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In this paper we focus on the underlying quantum structure of temporal correlations and show their
peculiar nature which differentiate them from spatial quantum correlations. We show rigorously that
a particular entangled history, which can be associated with a quantum propagator, is monogamous
to conserve its consistency throughout time. Yet evolving systems violate monogamous Bell-like
multi-time inequalities. This dichotomy, being a novel feature of temporal correlations, has its
roots in the measurement process itself which is discussed by means of the bundles of entangled
histories. We introduce and discuss a concept of a probabilistic mixture of quantum processes
by means of which we clarify why the spatial-like Bell-type monogamous inequalities are further
violated. We prove that Tsirelson bound on temporal Bell-like inequalities can be derived from the
entangled histories approach and as a generalization, we derive the quantum bound for multi-time
Bell-like inequalities. It is also pointed out that what mimics violation of monogamy of temporal
entanglement is actually just a kind of polyamory in time but monogamy of entanglement for a
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particular evolution still holds.
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I. INTRODUCTION

Recent years have proved a great interest of quantum
entanglement monogamy concept showing its usability
in quantum communication theory and its applications
to quantum secure key generation [IH6]. While spatial
quantum correlations and especially their non-locality
became a central subject of quantum information theory
and their applications to quantum computation, poten-
tiality of application of temporal non-local correlations is
poorly analyzed. Yet there is a growing interest which is
related to better understanding of this peculiar quantum
phenomenon. The crucial issue relates to the very nature
of time and temporal correlations phenomenon with their
understanding within the framework of modern quantum
and relativistic theories.

Non-local nature of quantum correlations in space has
been accepted as a consequence of violation of local re-
alism, expressed in Bell’s theorem [7] and analyzed in
many experiments [I0, II]. As an analogy for a tempo-
ral domain, violation of macro-realism [9] and Leggett-
Garg inequalities [8] seem to indicate non-local effects in
time and are a subject of many experimental considera-
tions [21] B4H37]. There have been different formalisms
proposed for study of quantum temporal correlations
including Multiple-Time States (MTS) by Aharonov et
al. [13| 4] as part of the Two-State-Vector formalism
(TSVF) [15HI8], the Entangled Histories (EH) approach
[19] or the pseudo-density operators (PDOs) [43].

The TSVF led to surprising effects within pre- and
postselected systems (e.g. [24H26]), time travel thor-
ough post-selected teleportation [27], 28], a novel notion of
quantum time [29], new results regarding quantum state
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tomography [30] and a better understanding of processes
with indefinite causal order [31], while the Entangled His-
tories approach led to Bell tests for histories [20] and
have been recently used for analysis of the final state
proposal in black holes [32]. The subject of the black
hole information loss paradox has been also addressed
with application of PDOs [23] but engaging a concept of
non-monogamy of spatio-temporal correlations.

In this paper we study the nature of the non-
mongamous behavior of temporal correlations both for
ensembles of quantum processes and their single in-
stances. We show rigorously that a particular entan-
gled history, which can be associated with a quantum
propagator, is monogamous to conserve its consistency
throughout time. Yet evolving systems violate monog-
amous Bell-like multi-time inequalities which can be
explained engaging bundles of histories with the same
pre-selected and post-selected states as initial and final
boundaries for the considered evolution. This dichotomy
does not have a counterpart in spatial domain and as such
is a novel feature of temporal non-locality but is also a
sign of importance of the internal structure of single pro-
cesses. In particular, we prove also that the Tsirelson
bound [39] on temporal Bell-like inequalities can be de-
rived from the entangled histories approach analytically
and as a generalization, we derive the quantum bound for
multi-time Bell-like inequalities which is not accessible by
spatial quantum correlations. Furthermore, it is also dis-
cussed that what mimics violation of monogamy of tem-
poral entanglement is actually just a kind of polyamory
in time but monogamy of entanglement for a particular
evolution still holds which might influence the discussion
about the resolution of the black-hole information para-
dox.

It is also crucial to emphasize that due to the isomor-
phism that can be derived for the TSVF and the entan-
gled histories representations [33], the results presented



in this paper can be achieved also for the TSVF which is
also discussed partially in this paper.

II. REVIEW OF ENTANGLED HISTORIES
AND MULTIPLE-TIME STATES

Let us review briefly the entangled histories (EH) for-
malism and the multiple-time states (MTS) formalism
as a natural extension of the two-state vector formalism
(TSVE).

