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Abstract

The mean values of non-homogeneously parameterized generating exponential
are obtained and investigated for the periodic Heisenberg XX model. The norm-
trace generating function of boxed plane partitions with fixed volume of their
diagonal parts is obtained as N -particles average of the generating exponential.
The generating function of self-avoiding walks of random turns vicious walkers is
obtained in terms of the circulant matrices that leads to generalizations of the
Ramus’s identity. Under various specifications of the generating exponential, the
N -particles averages arise for a set of inconsecutive flipped spins and for pow-
ers of the first moment of flipped spins distribution at large length of the chain.
These averages are expressed through the numbers of closed trajectories with
constrained initial/final positions. The estimates at large temporal parameter
are expressed through the numbers of diagonally restricted plane partitions char-
acterized by fixed values of the main diagonal trace or by fixed heights of the
diagonal columns in one-to-one correspondence with the flipped spins positions.

Keywords: symmetric functions, plane partitions, self-avoiding lattice walks, circu-
lant matrix, Ramus’s identity
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1 Introduction
Mathematical methods developed in quantum integrable models [1, 2] find application
in different branches of physics [3–14]. The Quantum Inverse Scattering Method [2,15]
provides a powerful approach to calculation of the correlation functions of the one-
dimensional spin-1/2 anisotropic XXZ model [16–21].

The XX chain is the free-fermion limit of the XXZ model. Despite its simplicity,
the model is attractive from different perspectives. In fact, it provides a base for study-
ing of entanglement entropy as a measure of entanglement [22]. Connection between
the XX chain and the low-energy QCD, as well as a possibility of a third order phase
transition [23] in the spin chain, are discussed in [24,25]. Intriguing relationship of the
model in question with the integrable combinatorics [26,27] attracts special attention.
The temperature correlation functions in the XX chain were calculated and studied
in the thermodynamical limit in [28–30].

Our approach to the investigation of correlation functions is based on the theory
of symmetric functions [31], which allows us to establish natural connection with the
different types of the directed lattice walks, partitions and plane partitions [32, 33].
In [34,35] it was shown that the multi-spin correlation functions over the ferromagnetic
vacuum are in one-to-one correspondence with the path configuration of the random
turns walkers [36, 37]. The correlation functions calculated over the ground state lead
to the more complicated structure of the lattice paths [27,38–40].

The enumeration of plane partitions with the different constrains is a classical part
of the enumerative combinatorics [41], and their number with the fixed values of diag-
onal parts is of particular interest [42]. The temporal evolution of the first moment of
particles distribution of the phase model [43] after special q-parametrization coincides
with the norm-trace generating function [44], while the partition function of the four
vertex model in the linearly growing external field under the so called “scalar product”
boundary conditions counts plane partitions with the fixed values of their diagonal
parts [45].

In the present paper we shall consider the generating exponential operator expQ,
where Q = 1

2

∑M
k=1 αk(1 − σzk) is the weighted inhomogeneous sum of flipped spins

with the parameters αk depending on the lattice sites. The average of expQ over N -
particles ground state is represented in the determinantal form. The obtained answer
allows to derive the generating function of boxed plane partitions with the fixed sums
of their diagonals. The generating function of N random turns walkers is expressed
in terms of the entries of products of the circulant matrix [46, 47]. The Ramus’s
identity [48] and its multiple series generalizations enable to obtain identities respected
by the numbers of K-steps lattice paths of N vicious walkers. These identities are
used then to obtain the temporal correlation functions of inconsecutive flipped spins
in terms of the superposition of the nests of self-avoiding lattice paths.

Organization of the paper. Section 1 is introductory. The outline is given by Sec-
tion 2. The N -particles Bethe state-vectors expressed through the Schur functions and
a combinatorial interpretation of the Schur functions in terms of nests of self-avoiding
lattice paths are presented in Section 3. The norm-trace generating function of the
boxed plane partitions with fixed sums of their diagonal parts is derived in Section 4.
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Section 5 is devoted to the transition amplitude over N -particles states which respects
the differential-difference equation. Solution to a descendant difference equation is ob-
tained in terms of the circulant matrices expressed through the lacunary sums of the
binomial coefficients. The power series representation for the generating function of
random turns walks of vicious walkers is obtained. The multiple series generalizations
of Ramus’s identity are derived in Section 5. The Boltzmann weighted average of the
generating exponential and its relationship with the lattice walks are considered in Sec-
tion 6. The temporal correlation functions of flipped spins are obtained in Section 7
and their combinatorial interpretation is given in terms of enumeration of self-avoiding
lattice walks and of diagonally restricted plane partitions. The N -particles Boltzmann-
weighted mean values are obtained for the generating exponential, for a projector onto
a set of inconsecutive flipped spins, and for powers of the first moment of flipped
spins distribution at large enough length of the periodic chain. The estimates at large
temporal parameter are obtained in terms of enumeration of boxed plane partitions
with diagonal elements subjected to additional restrictions. Discussion in Section 8
completes the paper.

2 Outline of the problem
The XX Heisenberg spin chain is described by the Hamiltonian:

H = Hxx − hSz , Hxx ≡ −
1

2

M∑
n,m=1

∆nmσ
+
n σ
−
m , (1)

Sz =
1

2

M∑
n=1

σzn , (2)

where Sz is the third component of total spin, h ≥ 0 is homogeneous magnetic field,
and the number of sites is M = 0 (mod 2). The local spin operators σ±n = 1

2
(σxn± iσyn)

and σzn depend on the lattice argument n ∈ E ≡ {1, 2, . . . ,M}, act on the state space
HM ≡ (C2)⊗M , and satisfy the commutation relations:

[σ+
k , σ

−
l ] = δkl σ

z
l , [σzk, σ

±
l ] = ±2δkl σ

±
l . (3)

The entries ∆nm (1) constitute M ×M hopping matrix ∆ and are of the form:

∆nm ≡ δ|n−m|,1 + δ|n−m|,M−1 , (4)

where δn,l(≡ δnl) is the Kronecker symbol. The matrix ∆ is a special type of so-called
circulant matrix [46, 47]. The periodic boundary conditions σ#

n+M = σ#
n , # ∈ {±, z},

∀n ∈ E , are imposed, and the Hamiltonian H (1) commutes with Sz.
Spin “up” and “down” states on nth site, |↑〉n and |↓〉n, are defined so that the

rising/lowering operators σ±n act on them as follows:

σ+
n |↓〉n = |↑〉n , σ−n |↑〉n = |↓〉n , σ−n |↓〉n = σ+

n |↑〉n = 0 . (5)
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From (5) it follows that two operators qn and q̄n,

qn ≡ σ−n σ
+
n =

1

2
(1− σzn) , q̄n ≡ σ+

n σ
−
n =

1

2
(1 + σzn) , (6)

are the local projectors since ensure

qn |↓〉n =|↓〉n , qn |↑〉n = 0 , q̄n |↑〉n =|↑〉n , q̄n |↓〉n = 0 . (7)

The state |⇑〉 ≡
⊗M

n=1 |↑〉n (spins “up” on all sites) is chosen as the reference state
(i.e., pseudovacuum [15]), and therefore the reversed spin on nth site |↓〉n will be called
flipped spin. Regarding (7), the sum Q(m) ≡

∑m
k=1 qk is the number of flipped spins

operator on first m sites. The total number of flipped spins operator is N ≡ Q(M),
and it commutes with H (1).

Let us introduce the sum of qn (6) taken with the “weights” αn ∈ C,

Q ≡
M∑
n=1

αnqn , (8)

and let us consider the mean value of the generating exponential operator eQ:

〈〈eQ〉〉β ≡ trace (eQρ) , ρ ≡ e−βH

trace (e−βH)
, (9)

where β is a real positive parameter, the Hamiltonian H is given by (1), (2), and ρ is
density matrix. The parameter β might be treated either as an “evolution” parameter
[34, 44] or inverse absolute temperature. The trace symbol in (9) implies summation
over states of the model and will be concretized in Section 7.

Generating functions provide a helpful tool for derivation of certain correlation
functions of the quantum integrable models [15]. The operator eQ is called ‘gener-
ating exponential’ since 〈〈eQ〉〉β (9) parameterized by the elements of M -tuple aM ≡
(α1, α2, . . . , αM) can be viewed as the generating function G(aM) ≡ 〈〈eQ〉〉β of the
mean values of products Πk ≡

∏l
j=1 qkj of the flipped spins projectors qn (6):

〈〈Πk〉〉β = trace
(
Πk ρ

)
(10)

= lim
{αk→0}

∂lG(aM)

∂αk1∂αk2 . . . ∂αkl
≡ lim
{αk→0}

∂lαk1αk2 ...αkl
G(aM) , (11)

where 1 ≤ k1 < k2 < · · · < kl ≤ M . The product Πk is the projector onto l in-
consequent flipped spins. Recall that the correlation functions of string Π̄l ≡

∏l
j=1 q̄j

of the projectors q̄j (6) and appropriate combinatorial implications have been studied
in [27,40,51].

When the elements of aM depend linearly on the site coordinate, aM = α·(1, 2, . . . ,M),
α ∈ R, the operator Q is reduced to Q = αM, where M would be considered as the
first moment of flipped spins distribution. The mean values of eαM are the generating
functions of the mean values of powers of M:

〈〈Ml〉〉β = lim
{α→0}

∂lα〈〈eαM〉〉β , M ≡
M∑
n=1

n qn . (12)
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The temporal evolution of eQ for Q proportional to the first moment of particles dis-
tribution has been studied in [44] for the quantum phase model.

With the aim of evaluation of 〈〈eQ〉〉β (9), 〈〈Πk〉〉β (10), and 〈〈Ml〉〉β (12), the
approach based on symmetric functions [27, 38] is developed in the present paper to
derive trace (eQe−βH) and relate it, at large enough M , with enumeration of random
turns walks of vicious walkers occupying specially prescribed initial/final positions
on the chain and with enumeration of boxed plane partitions subjected to certain
restrictions.

When α1 = α2 = · · · = αm = α and αm+1 = αm+2 = · · · = αM = 0 (conventional
choice), the operator Q takes the form Q = αQ(m), and G(aM) coincides with the
generating function G(α,m) of the correlation functions of z-components of spins for
the Heisenberg chains [17, 20, 29, 52]. The ‘emptiness formation probability’, being
probability of formation of (ferromagnetic) string of m consecutive “up” spins is given
by G(α,m) at α → −∞, [29, 50, 52]. The function G(α,m) has been derived in [53]
for strongly correlated bosons when Q(m) is the number of particles on a segment of
“length” m.

3 The state-vectors, the Schur functions and self-avoiding
lattice walks

3.1 The Bethe state-vectors

The present approach is based on the use of symmetric Schur functions [31] since this
is helpful for obtaining the correlation functions in the determinantal form [38–40].

