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Abstract

Using the property of the solution of the Langevin dynamics with a generalized frictional memory

kernel and time-dependent deterministic force field (TDFF) we show that a solution method (which

is very simple as well as shortcut) can be used to derive the Fokker-Planck equation (FPE) for

this dynamics. Then the equation is derived for the non-Markovian dynamics with additional force

from harmonic potential, magnetic fields, and both, respectively. Thus the method is instructive

in deriving the Fokker-Planck equation in a shortcut way in the presence of an additional time-

dependent stochastic force. Here we have to consider that the relevant drift terms are independent

of the random force. Then another very important point is to be noted here. To interpret FPE,

we recognize that the memory of the non-Markovian dynamics can induce an electric field from

the time-independent magnetic field in the presence of a conservative force field. Then one may

notice that how it may modulate diffusion terms and the effect from a time-dependent external

force field. We understand that the present study, with the recognization of the induced electric

field will bring strong attention to different areas of non-equilibrium statistical mechanics such as

physical tuning of conductivity of ions in solid electrolytes, noise-induced transition and stochastic

thermodynamics for non-Markovian dynamics etc.
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I. INTRODUCTION

The Langevin equation of motion is the expected law of causality for the Brownian motion.

Its equivalent description may be the Fokker-Plank equation (FPE) for special cases like

the Gaussian random force driven Brownian motion. The FPE equation is unavoidable in

calculating the barrier crossing rate constant[1], the entropy production for the irreversible

processes[2–5] and in the context of the linear response theory[6] etc. Kramers’ theory [1]

on the barrier crossing dynamics requires the relevant probability density function (PDF)

at the steady-state. To determine this, we must need the FPE[1]. In this context, we cite

a very recent study, [7] where escape dynamics in a two-temperature Brownian magneto-

system is investigated. Similarly, the Fokker-Planck operator plays an important role in the

linear response theory, as demonstrated in Ref.[6]. Thus finding the FPE corresponding to

a Langevin equation and its use of it are always intriguing issues in statistical mechanics

[5, 7, 8]. It is to be noted here that although the probability density function (PDF) is known

for the linear stochastic process, still, the Fokker-Planck equation is required in many cases,

as mentioned above. Thus, one of the objectives of the present study is to derive the Fokker-

Planck equation for the non-Markovian dynamics (of a driven Brownian particle) in a simple

way using the PDF.

The theory for the Markovian dynamics is well established, and its application is contin-

ued, especially to the newly born subject, stochastic thermodynamics. Now one may cite the

famous assertion of van Kampen [9]. He argued that the non-Markovian is the rule, Marko-

vian is an exception [9]. Study on the non-Markovian dynamics over the last four decades in

diverse contexts, such as activated barrier crossing[10–14], stochastic resonance[15], ratchet

rectification[16], energy harvesting[17] and many others[3, 18–27]), justifies the assertion. We

now note that although the study on the Markovian dynamics of charged particles started in

the early sixties[28] of the last century, the present state of knowledge on the non-Markovian

dynamics of the same in the presence of a magnetic field is at an early stage[20–23, 29–31].

The reason behind this may be that the theoretical analysis of the non-Markovian dynamics,

in general, is challenging. For further particulars, we refer to the Refs.[9, 32]. The probabilis-

tic description of the non-Markovian dynamics is non-trivial and highly formidable[9, 32].

In the theory of Brownian motion, the Langevin and Fokker- Planck equations correspond

to the coarse-grained model, in which only a few degrees of freedom related to observ-
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ables of a Brownian particle(BP) are explicitly retained[32]. Assuming the environment of

a Brownian particle is a collection of non interecting harmonic oscillators, derivation of the

generalized Langevin equation of motion now becomes a common practice in both classical

and quantum Brownian motions. Recently it has been derived in Ref.[33] for a Brownian

oscillator in the presence of a fluctuating magnetic field. It is to be noted here that starting

from basic molecular theory (Liouville equation or the Hamilton’s equations of motion),

one may obtain the generalized Langevin equation of motion using the projection operator

formalism[32]. Very recently, this formalism has been used in different contexts [34]. One

may also obtain the Fokker-Planck equation using the projection operator formalism [32].

For the non-Markovian dynamics where the decay of certain molecular correlation functions

has an asymptotic slow inverse power decay, the projection operator formalism may not

be applicable to derive the Fokker-Planck equation, as a detailed discussion was given in

Ref.[32]. Then the introduction of additional variables may thus be essential[9]. Using auxil-

iary variables, one may have the continuity equations[3, 30, 31, 35–37], which is an effective

Markovian description of a given non-Markovian design in the extended phase space. In

some cases, such as for a linear system, one may derive the Fokker-Planck equation for the

non-Markovian dynamics without using any additional variable(s)[18–24]. Using the inter-

action picture, the Fokker-Planck equations for the non-Markovian Langevin dynamics with

or without isotropic harmonic force field were first derived in 1976[18]. Twenty years later,

a similar issue with a one-dimensional harmonic oscillator was investigated, introducing a

proper characteristic function[19]. Applying this approach, the Fokker-Planck equations for

the non-Markovian Langevin dynamics with a magnetic force and a time-dependent force

field were addressed in velocity space and phase space[20], respectively. Recently[22], it has

been extended to derive the FPE for non-Markovian harmonic oscillator across a magnetic

field and time-dependent force field (TDFF). The revised version of this Fokker-Planck equa-

tion was given in Ref.[24]. To avoid any confusion, we would mention here that there is a

typo in the same ((Eq.(7)). The quantity, q∇̇xP in Eq.(7) must be q∇̇uP .