The predecessor of the entangled histories is the de-
coherent histories approach built on the grounds of the
well-known Feynmans path integral theory for calcula-
tion of probability amplitudes of quantum processes. The
EH formalism extends the concepts of the consistent his-
tories theory by allowing for complex superposition of
histories. A history state is understood as an element
in Proj(H), spanned by projection operators from H to
‘H, where H = H;, ©® ... ©® Ht,. The ® symbol, which
we use to comply with the current literature, stands for
sequential tensor products, and has the same meaning
as the above ® symbol. The alternatives at a given in-
stance of time form an exhaustive orthogonal set of pro-
jectors > Pp+ =T and for the sample space of entan-
gled histories |[HY) = P& © PP @ ... 0 P © P°
(@ = (ap,an—1,--.,0p)), there exists cg € C such that

Y acalHY) =1
As an example, one can take a history |H) =
Floz7lo 7] o =¥ = (M) ] olz7) 7] e

[ly= )y~ |] © [|z*)(z "] for a spin-3 particle being in an
eigenstate of the Pauli-X operator at time t;, in an
eigenstate of the Pauli-Y operator at time t5, and so
on. Within this formalism one also defines the unitary
bridging operators 7 (t;,t;) : Hi, — H;, evolving the
states between instances of time, and having the fol-
lowing properties: T (tj,t;) = T1(t;,t;) and T(t;,t;) =
T (tj,tj—1)T (tj—1,%;). This formalism introduces also the
chain operator K (|H®)), which can be directly associated
with a time propagator of a given quantum process:

K(|Ha)) = Pg"T(tn, tnfl)P::fIl . PfélT(tl,tQ)POaO
(1)
This operator plays a fundamental role in measuring a
weight of any history |H<):

W(H®)) = TrK(|H*)'K(|H")) (2)

which can be interpreted as a realization probability of
a history by the Born rule application. The histories
approach requires also that the family of histories is con-
sistent, i.e. one can associate with a union of histories a
weight equal to the sum of weights associated with par-
ticular histories included in the union.

Multiple-Time States (MTS) extend the standard
quantum mechanical state by allowing its simultane-
ous description in several different moments. Such a
multiple-time state may encompass both forward- and

backward-evolving states on equal footing. MTS repre-
sent all instances of collapse (i.e. those moments in time
when the quantum state coincided with an eigenstate of
some measured operator) and allow them to evolve both
forward and backward in time. This evolution backwards
in time can be understood literally (giving rise to the
Two-Time Interpretation [I8]), but this is not necessary,
it can be simply regarded as a mathematical feature of
the formalism (which is, in fact, equivalent to the stan-
dard quantum formalism [I7]). MTS live in a tensor
product of Hilbert spaces H admissible at those various
instances of time (¢; < ... < t,) denoted by [14]

H=H®. . oH oH,oH  o.0H @)

trt1

where a dagger means the corresponding Hilbert space
consists of states which evolve backwards in time. The
initial and final Hilbert spaces might be daggered or not
(this is denoted by a “-” superscript). All Hilbert spaces
containing either (forward-evolving) kets or (backward-
evolving) bras are alternating to allow a time-symmetric
description at any intermediate moment.

As an example of (a separable) MTS we can con-
sider the following state: ¢, (zF[lx7)e, 1, (¥~ ||2T)s, €
’HI L QHy, ®’H:{2 ®Hs, - This multiple-time state represents
an initial eigenstate of the Pauli-X operator evolving for-
ward in time from ¢; until collapse into an eigenstate of
the Pauli-Y operator occurs at time to. Later on, at time
t3 the system is projected again onto a different eigen-
state of the Pauli-X operator. Finally at ¢4 the system
is measured in the Z basis, and the resulting eigenstate
evolves backward in time. In the following we will focus
on two-time states (sometimes called two-states), which
consist of a forward evolving state |11 ), and a backward
evolving state [i2);, in the above form i, {1s|[th1)s, to
achieve a richer description of a quantum system during
the time interval t; <t < ¢5 [I7].

Given an initial state |¥) and a final state (®|, the
probability that an intermediate measurement of some
hermitian operator A will result in the eigenvalue a,, is
given by the ABL formula [I5]

1
p(A=a,) = N|<‘I)‘U2P7LU1|\I/>|2a (4)

where U; represent unitary evolution, the operator P,
projects on |a,) and

N = 3 [(@[U P W) 5)
k

This probability rule is important in that it uses the in-
formation available through the final state in a way which
is manifestly time-symmetric.

III. MONOGAMY OF A PARTICULAR
QUANTUM PROCESS

The fundamental property of spatial quantum entan-
glement is its monogamy. This property states that for



a tripartite system ABC, maximal entanglement of the
pair AB excludes its non-local correlations with the third
party, i.e. if pap = |UT)(¥T|, then any extension of this
state is of the form papc = [PT)(UT| @ |¥)(¥|. For the
temporal correlations, it seems that this property does
not hold, especially when one considers statistical dis-
tribution of measurement results [22] 23]. Yet, what is
obvious in the spatial case does not have mere analogies
in the temporal case. We will show now that a particular
history can be monogamous but further we will discuss
how temporal correlations can lead to non-monogamous
results for bundles of histories with which we tackle dur-
ing the measurement process. This subtlety is rather a
sign of a deeper nature of quantum processes which can
keep their consistency for particular instances, yet leads
do quite counter-intuitive results for their ensembles.