Let a set of strictly decreasing integers µk, 1 ≤ k ≤ N , to constitute a strict
partition, i.e., N -tuple µ = (µ1, µ2, . . . , µN) where M ≥ µ1 > µ2 > . . . > µN ≥ 1.
Since the operators σ±n act on the states |↑〉n and |↓〉n according to (5), we define the
state |µ〉 corresponding to N flipped spins on the sites labelled by the “coordinates”
µk, and the corresponding conjugate state 〈ν|:

|µ〉 ≡
(

N∏
k=1

σ−µk

)
|⇑〉 , 〈ν| ≡ 〈⇑|

(
N∏
k=1

σ+
νk

)
, (13)

where |⇑〉 ≡
⊗M

n=1 |↑〉n. The states (13) provide a complete orthogonal base:

〈ν|µ〉 = δνµ ≡
N∏
n=1

δνnµn . (14)

The N -particles state-vectors |Ψ(uN)〉 are chosen in the form of linear combinations
of the states |µ〉 (13), [27, 38]:

|Ψ(uN)〉 =
∑

λ⊆{MN}

Sλ(u2
N) |µ〉 . (15)

The bold notations are adopted in (15) (and hereinafter) for N -tuples of numbers like
u2 ≡ (u21, u

2
2, . . . , u

2
N) (or u2

N , to point out the number of elements). Summation in (15)
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goes over partitions λ = (λ1, λ2, . . . , λN) consisting of weakly decreasing non-negative
integers: M ≥ λ1 ≥ λ2 ≥ · · · ≥ λN ≥ 0, where M ≡ M − N is the number of spins
“up”. The relationship between the parts (i.e., elements) of λ and µ is expressed as

λj = µj + j −N − 1 , 1 ≤ j ≤ N , (16)

or λ = µ− δN , where δN is the “staircase” partition

δN ≡ (N,N − 1, . . . , 2, 1) . (17)

The coefficients in (15) are given by the Schur functions Sλ defined by the Jacobi–Trudi
relation, [27]:

Sλ(xN) ≡ Sλ(x1, x2, . . . , xN) ≡
det(xλk+N−kj )1≤j,k≤N

V(xN)
, (18)

where V(xN) is the Vandermonde determinant

V(xN) ≡ det(xN−kj )1≤j,k≤N =
∏

1≤m<l≤N

(xl − xm) . (19)

With regard at (13), the conjugate state-vectors are given by

〈Ψ(vN)| =
∑

λ⊆{MN}

〈µ|Sλ(v−2N ) . (20)

The scalar product of the states (15) and (20) takes the form:

〈Ψ(vN) |Ψ(uN)〉 =
∑

λ⊆{MN}

Sλ(v−2N )Sλ(u2
N) , (21)

where the orthogonality (14) is used. Right-hand side of (21) is calculated by means
of the Cauchy–Binet formula expressed through the Schur functions, [54]:∑

λ⊆{LN}

Sλ(xN)Sλ(yN) =
detTL+N(xN ,yN)

V(xN)V(yN)
, (22)

where summation is over all partitions λ satisfying: L ≥ λ1 ≥ λ2 ≥ · · · ≥ λN ≥ 0. The
matrix TL+N(xN ,yN) ≡ (Tij(xN ,yN))1≤i,j≤N in (22) is given by the entries

Tij(xN ,yN) ≡ Tij ≡ hL+N(xiyj) , hP (x) ≡ 1− xP

1− x
, (23)

where P ∈ N. Equations (22) and (23) yield the scalar product (21):

〈Ψ(vN) |Ψ(uN)〉 =
1

V(v−2N )V(u2
N)

det
(1− (ui/vj)

2M

1− (ui/vj)2

)
1≤i,j≤N

. (24)
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Let us consider N -tuples ek, 1 ≤ k ≤ N , consisting of zeros except a unity at kth
place (say, from left). The Schur functions (18) labelled by a generic λ (λ1 = M or
λN = 0 for a non-generic λ) respect the property:

N∑
k=1

Sλ±ek(xN) =
( N∑
k=1

x±1k

)
Sλ(xN) . (25)

For a given xN , let us consider the set S ≡ {Sλ(xN)}λ⊆{MN} and subject its ele-
ments to the transformations BN : λ→ λ±ek, k ∈ {1, 2, . . . , N}. The transformations
BN map arbitrary Sλ(xN) either to another element of the set or to zero. However,
the transformations of the non-generic elements, λ → λ + e1 for λ = (M, . . .), or
λ→ λ− eN for λ = (. . . , 0), require a specification. Let us subject all xi ∈ xN to

xMi = (−1)N−1 , 1 ≤ i ≤ N . (26)

Then, the mapping of appropriate Sλ(xN) consists in transposition of the first/last
column in the nominator of (18) (j enumerates columns) to the last/first position.
Thus, the set SB ≡ S|(26) is mapped by BN into itself, and we come to

Definition 1: Assume that σ±n subjected to the periodicity σ±n+M = σ±n , ∀n ∈ E, are
used in |µ〉, 〈ν| (13). Then, (15) and (20) with the coefficients Sλ(xN) ∈ SB are called
N-particles Bethe state-vectors.

Let us consider the exponential parametrization u2
N = eiθN , where eiθN denotes N -

tuple (eiθ1 , eiθ2 , . . . , eiθN ). It is directly verified that the Bethe state-vectors |Ψ(eiθN/2)〉
introduced by Definition 1 are the eigen-states of H (1) and Sz (2) on the periodic
chain: (

Hxx − hSz
)
|Ψ(eiθN/2)〉 = EN(θN) |Ψ(eiθN/2)〉 , (27)

Sz |Ψ(eiθN/2)〉 =
(M

2
−N

)
|Ψ(eiθN/2)〉 , (28)

where N -tuple θN ≡ (θ1, θ2, . . . , θN) is defined, and (26) is nothing but the set of
the famous Bethe equations in the exponential form [29] for the XX chain: eiMθj =
(−1)N−1, 1 ≤ j ≤ N . The eigen-energy EN(θ) (27) is equal to

EN(θ) = −hM
2

+
N∑
j=1

ε(θj) , ε(θj) ≡ h− cos θj , (29)

where
θj =

2π

M

(
Ij −

N + 1

2

)
, 1 ≤ j ≤ N , (30)

and Ij are integers, M ≥ I1 > I2 > · · · > IN ≥ 1, constituting N -tuple IN =
(I1, I2, . . . , IN). The ground state solution is given by (30) with IN substituted by δN
(17):

θ g
j ≡

2π

M

(
N + 1

2
− j
)
, 1 ≤ j ≤ N . (31)
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Useful relations result from (15), (20), (27):

〈µN |e−βH |Ψ(eiθN/2)〉 = e−βEN (θN ) SλN (eiθN ),

〈Ψ(e−iθN/2)|e−βH |µN〉 = e−βEN (θN ) SλN (e−iθN ) .
(32)

Let us introduce N 2(uN) ≡ 〈Ψ(uN) | Ψ(uN)〉 for the scalar product (24) of the
states (15) at vN = uN . Then the square of the norm N 2(eiθN/2) parameterized by
solution to the Bethe equations (26) takes the form due to (22) and (24), [27]:

N 2(eiθN/2) =
MN

|V(eiθN )|2
=

MN∏
1≤m<l≤N

2(1− cos 2π
M

(Il − Im))
. (33)

Decomposition of unity is of the form:

I =
∑
{θN}

N−2(eiθN/2) |Ψ(eiθN/2)〉〈Ψ(eiθN/2) | , (34)

where (15) and (20) are taken into account, N 2(eiθN/2) is given by (33), and summation
is over all independent solutions to (26).

3.2 The Schur functions, self-avoiding lattice paths, and boxed
plane partitions

The Schur functions Sλ(xN) (18) are in one-to-one correspondence with the semi-
standard Young tableaux [31], and they admit an interpretation in terms of self-avoiding
lattice walks. A semi-standard Young tableau T of shape λ is a diagram possessing
λi cells in ith row (i = 1, . . . , N). The cells are filled with positive integers n ∈ N+

weakly increasing along rows and strictly increasing along columns (right-hand side of
Fig. 1). A nest of self-avoiding lattice paths C (left-hand side of Fig. 1) consists of
paths counted from the top of T and going from points Ci = (i, N + 1 − i) to points
(N,µi = λi + N + 1 − i). An ith lattice path makes λi upward steps, and it encodes
ith row of the tableau. The number lj of upward steps along the line xj coincides with
the number of occurrences of j in T. Then, Sλ(xN) (18) corresponding to T of shape
λ takes the form:

Sλ(xN) =
∑
{C}

N∏
j=1

x
lj
j , (35)

where summation is over all admissible nests C. Let us notice how (35) enables to
obtain (25). The set of all semi-standard Young tableau of shapes λ± ek, 1 ≤ k ≤ N ,
is characterized by the volume |λ| ± 1. Since

∑N
i=1 li = |λ|, one concludes that (25)

is valid. The representation (35) naturally arises in quantum models soluble by the
Quantum Inverse Scattering Method [15]. The value Sλ(1N) ≡ Sλ(1, 1, . . . , 1) gives
the number of nests of self-avoiding lattice paths, and it is equal to

Sλ(1N) =
∏

1≤j<k≤N

λj − j − λk + k

k − j
=

∏
1≤j<k≤N

µj − µk
k − j

. (36)
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µ1

µ2

µ3

µ4

µ5

µ6

С1

С2

С3

С4

С5

С6

x1 x2 x3 x4 x5 x6

1    1   3    3    5
2    4   4    6
4    5

Figure 1: A nest C of N = 6 lattice paths and semi-standard tableau T of shape
λ = (5, 4, 2, 0, 0, 0).

Let us consider the nest of N self-avoiding lattice paths with equidistantly arranged
start and end points Cl and Bl, respectively (1 ≤ l ≤ N). Only upward and rightward
steps are allowed for the path in the nest so that an lth one is contained within the
rectangle whose lower left and upper right vertices are Cl and Bl, respectively. Besides,
the total numberM = M −N of upward steps and the total number N of rightward
steps are the same for each path belonging to the nest. Then the nest described is
called watermelon (see Fig. 2).

Watermelon can be viewed as a ‘fusion’ (‘sewing’) of the nest of paths C and of
a conjugate nest of paths B along the points on the ‘dissection’ line (wavy line in
Fig. 2). The partition µ determines the ordinates of the points (N,µl), M ≥ µ1 >
µ2 > · · · > µN ≥ 1, which are the end points of the nest C and which must coincide
with those characterizing the conjugate nest B. For instance, a typical watermelon in
Fig. 2 is given by the nest C (see Fig. 1) fused with a conjugate nest B which can be
restored from Fig. 2, [27]. The Schur function corresponding to the conjugate nest of
N self-avoiding paths is

Sλ(yN) ≡ Sλ(y1, y2, . . . , yN) =
∑
{B}

N∏
r=1

yM−brr , (37)

where br is the number of upward steps along yr, and summation is over all nests B.
Under the q-parametrization

v−2 = qN ≡ (q, q2, . . . , qN) , u2 = qN/q , (38)

the scalar product (21) takes the form:

〈Ψ(q−1/2N )|Ψ((qN/q)
1/2)〉 =

∑
λ⊆{MN}

Sλ(qN)Sλ

(qN
q

)
. (39)
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Then, the number of watermelons characterized by the points Cl and Bl (1 ≤ l ≤ N)
is given by (39) at q → 1:

lim
q→1
〈Ψ(q−1/2N )|Ψ((qN/q)

1/2)〉 =
∑

λ⊆{MN}

Sλ(1N)Sλ(1N)

=
∑

µ⊆{MN}

(∑
{C}µ

1
)(∑
{B}µ

1
)
, (40)

where the notations {C}µ and {B}µ are to stress that the summations are over the
nests characterized by specific µ (more on the graphical interpretation in [27]).

