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Abstract. To characterize local finite-time properties associated with transient chaos

in open dynamical systems, we introduce an escape rate and fractal dimensions

suitable for this purpose in a coarse-grained description. We numerically illustrate

that these quantifiers have a considerable spread across the domain of the dynamics,

but their spatial variation, especially on long but non-asymptotic integration times,

is approximately consistent with the relationship that was recognized by Kantz and

Grassberger for temporally asymptotic quantifiers. In particular, deviations from this

relationship are smaller than differences between various locations, which confirms the

existence of such a dynamical law and the suitability of our quantifiers to represent

underlying dynamical properties in the non-asymptotic regime.

1. Introduction

Chaotic properties have been traditionally considered in the limit of asymptotically long

times [1, 2]. Concentrating on this regime probably has one of its roots in equilibrium

statistical physics, in which any macroscopic time scale can be regarded infinitely long

compared to the characteristic time scales of the individual components of the system.

Furthermore, it may be argued that long-term behavior dominates observations of a

system as opposed to initial transients.

A number of approaches is available to characterize chaotic behavior beyond this

asymptotic regime (e.g. [3, 4]). One tool is the well-studied finite-time Lyapunov

exponent (FTLE, [1, 5]). Besides being a natural approximation to the asymptotic

largest positive Lyapunov exponent when only data from a finite time interval are

available, its local and location-dependent nature [6] is generally very useful. For

example, it is utilized to distinguish between phase-space regions with chaotic and

regular dynamics (e.g. [7]), or to identify [5] regions of fluid flow that move in a coherent

manner (Lagrangian Coherent Structures, [8, 9]). The spatial variations in the FTLE on

which the latter application relies are related to its finite-time nature in that trajectories

do not scan the complete accessible part of the phase space. Location dependence can

survive even for ergodic systems in the infinite-time limit in association with multifractal
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features [1, 10], but the clearest expression and usefulness of local properties of chaos

appear under a finite-time approach.

In closed flows, generalization to finite time and location dependence of some

relationships between chaotic indicators (e.g. entropy and Lyapunov exponent) has

been developed in [11]. This was done in the framework of a Ulam-type discretization

of the Perron-Frobenius operator of the dynamics [12] in which phase space is partitioned

into boxes and averages of the FTLE and its functions within these boxes are computed

(thus carrying out coarse-graining). This description, which naturally leads to the use

of graph or network methods [12], has been extended to open systems in [13].

In this work, we explore analogous constructions for further quantifiers of open

chaotic systems [14]. Open dynamical systems are such that the time evolution of

trajectories in the phase space may leave the domain of the dynamics (i.e., where the

dynamics is or is chosen to be defined; ’domain’ in what follows). In particular, there is

an escape region in the phase space: a trajectory entering there is regarded as escaped.

Transient chaos [14] may take place before that escape occurs.

In open chaotic systems, the time evolution of trajectories staying in the domain

for long times is governed by a non-attracting chaotic set, either a repeller or a chaotic

saddle [1, 14]. However, asymptotic chaotic properties are usually reflected only by a

minority of the trajectories uniformly initialized within the domain or within a localized

subset thereof. These are the ones initialized sufficiently close to the repeller or to the

saddle or its stable manifold. But what happens to the majority of the trajectories? Are

there any universal characteristics according to which they leave the domain? In this

paper, we will illustrate that local but coarse-grained finite-time quantifiers of chaos

provide at least a next-to-asymptotic characterization. Although we are not able to

provide a theoretical explanation, we present strong numerical evidence, in the form of a

nontrivial fulfillment of the Kantz–Grassberger relation [15], for the meaningful nature

of the coarse-grained local finite-time quantifiers which thus give access to analyzing

spatial variability in the phase space.

Extending the description of the escape process beyond a restricted minority of

trajectories should obviously be useful in practice. Potential applications range from

oceanic sedimentation problems to atmospheric dispersion as discussed further in the

outlook section (Section 7).

2. Theoretical background for quantifying transient chaos

In this section we recall the standard framework to describe transient chaos in open

dynamical systems [14]. Its simplest form is only strictly valid in dynamical systems

with a sufficient degree of ergodicity and hyperbolicity, which we will assume in the

following. Modifications can be made to deal with more complex systems [1, 14].

The set responsible for chaos, a non-attracting chaotic set, is a union of infinitely

many unstable (hyperbolic) periodic trajectories (in particular, they never escape the

domain), but this set has zero measure in phase space. If this set repels all trajectories in
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its neighborhood, it is called a chaotic repeller, whereas if there are also specific directions

along which trajectories are attracted, it is called a chaotic saddle [14]. In the following

we will usually call the non-attracting chaotic set a saddle, with the understanding that

it would in fact be a repeller if stable directions are absent. Motion in the phase space is

governed by the invariant manifold or manifolds of the chaotic saddle, i.e., its unstable

and (if it exists) stable manifolds. A generic trajectory is guided toward the chaotic

saddle along its stable manifold, spends some time by irregularly switching between the

neighborhoods of the different unstable periodic orbits, then escapes the domain along

the unstable manifold of the chaotic saddle. In the case of a repeller, the first regime,

that of an approach to the chaotic set, does not occur.

The strength of chaos is quantified by λ, the largest positive Lyapunov exponent

averaged on the chaotic saddle with respect to its so-called natural probability measure

to which the distribution of trajectories trapped on the saddle converges for infinitely

long times [14]. Trajectories not moving on the saddle or its stable manifold converge to

the unstable manifold of the saddle, distributed according to its so-called conditionally

invariant measure [16] in the limit of asymptotically long times. While any of these

trajectories eventually escapes the domain, we find such remaining trajectories for

arbitrarily long times by considering initial conditions close enough to the saddle or

its stable manifold. While their normalized distribution will be described by the

conditionally invariant measure, the number N of such trajectories decays exponentially

in the asymptotic limit of long times, N ∼ e−κt, where κ is the escape rate [17, 14].