Suppose we have two non-equivalent multi-time en-
tangled histories of an evolving qubit through times
ty >tz >ty >t for which we consider the past effect
of the measurement at time t4:

1
|H1) = E[IO)QIO)Q\O)GIOH|1)®|1)®|1)®|1)]
|Hs) = %IO)G[IO)Q\O)GIOH|1)®|1)®|1)} (6)

The history |H;) can be perceived as a superposition
of two histories on times t4,t3,%t2,t1. If one measures
this evolution at time ¢4 with dichotomic projective ob-
servables Py = |0)(0] and P; = [1)(1|, we can conclude
that the state was with probability py = 3 in a history
|H10) = |0) ® |0) ® |0) at previous times and with prob-
ability p1 = 3 in a history |Hy1) = [1) ® [1) © [1). Alter-
natively, one can consider an ensemble of history states
{{po, |H10)}, {p1,|H11)}}, i-e. half of the qubits evolving
trivially in a history |H1¢) and half in | H11) through times
ts,t2,t1 which can be represented by a history super-
operator py = %(|H10)(H10| + |H11)(Hq1]). This evolu-
tion is different for the history |Hs). If one performs the
same measurements at time ¢4, then we get an entangled
history through times t3, t2, t1 for the projective measure-
ment Py at time t4. Thus, physically we can propose the
concept of the probabilistic mizture of histories:

Definition I11.1. A mixed history state is defined as a
positive super-operator acting on a history state space:

Phist = ZPZ|H’L)(HZ| (7)

where Trppise =1, >, pi = 1 and V;1 > p; > 0.

This mixture of histories can be naturally associated
with an ensemble of histories {p;,|H;)}. Following, we
consider an example of a spin particle traversing two
paths to check a future influence of the measurement at
time ¢q:

FEzxzample 1. Imagine a spin—% particle at three times
{ts,t2,t1} evolving trivially by 7 = I with a family of

entangled histories:

HY) = V2(Flo o f]+ 7] o 7] oY)
1H?) = V2(zT] ot o M+ Mo 2T o [=7])
1) = V2(Hokt o]+ ET]okTokT])
HY) = V2Tt o]+ okTo 7))
(®)

If we consider a state |®) = %|H1) + %|H2), then a
particle, measured at time ¢; and having a spin up in
a direction z*, can evolve within the history |H!) with
probability P(|H')) = 1 and be in the history |H?) with
probability P(|H?)) = 3.
Noteworthily, one can also find in the space of histories
S = span{|H"),|H?),|H3),|H*)} the following temporal
GHZ-like vector [19] (normalized for |a|? + |B|? = 1):
& 1 @ 2 B s B |4
|TGHZ) \/§|H)+ﬂ|H )+\@|H )+ﬁ|H )
= alMe o+ 8T oo =]
(9)

Having grounded the concept of a mixture of histories,
to better understand the behavior of entangled histories
in a context of monogamy, let us consider the Mach-
Zehnder interferometer (Fig and potential superposed
evolutions of a photon state in the context of monogamy
problem of temporal entanglement.

There are many potential histories allowed in the inter-
ferometer which can be also steered by selection of the
external detection points but let us consider firstly the
one displaying quantum entanglement in time at times

{tQ,tl}:
|H) = a|¢32)0(|02,1)Ol¢1,1)+|d2,2)O]h1,2))Odo) (10)

This particular history can be realized by placement of
a detector at time t3 which detects a photon in state
p = |¢P3.2){(¢3 2] and displays quantum entanglement in
time for times {¢o, ¢ }:

|Hiy1y) = al|p2,1) © [p1,1) + [¢22) © |h12))  (11)

Interestingly, this entangled history at times {ta,%;}
cannot be derived from the following temporal version of
a GHZ-state which also can be realized in this interfer-
ometer:

|H) = 04(\¢3,1)®|¢2,1)®|¢1,1)+\d)s,z)®|¢2,2)®|¢1,2))®(|{1520))

Let us observe that the reduced component of this his-
tory |¢s,1) © |¢1,1) is correlated with |¢o 1) and not with
|¢p2,2). Thus, reduction of |H) over times t5 and tg is not
a complex superposition of histories but is a probabilistic
mixture as already stated in this section:

Prits = o™ (|p3101,1)(P3,101,1] + |¢3,2¢1,2)(¢3,2¢1,2(|) )
13



where |¢31¢011) = |#3,.1) @ |$1,1) etc. This can be also
formally derived employing a temporal partial trace oper-
ator [49] over time instances: py,t, = Tre,e,|H)(H|. This
operator is an analogy of spatial tracing out but has to
keep consistency of the evolution - a condition which is
not present in spatial case.

On the contrary, if this reduction of the temporal GHZ-
state |[TGH Z) would be a complex superposition of en-
tangled histories, i.e. it could be always expanded to a
history of the following type e.g. ¢, ) @ (|¢3.1) @ lv11)+
l©3,2) © |@1,2)) or the aforementioned |H) which implies
decorrelation with the next instance of the history in such
a case by employing e.g. a projective measurement. We
should emphasize that this reasoning is in agreement with
the Feynman’s addition rule for probability amplitudes.