B2

B1

B3

B4

B5

B6

y1 y6y2 y3 y4 y5

µ1

µ2

µ3

µ4

µ5

µ6

С1

С2

С3

С4

С5

С6

x1 x2 x3 x4 x5 x6

Figure 2: Watermelon as the nest of lattice paths atM = 6, N = 6.

A boxed plane partition π is an array (πij)i,j≥1 of non-negative integers that satisfy
πij ≥ πi+1,j and πij ≥ πi,j+1 for all i, j ≥ 1, [33,41]. A boxed plane partition is contained
in L×N ×M box, if πij ≤M for all i and j, and πij = 0, whenever i > L or j > N .
Plane partitions are interpreted as stacks of unit cubes so that the height of a stack at
point (i, j) is πij (left-hand side of Fig. 3). The trace of sth diagonal of plane partition
counted from left down corner is tr sπ ≡

∑
N+j−i=s πij, 1 ≤ s ≤ 2N−1. The volume of

π is |π| =
∑2N−1

s=1 tr sπ. The plane partition and the corresponding array are depicted
in Fig. 3. There exists bijection between the watermelon configuration of self-avoiding
lattice paths (Fig. 2) and the plane partitions (Fig. 3), [27]. The bijection is such
trNπ = |λ| (all traces are provided in Fig. 3).

The generating functions of boxed plane partitions arise from the correlation func-
tions of the XX model [38–40], the quantum phase model [44], the four-vertex model
[45].
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4 4
44

5
5

5
5

3
3 3

2
2

2
2 2

2
2

1
1

1
1

2 3 5 8 10 11 8 7 6 2 1

Figure 3: Plane partition equivalent to watermelon in Figure 2 (|λ| = 11).

4 Norm-trace generating function of plane partitions
as form-factor of expQ

4.1 Flipped spins and plane partitions with columns of fixed
heights

The commutation rule
eQ σ±k = e∓αkσ±k e

Q (41)

and Q |⇑〉 = 0 allow us to obtain the average of eQ over ‘off-shell’ (i.e., arbitrarily
parameterized) N -particles states (15) and (20):

〈Ψ(vN) | eQ |Ψ(uN)〉 = PM(v−2N ,u2
N , aM) , (42)

where

PM(v−2N ,u2
N , aM) ≡

∑
λ⊆{MN}

Sλ(v−2N )Sλ(u2
N)

N∏
i=1

eαµi (43)

is the sum depending on the elements of M -tuple aM ≡ (α1, α2, . . . , αM), while the
parts of λ and µ are related according to (16). The use of the generic Cauchy–Binet
formula [54] leads to

Proposition 1: The sum PM(v−2N ,u2
N , aM) (43) parameterized by M-tuple aM and

by the arguments v−2N and u2
N of the Schur functions admits the determinantal repre-

sentation:

PM(v−2N ,u2
N , aM) =

1

V(u2
N)V(v−2N )

det

(
M∑
n=1

eαn
(u2i
v2j

)n−1)
1≤i,j≤N

, (44)

where the Vandermonde determinant (19) is used.

11



Off-shell N -particles average of the projector Πk defined in (10) arises from the
series representation (42) provided that the notations for l-tuples kl ≡ (k1, k2, . . . , kl)
and the “reversed” one k̄l ≡ (kl, kl−1, . . . , k1) are adopted:

〈Ψ(vN) | Πk |Ψ(uN)〉 = lim
{αk→0}

∂ lαk1 ,αk2 ,...,αkl

×〈Ψ(vN) | eQ |Ψ(uN)〉 = P̃M(v−2N ,u2
N ,kl) , (45)

where the tilded notation P̃M(v−2N ,u2
N ,kl) implies the sum

P̃M(v−2N ,u2
N ,kl) ≡

∑
λ̃⊆{MN}

Sλ̃(v−2N )Sλ̃(u2
N) . (46)

Summation in (46) goes over λ̃ ≡ λ̃N = µ̃N − δN , where µ̃N is a strict partition such
that its l non-consecutive parts coincide with the elements of l-tuple k̄l, and δN is given
by (17).

The average of Πk under the q-parametrization (38) arises from (45) and (46):

〈Ψ(q−1/2N ) | Πk |Ψ((qN/q)
1/2)〉 = P̃M

(
qN ,

qN
q
,kl

)
. (47)

Equation (47) in the case kl = l ≡ (1, 2, . . . , l) takes the form:

〈Ψ(q−1/2N ) |
l∏

i=1

qi |Ψ((qN/q)
1/2)〉 = P̃M

(
qN ,

qN
q
, l
)
, (48)

so that µ̃N and λ̃N = µ̃N − δN in (46) are concretized as follows:

µ̃N = (µ1, µ2, . . . , µN−l, l, l − 1, . . . , 1) , (49)

λ̃N = (λ1, λ2, . . . , λN−l, 0, 0, . . . , 0) , (50)

and summation in P̃M (46) is overM≥ λ1 ≥ λ2 ≥ · · · ≥ λN−l ≥ 0.
According to (40), right-hand side of (48) provides the generating function of the

number of watermelons depicted in Fig. 2:

〈Ψ(1N) |
l∏

i=1

qi |Ψ(1N)〉 = P̃M(1N ,1N , l)

= lim
q→1

∑
λ̃⊆{MN}

Sλ̃(qN)Sλ̃

(qN
q

)
=

∑
λ̃⊆{MN}

Sλ̃(1N)Sλ̃(1N) .

(51)

Indeed, Sλ̃(1N) corresponds to the paths connecting equidistant points Ci = (i, N +
1− i) with non-equidistant ones (N, µ̃i), where µ̃i are given by (49). The nest in Fig. 1
is just depicted for µ̃ (49) since an ith path makes λi ∈ λN−l ≡ (λ1, λ2, . . . , λN−l) steps

12



upwards at 1 ≤ i ≤ N − l, while only rightward steps are allowed at N − l+ 1 ≤ i ≤ N
(l = 3 in Fig. 1). The following identity is respected by Sλ̃(1N) due to (36) and (50):

Sλ̃(1N) = SλN−l(1N)×
N−l∏
k=1

N∏
j=N−l+1

λk + j − k
j − k

. (52)

In the case of l = 0, Eq. (51) is reduced to (40). Therefore, 〈Ψ(1N)|Ψ(1N)〉 is
given by the sum PM(1N ,1N ,0M) (43) equal to the number of such watermelons that
upward steps are allowed for all paths (including, in comparison with Eq. (51), the
paths from (N − l + 1)th to N th). The number PM(1N ,1N ,0M) is also interpreted as
the number A(N,N,M −N) of plane partitions in N ×N × (M −N) box (see Figure
3), [27]:

〈Ψ(1N) |Ψ(1N)〉 = PM(1N ,1N ,0M)

= A(N,N,M −N) =
N∏
k=1

N∏
j=1

M −N + k + j − 1

k + j − 1
. (53)

As far as the mapping between the watermelon configurations and the plane parti-
tions is concerned, the watermelons characterized by µ̃N (49) and λ̃N (50) are mapped
to such stacks of cubes that l × l square on the bottom of N × N ×M box remains
empty. The specific watermelon in Figure 2 is characterized by µ4 = 3, µ5 = 2, µ6 = 1,
and λ4 = λ5 = λ6 = 0. The dashed 3× 3 square is shown in Figure 3. It is forbidden
for the cubes constituting the specific stacks to occupy the dashed square. There-
fore, P̃M(1N ,1N , l) (51) enumerates the plane partitions restricted additionally by an
“excluded” part of the bottom surface. Generally, P̃M(1N ,1N ,kl) corresponding to
(48) enumerates the plane partitions with l columns of prescribed height in one-to-one
correspondence with parts of k̄l.

4.2 Norm-trace generating function

The norm-trace generating function G(N,N,M| q, γ), i.e., the generating function of
plane partitions with unbounded parts and with fixed height of the main diagonal
in a box of height M and with bottom of size N × N has been derived in [42] and
generalized in [55]. The determinantal representation for G(N,N,M| q, γ) has been
derived for the model of strongly correlated bosons [44]. The determinantal formula
for the generating function of plane partitions with fixed heights of several diagonals
has been obtained by means of the four-vertex model in inhomogeneous field [45].

The norm-trace generating function G(N,N,M| q, γ) for the Heisenberg XX chain
arises from Eqs. (42) and (43) under the q-parametrization (38). Indeed, let us consider
the linear parametrization of aM and specify αn so that eαn = γn, 0 < γ ≤ 1. We shall
use 〈eQ(γ)〉N,q to denote the corresponding q-parameterized average (42):

〈eQ(γ)〉N,q ≡ 〈Ψ(q−1/2N ) | eQ(γ) |Ψ((qN/q)
1/2)〉 . (54)

One formulates the following

13



Proposition 2: The determinantal representation for the norm-trace generating func-
tion of plane partitions with fixed height of their diagonal parts in a box of height M
and bottom of size N ×N is given:

G(N,N,M| q, γ) = γ
−N
2

(N+1) 〈eQ(γ)〉N,q

=
det
(
hM(γ qi+j−1)

)
1≤i,j≤N

V(qN/q)V(γ qN)
, (55)

where hM is defined by (23).

Proof: First of all, one obtains from (43) and (44):

γ
−N
2

(N+1) 〈eQ(γ)〉N,q =
∑

λ⊆{MN}

γ|λ|Sλ

(q
q

)
Sλ(q) (56)

=
1

V(qN/q)V(γ qN)
det

(
M−1∑
n=0

γnqn(i+j−1)

)
1≤i,j≤N

, (57)

where |λ| =
∑N

i=1 λi is the weight of λ. The relation |µ| = |λ| + N
2

(N + 1) is used
for obtaining (56). The homogeneity property γ|λ|Sλ(q) = Sλ(γ q) is used to pass
from (56) to (57). The series in right-hand side of (56) is by definition the norm-
trace generating function of plane partitions with fixed height of their diagonal parts
in N ×N ×M box, and therefore the statement (55) for G(N,N,M| q, γ) is valid due
to the determinanal formula (57), [44]. Equation (55) at γ = 1 gives the determinantal
formula for the generating function of boxed plane partitions in N ×N ×M box:

lim
q→1

G(N,N,M| q, 1) = A(N,N,M) , (58)

where the number of plane partitions A(N,N,M) is given by (53) (MacMahon formula,
[33]). �

Assume that the approximation hM(x) ' (1 − x)−1 is valid at |x| ≤ 1 and large
enough M . Then, one obtains from (55):

lim
M→∞

G(N,N,M| q, γ) =
det
((

1− γqi+j−1
)−1)

1≤i,j≤N

V(qN/q)V(γ qN)
(59)

=
N∏
i=1

N∏
j=1

1

1− γqi+j−1
. (60)

Evaluation of the Cauchy-type determinant in right-hand side of (59) leads to the
double product (60), which is nothing but the norm-trace generating function of plane
partitions with unbounded height [44]. Further, one obtains from (60) the limiting
expression

lim
N/M�1,N→∞

G(N,N,M| q, γ) =
∞∏
n=1

1

(1− γqn)n
,

which is related with the partition function of the five-dimensional supersymmetric
Yang-Mills theory [56].
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5 The transition amplitude and random turns walks
of vicious walkers

5.1 Multi-particles transition amplitude

One-dimensional random walks of vicious walkers who annihilate one another whenever
they meet at the same lattice site attract attention after [36], and so-called lock step,
[57], and random turns models, [37, 58], are distinguished. Suppose that there are N
walkers on a one-dimensional lattice. In the random turns model only a single randomly
chosen walker moves at each tick of a clock to one of closest sites while the rest are
staying. It has been proposed in [34,35] to interpret random movements in the random
turns model as transitions between spin “up” and “down” states of the Heisenberg XX
chain.