Recently, an alternative solution method has been developed in Ref.[21, 23] in deriving

the Fokker-Planck equation for the non-Markovian dynamics. Solving the given Langevin

equation of motion, one may obtain the relevant moments as well as the probability distri-

bution function. Knowing the nature of these quantities, a relevant Fokker-Planck equation

can be proposed whose coefficients are to be determined applying two simple mathematical
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notions, (1) Setting of linear algebraic equations with the collection of coefficients of phase

space variables and their appropriate multiples after putting the given distribution function

into the proposed Fokker- Planck equation, and (2) solution of the algebraic equations by

the elimination procedure to determine the unknown coefficients. Thus the method seems

to be a simple as well as shortcut one compared to the other solution-based methods[18, 19].

It reproduces all the known results. Here it is to be noted that at the present state of knowl-

edge, some of the terms in the FPE for the non-Markovian dynamics in the presence of a

magnetic field[22–24] require special attention. In this context, an essential identification is

that the non-Markovian dynamics may induce an electric field from the time-independent

magnetic field in the presence of a conservative force field. Then one may notice that it may

modulate diffusion terms. Thus one of the key objectives of the present study is to draw

special attention to this physical quantity in the field, non-equilibrium statistical mechanics.

In addition to this, we demonstrate that how the solution method, proposed by Das et.

al.[21, 23] can be used to determine the modulation of the drift term due to an external

time dependent deterministic force field in the presence of a frictional meory kernel induced

velocity dependent feedback. It is to be noted here that the additional drift term (which is

due to the external time-dependent force) in the proposed Fokker-Planck equation creates

a difficulty in using the solution method [21]. The number of independent relations (a set

of linear algebraic equations) among the coefficients which appear in the proposed equation

is less than that of the number of relevant unknowns. In this circumstance, we need addi-

tional conditions based on the physics of the given system. The solution of the Langevin

equation implies that the response function or the susceptibility does not depend on the

external force field. Then we consider that the drift terms for the other force fields and

the relevant diffusion terms are independent of the external force field. Using this property

into the independent relations we determine the modulation of the drift term due to an

external deterministic force field in the presence of a frictional memory kernel induced ve-

locity dependent feedback. We show that this technique works even in the presence of both

conservative and non-conservative fields, respectively. With four examples, we show that

the method works well in this context. This calculation is instructive to determine easily a

diffusion term due to an external stochastic force driven Brownian particle in the presence

of frictional memory induced velocity dependent feedback, harmonic force and magnetic

field. Finally, a reader may find a chronological development of the relevant Fokker-Planck
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equations such that it will be helpful to understand them.

Before leaving this section, we would like to mention the following point. Consideration

of the time-dependent deterministic force field makes the present study significantly relevant

in the field of stochastic thermodynamics, which is now at an early stage to consider the

non-Markovian dynamics[27, 38]. The connotation of work in ST demands a time-dependent

deterministic force field [27, 38, 39]. We mention a few circumstances in the closing remarks.

The outlay of the article is as follows. In Sec. II A, we present an alternative formu-

lation for the derivation of the FPE for the non-Markovian dynamics in the presence of a

time-dependent force field. The Fokker-Planck equation is derived in the following three

consecutive subsections for additional force from harmonic potential or magnetic field or

both of them, respectively. We conclude the paper in Sec. III.

II. MEMORY INDUCED MODULATION OF THE EFFECT OF A TIME DEPEN-

DENT EXTERNAL FORCE FIELD

A. Non-Markovian dynamics of a free Brownian particle in the presence of a

time-dependent force field

The Langevin equation of motion of a free Brownian particle which is coupled to a

non-Markovian thermal bath in the presence of a time-dependent force field (a(t)) can be

read[18, 21] as:

u̇ = −

∫ t

0

γ(t− τ)u(τ)dτ + f (t) + a(t) , (1)

where u is a velocity vector of the particle with mass, m = 1. f (t), in the above equation

is a colored Gaussian thermal noise, and it is connected to the time-dependent damping

strength (γ(t)) through the following fluctuation-dissipation relation:

〈f (t) · f (t′)〉 = 3kBTγ(t− t′) . (2)

Thus Langevin equation of motion (1) is a special case that is valid only for stationary

noise procees. In other words, the thermal bath is assumed to be in equilibrium state. It is

applicable for other cases also.
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We now go through the same steps as in Ref. [21], with the time dependence of a being

the only difference would be needed as clarification. First, we calculate the relevant moments

using the solution of the Langevin Eq.(1). The solution of this equation can be read as

g(t) = u− χ(t)u(0)−

∫ t

0

χ(t− τ)a(τ)dτ

= u− (c+ p) = u− c′

=

∫ t

0

χ(t− τ)f (τ)dτ . (3)

where we have used c′ = c+p , c = χ(t)u(0) and p =
∫ t

0
χ(t− τ)a(τ)dτ . χ(t), in the above

equation is defined as

χ(t) = L−1[χ̃(z)]

= L−1

[

1

z + γ̃(z)

]

. (4)

Here L−1 denotes Laplace inversion and γ̃(z) is the Laplace transform of γ(t)

γ̃(z) =

∫ t

0

e−ztγ(t)dt . (5)

chi(t) in Eqs.(3) is known as the response function or the susceptibility. One may notice

here that it is independent of the external force field. Shortly we will find that this notice

may help to derive the relevant Fokker-Planck equation in a shortcut way.

All the second moments corresponding to the fluctuations (as given by Eq.(3) can be

represented by the matrix, A(t) with Aij = 〈gi(t)gj(t)〉. Now using Eq.(3) ,we have A(t) =

A(t)I, where I corresponds to the relevant identity matrix and

A(t) =

(

3kBT

m

)

[

1− χ2(t)
]

. (6)

Thus for the linear Langevin equation (1) with the Gaussian noise, the velocity distribution

function can be written as [6, 18, 21]

P (u,u(0); t) =

[

3

2π|A(t)|

]
3

2

exp

[

−
3

2
g†(t)A−1(t)g(t)

]

. (7)

In the next step, keeping in mind the nature of the distribution function as well as the

matrix, A(t), we may propose the relevant Fokker-Planck equation as [21]

∂P

∂t
= G(t) · ∇P + β(t)∇ · uP +H(t)∇2P , (8)
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where β(t), G(t) and H(t) are time-dependent quantities to account for the NMD properly.