It is important to note that these considerations are
related to |H)(H| - observable and the particular history
|H). Yet, other histories in the Mach-Zehnder interfer-
ometer are also accessible. It shows clearly a physical
sense of quantum entanglement in time and further a
concept of its monogamy for a particular entangled his-
tory.

|(p3.l>

|(p2,l> ‘(P:!.Z)

P10 9,2)

[P0 P12

FIG. 1: The Mach-Zehnder interferometer with an input state
lpo) - a vacuum state is omitted which does not change fur-
ther considerations. The beam-splitters can be represented
by Hadamard operation acting on the spatial modes.

We can summary these considerations with the follow-
ing lemma about temporal entangled histories:

Lemma II1.2. There does not exist any such a history
|Hapc) acting on space Hape = Hi, OHe, OHy, at times
{ts,t2,t1} so that one can find reduced histories |Hap) =
5 (le0) ©leo) +ler) Oler)) and |Hpe) = 5(leo) ©leo) +
le1) © [e1)).

Proof. The assumption that |Hap) = |Hpc) implies im-
mediately dimension of the history |Hapc). To prove
this lemma, we apply the formalism of Feynman prop-
agators. As already mentioned, the particular history
|Hapc) of a physical process ABC' can be associated
with a transition amplitude Tapc (Tapc ~ eiSaBc

where S4pc stands for an action functional of the pro-
cess) by means of the K-operator:

Tape = Y ayuledle5” |e;) (el ex) (ayn € C)
ijk

= g okl

ijk

Note that the assumed dimension of the subsystems im-
plies the choice of the basis {|e;)} for this propagator.
Since we consider a history |Hapc) with reduced his-
tories (for sub-processes) |Hag) = |Hpc) = %ﬂeo) O]
leo) + |e1) @ |e1)), one can associate with them the fol-
lowing transition probability amplitudes:

Tap =T'pc = apol'oo + 1111 (14)

and the existence of summands I'gg and I'y; implies that:

Tapc = Z(aioori00+0¢illrill) = Z(a00jF00j+Oé11jF11j)
i J

(15)
On the contrary, if there exists a component e.g. T';o1
in the propagator I" 4 g, the history |H;o1) could be also
realized. Yet it is not the case for the assumed global his-
tory |Hapc) for which we do not consider sub-histories
leo) ® |e1). Thus, only the following elements can con-
tribute to the global propagator and corresponding his-
tory:

T'ac = agool'oo0 + 1111111 (16)

However, this propagator, as already discussed, could be
associated with a temporal version of GHZ-like state:
[TGHZ) = agol0) © [0) © [0) 4+ a111(1) © [1) © 1) (we
assume that the coefficients are non-zero) from which we
cannot derive reduced entangled history, thus, contra-
dicting the structure of the global history |Hapc). O

As a consequence, it is natural to conclude that any
Feynman propagator is also monogamous. This lemma
holds naturally also for any finite dimension n of the sys-
tem A evolving in time.

A natural consequence of entanglement monogamy in
space is that we cannot build a quantum spatial state
where a chosen party is entangled with an infinite number
of parties. In principle, if we consider Feynman path
integral which integrates all probability amplitudes over
possible evolution paths between two space-time points,
one can state a question about correlations between a
state of a system at a chosen time ¢, and all other times
separated by dt in this evolution. Suppose that we are
considering a two-state history |F) = [zg] ® [zs] where
a particle is localized at xg at time tg (our initial state
is |S) = |zs)) and evolves to the final state |E) localized
at xp at time tg. This history can be further expanded
as a Feynman path integral [41], 42] assuming breaking



down the evolution time into n small time intervals dt:

: TE,tE
/ Da exp{% / dtL) (17)

s ts

(ElS)

_ / dan -+~ dzy(zple g V|- (18)
|;C2> <x2|6_iH(t2)6t|£U1> <.’L’1 |e_iH(t1)6t‘l‘s>

where we assumed evolution steered by hamiltonian H
being a smooth function of t.

This evolution can be represented as a two-time his-
tory with an initial pre-selected and final well-defined
state: |F) = [xg] ® [zg] for times ts and tgy. However,
what is substantial in this consideration, all intermedi-
ate times are undefined for the external observer of the
evolution so this particular history is separable for an ob-
server pre-selecting the state [xg] and post-selecting [z g].
In a consequence, asking for correlations of the state at
time e.g. tg and say tg + 0t does not make sense (unless
tp =tg + 0t).

We can represent the product |E)(E|S)(S| by means
of integration over histories (it is crucial to remember
that in similarity to path integral summands not every
particular history summand is assumed to be consistent,
i.e. physically realizable):

\BY(E|S)(S| = /dmn dn K Ol 0 (o

Olra] © [#1] © [z5])

It represents an expansion of a quantum propagator with
quantum histories contracted by K-operator.