The saddle and its invariant manifolds, as well as the above-mentioned probability

measures, have fractal structure. The fractality of the conditionally invariant measure

on the unstable manifold is characterized by a collection of fractal dimensions Dq, q ∈ N

[18, 14]. The fractal measures corresponding to the stable manifold and the saddle are

obtained by identifying the stable manifold with the unstable manifold of the reversed-

time dynamics and the saddle with the intersection of the stable and the unstable

manifolds, respectively. In dynamical systems preserving phase-space volume, the fractal

measures corresponding to the stable and of the unstable manifolds are identical.

A remarkable relationship between the Lyapunov exponents in different unstable

directions, the information dimension along them, and the escape rate was obtained by

Kantz and Grassberger [15]. For the case of one-dimensional chaotic open maps, for

which there is only one Lyapunov exponent λ, and the chaotic saddle becomes a chaotic

repeller of information dimension D1, it reads

D1 = 1−
κ

λ
. (1)

In higher-dimensional chaotic open systems, the relation gets generalized to κ =
∑

j λj(1 − D
(j)
1 ), where the sum is over the saddle’s unstable directions, of positive

Lyapunov exponents {λj}, and {D
(j)
1 } are the partial information dimensions along

these directions [15]. Notably, Eq. (1) remains valid for reversible two-dimensional

maps.

Kantz and Grassberger [15] justified Eq. (1) and its generalizations in several
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situations. Here we just quote a simple heuristic argument to arrive at Eq. (1):

The trajectories that still remain in the domain of the open map after evolving for

a time t need to be initialized very close to the repeller, say within a small distance

ǫ. Thus the number of such trajectories (if initialization is uniform in the domain)

will be proportional to the number of intervals of size ǫ covering the repeller multiplied

by the interval size ǫ. Using the definition of fractal dimension, the number of such

trajectories, N , which is proportional to exp(−κt), should also satisfy N ∝ ǫ1−D, or

κt ≈ −(1−D) log ǫ. Noting that the interval ǫ needs to be smaller for longer integration

times as exp(−λt) because of the exponential divergence of trajectories, we immediately

arrive at Eq. (1), although a more refined argument [15] is needed to show that the

proper dimension to be used is the information dimension D1.

Note that λ, κ and D1 in Eq. (1) are global quantities of the asymptotic long-

time limit (on which their definition relies), i.e., they have a single, unique value for

the whole system. In what follows, we shall construct and analyze coarse-grained local

finite-time versions of these quantities, and show numerically that a relationship among

them similar to Eq. (1) remains valid.

Regarding the Lyapunov exponent, our construction will rely on the FTLE.

Alternative non-asymptotic versions, such as the finite-size Lyapunov exponent [19, 20],

have also been introduced in the literature. Nevertheless, we focus here on the FTLE,

because of the availability of previous analysis that used it in situations involving coarse-

graining and escape [11, 13], and, more importantly, because our framework is based on

a fixed integration time T .

3. Considerations for constructing local finite-time quantifiers

While the success of using the FTLE to learn more about the system than what can

be learnt from λ alone makes it tempting to introduce corresponding concepts for other

quantifiers of chaos, like κ and Dq, there are some important differences which have to

be taken into account when constructing the desired local finite-time quantities.

To start with, even infinite-time Lyapunov exponents can be defined locally [21, 2],

characterizing the stability of the individual periodic trajectories composing the chaotic

set, both in closed and open systems. The variety of the FTLE values obtained for

different trajectories reflects this diversity in stability: following a trajectory for a

finite time only does not permit the exploration of the complete chaotic set and the

incorporation of its typical stability properties. We call this dependence on the initial

condition the spatial variation of the FTLE, in the sense that it defines a FTLE value

at each point of phase space. This spatial variation is observable and meaningful even

in fully chaotic volume-preserving closed systems where the chaotic set fills the entire

accessible part of phase space. The spatial variation in open systems is more due to

differences in how close different trajectories approach the chaotic saddle, but there

should be a range of FTLE values on the saddle as well. Note that, disregarding zero-

measure sets (as discussed above) and under standard ergodicity assumptions, location
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dependence of a quantity in chaos implies its definition to be both local and for finite-

time due to the existence of a unique asymptotic probability measure.

Unlike for a local Lyapunov exponent, which is not associated with any probability

measure, the definition of the escape rate is inherently linked to the conditionally

invariant measure supported by the complete unstable manifold, which appears in the

long-time asymptotic limit. This implies that the escape rate is inherently global. While

this is an abstract dissimilarity between λ and κ, it is reflected in a more practical

difference: whereas the FTLE can be defined and computed along a single trajectory,

this does not seem viable for a local finite-time version of the escape rate. Tracking the

number of trajectories remaining in the domain requires more than one trajectory. This

requirement implies considering boxes of phase space instead of single points as initial

conditions, thus performing coarse-graining. Coarse-graining introduces a length scale,

l, on which it is performed (e.g., l can be the size of the boxes). This length scale can be

chosen independently of the properties of the system, and it may be desirable to choose

it as small as possible to study location dependence. In principle, one might even try

to define and analyze the l → 0 limit, but a finite l is needed for practical purposes,

including any numerical computation.