The generating function of the lattice trajectories ofN random turns vicious walkers
(a typical example in Fig. 4) is given by N -particles transition amplitude corresponding
to the XX Heisenberg model described by the Hamiltonian (1):

GµL;µR(β) ≡ 〈µL| e−βHxx+βhSz |µR〉 , (61)

which is parameterized by parts of µL ≡ (µL1 , µ
L
2 , . . . , µ

L
N) and µR ≡ (µR1 , µ

R
2 , . . . , µ

R
N)

interpreted as initial and final positions of the walkers. The representation (61) is
re-expressed as follows:

GµL;µR(β) = eβh(
M
2
−N)G 0

µL;µR(β) , (62)

G 0
µL;µR(β) ≡ 〈µL| e−βHxx |µR〉 , (63)

provided that the commutation relation

eβhS
z

σ±n = e±βhσ±n e
βhSz

is accounted for together with Sz |⇑〉 = M
2
|⇑〉. The exponential factor in right-hand

side of (62) is due to coupling of the spin chain to the homogeneous magnetic field, and
the corresponding exponent is proportional to the eigen-value (28) of the total spin.

The present approach to GµL;µR(β) (61) is relied upon that developed in [34,39] for
G 0

µL;µR(β) (63). Indeed, differentiating (62) over β and using the commutation relation

[Hxx, σ
−
l1
σ−l2 . . . σ

−
lN

] =
N∑
k=1

σ−l1 . . . σ
−
lk−1

[Hxx, σ
−
lk

]σ−lk+1
. . . σ−lN (64)

together with Hxx |⇑〉 = 0 and σzk |⇑〉 =|⇑〉, one obtains the differential-difference
equation at fixed µL:

d

dβ
GµL;µR(β) = h

(M
2
−N

)
GµL;µR(β)

+
1

2

N∑
k=1

(
GµL;µR+ek(β) + GµL;µR−ek(β)

)
, (65)
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Figure 4: Random turns vicious walkers.

where ek is N -tuple defined in (25) (and a similar equation for fixed µR). Equation
(65) is supplied with the initial condition GµL;µR(0) =

∏N
m=1 δµLm,µRm , as well as with

the periodicity condition:

GµL;µR(β) = GµL+Mek;µR(β) = GµL;µR+Mek(β) , ∀k ∈ E . (66)

Self-avoiding walks of vicious walkers are described by solution to (65) provided that
the non-intersection condition is imposed: GµL;µR(β) = 0, if µRk = µRp (or µLk = µLp ) for
any 1 ≤ k, p ≤ N .

The orthonormality relation is valid for the Schur functions (18):

1

MN

∑
{φN}

|V(eiφN )|2 SλL(e−iφN )SλR(eiφN ) = δλL,λR , (67)

where δλL,λR is unity for coinciding λL and λR or zero otherwise. The sum in (67) is over
N -tuples φN = (φk1 , φk2 , . . . , φkN ), where φn = 2π

M

(
n − M

2

)
and M ≥ k1 > k2 > · · · >

kN ≥ 1. Moreover, V(eiφN ) is defined by (19), and e±iφ ≡ (e±iφ1 , e±iφ2 , . . . , e±iφN ).
From (25) and (67) one obtains, [34,39], the following

Statement 1: Solution to (65) respecting the initial condition GµL;µR(0) = δλL,λR, as
well as the periodicity condition (66), is of the form:

GµL;µR(β) =
1

MN

∑
{φN}

e−βEN (φN )|V(eiφN )|2 SλL(eiφN )SλR(e−iφN ) , (68)

where λL,R = µL,R− δN , EN(φN) is defined by (29), and the sum is the same as (67).
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The solution to (65) at h = 0, which respects the non-intersection requirement, arises
from (68), and it is appropriate, [34,37,51], to provide it in the determinantal form:

G0
µL;µR(β) = det

(
G0
µLn ;µ

R
k

(β)
)
1≤n,k≤N . (69)

Here G0
j;m(β) is the solution to (65) at N = 1 and h = 0:

G0
j;m(β) =

1

M

M∑
n=1

eβ cosφn eiφn(m−j) , (70)

and φn = 2π
M

(
n− M

2

)
.

Provided that 1
M

∑M
n=1 is replaced by 1

2π

∫ π
−π dp at increasing M , the function

G0
j;m(β) (70) is reduced to the modified Bessel function of the first kind,

G0
j;m(β) = I|j−m|(β) , (71)

where the power series is valid at K + |j −m| = 0 (mod 2):

I|j−m|(β) =
∑

K≥|m−j|

(β/2)K(K−|j−m|
2

)
!
(K+|j−m|

2

)
!
. (72)

Assume that DKs is the Kth order differentiation with respect to s at s = 0. Application
of DKs to (72) gives the number |PK(m→ j)| of lattice paths consisting of K steps
between mth and jth sites on the infinite axis in terms of the binomial coefficient, [34]:

|PK(m→ j)| =
(
|m− j|+ 2L

L

)
,

(
K
L

)
≡ K!

L! (K − L)!
, (73)

where L is one-half of the total number of turns: L ≡ (K − |m− j|)/2.

5.2 The random turns walks and the circulant matrix

Acting by DKβ/2 on GµL;µR(β) (61) one obtains the average of Kth power of the total
Hamiltonian:

G(µL;µR |K) ≡ DKβ/2GµL;µR(β) = 〈µL| (−2H)K |µR〉 . (74)

It follows from (74) that G(µL;µR |0) = δµL,µR due to the orthogonality (14), where
δµL,µR is unity for coinciding µL and µR, or zero otherwise. With regard at (74), let
us represent the solution to (65) in the power series form:

GµL;µR(β) =
∞∑
K=0

(β/2)K

K!
G(µL;µR |K) , (75)

where the coefficients G(µL;µR |K) respect the equation which is due to substitution
of (75) into (65):

G(µL;µR |K + 1) = h(M − 2N)G(µL;µR |K)

+
N∑
k=1

(
G(µL;µR + ek |K) + G(µL;µR − ek |K)

)
. (76)
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Equation (76) is a difference version of (65) of the type considered in [37]. It is also
supplied with the initial condition G(µL;µR |0) = δµL,µR , as well as with appropriate
periodicity and non-intersection requirements.

Equation (76) at h = 0 provides an “isotropic” version of a more general equa-
tion derived in [37] for the random turns model with non-coincidence of the “weights”
corresponding to left and right jumps of a randomly chosen walker. Furthermore, a
comparison with [37] demonstrates that not only jumps to neighboring sites are al-
lowed, but there is an opportunity for all walkers to stay stationary since the spin
chain is coupled to the homogeneous magnetic field h (cf. Figure 4).

Let us assume that G0
µL;µR(β) (63) is also given by the series analogous to (75),

where the coefficients G 0(µL;µR |K) are defined as follows:

G 0(µL;µR |K) ≡ DKβ/2G 0
µL;µR(β) = 〈µL| (−2Hxx)

K |µR〉 . (77)

The average G 0(µL;µR |K) respects (76) at h = 0 since G0
µL;µR(β) is described by (65)

at h = 0. Expanding the exponential in (62) and taking (75) into account, one obtains
the identity:

G(µL;µR |K) =
K∑
i=0

(
K
i

)(
h(M − 2N)

)i
G 0(µL;µR |K − i) , (78)

where
(
K
i

)
is the binomial coefficient (73). Right-hand side of (78) is reduced at h = 0

to G 0(µL;µR |K) since only i = 0 contributes.
The circulant matrix ∆ (4) leads to the N = 1 solution of (76) at h = 0:

G0(j,m|K) = 〈⇑| σ+
j (−2Hxx)

Kσ−m |⇑〉 =
(
∆K

)
jm
, (79)

where
(
∆K

)
jm

is the entry of Kth power of ∆, which fulfils(
∆K+1

)
jm

=
(
∆K

)
j,m+1

+
(
∆K

)
j,m−1 . (80)

The initial condition is respected since G0(j,m|0) is the Kronecker symbol δjm. The
periodicity requirement is also consistent with the circulant matrix (4).

Position of the walker on the chain is labelled by the spin “down” state, while the
empty sites correspond to spin “up” states. Let |P 0

K(j → m)| to denote the number of
K-step paths of a single walker between jth and mth sites (h = 0). Evaluation of (77)
corresponding to N = 1 results in |P 0

K(j → m)| =
(
∆K

)
jm

in agreement with (79).
Let us turn to the lattice paths made by N vicious walkers with initial and final

positions arranged as the strict partitions µL and µR, respectively, and let |P 0
K(µL →

µR)| be the number of sets of paths characterized by the total number of steps K. We
formulate the following

Proposition 3: The number of sets of self-avoiding lattice paths of N vicious walkers
with the total number of steps K is equal to the amplitude G 0(µL;µR |K) solving (76)
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at h = 0:

|P 0
K(µL → µR)| = G 0(µL;µR|K)

=
∑
|n|=K

P (n) det
(
(∆nj)µLi ;µRj

)
1≤i,j≤N , (81)

where n = (n1, n2, . . . , nN), |n| ≡ n1+n2+. . .+nN , P (n) is the multinomial coefficient,

P (n) ≡ (n1 + n2 + . . .+ nN)!

n1!n2! . . . nN !
, (82)

the entry (∆n)jm is defined by (79), and (∆0)jm = δjm.

Proof: Equation (81) is reduced at K = 0 to the orthogonality (14) and conjectured
at arbitrary K due to validity of (77) (see Appendix I). Here we shall verify that (81)
indeed respects (76) (h = 0) as the generalization of (80) at N > 1.

Induction with respect of N enables to prove Eq. (81) provided that the base case
N = 1 is given by (79) and (80). The induction step is to assume that (81) fulfills (76)
(h = 0), where the partitions µL and µR are of the length N − 1 so that the minors in
(81) are of the size (N − 1)× (N − 1).

The proof is based on the identity for G 0(µL;µR |K + 1), where µL and µR are of
the length N :

G 0(µL;µR |K + 1) =
K+1∑
p=0

(
K + 1
p

) N∑
m=1

(−1)N+mG(K + 1− p, p,m) . (83)

The shortening notation is introduced in (83):

G(K,P,m) ≡ G 0(
m
µ
L

N−1;µ
R
N−1 |K)G 0(µLm;µRN |P ) , (84)

where
m
µ
L

N−1 ≡ (µL1 , µ
L
2 , . . . , µ

L
m−1, µ

L
m+1, µ

L
N), µR

N−1 = (µR1 , µ
R
2 , . . . , µ

R
N−1), and K, P , m

are non-negative integers. The identity (83), (84) is due to expanding the determinant
in (81) along N th column.