To deepen our understanding of differences between
spatial and temporal correlations, let us reconsider a spa-
tial and temporal version of GH Z-state from a resource
perspective:

[Wapc) = —(1000) +[111)
Vi) = 30000+ M o) (20)

While a three-qubit spatial state |¥4pc) cannot be
simply extended to n-qubit state due to lack of additional
resources, a temporal state can be always extended to n-
times (reaching infinity as a limit if we assume that time
slicing does not have its limit like a Planck time) between
the constrained past tg and future ¢ty as far as the time
steps are defined for the external observer:

WaBc) = |Yapcc,..) (21)
|\I}t2t1t0) - ‘\Ith-ntltOn---tOltO) (22)

This tricky feature of temporal correlations is one of
the reasons of polyamoric nature of time as we will see
in next paragraphs.

IV. TSIRELSON’S BOUND FROM
ENTANGLED HISTORIES AND GENERAL
BOUND FOR TEMPORAL CORRELATIONS

The violation of local realism (LR) [7] and macrore-
alism (MR) [9] by quantum theories has been studied
for many years in experimental setups where measure-
ments’ data are tested against violation of Bell inequal-
ities for LR and Leggett-Garg inequalities (LGI) [§] for
MR. For quantum theories, the former raises as a conse-
quence of non-classical correlations in space while the
latter as a consequence of non-classicality of dynamic
evolution. In this section we show that entangled histo-
ries approach gives the same well-known T'sirelson bound
[39] on quantum correlations for LGI as quantum entan-
gled states in case of bi-partite spatial correlations for
CHSH-inequalities and derive a general quantum bound
on multi-time Bell-like inequalities.

In the temporal version of CHSH-inequality being a
modification of original Leggett-Garg inequalities, Al-
ice performs measurement at time ¢; choosing between

two dichotomic observables {Ai“,Agl)} and then Bob
performs a measurement at time ¢, choosing between

{B@,Béz)}. Therefore, the structure of this LGI can
be represented as follows [43]:

Sragr =cia+ca1 +c11 —ca2 <2 (23)

where ¢;; = <A1('1)7 BJ(-Q)) stands for the expectation value
of consecutive measurements performed at time ¢; and
to.

Since one can build in a natural way C*-Algebra of
history operators for normalized histories from projec-
tive Hilbert spaces equipped with a well-defined inner
product, we provide reasoning about bounding the LGI
purely on the space of entangled histories and achieve the
quantum bound 2v/2 of CHSH-inequality specific for spa-
tial correlations. The importance of this result achieved
analytically is due to the fact that previously it was de-
rived basing on convex optimization methods by means
of semi-definite programming [45] and by means of cor-
relator spaces [44] not being equivalent to probability
space (probability conditional distributions of consecu-
tive events) without underpinning mathematical struc-
ture of quantum temporal states.

In a temporal setup one considers measurements A =
I © AW (measurement A occurring at time t;) and
B = B® © I which is in an exact analogy to the proof
of the above theorem for a spatial setup. The his-
tory with ’injected’” measurements can be represented as
|H) = aAB|H)ATBT where a stands for a normalization
factor. History observables are history state operators
which are naturally Hermitian and their eigenvectors can
generate a consistent history family|[T9)].

As an example, we can consider spin %—particle with a
history inducing evolution |¢(t1)) — |¢(t2)) on which we
act with o, © o, operation. This step results with a new



effective history:

H) = aoy[i(t2)]of © ouli(tr)]o] (24)

For an observable A = ). a;|H;)(H;|, its measurement
on a history |H) generates an expectation value (A) =
Tr(A|H)(H|) (i.e. the result a; is achieved with prob-
ability |(H|H;)|?) in analogy to the spatial case. Thus,
one achieves history |ﬁ ) as a realized history with mea-
surements and the expectation value of the history ob-
servable (A). It is worth mentioning that |H) and |H)
are both compatible histories, i.e. related by a linear
transformation. Equipped with the aforementioned find-
ings about history observables, one can state now the
following lemma:

Lemma IV.1. For any history density matrix W and
Hermitian history dichotomic observables A; = 1 ® Agl)

and Bj = BJ(?) © I where i,j € {1,2} the following bound
holds:

Srar = c11+ci2 + o1 —ca2 (25)
= TT((AlBl + AlBQ + AQBl - AQBQ)W)

< 2V2

Proof. The proof of this observation can be performed
in similar to the spatial version of CHSH-Bell inequal-
ity under assumption that the states are represented
by entangled history states and for two possible mea-
surements {Agl), Agl)} at time ¢; and two measurements

{Bgl),Bél)} at time to. These operators can be of di-
mension 2 x 2 meeting the condition A? = BJZ = 1.
Therefore, they can be interpreted as spin components
along two different directions. In consequence, it is well-
known that the above inequality is saturated for 21/2 for
a linear combination of tensor spin correlation that holds
also for temporal correlations. Additionally, one could
also apply for this temporal inequality reasoning based
on the following obvious finding [39] that holds also for
the temporal scenario due to the structure of C*-Algebra
of history operators with ®-tensor operation:

AlBl + AlBg + AQBl — A2B2 S (26)

%(Af + A2+ B} +B2) < 2V2r

O

For temporal correlations measurements can lead to
counter-intuitive results which do not occur for spa-
tial quantum resources. Let us reexamine the case
of GHZ states firstly shared as a spatial system of
three entangled qubits among Alice, Bob and Charlie:
[Wapc) = %(H)OO) + |111)) which obviously leads to
a separable state for any pair from this system, e.g.
pap = %(|00)(00| + |11)(11]). Assume further that
they can choose from dichotomic projective observables:
Py = 10)(0] or P; = |1)(1], then in this multipartite case

any pair cannot identify alone without the third party
that they are part of the more complex entangled system.
This is the core difference from the temporal analog of
this state.
In the temporal case the situation is quite opposite for
the temporal version of the GHZ-state which is a sign of
qualitative difference between spatial and temporal re-
sources. Alice, Bob and Charlie, having instances of the
same system but at different times, can in each pair de-
tect non-locality in time.