The fractal dimensions Dq can theoretically be defined pointwise in phase space

[22]. However, once coarse-graining is required to define a proper local escape rate, it

appears straightforward to treat the part of the fractal measure of interest that falls into

a given box as a single object, and to investigate its dimension according to this choice.

In practice, one partitions the domain D into boxes Bi ⊂ D of size l (‘major boxes’

where distinction from boxes providing further division is needed), and computes every

relevant quantity within a single box. We will also take a kind of average of the FTLE

within a box, despite the fact that it can be associated with single points in phase space.

Note that this coarse graining of the FTLE and its different functions was used in the

network-theoretical approach to chaotic transport by fluid flow in [11].

‘Within a box’ only applies to the starting trajectory position: the trajectory is

allowed to leave the box and visit the rest of the phase space, not being considered

as ‘escaped’ until it leaves the domain D of the whole dynamical system. That is,

we investigate how the trajectories emanating from a localized phase space region

experience the influence of the chaotic set.

Once the boxes are given, there are several options to define local finite-time versions

of κ and Dq (see e.g. the discussion about instantaneous and interval-based versions

later in this Section). We have chosen definitions such that numerical estimates satisfy

a generalized Kantz–Grassberger relation with the smallest deviation. Beyond basic

criteria like convergence to the asymptotic definitions, the fulfillment of this relationship

ensures that the quantities involved are meaningful.

We denote our coarse-grained local finite-time quantities by Q
(l)
i (T ; t0), where Q is

the corresponding global quantity, i is the index of the given box (Bi), l denotes the

coarse-graining scale, T is the length of the finite time interval, and t0 is the initialization

time for the trajectories xj(t) with initial locations xj(t = t0) = x0,j , j = 1, . . . , N0, in
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the phase space X . N0 is the number of initial conditions. The escape region will be

denoted by E ⊂ X (the domain is thus D = X \ E), and the escape time τj(t0) of an

individual trajectory is defined as

τj(t0) = min
t
(t− t0) | (t ≥ t0 ∧ xj(t) ∈ E). (2)

We do not distinguish between flows and maps: the time variables t, t0, T and τj
may be regarded to describe discrete time indices, like in our numerical examples. In

these examples we omit the indication of t0, because the considered dynamical systems

does not depend explicitly on time. We emphasize, however, that our definitions are

also applicable to nonautonomous dynamical systems, with arbitrary time dependence.

While the definitions should ideally rely on probability measures instead of

individual trajectories, we formulate them by means of the latter. We also refer to

numbers of trajectories, and implicitly assume being close to the limit of infinitely

many trajectories. In particular, the number of trajectories initialized in a box Bi will

be denoted by N0,i (with
∑

i N0,i = N0), and Ni(t; t0) represents how many of them

remain in the domain until time t. Formally,

N0,i =
∑

j|x0,j∈Bi

1, (3)

Ni(t; t0) =
∑

j|x0,j∈Bi∧τj(t0)>t−t0

1, (4)

and we call Ni(t; t0)/N0,i the depletion function. The implicitly assumed limit is defined

by N0,i → ∞ with the initial conditions x0,j uniformly distributed within the given box.

Of course, the quantities should be defined such that they satisfy limT→∞Q
(l)
i (T ; t0) =

Q for any initial time t0 and any box Bi in autonomous systems; that is, global quanti-

fiers of chaos should be recovered in the limit of asymptotically long times, for any box

size, since the asymptotic probability measures should be recovered from any box. Note

that this implies that differences between different boxes should decrease for large and

increasing T .

Like in the case of the traditional FTLE, our finite-time definitions encompass

characteristics from the complete time interval from t0 to t0 + T , even though

instantaneous characteristics may vary strongly in this period. In particular, the rate of

separation of nearby trajectories (lying at the basis of the FTLE) and the rate of escape

(the derivative of the logarithm of the depletion function) are typically not constant

(cf. Section 5). The case of the fractal dimensions is more complicated, but it is

clear that the spatial structure of probability measures forming by t0 + T is a result

of the time evolution in the complete period between t0 and t0 + T . While we are not

currently able to define an “instantaneous fractal dimension”, instantaneous definitions

of the Lyapunov exponent and the escape rate are given and numerically investigated

in Appendix B. Since we conclude that such instantaneous quantifiers numerically fall

further from satisfying a Kantz–Grassberger-like relation, we consider and analyze the

interval-based versions in the main text. We present our proposals for these definitions

in the next Section.
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4. Definitions of local finite-time quantifiers

4.1. Lyapunov exponent

For a quantity corresponding to λ, we should select trajectories that spend a long time

near the chaotic saddle, and take the average of the FTLE over all such trajectories

initialized within a single major box. This means that we look for trajectories near the

stable manifold of the saddle in the given box. We select these trajectories by prescribing

that they remain in the domain D at least for the finite time T :

λ
(l)
i (T ; t0) ≡

1

Ni(t0 + T ; t0)

∑

j|x0,j∈Bi∧τj(t0)>T

1

2T
lnΛ(t0 + T ;x0,j, t0), (5)

where 1
2T

lnΛ(t;x0, t0) is the FTLE evaluated at time t for a trajectory initialized at

a position x0 at time t0 (i.e., Λ(t;x0, t0) is the largest eigenvalue of the Cauchy–Green

strain tensor JTJ , with J = ∇
x0
x(t) being the Jacobian [5]).