The identity (83) is used in right-hand side of equation (76) (after K + 1 7→ K),
and this gives:

N∑
k=1

G 0(µL;µR ± ek |K) =
K∑
p=0

(
K
p

) N∑
m=1

(−1)N+m

×G 0(µLm;µRN |p)
N−1∑
k=1

G 0(
m
µ
L

N−1;µ
R
N−1 ± ek |K − p)

+
K∑
p=0

(
K
p

) N∑
m=1

(−1)N+m

×G 0(µLm;µRN ± 1 |p)G 0(
m
µ
L

N−1;µ
R
N−1 |K − p) . (85)

19



In turn, the series (83) itself is represented as

G 0(µL;µR |K + 1) =
N∑
m=1

(−1)N+mG(K + 1, 0,m) (86)

+
K∑
p=1

(
K + 1
p

) N∑
m=1

(−1)N+mG(K + 1− p, p,m) (87)

+
N∑
m=1

(−1)N+mG(0, K + 1,m) , (88)

where the notation (84) is used. Further, the Pascal relation(
K + 1
p

)
=

(
K

p− 1

)
+

(
K
p

)
(89)

is used in the line (87). The representation (86), (87), (88) is compared with two sums
in right-hand side of (85) so that (86) is matched to p = 0 in the first sum, and (88) is
matched to p = K in the second sum. The base case is applied to G 0(µLm;µRN |p) in the
contribution corresponding to the first term in (89), whereas the induction assumption
is applied to G 0(

m
µ
L

N−1;µ
R
N−1 |K+1−p) in the contribution corresponding to the second

term in (89). The coincidence of G 0(µL;µR |K+1) with the sum of two identities (85)
is thus established.

The determinantal expression (81) ensures validity of the non-intersection require-
ment and provides the number |P 0

K(µL → µR)| of K-step sets of paths traced by N
vicious walkers. �

Right-hand side of (78) is re-arranged as the polynomial of two variables, h(M−N)
and −hN :

PK(µL
N ,µ

R
N) ≡

∑
p1+p2+p3=K

P (p1, p2, p3)

× |P 0
p3

(µL
N → µR

N)|
(
h(M −N)

)p1 (−hN)p2 , (90)

where the coefficient P (p1, p2, p3) is defined by (82). The coefficients |P 0
p3

(µL → µR)|
enumerate, due to Proposition 3, p3-step sets of paths of N walkers. Recall that either
a single walker chosen randomly jumps to one of closest sites with equal probabilities
or all walkers are staying stationary. Therefore PK(µL

N ,µ
R
N) (90) corresponds to a

superposition of sets of (K − p1)-step paths at each fixed 0 ≤ p1 ≤ K. The product
P (p1, p2, p3)|P 0

p3
(µL

N → µR
N)| gives the number of sets of N paths such that p3 times

one walker jumps and p2 times all walkers are staying stationary (p2 + p3 = K − p1).
A typical configuration of N = 6 paths for p1 = 0, p2 = 1, and p3 = K − 1 is shown
in Fig. 4 (K = 13) where dashed lines imply that walkers are staying. As far as
|P 0
p3

(µL → µR)| (81) is concerned, the configuration in Fig. 4 corresponds to n1 = 0,
n2 = 1, n3 = 3, n4 = 1, n5 = 4, n6 = 3.
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5.3 Generalized Ramus’s identity

The present section is devoted to a relationship between the powers of the circulant
matrix ∆ (4) and the binomial coefficients expressing the numbers of lattice paths (73).

Calculation of the entries of integer positive powers of circulant matrices attracts
attention [59–61]. For instance, the entries

(
∆K

)
jm

at K arbitrary are obtained in
[59, 60] for ∆ of even order in terms of the Chebyshev polynomials. In the present
paper expression of

(
∆K

)
jm

by means of Ramus’s identity [48] is used (cf. [62, 63]).
The latter provides the entries in terms of the binomial coefficients thus stressing the
connection with enumeration of the lattice walks (cf. (73)).

The vanishing
(
∆K

)
jm

= 0 occurs for the circulant matrix (4) in the case K −
|j − m| = 1(mod 2). In the case K − |j − m| = 0(mod 2), the Ramus’s identity (see
Appendix II) allows us to formulate

Proposition 4: The row-column indices j,m ofM×M matrix respect |j−m| ≤M−1.
Let us assume that L ≡ K−|j−m|±pM

2
is chosen so that 0 ≤ L ≤ M

2
and p ∈ N. Then,

(
∆K

)
jm

=

(
K

Lδ̄L,M
2

)
M/2

, (91)

where δ̄L,M
2
≡ 1− δL,M

2
, and the notation for the lacunary sum of binomial coefficients

is used, [64]: (
K
L

)
M/2

≡
(
K
L

)
+

(
K

L+ M
2
· 1

)
+

(
K

L+ M
2
· 2

)
+ . . . . (92)

Proof: The transition element (77) arising from (70) takes the form (recall that M is
even):

G 0(j;m|K) =
2K+1

M

M
2
−1∑

l=0

cosK
(2πl

M

)
cos
(2πl|m− j|

M

)
+
(
(−1)K+|m−j| − 1

)2K

M
. (93)

The Ramus’s identity (AII.1) allows us to re-express the series in (93) provided that
n and n − 2t are replaced by K and K − 2L, respectively. As the result, the validity
of (91) is verified for K − |m − j| = 0(mod 2) at L 6= M

2
. As it is clear from (93) and

(AII.1), the equivalence of the cases L = M
2
and L = 0 confirms the validity of (91). A

trigonometric transformation of (93) allows us also to demonstrate that
(
∆K

)
jm

= 0

at K − |j −m| = 1(mod 2).1 �
Proposition 4 demonstrates that Ramus’s identity allows one to express the entries

of ∆K as the lacunary sums of the binomial coefficients. On another hand, ∆K respects
(80) which is the particular case of (76) at h = 0. Therefore it looks appropriate to

1See Appendix III for illustrative examples.
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relate (76) at arbitrary N with appropriate generalized Ramus’s identities. Regarding
at (68) and (81), we formulate

Proposition 5 (generalized Ramus’s identity): The following identity is valid :

∑
|n|=K

P (n) ∆n
µL;µR =

2K+N

MN

∑
l∈PN

(
N∑
k=1

cos
(2π

M
lk

))K

×
N∏
s=1

cos
(2π

M
ls(µ

L
s − µRs )

)
, (94)

where

∆n
µL;µR ≡

N∏
j=1

(∆nj)µLj ;µRj , (95)

(∆n)jm is defined by (91), (92), (∆0)jm = δjm, whereas nj and |µLj − µRj | are of the
same parity. Summation is over N-tuples l ≡ (l1, l2, . . . , lN), lk ∈ P ≡ {0, 1, . . . , M

2
−1}.

Proof: Equation (94) is reduced at N = 1 to Ramus’s identity (AII.1) although is
directly verified at N = 2. Mathematical induction with respect of N is straightforward
and relies upon the fact that left-hand side of (94) is represented at any 1 ≤ m ≤ N :

K∑
p=0

(
K
p

)
∆p
µLm;µRm

∑
|mnN |=K−p

P (
m
nN) ∆

m
nN
m
µ
L
N ;
m
µ
R
N

,

where
m
µ
L

N ,
m
µ
R

N are defined in (83), and
m
nN ≡ (n1, n2, . . . , nm−1, nm+1, . . . , nN). �

Corollary:
• Determinantal generalization of (94) reads :

∑
|n|=K

P (n) det
(
(∆nj)µLi ;µRj

)
1≤i,j≤N =

1

MN

∑
{φN}

(
2

N∑
m=1

cosφm

)K
× |V(eiφN )|2 SλL(eiφN )SλR(e−iφN ) , (96)

where the entries (∆nj)µLi ;µRj , 1 ≤ i, j ≤ N , are given by (91).
• The Schur functions are equal to unity, SλL(eiφN ) = SλR(e−iφN ) = 1, provided that
µL = µR = δN , where δN is defined by (17). Then, Eq. (96) gives the number of self-
avoiding trajectories of N random turns walkers initially located at δN and returning
to their initial positions after K steps over long enough chain (M � 1):∑

|n|=K

P (n) det

((
nj

nj+j−i
2

))
1≤i,j≤N

= 2KJ (K,N) , (97)

J (K,N) ≡ 1

N !

π∫
−π

π∫
−π

· · ·
π∫

−π

( N∑
m=1

cosφm

)K
|V(eiφN )|2 dφ1dφ2 . . . dφN

(2π)N
, (98)
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where zero values are assigned to the entries of the matrix in (97) provided that nj and
|i − j| are of opposite parity. Besides, when nj vanishes at some j, the entry of the
matrix is Kronecker symbol δij.

The integral J (K,N) (98) is zero for K odd (the same is true for the series in left-
hand side of (97)), whereas J (K,N) is related at K even with the number of random
permutations of {1, . . . , K

2
} with at most N increasing subsequences [58], as well as

with the distribution of the length of the longest increasing subsequence of random
permutations of {1, . . . , K

2
} [65,66]. The problem of the longest increasing subsequence

of random permutations is related to the random unitary matrices [67], whereas more
on connection of the longest increasing subsequence with various areas of mathematics
can be found in [68].

5.4 Transition amplitude as the generating function of random
turns walks

With regard at Proposition 3, let us turn to the representation (75). Provided that the
numbers |P 0

K(µL
N → µR

N)| (81) taken at M → ∞ are considered as coefficients of the
power series in β, one meets the following

Proposition 6: The determinantal representation
∞∑
K=0

(β/2)K

K!
|P 0
K(µL

N → µR
N)| = det

(
I|µLi −µRj |(β)

)
1≤i,j≤N , (99)

where I|µLi −µRj |(β) is the modified Bessel function of the first kind, is valid for the power
series provided that its coefficients are given by (81) with the entries (91) taken in the
form (73).

Proof: As the base case, Eq. (99) is verified at N = 2 with the usage of (72), (73)
in its right-hand side. Assume that (99) is valid for (N − 1)th order. To express the
induction step, we re-express left-hand side of (99):

∞∑
p=0

∞∑
K≥p

(β/2)K

K!
|P 0
K(µL

N → µR
N)|n

N
≡ p , (100)

where expansion of the determinant in |P 0
K−p(µ

L
N → µR

N)|n
N
≡ p along N th column takes

the form:

|P 0
K(µL

N → µR
N)|n

N
≡ p =

(
K
p

) N∑
m=1

(−1)N+m

× |P 0
K−p(

m
µ
L

N−1 → µR
N−1)| |P 0

p (µLm → µRN)| . (101)

Using the base case together with the induction assumption to express the infinite
series (100), one obtains the corresponding expansion of the determinant in right-hand
side of (99) along N th column. �
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Equation (99) generalizes the case of N = 1 corresponding to Eqs. (72), (73). The
Bessel function of the first kind as the generating function of sets of paths between two
sites of infinite chain has been discussed in [34]. Equation (99) reads:
• The determinant of the Bessel functions is the generating function of the numbers of
K-step sets of paths |P 0

K(µL
N → µR

N)|.
According to Proposition 6, one gets in the particular case µL

N = µR
N = δN :

∞∑
K=0

(β/2)K

K!
|P 0
K(δN → δN)| = z(2/β,N) , (102)

z(2/β,N) ≡ det
(
I|i−j|(β)

)
1≤i,j≤N , (103)

where z(2/β,N) (103) coincides with the correlation function G0
δN ;δN

(β) (69) at large
enough M . In other words, z(2/β,N) coincides with the Gross-Witten partition func-
tion, which demonstrates a third order phase transition at N → ∞, [23]. Connection
between the XX spin chain and the low-energy QCD, as well as a possibility of a third
order phase transition in the spin chain, are discussed in [24,25].