The first term on the right-hand side of the above equation corresponds to the drift term

due to the deterministic time-dependent force field, a(t). The remaining second and last

terms are usual drift and diffusion terms, respectively. Now we have to determine the

time-dependent coefficients, making use of the solution of the above equation. Using the

distribution function (7) in Eq.(8), we obtain the following set of linear algebraic equations

with the collection of coefficients of phase space variables and their appropriate multiples

G(t)− β(t)c′ +
2H(t)c′

A(t)
=

Ȧ(t)c′

A(t)
− ċ′ , (9)

and

2H(t)− 2β(t)A(t) = Ȧ(t) . (10)

Using Eq.(10) into Eq.(9) we have

β(t)c′ +G(t) = −ċ′ . (11)

It is to be noted here that the additional drift term (G(t) · ∇P ) in the proposed Fokker-

Planck equation ( which is due to the external time-dependent force) creates a difficulty

to use the solution method [21]. Here we find two linear algebraic equations (9-10) with

the three unknown coefficients, β(t), G(t) and H(t), respectively. In this circumstance, we

need additional conditions based on the physics of the given system. The solution of the

Langevin equation implies that the response function or the susceptibility does not depend

on the external force field. Then we consider that the drift terms for the other force field

and the relevant diffusion term are independent of the external force field. In the absence

of the time-dependent force, G(t) = 0[18, 21], c′ = c and then the above equation becomes

β(t) = −
˙χ(t)

χ(t)
, (12)

and H(t) is given by

H(t) =
1

6
χ2(t)

d

dt

[

χ−2(t)A(t)
]

. (13)

We note that the coefficient, β(t) of the drift term due to dissipative action, is independent of

c(t) , which (is the average velocity) may be arbitrary as it depends on the initial condition,

u(0). In other words, β(t) only depends on the response function as expected. Similarly,
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A(t), as well as the diffusion coefficient, H(t), are also independent of c(t) since the dispersion

of velocity does not depend on the average velocity. Thus β(t) and H(t) may remain the

same in the presence of time-dependent force field (which changes only the average velocity)

since the response function and the variance, A(t), do not depend on it. Then from Eq.(11)

we have

G(t) = −(ṗ + β(t)p) , (14)

Thus, the Fokker-Planck equation corresponding to the Langevin Eq.(1) is:

∂P

∂t
= −

χ̇(t)

χ(t)
∇ · uP − (ṗ+ β(t)p) · ∇P +

1

6
χ2(t)

d

dt

[

χ−2(t)A(t)
]

∇2P . (15)

Now, one may check that the distribution function (7) is the solution of the above equation.

It constitutes the necessary and sufficient check of the above calculation. The above equation

was derived earlier in Ref.[20] using the characteristic function. Then one may easily notice

the simplicity and the shortcuts of the present method.

For further check, one can show that the above equation reduces to the standard result[18,

21] in the absence of the time-dependent force field. Finally, at the Markovian limit, γ(t−

t′) = 2γ0δ(t − t′) , the response function can be read as, χ(t) = exp−(γ0(t)), where γ0 is the

damping strength. Then we have β(t) = γ0, ṗ = −γ0p + a, H(t) = γ0kBT and G(t) = −a.

Thus at the Markovian limit, Eq.(15) reduces to the known result [6, 32, 41–44],

∂P (u, t)

∂t
= γ0∇ · uP − a · ∇P + γ0kBT∇

2P . (16)

Comparing this equation with that of Eq.(15), one may uncover in a simple way how the

memory effect (from the time-dependent damping strength) can modulate the influence of

the time-dependent external force field.

B. Non-Markovian dynamics of time-dependent force driven harmonic oscillator

For an isotropic harmonic oscillator having a frequency ω, Eq.(1) becomes

ẍ+ ω2x(t) +

∫ t

0

γ(t− τ)ẋ(τ)dτ = f (t) + a(t) , (17)

where x corresponds to the relevant position vector.
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Now following the previous subsection, the probability density function for the Langevin

equation of motion [Eq.(17)] can be written as [6, 18, 21]

P (x,u,x(0),u(0); t) =

(

1

2π

)3 [
1

|A(t)|

]
3

2

exp

[

−
3

2
g†(t)A(t)−1g(t)

]

(18)

with

g(t) =





g1(t)

g2(t)



 , (19)

where

g1(t) = x(t)−

[

χx(t)x0 + χu(t)u0 −

∫ t

0

χu(τ)a(t− τ)dτ

]

= x(t)− [c1 + qx]

= x(t)− c1
′

=

∫ t

0

χu(τ)f (t− τ)dτ . (20)

From the above equation, the fluctuations in velocity can be read as

g2(t) = u(t)−

[

χ̇x(t)x0 + χ̇u(t)u0 −

∫ t

0

χ̇u(τ)a(t− τ)dτ

]

= u(t)− [ċ1 + px]

= u(t)− c2
′

=

∫ t

0

χ̇u(τ)f (t− τ)dτ . (21)

Here we have used c1 = [χx(t)x0 + χu(t)u0], qx =
∫ t

0
χu(τ)a(t − τ)dτ and q̇x = px.

χx(t) and χu(t) in Eq.(20) are the inverse Laplace transform of the relations, χ̃x(s) =

γ̃(s)+s

s2+sγ̃(s)+ω2 and χ̃u(s) = 1
s2+sγ̃(s)+ω2 , respectively. Then we define the matrix, A(t) with

Aij = 〈gi(t) · gj(t)〉.