4.2. Escape rate

The definition of an escape rate should rely on the number of trajectories remaining

in the domain D up to time t0 + T , Ni(t0 + T ; t0). Since the global escape rate κ

characterizes the long-term exponential depletion, it is independent of initial transients

of transient chaos. As already mentioned, exponential depletion is not observed during

these initial transients. It commonly happens that a long time passes until the first

trajectory escapes the domain: Ni(t; t0) = N0,i until then. This might suggest using an

instantaneous, differential definition for the finite-time version of κ at time t0 + T (see

Appendix B), or one that considers the time of the first escape as initial time, but these

constructions will turn out to be inappropriate.

Note that a set of trajectories already undergoes chaotic evolution until the first

escape. Thus it is less surprising that we numerically find a more consistent and less

biased agreement with a generalized Kantz–Grassberger relation for a definition relying

on the original time, t0, of initialization.

Our proposed definition reads as

κ
(l)
i (T ; t0) ≡ −

1

T
ln

Ni(t0 + T ; t0)

N0,i

. (6)

4.3. Fractal dimensions

Since the dimensions of a saddle and its invariant manifolds are related, and already

one of these sets determines the dimensions of the rest in volume-preserving systems, we

concentrate on the dimensions related to the stable manifold: we select the trajectories

remaining in the system until time t0 + T , the initial conditions of which represent

the stable manifold as observed on this time scale. In the case of a repeller, the same

procedure selects the initial conditions sufficiently close to the repeller.



Local characterization of transient chaos 8

Although fractal dimensions establish a relationship between different length scales

(via the scaling of q-order Rényi entropies, [23]), their local version must not incorporate

properties of trajectories initialized in different boxes. The only option is to resolve

length scales below l by partitioning these major boxes by the introduction of minor

boxes, the size of which we denote by ε ≤ l.

The finite-time nature of the desired quantity does not allow resolving arbitrarily

small scales either. The initial conditions of the trajectories remaining in the domain

until t0+T will not exhibit self-similar structures below a certain length scale. Instead,

they will exhibit a space-filling pattern if investigated on a sufficiently small scale.

What corresponds to the effects of chaotic trajectory evolution is observed on scales

between this space-filling regime and the largest accessible length scale, l. Even in this

intermediate regime, exact self-similarity and a well-defined scaling exponent for Rényi

entropies is not expected to be found, so that the crossover between the intermediate

and the space-filling regimes (down to which fractality “reaches”), labelled by ε∗, may

be difficult to identify.

One source of the erratic scaling of Rényi entropies with ε is that box boundaries

arbitrarily introduced will not match the geometry of the fractal. This particular issue

can be worked around by recognizing that different choices of box boundaries for a given

box size should yield equally relevant results. For simplicity we consider in the following

the simple situation in which all major and minor boxes are hypercubes of the same

large and small sizes, respectively. We see that one problem in this simple framework

is that partitioning a major box of size l uniformly to a number n of minor boxes of

size ε (assuming that l is an integer multiple of ε) is possible in only one way. Any

relocation of box boundaries results in partial minor boxes at the edges of the major

box. To consistently take into account the contribution from such partial minor boxes,

we generalize the q-order Rényi entropy (writing it in the case of a one-dimensional

phase space for definiteness) as

H ′
q(f0) =

1

1− q
ln

n
∑

k=0

fk

(

pk
fk

)q

. (7)

The standard Rényi entropy is recovered when fk = 1 ∀k 6= 0. The sum is over all

minor boxes inside a fixed major one, and pk is the relative measure of the kth minor

box with respect to the total measure of the full major box (i.e.,
∑

k pk = 1). We take

fk = 1 for k ∈ {1, . . . , n − 1}, i.e., for all entire minor boxes, and f0 and fn give the

ratio of the length of the first and the last (partial) minor box, respectively, to that of

the entire minor boxes. Note that we have n+ 1 minor boxes in total, fn = 1− f0, and

the boundary configuration in this kind of partitioning is completely characterized by

f0 ∈ [0, 1). By the generalization (7), we linearly extrapolate the average probability

density within partial boxes to the size of entire boxes, and, furthermore, recover Rényi

entropies for all q in the case of a uniform probability distribution.

In a second step, to take into account all possible boundary configurations with

equal weight, we take the mean of this generalized q-order Rényi entropy over the
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possible box boundary configurations:

H ′
q =

∫ 1

0

H ′
q(f0)df0. (8)

Constructing the corresponding definitions for more than one dimension is

straightforward, as well as extending the approach to box-boundary configurations not

relying on a uniform partitioning to n minor boxes. We utilize these mean generalized

Rényi entropies in our below definition of local finite-time fractal dimensions.

While our approach smoothes out the erratic scaling of Rényi entropies with ε very

effectively, an intermediate regime in ε with power-law scaling is still not found (due to

the effects of initial transients in trajectory evolution right after t0, cf. Sects. 3 and 5),

so that the identification of ε∗ remains unsolved.

For this identification, we have to rely on empirical numerical findings in the setup

of Sect. 5. As we will describe in detail in Appendix A for that numerical setup, the slope

of H ′
1 as a function of the logarithm of the minor box size ε turns out to converge to 1

(corresponding to space filling) for decreasing ε following a power law with exponent −1

in any major box. We take the smallest value of H ′
1 below which this scaling is observed

for all integration times T in the numerically accessible range for the given major box,

and select ε∗ for each T as the value of ε corresponding to that H ′
1. We regard this

algorithm as part of our definition, but we acknowledge that it is not a complete one

from a theoretical point of view.

