRs in reducing cost and
voltage standard deviations. Therefore, the proposed CC-OPF-
PFR has more significant merits under higher droop gains,
which well matches the high droop gain nature of MGs.

V. CONCLUSION

In this paper, we propose a new CC-OPF-PFR problem in
droop-controlled MGs under renewable uncertainties. In this
formulation, the droop characteristics and PFRs are for the
first time both considered in the CC-OPF model, and the
PFRs provide a new network-oriented mechanism different
form the traditional node-side control. Due to the complexity
of AC power flow with PFRs, we establish an iterative solution
method for the CC-OPF-PFR. Using sensitivity analysis, the
subproblem in each iteration is transformed into a deter-
ministic optimization problem that can be efficiently solved
by existing solvers such as SDP relaxation, which provides
tractability and efficiency. Numerical results show that the
proposed CC-OPF-PFR model significantly reduce the voltage
volatility under high droop gains and achieves a highly secure
solution with lower cost than the case without PFRs.

Many directions can be considered for future research,
e.g., data-driven methods can be included for constructing
the ambiguity set and distributionally robust optimization can
be developed. Security and stability constraints need to be
considered for a more robust and secure operating point.
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