Now the nature of the distribution function leads to propose the following Fokker-Planck

equation as an equivalent description of Eq.(17),

∂P

∂t
= −u · ∇xP +G(t).∇uP +H1(t)x · ∇u +H2(t)∇u.uP

+ H3(t)∇u.∇xP +H4(t)∇u
2P , (22)

where G(t), H1(t), H2(t), H3(t) and H4(t) are the relevant time-dependent coefficients to

account for the NMD properly. The first term on the right-hand side of the above equation
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is the usual drift term for both Markovian and non-Markovian dynamics, respectively. In

other words, here we consider that the time-dependent external force field can not change

the definition of velocity. The next term is due to the time-dependent external force field.

The drift term corresponding to the harmonic force field appears with the coefficient H1(t).

The remaining drift term is due to the dissipative force. We now consider the inclusion of

the diffusion terms. It is welknown [18, 19] that the non Markovian dynamics induces a

correlation between the cannonical conjugate pair. This correlation is instructive to include

the diffusion term, H3(t)∇u.∇xP . Finally, the last term is the usual diffusion term. To

avoid any confusion, we would mention here that following Ref.[21, 23, 40], the diffusion

terms with other second derivatives are not considered here.

We are now in a position to determine the time-dependent coefficients of the above

equation. Following the previous section, we have

G(t) = −ṗx −H2(t)px −H1(t)qx , (23)

H1(t) = ω̃2(t) , (24)

H2(t) = β̃(t) , (25)

H3(t) =
kBT

ω2

[

ω̃2(t)− ω2
]

, (26)

and

H4(t) =
kBT

ω2
β̃(t) , (27)

where we have used

β̃(t) = −
d ln∆(t)

dt
, (28)

ω̃2(t) = ∆−1(t) [χ̈u(t)χ̇x(t)− χ̈x(t)χ̇u(t)] (29)

and

∆(t) = [χ̇u(t)χx(t)− χ̇x(t)χu(t)] . (30)
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Thus the required Fokker-Planck equation can be read as

∂P

∂t
= −u · ∇xP −

[

ṗx + β̃(t)px + ω̃2(t)qx

]

.∇uP + ω̃2(t)x.∇uP

+ β̃(t)∇u · uP +
kBT

ω2

[

ω̃2(t)− ω2
]

∇u.∇xP +
kBT

ω2
β̃(t)∇u

2P . (31)

Now, one can check that the distribution function (18) is a solution of the above equation.

Thus we arrive to the new Fokker-Planck equation with a shortcut way. Shortly we will

compare this equation with its counterpart,i.e., the Markovian case.

For further check, one may use the condition, a(t) = 0. Then qx = px = 0 as well as

G1(t) = 0 and the above equation reduces to the standard result[18, 19, 21]

∂P

∂t
= −u · ∇xP + ω̃2(t)x.∇uP + β̃(t)∇u · uP

+
kBT

ω2

[

ω̃2(t)− ω2
]

∇u.∇xP +
kBT

ω2
β̃(t)∇u

2P . (32)

At the Markovian limit, Eq.(31) reduces to

∂P

∂t
= −u · ∇xP + ω2x.∇uP + γ0∇u · uP − a(t) · ∇uP + γ0kBT∇u

2P . (33)

In the absence of the time-dependent force (a(t) = 0) the above equation becomes the

Kramers’ equation for the isotropic harmonic oscillator[1].

Comparing Eq.(32) with Eq.(33) we find that as a signature of the memory effect induced

feedback, the frequency of the harmonic oscillator and the coefficient of the drift term due

to dissipative force become time-dependent for the non-Markovian dynamics. Then one

may compare the coefficients of the diffusion terms (due to the momentum diffusion) in the

respective Fokker-Planck equations. Here again, it is apparent that the coeffcient for the non-

Markovian dyanmics is time-depenent. The diffusion term in Eq.(32) with cross derivatives

is purely non Markovian origin. Its coefficient easily measures the deviation of the dynamics

from the Markovian character. Finally, comparing Eq.(31), with Eq.(33) we find that how

the modulation of the effect of time-dependent external force can be complicated by the

conservative and dissipative forces in the presence of the memory effect induced feedback.

Thus the present method is very simple to use compared to the other methods to identify the

modulation. Then one may expect to apply the present method to identify the modulation

of the cyclotron frequency and its response to the effect of the time-dependent force in the

presence of a non-Markovian thermal bath. The following subsection shows that one may

achieve this result through a simple as well as shortcut way following subsection (A).
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C. Non-Markovian dynamics of a free particle in the presence of a constant mag-

netic field and a time-dependent force field

In the presence of a magnetic field, the equation of motion (1) becomes [20]:

u̇ = F + f (t) + a(t) , (34)

where

F = −

∫ t

0

γ(t− τ)u(τ)dτ +
q

m
(u×B) . (35)

B = (0, 0, Bz), in the above equation is the applied magnetic field. Thus, the z-direction

does not experience the magnetic force. Therefore, we consider that the motion of the

Brownian particle is confined in x − y plane. The related equations of motion in terms of

components of velocity are:

u̇x = −

∫ t

0

γ(t− τ)ux(τ)dτ + Ωuy + fx(t) + ax(t) (36)

and

u̇y = −

∫ t

0

γ(t− τ)uy(τ)dτ − Ωux + fy(t) + ay(t) (37)

where we have used Ω = qBz

m
. ax(t) and ay(t) are the relevant components of the time-

dependent force, a(t).