For the formulation of these definitions, we assume now that a unique ε∗ exists for

the approximate stable manifold of the saddle (or for the approximate repeller) obtained

for given T and t0 in a box Bi. Our definition, encompassing the entire interval in length

scales between l and ε∗, is

D
(l)
q,i(T ; t0) ≡ −

H ′
q

(ε∗)
−H ′

q

(l)

ln(ε∗/l)
(9)

where H ′
q

(ε)
is the mean generalized q-order Rényi entropy (8) taken for minor boxes of

size ε for the approximate stable manifold obtained for given T and t0 in a box Bi.

With appropriate dynamical and geometric ingredients, we conjecture the

generalization of the Kantz-Grassberger relation to local and finite-time quantities in

one- and two-dimensional maps:

D
(l)
1,i(T ; t0) = 1−

κ
(l)
i (T ; t0)

λ
(l)
i (T ; t0)

. (10)

We will check in the following Section how closely this formula is satisfied with the

definitions of the present Section.

5. Numerical results

For our numerical investigations, we take the logistic map as in [15], which is a well-

studied autonomous non-invertible one-dimensional map. In our analyses, we regard

time as discrete, choose t0 = 0, and omit t0 in the notation.
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The mentioned version of the logistic map reads

xt+1 = 1− ax2
t , (11)

with a = 1.75487767, and it is defined on the phase space X = [−1, 1]. Escape is

considered here to the period-3 attractor. In order to be able to define an escape region E ,

and at variance with [15], leaks of width w are introduced and centered on the positions

corresponding to the period-3 trajectory [16, 17]: E = ∪k∈{1,2,3}(x
(k) −w/2, x(k) +w/2),

where x(k) is the kth point of the attracting period-3 trajectory (marked with dots on the

horizontal axes of Fig. 2). We choose w = 0.04, a rather small value to approximately

conform with the approach of [15].

For coarse-graining, we partition the phase space X = [−1, 1] uniformly to an

integer number of boxes Bi, but ignore the boxes containing the leaks. We also ignore the

boxes from which all trajectories escape within a given T in the numerical simulations,

since the local finite-time Lyapunov exponent and escape rate are not meaningful for

these boxes.
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Figure 1: Examples for the depletion function (a) and for the slope of H1 (b) and H ′
1

(c) with respect to the logarithm of the minor-box size (the limit ε → 0 is approached

towards the right of the plot) as numerically obtained in the logistic map (11). Four

different major boxes Bi are shown. i increases from the left boundary of the interval

[−1, 1], and the major-box size is l = 0.04 (thus l = w). T = 7 for panels (b) and (c).

We first present numerical results in Fig. 1a for the depletion function Ni(t; t0)/N0,i
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in some boxes selected as examples. The depletion function (Fig. 1a) tends to be

constant at the beginning. While it becomes exponential for t > 11 approximately, its

shape between the initial constant and the asymptotic exponential regime varies much

between different boxes and can be rather complicated. That is, the escape process is

definitely not yet governed by the conditionally invariant measure for t < 11.

For an example of the scaling of H ′
1, we will take a time instant from the

intermediate regime, t = T = 7, when escape is already considerable but its properties

are not yet asymptotic. For reference, we first show in Fig. 1b the corresponding scaling

of the standard Rényi entropy H1 (Eq. (7) with f0 = 0 and fk = 1 for all k 6= 0) with

ε. As expected, space-filling is observed for small ε at our choice of a finite time. From

the major-box size (ε = l) to the space-filling regime, however, scaling appears to be

completely erratic. In view of this observation, it is remarkable to see in Fig. 1c that

the scaling of H ′
1 is much smoother. Typical properties seem to be a weaker slope for

large ε and a gradual approach of the space-filling regime. However, where this gradual,

universal-looking approach begins depends on the chosen box i, and irregularities are

still observable before the beginning of this gradual approach. These irregularities are

most pronounced in the example of i = 14, but also note the break at ε/l = 2−6 for

i = 11, and that the otherwise similar-looking lines for i = 4 and i = 19 cross each

other. We explain in Appendix A that we use the gradual approach (which numerically

turns out to be a power law with exponent −1) towards space-filling to identify ε∗

separately in each box but utilizing all accessible time intervals T , as already explained

in Sect. 4.3. We also illustrate in Appendix A that the characteristic properties of the

finite-time escape process are mainly linked to the irregular regime. This appears to be

so in spite of the fact that the irregularities imply the absence of a self-similar scaling.

While the meaningful characterization of the asymptotic escape relies on the

fractality of the conditionally invariant measure and on the corresponding exponential

depletion of the domain, Fig. 1 suggests that the finite-time behavior is qualitatively

different. See also the last paragraph of Section 3, where the particular choice of the

definitions (5) and (6) is explained.

Numerical results for the different local finite-time quantifiers are shown in the

different panels of Fig. 2, for various T but for a given l. Location dependence is indeed

observed for all quantifiers and looks irregular, apart from the symmetry (except for

the leaks) to the point x = 0, which results from the invariance of the time evolution

to the sign change of an initial condition. With increasing T , this location-dependence

is generally attenuated, and the quantifiers approach the asymptotic global values, as

expected. (The asymptotic global values have been computed by regarding the whole

phase space as a single box. For λ and κ, the formulae of Appendix B, (B.2) and (B.1),

influenced less by initial transients, have been utilized with T = 80. For D1, the slope of

H ′
1 has been taken at ε/l = 2−15 for T = 40.) There are a few boxes in Fig. 2c for which

convergence is not observed. In these boxes and some further ones, most trajectories

escape within a very short time, which makes numerical analyses difficult. We also have

boxes i from which no trajectories escape up to T and where, consequently, κ
(l)
i (T ) = 0
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Figure 2: The coarse-grained local finite-time Lyapunov exponent (a), escape rate (b),

and information dimension (c) in different major boxes Bi along the x axis as numerically

obtained in the logistic map (11). The positions x(k), k ∈ {1, 2, 3}, corresponding to

the attracting period-3 trajectory, on which the leaks of width w = 0.04 are centered,

are marked by black dots. The box size for coarse-graining is l = 0.04. The values are

connected with lines to guide the eye (lines are fainter over ignored boxes, see text).