When we measure an average value of the aforemen-
tioned Bell-like temporal inequality:

<SLGI> = <AlBl + AlBQ + AgBl — A2BQ> (27)

we consider an ensemble of systems from which each
quarter is measured against the observables A;B;. It is
easy to observe that with a choice of observables: A; =
Z,Ay = (Z+X)/V2,B1 = Z,By = (Z — X) /2 we get
effectively the average value: (Srar) = V2(XX + ZZ).
It is easy to observe that (XX) = (ZZ) = 1 and the
Tsirelson maximum is saturated. However, what is im-
portant in this simple example is that consecutive mea-
surements of both X and Z leaves the system in the same
eigenstate for any number of time steps. As an immediate
implications, one gets violation of monogamous Bell-like
inequalities in space [40]:

Sap+Spc £ 4 (28)

since for the temporal tripartite system ABC (B and C
being instances of A at consecutive times) we get satu-
ration for the AB pair and for the BC:

S,;ap + Srpc = 4V2 (29)

This limit cannot be achieved by spatial correlations [40].
The fundamental point about generation of such aver-
aged Bell-like inequalities is that we operate actually
with a bundle of different histories (formally a bundle
of vectors from the consistent entangled history family
set) starting with the same initial pre-selected state and
finalizing with the same post-selected final state for the
bundle but having different intermediary steps (in the
above example with XXX and ZZZ quantum operations).

We can look at the problem of bounding temporal cor-
relations also by prism of the two-state vector formalism
which is isomorphic to the entangled histories [33]. The
correlations can be described by the probabilistic boxes
in non-signalling theory. The box is shared between two
parties who give the input setting {x,y} of the measur-
ing devices and get the outputs {a,b} with probability
p(ab|zy) being an entry of the join probability distribu-
tion matrix P(ablzy) = [p(ablry)]. All entries of this
matrix meet the non-negativity condition (p(ablzy) > 0)
and are normalized:V, , >, , p(ablzy) = 1 and the no-
signalling condition imposed on the quantum correlations
by the special relativity constraints: the marginals p(a|z)
and p(bly) are independent of settings y and x respec-
tively, i.e. Vy q2p(alz) = >, plablzy) and Va4 ,p(bly) =



> . plablzy). Then the Aharanov-Bergmann-Lebowitz
(ABL) formula delivers a method for calculation of
the measurements probability in between the initial time
with the pre-selected state and the post-selected state at
the final time of the analyzed quantum process.

In the case of series of X and Z measurements injected
in the aforementioned histories considered in this section
we get the following example for probability distribution
with assumption that at times ¢; and t5 the X observable
is chosen and we get | 1) results in both times:

(@ o) (T || 1) (T [ W)
>y P(ab| X X)

This is an operational method for generation of the whole
probability distribution matrix. However, we should note
that these experiments start with the same initial and
final states but with different intermediate steps, thus,
leading to a bundle of histories at times tg, ¢, t2,t3 (Fig.

2):

p(Tete [XX) =

(30)

|Habwy) ~ p(ab| XY") (31)

which can lead to violation of spatial quantum bounds
on Bell-like inequalities.

[Ho)
£ S
[H))
[ ) [
[¥) : D)
[H,)
Ty T, T T

FIG. 2: A bundle o histories at times 79, 71, 72, 73 with a pre-
selected state |¥) and post-selected state |®). Exemplary his-
tories |Ho) and |H1) with incorporated measurement results of
X. This bundle contributes to violation of monogamous tem-
poral Bell-like inequalities engaging different history states
with the same initial and final states.

We can then formulate generic bounds on temporal
correlations of qubits in quantum theories (this result
can be generalized to the qudits’ case).

Let us assume that the quantum process occurs n times
and that for any two times {¢;,¢;+1} the quantum bound
Q limits the temporal Bell-like functional on the ma-
trix of probability distributions, ie. Br(A;, 4;11) =

F([Ptistiys (ablzy)]) < Q with the association of histo-
ries |Hgpgy), then the process saturating the chain for
such n-steps can be designed in such a way that each
pair of times is a replication of two consecutive times,
ie. Vilpe, ;o] = [Ptiso,tiss]- This process is equivalent
logically to a loop tg — t; — tg — t1.... In consequence,
we get the following quantum bound :

n—1

> Br(Ai A1) < Qn (32)

=0

that can be saturated to its maximal value. As an im-
plication for the LGIs one gets the following quantum
bound:

Z Srar(Ao, 4;) < 2v2n (33)
=1

which can be saturated to the maximal value in quantum
world and which violates the spatial monogamy relations
S B(Ao, Ai) < 2n (for n > 2) [40)].