6 The averages over Bethe state-vectors and nests of
lattice paths

Let us begin with the calculation of the normalized average of the generating exponen-
tial over the Bethe state-vectors given by Definition 1:

〈eQ〉N ≡
〈Ψ(eiθN/2) | eQ |Ψ(eiθN/2)〉

N 2(eiθN/2)
, (104)

where Q is given by (8), and N -tuple eiθN/2 = (eiθ1/2, eiθ2/2, . . . , eiθN/2) is to express the
substitute vj = uj ≡ eiθj/2 (1 ≤ j ≤ N). Using Proposition 1 and the Bethe solution
(30), we express 〈eQ〉N (104):

〈eQ〉N = det(eα̂) , eα̂ ≡
( 1

M

M∑
n=1

eαn+in(θi−θj)
)
1≤i,j≤N

. (105)

The generating exponential eQ under the conventional specialization of aM is re-
placed by eαQ(m), and the average 〈eαQ(m)〉N (105) is known as the generating function
of mean values of third components of spins [17,28,29,50,52]:

〈Ψ(eiθN/2) | eαQ(m) |Ψ(eiθN/2)〉
N 2(eiθN/2)

=

= det
((

1 + (eα − 1)
m

M

)
δij + (eα − 1)(1− δij)Qθi,θj(m)

)
1≤i,j≤N

, (106)

where

Qθi,θj(m) ≡ 1

M

sin
m(θi−θj)

2

sin
θi−θj

2

.
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Invariance of the determinant (106) under conjugation of the matrix by the diagonal
matrix ei

m
2
θ̂ (where θ̂ ≡ diag {θi}) is accounted for.

Let us obtain the Boltzmann-weighted average of eQ with respect of the Bethe state-
vectors characterized by Definition 1. A determinantal expression for the corresponding
off-shell average is calculated by insertion of the decomposition of unity (34):

〈Ψ(vN)|eQ e−βH |Ψ(uN)〉 =
∑
{φN}

e−βEN (φN )

N 2(eiφN/2)

× 〈Ψ(vN)|eQ|Ψ(eiφN/2)〉 detTM(e−iφN ,u2
N)

V(e−iφN )V(u2
N)

, (107)

where EN(φN) is given by (29), and (21), (22), (23), (24), and (32) are accounted for.
Taking into account Proposition 1 to express 〈Ψ(vN)|eQ|Ψ(eiφN/2)〉, one obtains:

〈Ψ(vN)|eQ e−βH |Ψ(uN)〉 =

=
eβhM/2

V(u2
N)V(v−2N )

det

(
M∑

k,l=1

eαkGk; l(β)
u2li
v2kj

)
1≤i,j≤N

, (108)

where
Gk; l(β) ≡ 1

M

∑
p∈S±

e−βε(p) eip(l−k) . (109)

Summation in (109) is over either of two sets S± 3 p specified by cosMp = ∓1:

S+ =
{
−π + 2π

M
(n− 1

2
)
}
n∈E ,

S− =
{
−π + 2π

M
n
}
n∈E ,

(110)

and the choice of S+ or S− is due to evenness or oddness of N in (108). Equation (108)
on solution to the Bethe equations leads to the normalized average:

〈eQ e−βH〉N ≡
〈Ψ(eiθN/2)|eQ e−βH |Ψ(eiθN/2)〉

N 2(eiθN/2)

= eβhM/2 det
(
e−βε̂eα̂

)
, (111)

where eα̂ is defined by (105), and the diagonal matrix ε̂ consists of ε(θj) (29):

ε̂ ≡ diag
1≤j≤N

{ε(θj)} . (112)

The commutation relation (41) together with Eqs. (61), (68) allows us to obtain
〈eQ e−βH〉N in the integral form at M � 1:

〈eQ e−βH〉N '
eβh(

M
2
−N)

N 2(eiθN/2)N !

∫
IN

PM(e−ipN , eiθN ,0M)

×PM(e−iθN , eipN , aM) |V(eipN )|2 eβ
∑N
l=1 cos pl

dNp

(2π)N
, (113)
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where pN ≡ (p1, p2, . . . , pN), dNp = dp1dp2 · · · dpN . The integration in (113) is over
N -fold product IN ≡

N

×S of the segment S ≡ [−π, π]. With regard at (69) and (71),
the representation (113) takes the following equivalent form:

〈eQ e−βH〉N ' N−2(eiθN/2)
∑

λL,R⊆{MN}

SλL(e−iθN )SλR(eiθN )

× exp
( N∑
k=1

αµLk

)
GµL;µR(β) , (114)

where
GµL;µR(β) ' eβh(

M
2
−N) × det

(
I|µLi −µRj |(β)

)
1≤i,j≤N . (115)

As it follows from Proposition 6, the representation (114), (115) is related to super-
posed random walks (cf. [51]). Indeed, applying lim

{αk→0}
∂ lα1,α2,...,αl

to the nominator of

(111) taken over the ground state solution (31), one obtains, with the use of (114), the
generating function of self-avoiding lattice paths of special type:

DKβ/2 〈Ψ(eiθ
g
N/2)

∣∣∣ l∏
i=1

qi e
−βH

∣∣∣Ψ(eiθ
g
N/2)〉 = P(eiθ

g
N/2; eiθ

g
N/2 |K) . (116)

The number P(eiθ
g
N/2; eiθ

g
N/2 |K) in right-hand side of (116) is due to the substitute

uN = vN = eiθ
g
N/2 in the polynomial

P(vN ;uN |K) ≡
∑

λ̃L,λR⊆{MN}

Sλ̃L(v−2N )SλR(u2
N)G(µ̃L;µR |K) , (117)

where
∑

λ̃L⊆{MN} goes over λ̃
L (50), and G(µ̃L;µR |K) is given by (78). The replace-

ment eiθ
g
N 7−→ 1 is appropriate at M � N , and one obtains from (116):

DKβ/2 〈Ψ(1N)
∣∣∣ l∏
i=1

qi e
−βH

∣∣∣Ψ(1N)〉 = P(1N ;1N |K) , (118)

where

P(1N ;1N |K) =
K∑
i=0

(
K
i

)(
h(M − 2N)

)i ∑
|n|=K−i

P (n) ∆̄n , (119)

∆̄n ≡
∑

λ̃L,λR⊆{MN}

Sλ̃L(1N)SλR(1N) det
(
(∆nj)µ̃Li ;µRj

)
1≤i,j≤N , (120)

and (∆nj)µ̃Li ;µRj is given by (91). The Schur polynomials are related to the nests of
lattice paths, Fig. 1, and therefore the polynomials (117) are related to the nests of
lattice paths of the type in Fig. 5. It is seen from (90) that P(1N ;1N |K) (119) are the
polynomials of two variables, h(M −N) and −hN , with integer coefficients related to
enumeration of self-avoiding lattice paths. A typical term of the sum (120) is depicted
in Fig. 5 for K = 13 and p = 1, so that ∆̄n (120) is the number of the nests of paths
characterized by n = (0, 1, 3, 1, 4, 3), |n| = 12, while all admissible “crossings” with the
dissection lines occur.
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Figure 5: Nest of paths contributing to P(1N ;1N |K) at N = 6, K = 13, and p = 1.

7 The generating function G(aM) and the correlation
functions of flipped spins

7.1 The N-particles mean values at large length of the chain

Let trace in (9) be the trace over all N -particles Bethe states, and let us consider the
N -particles trace of the Boltzmann-weighted generating exponential:

trN(eQe−βH) ≡
∑
{θN}

〈eQ e−βH〉N , (121)

where
∑
{θN} denotes summation over independent N -particles solutions to (26). The

definition (121) enables to define the N -particles mean value:

〈〈eQ〉〉β,N ≡ trN(eQρN) , ρN ≡
e−βH

trN(e−βH)
. (122)

We express (122) using (111):

〈〈eQ〉〉β,N =

∑
{θN}

det(e−βε̂eα̂)∑
{θN}

det(e−βε̂)
. (123)

In order to investigate (123) at large M � 1, it is more appropriate to evaluate
(121) using the integral representation (114), (115):

trN(eQe−βH) =
∑
{µN}

exp
( N∑
k=1

αµk

)
Gµ;µ(β) , (124)
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where (67) is taken into account to sum up over the sets of the Bethe solutions, and∑
{µN} is to re-express, for convenience,

∑
λ⊆{MN}. The mean value (122) is estimated

with the use of (124):

〈〈eQ〉〉β,N
∣∣∣
M�1

' IN(β, aM)

IN(β,0M)
, (125)

where
IN(β, aM) ≡

∑
{µN}

det
(
eαµiI|µi−µj |(β)

)
1≤i,j≤N . (126)

With regard at Proposition 6, the following power series is valid for IN(β, aM) (126):

IN(β, aM) =
∞∑
K=0

(β/2)K

K!

∑
|n|=K

P (n) ∆n(aM) , (127)

where
∆n(aM) ≡

∑
{µN}

det

(
eαµj

(
nj

nj+µj−µi
2

))
1≤i,j≤N

. (128)

Let us consider the parametrization aM = αM, where M = (1, 2, . . . ,M) (see (12)).
Then, we re-express (126):

IN(β, αM) =
∑
{µN}

eα|µ| det
(
I|µi−µj |(β)

)
1≤i,j≤N . (129)

Applying Dlα to (125) and (129), we obtain:

〈〈Ml〉〉β,N
∣∣∣
M�1

'
∑
{µN} |µN |l det

(
I|µi−µj |(β)

)
1≤i,j≤N

IN(β,0M)
, (130)

where M is defined in (12). Moreover, Eq. (129) is telling that

DlαDKβ/2 IN(β, αM) =
∑
{µN}

|µN |l|P 0
K(µN → µN)| . (131)

Right-hand side of (131) may be viewed as the sum of the numbers

nl
∑
µN`n

|P 0
K(µN → µN)| , (132)

where such sets of “closed” trajectories are summed up that the initial (≡ final) posit-
ions of vicious walkers constitute a partition of appropriate n ∈ N.

For a given l-tuple kl, let {µ̃N}kl be the set of all admissible strict partitions of
length N , which contain l parts of k̄l. With regard at (10) and (11), we obtain from
(125):

〈〈Πk 〉〉β,N
∣∣∣
M�1

' ĨN(β,kl)

IN(β,0M)
, (133)
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where
ĨN(β,kl) ≡

∑
{µ̃N}kl

det
(
I|µ̃i−µ̃j |(β)

)
1≤i,j≤N , (134)

and
∑
{µ̃N}kl

≡
∑
{µ̃N} is the sum as in (46). Furthermore, Proposition 6 tell us that

ĨN(β,kl) =
∞∑
K=0

(β/2)K

K!

∑
|n|=K

P (n)∆̃n(kl) , (135)

∆̃n(kl) ≡
∑
{µ̃N}kl

det

((
nj

nj+µ̃j−µ̃i
2

))
1≤i,j≤N

. (136)

Let us introduce the number of all sets of trajectories of N random turns vicious
walkers initially located at µ̃N ∈ {µ̃N}kl and returning after K steps to their initial
positions:

|P0
K,N(kl)| ≡

∑
{µ̃N}kl

|P 0
K(µ̃N → µ̃N)| , (137)

where |P 0
K(µ̃N → µ̃N)| is defined by (81). Due to (135), the function ĨN(β,kl) (134)

is the generating function of the numbers |P0
K,N(kl)| (137):

DKβ/2 ĨN(β,kl) = |P0
K,N(kl)| . (138)

7.2 Determinantal representation of G(aM)

Let us proceed with the evaluation of G(aM) (9), where trace is defined conventionally,
[15, 29, 49], and includes summation over sets of Bethe solutions and over numbers of
particles:

Tr
(
eQ e−βH

)
=

M∑
N=0

∑
{θN}

〈eQ e−βH〉N

= eβhM/2
(

1 +
M∑
N=1

∑
{θN}

det(e−βε̂eα̂)
)
. (139)

Equation (111) is used in (139), and the averaging at N = 0 is over |⇑〉. Besides,
Z = Tr

(
e−βH

)
(9) results from (139) at α̂ = 0.