Different values of T are taken as indicated in the legend. The asymptotic global values,

λ = 0.54, κ = 0.075 and D1 = 0.86, are included as gray dashed horizontal lines.

and D
(l)
1,i(T ) = 1.

In Fig. 3 we check the generalized Kantz–Grassberber relation for different times.

It illustrates that for small T there are boxes for which the quantifiers are rather far

from satisfying the local Kantz–Grassberger relation, Eq. (10), biased to the upper

side of the diagonal representing this relation. The largest biases, resulting in negative

horizontal coordinates in some cases, correspond to boxes with rapid escape mentioned

in the previous paragraph. (Note, however, that biases are generally still smaller than

deviations in the plots of Appendix B.) Of course, the quantifiers of boxes without

escaping trajectories fall to the upper right corner and thus satisfy the local Kantz–
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Figure 3: Relationship between the coarse-grained local finite-time version of the

quantities appearing in the local Kantz–Grassberger relation (10) as numerically

obtained in the logistic map (11), for T = 3, 5, 7, 10 as indicated in the panels. In

every panel, each data point corresponds to a single major box Bi with i running from 1

to 50 but skipping boxes overlapping with leaks or from which all trajectories escape by

T . The size of the boxes is l = 0.04. The Kantz–Grassberger relation is represented by

the diagonal line. The gray cross marks the point that corresponds to the asymptotic

global values λ = 0.54, κ = 0.075 and D1 = 0.86.

Grassberger relation. For increasing T , data points not falling to this corner generally

get closer to the diagonal, which may be regarded natural in view of the convergence of
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all quantifiers to the asymptotic values as seen in Fig. 2. However, the pattern according

to which the different boxes Bi approximate the relation is not at all erratic, especially

for large T . In particular, the approximations originating from the different boxes are

organized close to the diagonal (although still exhibiting a little bias), and for large

T (Figs. 3c-3d) they have a spread much broader than the distances of the individual

data points from the diagonal, confirming the relevance of Eq. (10) to describe the still

non-asymptotic behavior at this T . For increasing T , the spread of the data points along

the diagonal somewhat decreases, too, as they get closer to the point representing the

asymptotic values.

 0.01
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R
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, R
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||

T

l = 0.1
l = 0.06

⋅
l = 0.04

Figure 4: RMSD⊥ (solid) and RMSD‖ (dashed; see text) as a function of the integration

time T , for different values of the box size l.

We quantify these last observations by considering the distance of each data point

from the diagonal, and also the distance of its projected position on the diagonal from

the point representing the asymptotic global values. (Numerically, both coordinates of

the latter point are taken to be 1−κ/λ for this analysis, since it can be computed more

precisely than D1.) We then take the root mean square of these distances, RMSD⊥ and

RMSD‖, over all boxes to obtain aggregated quantifiers of the deviation from the local

Kantz–Grassberger relation and from the asymptotic values, respectively. According to

Fig. 4, both quantifiers of deviation decay with increasing T , and RMSD⊥ indeed decays

faster than RMSD‖, not only for l = 0.04 as in Fig. 3, but also for other choices of l.

Although the dependence on l is not monotonic, the deviations are the smallest for the

smallest l.

For a larger l, the general pattern of the scatter plot between the quantities on the

two sides of Eq. (10), presented in Fig. 5, remains the same as in Fig. 3, indicating the

robust nature of our numerical findings. However, as expected from Fig. 4, the Kantz–

Grassberger relation is satisfied with less accuracy, which might suggest that properly

resolving location dependence might be important.
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Figure 5: Same as Fig. 3 for l = 0.1.

6. Discussion

The construction of coarse-grained local finite-time quantifiers of transient chaos

presented in this paper may appear somewhat ad-hoc, especially due to the lack of a

firm theoretical foundation. The complete lack of exponential and power-law functional

forms for the depletion function and the entropy scaling from t0 to t0+T and from l to ε∗,

respectively, as numerically found in Fig. 1, may raise doubts if the quantifiers as defined

in Section 4 are meaningful at all. The convergence to the asymptotic values and to

satisfying the Kantz–Grassberger relation for increasing T is just a minimal requirement.
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However, the numerical observation of Fig. 3 about the diagonal alignment of data points

representing different boxes provides an indication of the existence of a non-asymptotic

dynamical relationship, Eq. (10), in localized regions of the phase space. It is possible

that this relationship is not best caught by our quantifiers, and one might be able to find

more appropriate definitions. However, our numerical experience does imply that these

quantifiers characterize some properties of chaotic escape at least when approaching but

not reaching the asymptotic regime with T .

The existence of a non-asymptotic relationship Eq. (10), a dynamical law, may

be even more interesting from a theoretical point of view. In a short formulation, this

law states that coarse-grained but localized chaotic properties of finite time scales vary

across the domain such that they approximately satisfy the Kantz–Grassberger formula

everywhere. Unfortunately, we are not able to provide a firm demonstration for this.

As a consequence, we are not able to assess the validity range.