Now the velocity distribution function for the Langevin Eqs.(36-37) can be written as

P (ux, uy, ux(0), uy(0); t) =

(

1

2π

)[

1

|A(t)|

]
1

2

exp

[

−
1

2
g†(t)A−1(t)g(t)

]

(38)

with

g(t) =





g1(t)

g2(t)



 . (39)

where

g1(t) = ux(t)−

[

(χ1(t)ux(0) + χ2(t)uy(0)) +

(
∫ t

0

χ1(τ)ax(t− τ)dτ +

∫ t

0

χ2(τ)ay(t− τ)dτ

)]

= ux(t)− [c1 + px]

= ux(t)− c1
′

=

∫ t

0

χ1(τ)fx(t− τ)dτ +

∫ t

0

χ2(τ)fy(t− τ)dτ (40)
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and

g2(t) = uy(t)−

[

(χ1(t)uy(0)− χ2(t)ux(0)) +

(
∫ t

0

χ1(τ)ay(t− τ)dτ −

∫ t

0

χ2(τ)ax(t− τ)dτ

)]

= uy(t)− [c2 + py]

= ux(t)− c2
′

=

∫ t

0

χ1(τ)fy(t− τ)dτ −

∫ t

0

χ2(τ)fx(t− τ)dτ . (41)

Here we have used c1 = χ1ux(0) + χ2uy(0) , c2 = χ1uy(0) − χ2ux(0), px =
∫ t

0
χ1(τ)ax(t −

τ)dτ +
∫ t

0
χ2(τ)ay(t−τ)dτ and py =

∫ t

0
χ1(τ)ay(t−τ)dτ −

∫ t

0
χ2(τ)ax(t−τ)dτ . The response

functions, χ1(t) and χ2(t), which appear in the above equations are inverse Laplace transform

of the following relations

χ̃1(s) =
[s+ γ̃(s)]

[s+ γ̃(s)]2 + Ω2
, (42)

and

χ̃2(s) =
Ω

[s+ γ̃(s)]2 + Ω2
, (43)

respectively. Then we define the matrix, A(t) with Aij = 〈gi(t)gj(t)〉.

We are now in a position to propose the Fokker-Planck equation for the non-Markovian

dynamics with Eqs.(36-37)[21] as

∂P

∂t
= β1 [∇u.uP ] + β2 [u×∇uP ]z +G1(t)

∂P

∂ux

+G2(t)
∂P

∂uy

+H(t)∇u
2P , (44)

where β1(t), β2(t), H(t) ,G1(t) and G2(t) are the relevant time-dependent quantities.

Following Sec. IIA, we determine these coefficients as

β1(t) = −
(χ1χ̇1 + χ2χ̇2)

(χ2
1 + χ2

2)
, (45)

β2(t) = −
(χ2χ̇1 − χ1χ̇2)

(χ2
1 + χ2

2)
, (46)

H(t) =
(χ2

1 + χ2
2)

2

d

dt

[

A(t)

(χ2
1 + χ2

2)

]

, (47)

G1(t) = −ṗx − β1(t)px + β2(t)py , (48)
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and

G2(t) = −ṗy − β1(t)py − β2(t)px . (49)

Making use of Eqs.(45-49) in Eq.(44), we have

∂P

∂t
= β1(t)∇u.uP − [ṗ+ β1(t)p] .∇uP − β2(t) [p×∇uP ]z

+ β2(t) [u×∇uP ]z +H(t)∇u
2P . (50)

where p = (px, py, 0). This is the required Fokker-Planck equation. Now one can check that

the distribution function (38) is a solution to the above equation. It signifies an essential

appraisal of the present calculation. Another check is that the above equation exactly

corresponds to the one which was derived in Ref.[20] using the characteristic function. Now

comparing this subsection with Sec.2 in Ref.[20] one may be sure about the simplicity and

the shortcuts of the present method. The plainness may be noticeable in the additional

harmonic force field, which we will demonstrate in the next subsection.

For further check, one can show easily that in the absence of time-dependent force,

a(t) = 0 and the above equation reduces to the following known result[20, 21],

∂P

∂t
= β1(t) [∇u.uP ] + β2(t) [u×∇uP ]

z
+H(t)∇u

2P , (51)

since px = py = 0 as well as G1 = G2 = 0.

Finally, at the Markovian limit, the Fokker-Planck equation (50) reduces to

∂P

∂t
= γ0 [∇u.uP ]− a.∇uP + Ω [u×∇uP ]z + γ0kBT∇u

2P (52)

In the absence of a time-dependent force field, a(t) = 0, the above equation is the same

as that obtained for the Markovian Brownian motion is described by a charged particle

across a magnetic field [45, 46]. Thus the Fokker-Planck equation (50) satisfies all possible

limiting situations. However, it is to be noted here that comparing the above equation

with that of Eqs.(50-51), one may find how the cyclotron frequency, as well as the effect of

the time-dependent external force field, is modulated in the presence of a non-Markovian

thermal bath. The modulations are quite similar to the case, the external time-dependent

force driven harmonic oscillator. Here the cyclotron frequency plays a similar role as that of

the frequency of the harmonic oscillator. In the following subsection, we will investigate the

relevant modulations in the presence of both conservative and non-conservative force fields,

respectively.

14



D. Non-Markovian dynamics of a Brownian oscillator in the presence of a mag-

netic field and a time-dependent external force

In the presence of a two-dimensional harmonic potential energy field, the Langevin equa-

tions of motion (36-37) become [22]

u̇x = −ω2x−

∫ t

0

γ(t− τ)ux(τ)dτ + Ωuy + fx(t) + ax(t) (53)

and

u̇y = −ω2y −

∫ t

0

γ(t− τ)uy(τ)dτ − Ωux + fy(t) + ay(t) . (54)

where ω is the frequency of the harmonic oscillator. Since the Langevin equations (53-

54) of motion correspond to the Gaussian noise-driven linear system, then the phase space

distribution function is a Gaussian one [6]. Using the matrix, A
′ (which is defined in

Appendix A) and its inverse, the phase space distribution function can be written as:

P (x, x(0); y, y(0); ux, ux(0); uy, uy(0); t) = (2π)−2(A1A2−A2
3−A2

4)
−1 exp

[

−
1

2
g†(t)A′−1

(t)g(t)

]

(55)

with

g(t) =















g1(t)

g2(t)

g3(t)

g4(t)















. (56)

g1(t), g2(t), g3(t) and g4(t) are defined in Appendix A. Then, considering the previous

subsections, one may propose the following Fokker-Planck equation,

∂P

∂t
= −

∂uxP

∂x
−

∂uyP

∂y
−G1(t)