Taking into account the definition (110), one transforms (139):

Tr
(
eQ e−βH

)
=

eβhM/2

2

∑
`=±1

(
D

(`)
+ (α̂) + `D

(`)
− (α̂)

)
, (140)

D
(`)
± (α̂) ≡ det(Î + `e−βε̂eα̂)p∈S± , ` = ±1 , (141)

where the subscript p ∈ S± reminds that the entries of M × M matrices eα̂ and
e−βε̂ are parameterized by elements of S± (110) (cf. (105) and (112); for instance,
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ε̂ ≡ diag {εp}p∈S± , where εp ≡ ε(p) is given by (29)), and Î is unit M ×M matrix. The
identity (140) is verified provided that the Laplace formula for determinant of sum of
two matrices is applied [15].

Further, let us consider the following determinantal identities:

D
(`)
± (α̂) = G

(`)
± D

(`)
± (α̂ = 0) , G

(`)
± ≡ det(Î + M̂ (`)

xx )p∈S± , (142)

where the matrix M̂ (`)
xx is defined:

M̂ (`)
xx ≡ (eα̂ − Î)f̂ (`) , f̂ (`) ≡ (Î + ` eβε̂)

−1

. (143)

The determinantal representation for G(aM) (9) resulting from Eqs. (140) and (142)
is reduced, under the conventional specification of aM 3 αn (cf. (105)), to the average
〈〈eαQ(m)〉〉β derived in [49]. It is seen from (140) that the limiting form of G(aM) at
growing M is due to ` = +1 whereas the terms at ` = −1 are mutually cancelled as
soon as p ∈ S± is replaced by p ∈ S. Therefore, 〈〈eαQ(m)〉〉β becomes the Fredholm de-
terminant atM →∞: the matrices are replaced by appropriate kernels, the integration
arises instead of the matrix multiplication, etc., [28]. The same is expected for the de-
terminantal representation of G(aM). However, additional requirement limn→∞ αn = 0
has to be imposed here. Since the interest to G(aM) is rather motivated by its role of
the generating function, we shall not pay attention to G(aM) as the Fredholm deter-
minant.

Using (124) and (139), one arrives at the following

Statement 2:
• Total trace of the Boltzmann-weighted generating exponential is represented at large
enough M :

Tr
(
eQ e−βH

)
' eβhM/2

(
1 +

M�1∑
N=1

e−βhNIN(β, aM)
)
, (144)

where IN(β, aM) is given by (126).

• The mean value of Πk defined by (10), (11) acquires, with regard at (126), (144) the
ratio form

〈〈Πk〉〉β =
Φ(β, h,kl)

Z
, (145)

where

Φ(β, h,kl) ≡ lim
{αk→0}

∂ lk1,k2,...,klTr
(
eQ e−βH

)
' eβhM/2

M�1∑
N=l

e−βhN ĨN(β,kl) . (146)

The partition function Z = Tr
(
e−βH

)
(9) arises from (144) provided that aM consists of

zeros, and Z is expressed, due to Proposition 6, through the numbers |P 0
K(µN → µN)|.
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With regard at (78), we define the polynomial the coefficients of which are the
numbers of sets of trajectories with staying of N walkers admitted (typical set is shown
in Fig. 4):

PK,N(kl) ≡
K∑
i=0

(
K
i

)(
h(M − 2N)

)i |P0
K−i,N(kl)| ,

where |P0
K−i,N(kl)| are defined by (137). Therefore, Φ(β, h,kl) (146) plays the role of

the generating function of the polynomials encoding the total number of all sets of
“closed” trajectories of random turns walkers such that l their initial/final positions
coincide (for each N) with the sites kl:

DKβ/2Φ(β, h,kl) ≡
M∑
N=l

PK,N(kl) .

7.3 Differentiation of G(aM)

Let us consider differentiation of the generating function G(aM). We introduce the
shortening notations G ≡ G

(`)
± , R̂ ≡ (Î + M̂

(`)
xx )

−1 , and obtain the first order derivative:

G
−1

∂k1G = eαk1 tr
(
R̂ δ̂k1 f̂

)
= eαk1 R̄k1,k1 , (147)

where ∂l ≡ ∂/∂αl and δ̂l ≡ ∂lα̂. The diagonal matrix f̂ ≡ f̂ (`) is given by (143), and
R̄k1,k1 is the diagonal entry of the matrix R̄ ≡ {R̄mn}1≤m,n≤M , where

R̄mn ≡
1

M

∑
p,q

e−inpfpRpqe
imq , (148)

and summation is over sets (110) appropriately. The second order derivative of G is
obtained,

G
−1

∂2k1,k2G = eαk1+αk2

∣∣∣∣ R̄k1,k1 R̄k1,k2

R̄k2,k1 R̄k2,k2

∣∣∣∣ , (149)

since tr
(
R̂ δ̂k1 f̂ R̂ δ̂k2 f̂

)
takes the product form R̄k1,k2R̄k2,k1 due to (148).

With regard at (147) and (149), one formulates the following
Proposition 7: The function G defined by (142) is the generating function of the
minors of the matrix R̄ (148),

G
−1

∂ lk1,k2,...,klG = eαk1+αk2+...+αkl detlR , (150)

where 1 ≤ k1 < k2 < . . . < kl ≤M , ∂ lk1,k2,...,kl is defined by (11), and detlR is the minor
given by the submatrix of lth order {Rij}1≤i,j≤l ≡ {R̄ki,kj}1≤i,j≤l.
Proof: We use induction with the base case (147) and induction step consisting in
validity of (150) at l − 1,

G
−1

∂ l−1k1,k2,...,kl−1
G = eαk1+αk2+...+αkl−1 detl−1R . (151)
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Then, the relation ∂αkn R̄ki,kj = eαkn R̄ki,knR̄kn,kj leads from (151) to

∂ lk1,k2,...,kl−1,kl
G = eαk1+αk2+...+αkl−1

(
G ∂kldetl−1R + detl−1R ∂klG

)
. (152)

The derivative of detl−1R is of the form:

∂kldetl−1R =
l−1∑
i=1

(−1)l+iRli

∣∣∣∣∣∣∣∣
R11 R12 . . . Ř1i . . . R1l

R21 R22 . . . Ř2i . . . R2l

. . . . . . . . . . . . . . . . . .

Rl−1,1 Rl−1,2 . . . Řl−1,i . . . Rl−1,l

∣∣∣∣∣∣∣∣ , (153)

where Řij implies that the relevant column is omitted. The main statement (150) arises
from (152) due to (147) and (153). �
• Proposition 7 is telling us that the average (10) on infinite chain takes the determi-
nantal form since G tends to unity at αn → 0, ∀n:

〈〈Πk〉〉β = lim
M→∞

lim
{αk→0}

∂ lk1,k2,...,klG
(`)
± = det

(
fki,kj

)
1≤i,j≤l , (154)

where the entries fki,kj are given by (148) with respect of the fact that R̂ tends to unit
matrix. Therefore, the limiting relation is valid for Z−1Φ(β, h,kl) (145):

lim
M→∞

Φ(β, h,kl)

Z
= det

(
fki,kj

)
1≤i,j≤l . (155)

7.4 The asymptotics at increasing β

The representation trN(eQe−βH) (124) can be estimated at 1 � M � β as follows.
Now Eq. (113) is used to sum up over the sets of the Bethe solutions, and one obtains:

trN(eQe−βH)

eβhM/2
=

1

N !

∫
IN

PM(e−ipN , eipN , aM) |V(eipN )|2

× eβ
∑N
l=1(cos pl−h)

dNp

(2π)N
, (156)

where PM is the sum (43). We approximate (156) at β � 1:

trN(eQe−βH)

eβhM/2
' PM(1N ,1N , aM)VN(β, h) , (157)

VN(β, h) ≡ eβN(1−h) IN
βN2/2

= eβN(1−h)−N
2

2
log β+ϕN , ϕN ≡ log IN , (158)

where PM(1N ,1N , aM) arises at q → 1 from (43) under the q-parametrization (38).
Furthermore, IN in (158) is Mehta integral [69],

IN ≡
1

N !

N∏
k=1

( ∞∫
−∞

dpk
2π

)
e
−1
2

N∑
i=1

p2i
∏

1≤k<l≤N

∣∣pk − pl∣∣2 ,
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which is expressed in terms of the Barnes G-function [70]:

IN =
G(N + 1)

(2π)N/2
, G(N + 1) ≡ (N !)N

11 22 . . . NN
=

N∏
k=1

Γ(k) .

The behaviour of IN = eϕN atM � N � 1 is due to the following estimate of ϕN [27]:

ϕN =
N2

2
logN − 3N2

4
+ O(logN) , N � 1 . (159)

From (159) it is seen that VN(β, h) (158) depends on β
N

at β > N � 1 appropriately
for an opportunity of the third order phase transition [24,25].

Provided that the specification αn = n log γ, 0 < γ ≤ 1 (cf. Section 4) is adopted,
the values PM(1N ,1N , aM) in (157) arise due to the limit q → 1 in

PM
(
qN ,

qN
q
, aγM

)
= 〈eQ(γ)〉N,q =

= γ
N
2
(N+1)G(N,N,M| q, γ) , (160)

where aγM ≡ log γ · (1, 2, . . . ,M), and 〈eQ(γ)〉N,q defined by (54) is given by (56), (57).
The behaviour at large enough M is approximately given by the limiting expression
(60) at q → 1:

PM(1N ,1N , a
γ
M))
∣∣∣
M�1

= γ
N
2
(N+1)G(N,N,M| 1, γ)

∣∣∣
M�1

−→
M→∞

γ
N
2
(N+1) lim

q→1

N∏
i=1

N∏
j=1

1

1− γqi+j−1
.

Here, G(N,N,M| 1, γ)
∣∣∣
M�1

is the generating function of the number of plane partitions
with fixed sum of its diagonal elements confined in N ×N ×M box at M � 1.

Using (160), we obtain the limiting value of the N -particles mean value of the
generating exponential (122):

〈〈eQ(γ)〉〉β,N
∣∣∣
1�M�β

'
G(N,N,M| 1, γ)

∣∣∣
M�1

A(N,N,M)
∣∣∣
M�1

. (161)

According to (53) and (58), the denominator in (161) is the number of plane partitions
confined in N ×N ×M box with increasing height. Let us remind that, according to
(56), the generating function G(N,N,M| 1, γ) (55) is of a polynomial form. Therefore,
the differentiation gives:

〈〈Ml〉〉β,N
∣∣∣
1�M�β

'
DlαG(N,N,M| 1, eα)

∣∣∣
M�1

A(N,N,M)
∣∣∣
M�1

=

∑
{µN} |µN |lSλ(1N)Sλ(1N)

∣∣∣
M�1

A(N,N,M)
∣∣∣
M�1

. (162)
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The nominator in right-hand side of (162) may be viewed as a sum of the numbers

nlA(N,N,M|n) , A(N,N,M|n) ≡
∑
µN`n

Sλ(1N)Sλ(1N) (163)

where A(N,N,M|n) denotes the number of plane partitions with trNπ = n confined
in the corresponding N ×N ×M box. Right-hand side of (162) is less than unity, and
it temptingly tends to zero at M →∞.