We numerically show that the formula is satisfied better for increasing T . While

this might suggest later behavior to be more relevant for the relationship, we recall that

utilizing temporally instantaneous quantifiers (except for the fractal dimension) results

in a worse agreement with the relationship for any T (see Appendix B). This might

indicate that encompassing the full history from the initial time t0 would be important.

On the other hand, trajectories that escape the domain very early do not exhibit

any chaotic behavior. Their time evolution and escape are expected to be determined

by the global phase space structure of the system instead of properties of the non-

attracting chaotic set. Therefore, it is quite plausible that no universal relationship exists

between quantifiers of chaos for small T , and that these quantifiers do not really “tell”

anything about the system in this case. Since, as mentioned in the introduction, most

of the trajectories escape early, we might simply be lacking universal laws describing the

behavior of the majority of the trajectories. The relationship discovered in this paper

may prove to be a next-to-leading-order phenomenon before asymptotics is reached.

In our heuristic arguments we have assumed hyperbolic behavior for the open

chaotic system. Theoretical considerations concerning non-hyperbolic systems are

intrinsically more complex since they lack the universality of hyperbolic ones.

Nevertheless, a feature of most non-hyperbolic open systems is that the exponential

decay of the depletion function is replaced by power-law decay at long times, so

that the asymptotic escape rate is zero. But still in this case the Kantz-Grassberger

relationship is satisfied, because the chaotic saddle becomes locally space filling in non-

hyperbolic regions and its dimension the one of the full domain [14]. In addition, the

non-exponential decay appears only after a long transient during which the dynamics

usually has the features of hyperbolic systems. We are considering a finite-time regime

even earlier than that. For these reasons, and although we neither can provide a firm

theoretical justification nor have performed numerical tests, we expect our conclusions

on the validity of the generalization of the Kantz-Grassberger relationship to hold also

in non-hyperbolic situations.
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7. Outlook

Numerically, the coarse-grained local finite-time Lyapunov exponent and escape rate

are straightforward to compute. Once local finite-time properties of the chaotic escape

of trajectories are characterized by these quantifiers, one may use the discovered

relationship to draw conclusions about the corresponding fractality, i.e., of the spatial

organization of the trajectories involved. This relationship, a generalization of the

Kantz-Grassberger relation, relates dynamical and geometrical quantities in chaotic

flows in non-asymptotic regimes, and may thus be relevant in practical situations in

which infinite-time limits are never reached.

From a practical point of view, these quantifiers might be even more useful to

learn about differences in the rate of escape and the spatial organization of trajectories

emanating from different regions of the domain in association with a given time scale

T .

We envisage applications in the characterization of the structures generated during

oceanic sedimentation processes [24, 25, 26] or atmospheric dispersion [27]. The

approach is especially suited for the assessment of the spreading of pollutants originating

from localized emissions [28].

Finally, we briefly remark on the relation of our quantifiers to network

characteristics. As discussed in [11] (see also [12]), the boxes of the phase space used for

coarse-graining can be regarded as nodes of a directed weighted network [29], where the

link weights are defined by the number of trajectories starting in one box and finishing

in the other one after a given integration time, properly normalized. For open systems,

[13] already showed a correspondence between the box-based FTLE and the out-degree

of the given box in this network. Our definition (6) for the coarse-grained local finite-

time escape rate is recognized to be precisely the out-strength of the given box. As for

the fractal dimensions (9), a network-theoretical counterpart can hardly be imagined,

since our definition relies on internal properties of the box. However, the fulfillment of

the Kantz–Grassberger relation between the coarse-grained local finite-time information

dimension and the previous two quantities emphasizes the relevance of this dimension

on scales above the box size and thus for the dynamics represented by the network.

Potential applications of this framework are yet to be explored.
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Appendix A. How to identify ε∗

Our algorithm for the identification of an apparently suitable value of ε∗ is solely based

on numerical results. Nevertheless, our numerical experience seems robust, and we

believe that our algorithm, otherwise constructed along heuristic reasoning, provides a

meaningful ε∗.
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Figure A1: Examples for h = 1 − dH ′
1/d(− ln(ε/l)) as numerically obtained in the

logistic map (11) in different boxes Bi for T = 7 (a) and for different values of T in box

i = 11 (b). The box size is l = 0.04. h∗ is marked by a dot-dashed line in panel (b):

below h∗, the lines appear completely straight for decreasing ε∗ for all values of T (see

text for details).

In Fig. 1b of Section 5, we found a gradual approach of the space-filling regime for

decreasing ε in the scaling of H ′
1. In Fig. A1a, we plot the same data on a logarithmic

scale transformed as h = 1−dH ′
1/d(− ln(ε/l)) so that the nature of this gradual approach

becomes clear: numerically, it is evident that h converges to the space-filling regime for

decreasing ε according to a power law with exponent −1, independently of the chosen

box Bi. We prefer not providing with an explanation, but accepting this as numerical

evidence.

Within the regime of this power-law approach, obviously, no crossover point can

be defined where the scaling of H ′
1 would enter the space-filling regime. Furthermore,

since the approach follows the same power law for all boxes, it cannot give information

about differences in the scaling of H ′
1 between different locations within the domain.

Consequently, it might appear to be reasonable to exclude the regime of power-law
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approach from the definition of the coarse-grained local finite-time fractal dimension,

and place ε∗ where the power-law regime begins.