∂P

∂ux

−G2(t)
∂P

∂uy

+H1(t)

[

x
∂P

∂ux

+ y
∂P

∂uy

]

+ H2(t)

[

∂uxP

∂ux

+
∂uyP

∂uy

]

−H3(t)

[

∂uyP

∂ux

−
∂uxP

∂uy

]

−H4(t)

[

x
∂P

∂uy

− y
∂P

∂ux

]

+ H5(t)

[

∂

∂x

∂P

∂uy

−
∂

∂y

∂P

∂ux

]

+H6(t)

[

∂

∂x

∂P

∂ux

+
∂

∂y

∂P

∂uy

]

+H7(t)

[

∂2P

∂u2
x

+
∂2P

∂u2
y

]

(57)

where G1(t), G2(t), H1(t), H2(t), H3(t), H4(t), H5(t), H6(t) and H7(t) are relevant time-

dependent quantities to account for the non-Markovian dynamics properly. The terms with
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G1(t) and G2(t) appear to consider the modulation of the effect of the time dependent

force by the harmonic, the magnetic and the dissipative force fields in the presence of the

memory effect induced feedback. Similarly, H1(t) ( H3(t)) reperesnts the modulation of the

force constant of the Harmonic oscillator (the cyclotron frequency) by the magnetic field

(harmonic force field) and the frictional memory kernel. Then we would mention that the

term with H2(t) appears to consider the effect of the dissipative force in the presence of

magnetic field and harmonic force. The remaining drift term with H4(t) is instructive from

the last subsection by virtue of the memory induced time dependent cyclotron frequecny.

Thus the Brownian particle experiences an effective time dependent magnetic field from a

time independent one in the presence of a non-Markovian thermal bath. Then it is expected

to consider a drift term with H4(t) (due to an accociated induced electric field) in the Fokker-

Planck equation in phase space. We now address the inclusion of the diffusion terms. The

matrix, A′ with the second moments includes the non-Markovian dynamics induced special

kind of cross-correlations, < xuy > and < yux > in the presence of magnetic field. These

correlations are instructive to consider a diffusion term with H5(t) which contains cross

derivatives. Finally, H6(t) and H7(t) are the usual diffusion terms for the non-Markovian

dynamics in the phase space as suggested by A
′. To avoid any confusion, we would mention

that the diffusion terms with other possible cross derivatives are not considered since the

cross-correlation of the fluctuations is zero for the individual case. However, following the

previous subsections, we obtain the required Fokker-Planck equation as

∂P

∂t
= −u.∇xP − [[ṗ+H2(t)p+H1(t)q] .∇uP +H3(t) [p×∇uP ]z −H4(t) [q×∇uP ]z]

+ H1(t)x.∇uP +H2(t)∇u.uP +H3(t) [u×∇uP ]
z
−H4(t) [x×∇uP ]

z

+ H5(t) [∇x ×∇uP ]z +H6(t)∇u.∇xP +H7(t)∇u
2P . (58)

Here x and u are relevant position and velocity vectors, respectively. The time-dependent

coefficients in the above equations are defined in Appendix B. Using the definition of the

coefficients, one may check that the distribution function (55) is a solution of the above

Fokker-Planck equation.

For further checking of the present calculation, we consider the condition with a(t) = 0.

Then one can easily show that ṗ = p = q = 0 and the above Fokker-Planck equation

reduces to the following known result[23]
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∂P

∂t
= −u.∇xP +H1(t)x.∇uP +H2(t)∇u.uP +H3(t) [u×∇uP ]z

− H4(t) [x×∇uP ]z +H5(t) [∇x ×∇uP ]z +H6(t)∇u.∇xP +H7(t)∇u
2P . (59)

At the same time, Eq.(58) also reduces to all the other known results at the specific limits.

Thus the accuracy of the calculation is confirmed.

Before leaving this subsection, we would mention the following points. The Fokker-Planck

equation corresponding to the equations of motion (53-54) was derived in Ref.[22] using the

relevant characteristic function. This equation was not a correct one as reported in [23].

Then its revised version (Eq.(7) in [24]) was published very recently. There is a typo in

Eq.(7), as mentioned in the introduction. However, some comments in [24] regarding the

present method seem to be misleading. Then we put the following discussion.

(i) To apply the present method, one may not need prior knowledge based on the character-

istic function. For example, the proposed Fokker-Planck equations in Ref.[23] contain extra

terms compared to the required Fokker-Planck equation. Applying two simple mathematical

notions [(1) Setting of linear algebraic equations with the collection of coefficients of phase

space variables and their appropriate multiples after putting the given distribution function

into the proposed Fokker-Planck equation, and (2) solution of the algebraic equations by

the elimination procedure.], one may anchor at the required FPE. It leads to remove the

inconsistencies with two drift terms and a diffusion term in the Fokker-Planck equation

(61) in Ref.[22]. Thus the method seems to be a straightforward as well as shortcut one

compared to the other solution-based methods[18, 19]. It may be instructive to derive the

Fokker-Planck equation in a shortcut way for complex systems like the magnetic field in an

arbitrary direction.