We can conclude this section with a remark that a par-
ticular entangled history is monogamous but for a bundle
of histories with the same pre-selected and post-selected
stated one can get violation of monogamy. This is a novel
feature of temporal correlations not paralleled in spatial
domain.

V. POLYAMORY OF AN ENSEMBLE OF
QUANTUM HISTORIES

One should take the viewpoint that the present paper
treats about entangled histories, however, the mathemat-
ical concepts related to temporal correlations seem to
play a predominant role in our interpretation of spatio-
temporal correlations. There are other representations
like the multi-time state formalism (MSVF), process ma-
trices or pseudo-density matrices and super-density for-
malism which gain a lot of attention. In general, as
proved in [33] for MSVF and entangled histories, they
lead to the same results but there are subtle differences
in what they represent. This sometimes leads to confu-
sion in interpretation of the results.

In this paper, we have proved that a particular history
is monogamous that leads to the well-known Tsirelson
bound on the LGI and the bound for multi-system set-
tings. Yet the problem of the lack of monogamy e.g. in
the evaporating space-times is still a field of an active
research [46], [47]. Tt is suggested [48] that the tempo-
ral correlations in time are rather polyamorous and the
lack of monogamy emerging in evaporating space-times
is naturally related to lack of monogamy of correlations
of outputs of measurements performed at subsequent in-
stances of time of a single system.

As a particularly important example of potential
polyamory of the temporal correlations, we can recon-
sider the case described in [48]. The evolution of the



system is such that at some point of time ¢y the single
system can be viewed in an arbitrary chosen reference
frame as a tripartite system H AB being in a pre-selected
state:

W) = [v) @ |2F) (34)

where H is in a definite state |¢)) and AB are projected
onto the maximally entangled state |®*). Then at time
t, the particles H and A are always post-selected onto
the state |®):

[@1) = [27) @ |9) (35)

Hence, it is concluded that the particle A is maxi-
mally entangled with H and with particle B violating
monogamy of entanglement which is a form of polyamory
in time.

Yet, when we look at this interesting case by a prism
of results of this paper, we find out that there is no di-
chotomy in viewing the monogamy of entanglement in
time. We shall write a two-time history of the system
HAB as:

[H) = [¥1] © [ (36)

where one finds the particle A maximally correlated with
the particle B in one reference frame at time ¢y and max-
imally correlated with the particle H at time ¢;. We need
to emphasize that if we take a careful look at A in the
history |H), it lives in a doubled space B(H) ® B(H )
(one in time ¢y and one in time ;).

We can consider an alternative interesting approach
to address this case but this time explaining violation
of monogamy in time by means of a mixture of entan-
gled histories. One takes a perspective of a single sys-
tem evolving from H being prepared in a maximally
mixed state py = % (N = dimB(Ha)). Then a set
of consecutive measurements is performed: first we mea-
sure an observable X = o0,, then ¥ = o, and finally
Z = oy,. It is straightforward to show that for con-
secutive measurements of X and Y on a mixed state,
one gets the joint probability distribution P(z,y|X,Y)
in similarity to measurements of X and Y performed on
a maximally entangled spatial state of a bipartite sys-
tem |®y) = %(\OO) + |11)). The same reasoning applies
further to p(y, 2|Y, Z). We conclude that these correla-
tions violate temporal Bell-like inequalities and in conse-
quence, we could expect also violation of monogamy of
quantum entanglement in time since we consider a single
system.

This time we operate with an ensemble of entangled
histories leading to violation of monogamous Bell-like
temporal inequalities. The action of the unitary Pauli
operations (Fig 3.) on the subsystem A in between the
pre-selected |®4) and the post-selected |®4) can be rep-
resented as a history |Hr):

|Hr) = [@4] © [@4] O [24] © [@4] © [4] (37)

with bridging operators U(t1,t2) = 0, ® I, Ultae, t3) =
oy ®1Ip, Ults, ts) = 0, ®Ip and Ul(t4,t5) = I with post-
selected state |®y). Interestingly, if we ask now for a
history of the subsystem A in this evolution, we get a
temporal version of an entangled GHZ state:

IEO:;M®M®M®M®M+M®M®M®M®M)
38
with corresponding evolution Ugx(ty,t2) = (UI),

UA(tg,t3) = 0y, UA(t3,t4) = o, and UA(t4,t5) =1
where |H4) is derived from the global |Hr) tracing out
B party over all times ([33]) keeping consistency of the
derived reduced evolution of the subsystem (note that it
is not a mere analogy of spatial trace out operation over
all times, the binding evolution between the time steps
has to be kept).

FIG. 3: |Hr) represents multi-time global evolution of the bi-
partite system AB pre-selected and post-selected in state @4
with consecutive measurements on the subsystem A. One gets
entangled temporal version of GHZ state for a history |Ha)
from a global separable history |Hr) which is a phenomenon
unparalleled for spatial entanglement.