In Fig. A1b, we compare the scaling of H ′
1 via its transform h for different lengths T

for a single box chosen as an example. Apart from approaching the space-filling property

at increasingly smaller values of ε for increasing T (the lines shift to the right), which

is rather natural given that the shape of the ensemble of trajectories emanating from a

box becomes more and more complicated with time evolution, it also becomes obvious

that several different sections of apparent non-power-law and power-law approach may

be present for a single T (see e.g. T = 7, where power-law sections are found near

ε/l = 2−3 and below ε/l = 2−6 with non-power-law sections in between and for large

ε) and that such sections may appear, disappear and reappear for different values of

T . Since any deviation from a power law may carry unique information for a given

box Bi, only the last power-law section in h can be relevant for the identification of

ε∗. However, as Fig. A1b illustrates, the beginning of this last section varies very much

between different values of T due to the irregular introduction of non-power-law sections,

so that it might well be that not the entirety of the last power-law section is relevant.

According to our numerical experience, like in Fig. A1b, there is a value h = h∗

below which one always (for all values of T ) finds only power-law behavior. The section

below h∗ should thus reliably reflect universal and scale-free properties of the approach

of the space-filling pattern. We decided to identify h∗ based on the accessible lengths

T in our numerics and to choose ε∗ separately for each T as the smallest value of ε for

which h(ε;T ) > h∗.

For selecting h∗, we first fit least-squares lines (in logarithmic coordinates),

separately for each T , of increasing length to the smallest numerically accessible part

of h(ε;T ), and identify where the deviation from the linear shape increases the most

between two consecutive fitting steps. [In particular, we compute the logarithm of the

root mean square deviation in each fitting step (each step includes one more data point

at the larger end of the ε interval for fitting), and find the step where this logarithm

increases the most such that the new fitted slope deviates from 1 more than the slope

fitted in the previous step.] The value of h that just neighbors the one where the largest

increase has been identified gives a candidate for h∗ for each T . As the final h∗, we

simply select the minimum of these individual values.

Appendix B. Instantaneous definitions

Appendix B.1. Definitions

After long-enough time T from initialization, trajectories remaining in the domain are

distributed according to the conditionally invariant measure and are thus escaping the

domain at a constant rate. This rate, not influenced by initial transients, is captured by

the time derivative of the logarithm of the depletion function for any box. Therefore,

as an extension of this concept, we define the instantaneous version of κ
(l)
i (T ; t0) for an
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arbitrary time interval T > 0 as

κ̃
(l)
i (T ; t0) = −

d

dt

(

ln
Ni(t; t0)

N0,i

)
∣

∣

∣

∣

t=t0+T

. (B.1)

The reason why a trajectory remains within the domain for a long time T typically

is that it stays long in the vicinity of the saddle (or repeller) before escaping, visiting

different parts of the phase space according to the natural measure of the saddle. During

such a time evolution, nearby trajectories diverge according to λ, the average largest

positive Lyapunov exponent. Although the rate of divergence fluctuates in time for any

given pair of trajectories, λ can be recovered at a single time instant t′ by averaging

over an ensemble of trajectories. Such an ensemble can be obtained by initializing

trajectories in any box but keeping only those that stay in the domain long after t′

(one may consider e.g. those with T = 2(t′ − t0) with T sufficiently large, cf. the

sprinkler method for the visualization of the saddle, [30]). The rate of divergence can be

computed via time differentiation instead of taking into account the complete interval

from initialization. In this case, again, initial transients do not affect the behavior of

trajectories at t′ = t0 + T/2 for large T . With this limiting case in mind, we define the

instant-based counterpart of λ
(l)
i (T ; t0) for a specified box Bi as

λ̃
(l)
i (T ; t0) =

1

Ni(t0 + T ; t0)
×

∑

j|x0,j∈Bi∧τj(t0)>T

lim
∆t→0

1

2∆t
ln Λ

(

t0 +
T

2
+ ∆t;xj

(

t0 +
T

2

)

, t0 +
T

2

)

.(B.2)

Note that the quantity in the sum is a finite-time Lyapunov exponent, but evaluated

over an infinitesimal time interval ∆t starting from the position of the trajectory j at

time t0 + T/2. While the above formulation is for flows, the time derivatives should be

replaced by finite differences for maps.

Appendix B.2. Numerical observations

In Fig. B1, we replace one or both of λ
(l)
i (T ; t0) and κ

(l)
i (T ; t0) by their instantaneous

counterpart. Agreement with the generalized Kantz–Grassberger relation, Eq. (10),

is much worse than in Fig. 3c in any combination. The cloud of points representing

the different boxes generally looks unstructured, and signs of aligning to the Kantz–

Grassberger relation are never observed, in contrary to Fig. 3c. When λ̃
(l)
i (T ; t0) is used

in place of λ
(l)
i (T ; t0) (Figs. B1b and B1a), it turns out to be negative for some boxes. The

observation of an unstructured cloud of points for κ̃
(l)
i (T ; t0) and λ

(l)
i (T ; t0) (Fig. B1a)

stresses the non-triviality of the agreement observed in Fig. 3c: using quantifiers with

a correct asymptotic limit is not sufficient to guarantee that Eq. (10) is satisfied in any

pre-asymptotic regime.

The lack of the alignment of the cloud of points is also indicated by the nearly

same magnitude of RMSD⊥ and RMSD‖ in Fig. B2 which is the analogue of Fig. 4

with different combinations of the instantaneous quantifiers. The deviation from the
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Figure B1: Same as Fig. 3c with intantaneous quantities as indicated on the axes. The

gray cross marks the point that corresponds to the asymptotic global values λ = 0.54,

κ = 0.075 and D1 = 0.86.

Kantz–Grassberger relation in RMSD⊥ is generally larger in Fig. B2a than in Fig. 4,

and there is no convergence with increasing T to the asymptotic values in Figs. B2c and

B2a. These observations justify the choices of Sect. 4.
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