(ii) The present method may be helpful for a more complex case like a multidimensional

system with relevant position-dependent couplings. In that case, the drift term from the

harmonic force field has to be split. Thus the present method may be pertinent for all possible

Gaussian noise-driven linear systems for which the distribution function is known. The

relevant matrix (with the second moments corresponding to the component of fluctuations)

in the distribution function may be diagonal or not. For example, in subsections II A and II

C, the matrix is diagonal, and all the off-diagonal elements may not be zero in subsections

II B and D, respectively.
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(iii) Then we address the issue regarding the shorcut way of the method. Comparing between

Sec.IIC of the present manuscript and Sec.2 plus alied Appendix B in [20], one may be

sure about the shorcutness of the present calculation. To avoid any confusion, we note

that even some algebra was not explicit in this reference. Specifically, the transformation

of Eq.(B.10) into Eq.(B.22) with the use of Eqs.(B.9) and (B.17-B.18) requires a lengthy

algebra. It is to be noted here that in the Sec.IIC, three algebraic relations among five

unknown, β1(t), β2(t), G1(t), G2(t) and H(t) are implicit. One may obtain these relations

upon substitution of the distribution function(38) in Eq.(44). β1(t), β2(t) and H(t) are

independent of the external time-dependent force field. Using this property, one can easily

determine these quantities as reported in [21]. Then determination of G1(t) and G2(t) is

very simple. Thus the relevant algebra is almost the same with or without the external time-

dependent force field. Thus the present method is too shortcut (in adition to its simplicity)

compared to other method. Furthermore, one may compare Ref.[40] with Sec.III allied with

appendix A in [22] to avoid any confusion regarding the present context. Again we note

that a very long and careful algebra was implicit, as mentioned in the reference [22]. It is

to be noted here that the algebraic equations in the appendix in Ref.[40] were solved by a

simple inspection. This leads to determine G1(t) and G2(t) in Eq.(57) in Sec.IID with a

bit of additional effort to derive the relations among the coefficients in this equation. Thus

there should be no doubt about the shortcut way of the present method.

E. Memory induced electric field from time-independent magnetic field

There is no particular emphasis in all the relevant references [21–24] to interpret the

physical significance of the additional terms (in the required Fokker-Planck equations) due

to the applied magnetic field. This subsection includes an approach to this issue.

In the presence of a time-dependent magnetic field (Bt = (0, 0, Bt)), the Langevin equa-

tions of motion (53-54) can be written as [33]

u̇x = −ω2x−

∫ t

0

γ(t− τ)ux(τ)dτ + Ωtuy +
Ḃty

2
+ fx(t) + ax(t) (60)

and

u̇y = −ω2y −

∫ t

0

γ(t− τ)uy(τ)dτ − Ωtux −
Ḃtx

2
+ fy(t) + ay(t) , (61)
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where Ωt =
qBt

m
. At the Markovian limit, the overhead equations of motion evolves as:

u̇x = −ω2x− γ0ux + Ωtuy +
Ḃty

2
+ fx(t) + ax(t) (62)

and

u̇y = −ω2y − γ0uy − Ωtux −
Ḃtx

2
+ fy(t) + ay(t) . (63)

Now making use of the respective Taylor series into the both sides of the Smoluchowski

integral equaion (which is the Chapman-Kolmogorov equation for a Markov process [32]),

essentially due to Einstein [47], corresponding to the above equations of motion, we obtain

the following Fokker-Planck equation,

∂P

∂t
= −u.∇xP + γ0∇u.uP − a.∇uP+ ω2x.∇uP+Ωt [u×∇uP]

z

+
Ḃt

2
[x×∇uP ]z + γ0kBT∇u

2P . (64)

Adding the noise term to the relevant Liouville equation and then doing proper averaging

of the equation[48], one may easily arive at this equation. However, in the absence of the

external time-dependent force field, the above equation evolves to

∂P

∂t
= −u.∇xP + γ0∇u.uP + ω2x.∇uP + Ωt [u×∇uP ]z

+
Ḃt

2
[x×∇uP ]z + γ0kBT∇u

2P . (65)

Similarly, the Fokker-Planck equation at the Markovian limit for the Langevin equations

(53-54) of motion can be written as

∂P

∂t
= −u.∇xP − a.∇uP+ ω2x.∇uP+ γ0∇u.uP+Ω [u×∇uP]

z
+ γ0kBT∇u

2P .(66)

Now one may discourse on the following points in order. First, comparing Eq.(59) with

Eq.(65), we find that the coefficient of [u×∇uP ]z is time-dependent in both equations.

Then it is apparent in Eq.(59) that the time-independent magnetic field behaves effectively

as a time-dependent one in the presence of a non-Markovian thermal bath.

Then one may expect the frictional memory kernel induced electric field from the time-

independent magnetic field in the phase space description. In this occurrence, we would

look at Eq.(65). The term, Ḃt

2
[x×∇uP ]z in this equation is due to the induced electric
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field from the time-dependent magnetic field. Then one may identify the term, with the

coefficient H4 [x×∇uP ]z in Eq. (59) as the memory-induced electric field from the time-

independent magnetic field. Here the conservative force field from the harmonic potential has

an important role since, in the absence, the induced electric field may not emerge as justified

in Eq.(23) in Ref.[40]. Second, analogizing among the Fokker-Planck Eqs.(50, 58,64), one

may interpret that the drift term, H4(t) [q×∇uP ]z in Eq.(58) is due to the modulation of

the effect of the time-dependent external force field by the memory induced electric field.

Thus, the second term in the right hand side of this equation exhibits how the exffect can

be modulated by frictional memory kernel, conservative force, constant magnetic field and

induced electric field. Finally, the terms with H5(t) and H7(t) in Eq.(58) imply that how the

diffusion can be modulated by the electric field due to the non Markovian dyamics. These

are important benefits of the derivation of the Fokker-Planck equation. The induced electric

field and related effects may be overlooked from the Langevin equations of motion. Even

the existence of these quantities may be identified with the help of the distribution function.

Still, the lengthy expression of the PFE equation implies that the identification can not

determine the effects’ contribution to the probability flux quantitatively. According to the

famous assertion of van Kampen [9], the identification of the induced electric field demands

to re-investigate the barrier crossing dynamics [7, 33, 49–52] and others [4, 53], where it was

considered that a charged Brownian particle is coupled to a Markovian thermal bath in the

presence of magnetic field and conservative force.