This local evolution can be represented equivalently
with the following underlying quantum structure with
trivial evolution:

WM::;MG%MQQ%MQQ%W@GM
+ 1] az[l]ol ® ay[l]og ® az[l]al ©® [1]) (39)

The above global and local history is constructed with-
out a definite state of a local system A at intermediary
instances of time. However, if one reads the local state
of A and gets a definite state |[+) or |—) for a given mea-
surement setting, then the history is disentangled and
effectively the considered history for the process is sep-
arable. Noticeably, one cannot forget that measurement
itself is an inherent element of the process and co-creates
the particular history.

As an example, consider probability for the joint result



P(++ +|XY Z) on the A subsystem in evolution repre-
sented by |H,4) but with consecutive measurement set-

i + o + .
tings o, o, and o :

1
P+ ++|XYZ2) = 5|<0|0’ja’;0‘2_|0> + (1|aja;ja;"|1>\2

(40)
due to cancellation of the zero-probability evolution el-
ements. Thus, for a history: |[Ha) = 11 © [z7] ®
[y*] ©® [z7] © I (one puts 2+ = 2= o+ = Iio=
etc.) we get the realization probability Pr(|Hs)) =
Tr(K(|Ha))K(|H4))). It is worth mentioning that that
the same result can be derived applying the ABL formula
[15] as discussed in the previous section.

It is to be emphasized that if we measure e.g.
P(00|XY), there is no entanglement for this two-point
function since we get a direct result of z = 0 for o,
and y = 0 for o, disentangling the particular history.
There is also no violation of monogamy of quantum en-
tanglement in time. Conversely, if we impose violation of
monogamy of quantum entanglement in time, then the
physical structure of the probability amplitude of the
underlying quantum process should correspond to that.
Yet, as proved above, we rather get a temporal version
of the GH Z state for a multi-time process and violation
of monogamy for the ensemble of histories with different
measurement results for corresponding to the whole
probability distribution P(zyz| XY Z).

There is one more important aspect related to cal-
culation of statistics for consecutive measurements of
the single system. One cannot assume in calculation of
P(zy|XY) and P(yz|Y Z) that an observer can make the
consecutive measurements more or less independently.
Such an assumption imposed in analogy to the measure-
ments made on ensembles of quantum pairs for the spa-
tial entanglement would lead to incorrect results. For
the sake of temporal correlations of a single system, mea-
surements themselves are part of the particular histories
(evolution). Thus, if we get for the intermediate step e.g.
P(zy = 0|XY), we need to keep y = 0 for further evolu-
tion of the particular history and further calculation of
P(yz|YZ) with y = 0 even if we take the ensemble of
evolutions for the last step.

We need to remind that the initial and final conditions
on the evolution of the system imply that not all interme-
diate measurement results are possible as we count only
non-zero probability amplitudes. It is pointed out that
what mimics violation of monogamy of entanglement is
actually just a kind of polyamory in time but monogamy
of entanglement for a particular evolution still holds.

VI. CONCLUSIONS

The central idea of this paper was to show how the
quantum correlations in time can violate Bell-like monog-

amous inequalities conserving monogamy for particular
processes.

We proved that a particular entangled history, which
can be associated with a quantum propagator, is monog-
amous to conserve its consistency throughout time. How-
ever, the evolving systems can still violate monogamous
Bell-like multi-time inequalities. This dichotomy, being a
novel feature of temporal correlations, has its roots in the
measurement process which is discussed by means of the
bundles of entangled histories. The measurement process
is an inherent part of the quantum evolution and differ-
ent measurement outcomes generate different instances of
the considered evolution. We introduced and discussed a
concept of a probabilistic mixture of quantum processes
by means of which we clarify why the spatial-like Bell-
type monogamous inequalities are further violated. We
derived the quantum bound for multi-time Bell-like in-
equalities basing on the Tsirelson bound on temporal
Bell-like inequalities derived from the entangled histories
approach. This result is interesting due to the fact that
previous methods were based on the linear optimization
on the set of allowed probabilistic distributions gener-
ated by quantum measurements. In the context of the
black hole information paradox, it is also pointed out
that what mimics violation of monogamy of temporal en-
tanglement is actually just a kind of polyamory in time
but monogamy of entanglement for a particular evolution
still holds. We employed also a novel feature of tempo-
ral correlations which seem to be separable for a global
evolution generating locally entangled temporal states to
violate monogamous Bell-like inequalities in space-time.

There are many open problems and questions for fur-
ther research in this field. Future research can be focused
on analysis of non-locality in time and finding more ap-
propriate mathematical structures that will enable easier
calculations of measurements’ outputs for observers in
different reference frames. Monogamy of entanglement
in time and non-locality in time can be probably applied
also in quantum cryptography and should give some new
insights into non-sequential quantum algorithms and in-
formation processing. Finally, as stated in the paper
the subject is fundamental for understanding relativistic
quantum information theory and brings new prospects
for this field.
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