In the case of the mean value of the projector Πk, one obtains:

〈〈Πk〉〉β,N
∣∣∣
1�M�β

' P̃M(1N ,1N ,kl)
PM(1N ,1N ,0)

=
P̃M(1N ,1N ,kl)
A(N,N,M)

, (164)

where P̃M(1N ,1N ,kl) is the number of the plane partitions (i.e., watermelon configu-
rations) given by (47) under the limit q → 1:

〈Ψ(1N)|Πk|Ψ(1N)〉 = P̃M(1N ,1N ,kl) = lim
q→1

∑
{µ̃N}kl

Sλ̃(qN)Sλ̃

(qN
q

)
. (165)

The number PM(1N ,1N ,0) in (164) is the number (53) of unconstrained plane parti-
tions in N×N× (M−N) box (see Figures 2 and 3). In the case of kl = l, the estimate
(164) is expressed by means of P̃M(1N ,1N , l) (51) with Sλ̃(1N) expressed by (52) (cf.
Section 4).

The projector Πk implies that l flipped spins of N particles mean value are pinned
to their positions, and thus the numbers P̃M(1N ,1N ,kl) enumerate the diagonally
restricted plane partitions characterized by l columns of prescribed heights in the main
diagonal. The presence of the columns of fixed heights diminishes a total volume∑

π⊂BN,N,M

|π| (166)

characterizing the set of all plane partitions admissible for a box BN,N,M of the size
N ×N ×M. The plane partitions enumerated by the numbers A(N,N,M|n) (163)
are also ‘diagonally restricted’ since the diagonals of π subjected to trNπ = n also
lead to a volume diminished in comparison with (166).

Recall that the number of all sets of paths |P0
K,N(kl)| (137) enumerates the closed

trajectories of N random turns vicious walkers such that l initial/final positions kl are
prescribed. In turn, the representation (129) is the generating function of the num-
bers (132) enumerating such sets of closed paths of vicious walkers that initial/final
positions are labelled by partitions of certain positive integers. Both the numbers, of
the lattice trajectories |P0

K,N(kl)| (137) and of the diagonally restricted plane parti-
tions P̃M(1N ,1N ,kl) (165), include summation

∑
{µ̃N}kl

, which is either due to pinned
initial/final positions or due to columns of fixed heights.
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8 Discussion
The approach [27], which enables to study the combinatorial implications of the quan-
tum integrable models, has been applied to the quantum phase model [44] and to
the four-vertex model under fixed boundary conditions in the external inhomogeneous
field [45]. The asymptotics of evolution of the first moment of particles distribution
exponentiated has been found to provide the norm-trace generating function of plane
partitons [44]. The partition function of the four-vertex model produced the norm-trace
generating function of plane partitions [42] and its generalization [55], which describe
the trace statistics of plane partitions.

The XX model is of primary interest in the present paper, and the correlation func-
tion of non-homogeneously parameterised generating exponential is studied. Generally,
combinatorial implications of the XX model are similar to those of the XXZ chain
in the limit of infinite anisotropy [27]. In turn, the four-vertex model is equivalent to
the infinite anisotropy limit of the XXZ model [27]. From the viewpoint of connec-
tion with enumerative combinatorics, the XX model as an illustrative example which
enables to progress. Under various specifications the generating exponential enables
obtaining of the averages of such objects as the projectors onto inconsecutive flipped
spins or the powers of the first moment of flipped spins distribution.

The averages mentioned are derived in the paper in the case of long enough chain,
and they are related with enumeration of the trajectories of N random turns vicious
walkers characterized by restriced positions of initial/final points. The asymptotics at
large value of the evolution parameter are obtained, and the transfer occurs from enu-
meration of random turns walks to enumeration of plane partitions (i.e., of watermelon
configurations).

More specifically, the determinantal representation for the norm-trace generating
function of boxed plane partitions with fixed height of diagonal parts is obtained as
form-factor of the generating exponential over N -particles states (Section 4).

The transition amplitude over N -particles states as the generating function of K-
step sets of random turns walks is the main issue of a technical Section 5. The transition
amplitude is obtained in the power series form, and its coefficients fulfilling a difference
equation are derived in terms of the circulant matrix expressing the XX Hamiltonian.
A relationship between the entries of powers of the circulant matrix, the lacunary sums
of the binomial coefficients, and self-avoiding walks of vicious walkers is unraveled by
means of the Ramus’s identity and its generalizations. When the length of the chain is
large enough, a connection with the problem of enumeration of increasing subsequences
of random permutations is pointed out.

Two opportunities of trace definition are considered: the trace over N -particles
Bethe states and the total trace which includes summation over numbers of particles N .
The corresponding Boltzmann-weighted mean values are considered for the generating
exponential itself, for the projector onto inconsequent flipped spins, and for a power of
the first moment of flipped spins distribution.

Let us point out the new results obtained. For N -particles averages the estimates
at large enough length of the chain are expressed through the numbers of sets of
trajectories characterized either by a subset of pinned initial/final positions or by fixed
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values of the whole sum of initial/final coordinates. In the case of the total trace,
the mean value of projector of inconsecutive flipped spins is presented at M � 1
as a ratio of two polynomials. Equation (155) demonstrates that the determinantal
representation of the mean value arising at M →∞ is related with the interpretation
in terms of sets of paths of random turns vicious walkers.

The N -particles averages are also estimated provided that the evolution parameter
(inverse temperature) grows faster than the length of the chain. The estimates are
obtained in the ratio form and keep a similarity to the case of extremely long chain: al-
though the sets of random turns trajectories are replaced, at large evolution parameter,
by plane partitions, the restrictions imposed look similar. The nominators are given by
the numbers of the diagonally restricted plane partitions which are either in one-to-one
correspondence with the flipped spins positions or characterized by fixed trace of all
diagonal elements. The denominators correspond to generic plane partitions.

The results obtained look stimulating from the viewpoint of further investigation
of the four-vertex model, of the phase model, and of the XY model (cf. [71]) along the
lines presented.
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Appendix I
Proposition 3 is devoted to the verification of the representation (81) expressing the
number of sets of paths of random turns vicious walkers. The corresponding difference
equation (76) is a tool of verification rather than derivation of (81), as stressed in [37].
The present Appendix I is concerned with the derivation by means of (77).

Let us begin with the derivation of the relation

G 0(µL;µR|K) =
∑
|n|=K

P (n) ∆n
µL;µR , (AI.1)

where n = (n1, n2, . . . , nN), |n| ≡ n1+n2+ . . .+nN , P (n) is the multinomial coefficient
(82), and ∆n

µL;µR is given by (95). The commutation relation (64) supplied with
Hxx |⇑〉 = 0 and σzk |⇑〉 =|⇑〉 enables us to obtain (AI.1) at K = 1 as the base case
of induction. As induction step, it is assumed that (AI.1) is valid at K − 1. We put
HK

xx = HK−1
xx Hxx in (77) to prove (AI.1) and obtain:

G 0(µL;µR|K) =
N∑
l=1

M∑
k=1

∆µRl , k

∑
|n|=K−1

P (n) ∆n
µL;(µR1 ,...,µ

R
l−1,k,µ

R
l+1,...,µ

R
N )

=
N∑
l=1

∑
|n|=K−1

P (n) ∆n+el
µL;µR

,

(AI.2)
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where N -tuples el are defined in (25). The multinomial theorem demonstrates that
(AI.2) leads to (AI.1). The determinantal generalization of (AI.1) leads to (81), where
the non-intersection requirements are taken into account.

Appendix II
The Ramus’s identity [62] is of the form:

2n

R

R−1∑
j=0

cosn
πj

R
cos

πj(n− 2t)

R
=

(
n
t

)
+

(
n

t+R · 1

)
+

(
n

t+R · 2

)
+ . . . , (AII.1)

where 0 ≤ t < R.

Appendix III
It is straightforward to obtain useful identities provided that the expressions for

(
∆K

)
jm

given by Proposition 4, on one hand, and by [59, 60], on another, are equated each to
other. Without reproducing the appropriate formulae from [59,60], we simply specify,
according to Proposition 4, the matrix

(
∆K

)
jm
≡
(
∆K

)
j−m of the size 6×6 to K = 14:

(
∆14

)
0

=

(
14
1

)
3

= 5462 ,(
∆14

)
2

=

(
14
0

)
3

=
(
∆14

)
4

=

(
14
2

)
3

= 5461 ,(
∆14

)
1

=
(
∆14

)
3

=
(
∆14

)
5

= 0 .

We obtain in notations [59,60]:

(
∆14

)
0

=
a1
6

=
2(214 + 2)

6
,(

∆14
)
2

=
(
∆14

)
4

=
a3
6

=
2(214 − 1)

6
=
a1
6
− 1 .

Further, we specify
(
∆K

)
j−m to M = 6 and K = 15:

(
∆15

)
1

=

(
15
1

)
3

=
(
∆15

)
5

=

(
15
2

)
3

= 10923 ,(
∆15

)
3

=

(
15
0

)
3

= 10922 ,(
∆15

)
0

=
(
∆15

)
2

=
(
∆15

)
4

= 0 .

As well, (
∆15

)
1

=
(
∆14

)
0

+
(
∆14

)
2
,

(
∆15

)
3

=
(
∆14

)
2

+
(
∆14

)
4
.
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We obtain in notations [59,60]:

(
∆15

)
1

=
(
∆15

)
5

=
a2
6

=
2(215 + 1)

6
,(

∆15
)
3

=
a4
6

=
2(215 − 2)

6
=
a2
6
− 1 .

38



References
[1] Baxter R. G., Exactly Solved Models in Statistical Mechanics (San Diego, Aca-

demic Press, 1982)

[2] Faddeev L. D., Quantum inverse scattering method, In: 40 Years in Mathematical
Physics (World Sci. Ser. 20th Century Math. vol. 2) (Singapore, World Scientific,
1995) pp 187–235

[3] Moore G. W., Nekrasov N., Shatashvili S., Integrating over Higgs branches, Com-
mun. Math. Phys. 209 (2000) 97–121

[4] Nakatsu T., Takasaki K., Melting crystal, quantum torus and Toda hierarchy,
Commun. Math. Phys. 285 (2009) 445–468

[5] Forrester P. J., Majumdar S. N., Schehr G., Non-intersecting Brownian walkers
and Yang-Mills theory on the sphere, Nucl.Phys. B 844 (2011) 500–526

[6] Bravyi S., Caha L., Movassagh R., Nagaj D., Shor P. W., Criticality without
frustration for quantum spin-1 chains, Phys. Rev. Lett. 109 (2012) 207202

[7] Reshetikhin N., Stokman J., Vlaar B., Boundary quantum Knizhnik-
Zamolodchikov equations and Bethe vectors, Comm. Math. Phys. 336 (2015)
953–986

[8] Borodin A., Corwin I., Petrov L., Sasamoto T., Spectral theory for interacting
particle systems solvable by coordinate Bethe ansatz, Comm. Math. Phys. 339
(2015) 1167–1245

[9] Foda O., Zarembo K., Overlaps of partial Néel states and Bethe states, Journal
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