III. CONCLUSION

In the presnt study we demonstrate that how the solution method, proposed by Das et.

al.[21, 23] can be used to determine the modulation of the drift term due to an external

time dependent deterministic force field in the presence of a frictional meory kernel induced

velocity dependent feedback. It is to be noted here that the additional drift term (which is

due to the external time-dependent force) in the proposed Fokker-Planck equation creates a

difficulty in using the solution method [21]. The number of independent relations (a set of

linear algebraic equations) among the coefficients which appear in the proposed equation is

less than that of the number of relevant unknowns. In this circumstance, we need additional

conditions based on the physics of the given system. The solution of the Langevin equation
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implies that the response function or the susceptibility does not depend on the external force

field. Then we consider that the drift terms for the other force fields and the relevant diffusion

terms are independent of the external force field. Using this property into the independent

relations we determine the modulation of the drift term due to an external deterministic

force field in the presence of a frictional memory kernel induced velocity dependent feedback.

We show that this technique works even in the presence of both conservative and non-

conservative fields, respectively. With four examples, we show that the method works well

in this context. This calculation is instructive to determine easily a diffusion term due to

an external stochastic force driven Brownian particle in the presence of frictional memory

induced velocity dependent feedback, harmonic force and magnetic field. Finally, one may

find a chronological development of the relevant Fokker-Planck equations such that it will

be helpful to understand them.

It is to be noted that at the present state of knowledge, some of the terms in the FPE

for the non-Markovian dynamics in the presence of a magnetic field[22–24] require special

attention. In this context, an essential identification is that the non-Markovian dynamics

may induce an electric field from the time-independent magnetic field in the presence of a

conservative force field. Thus one may notice that how it may modulate diffusion terms and

the effect from a time-dependent external force field.

Before we terminate, the following points merit due concentration. First, one may apply

the present method to consider where the magnetic field may be in an arbitrary direction.

It seems to be an open problem. In this context, Sec. IID may be instructive in deriving the

Fokker-Planck equation with the least effort. Second, the magnetic field induced additional

drift and diffusion terms in the company of a non-Markovian thermal bath may be pretty

interesting in many contexts. Then the consideration of the time-dependent deterministic

force field makes the present study very relevant in the field of stochastic thermodynamics,

which is now at an early stage of considering the non-Markovian dynamics[27, 38]. The

definition of work in ST requires a time-dependent deterministic force field to drive the sys-

tem from a given equilibrium state[27, 38, 39]. Then the present study may be applicable

to investigate many aspects of stochastic thermodynamics, such as (i) how the time asym-

metry inherent to irreversible processes depends on the non-Markovian dynamics? (ii) the

effect of non-Markovian dynamics on the relative entropy and dispersed works, (iii) work

produced from a single reservoir, (iv) characterization of a non-equilibrium steady state in
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the presence of a non-Markovian thermal bath etc.

Third, in recent technology, the study of the ion-conducting electrolytic materials is a

significant area in physics and chemistry[54, 55]. The materials have potential applications

in a diverse range of all-solid-state devices, such as rechargeable lithium batteries, flexible

electrochromic displays and smart windows[54]. The properties of the electrolytes are tuned

by varying chemical composition to a large extent and hence are adapted to specific needs

[55]. High ionic conductivity is needed for optimizing the glassy electrolytes in various

applications. Then it would be fascinating to tune the ionic conductivity according to a

specific need by a physical method. In this context, very recent studies [31, 33, 49–51] shows

that an applied magnetic field can tune the conductivity of electrolytic material. To adjust

the conductivity of ions in the solid electrolytes, the combination of both magnetic field and

time-dependent electric field may be an important choice. Thus the present study may find

crucial applications in studying the barrier crossing dynamics [31, 49].

Finally, based on the recent developments on the noise-induced transition in a fluctuat-

ing magnetic field-driven harmonic oscillator, one may anticipate that the memory-induced

electric field may render the transition even in an additive noise-driven linear system. The

relevant issues are in progress.
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Appendix A: Solution of Eqs. (53-54) and related quantities

Using the Laplace transformation the solution of Eqs. (53-54) can be written as
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g1(t) = x(t)− (A(t)x(0)−B(t)y(0) + C(t)ux(0) +D(t)uy(0))

−

(
∫ t

0

H0(t− τ)ax(τ)dτ − Ω2

∫ t

0

H ′

0(t− τ)ax(τ)dτ + Ω

∫ t

0

H(t− τ)ay(τ)dτ

)

= x(t)− [c1 + qx]

= x(t)− c1
′

=

∫ t

0

H0(t− τ)fx(τ)dτ − Ω2

∫ t

0

H ′

0(t− τ)fx(τ)dτ + Ω

∫ t

0

H(t− τ)fy(τ)dτ ,(A1)

g2(t) = y(t)− (A(t)y(0) +B(t)x(0) + C(t)uy(0)−D(t)ux(0))

−

(
∫ t

0

H0(t− τ)ay(τ)dτ − Ω2

∫ t

0

H ′

0(t− τ)ay(τ)dτ − Ω

∫ t

0

H(t− τ)ax(τ)dτ

)

= y(t)− [c2 + qy]

= y(t)− c2
′

=

∫ t

0

H0(t− τ)fy(τ)dτ − Ω2

∫ t

0

H ′

0(t− τ)fy(τ)dτ − Ω

∫ t

0

H(t− τ)fx(τ)dτ ,(A2)

g3(t) = ux(t)−
(

Ȧ(t)x(0)− Ḃ(t)y(0) + Ċ(t)ux(0) + Ḋ(t)uy(0)
)

−

(
∫ t

0

Ḣ0(t− τ)ax(τ)dτ − Ω2

∫ t

0

Ḣ ′

0(t− τ)ax(τ)dτ + Ω

∫ t

0

Ḣ(t− τ)ay(τ)dτ

)

= ux(t)− [c3 + px]

= ux(t)− c3
′

=

∫ t

0

Ḣ0(t− τ)fx(τ)dτ − Ω2

∫ t

0

Ḣ ′

0(t− τ)fx(τ)dτ + Ω

∫ t

0

Ḣ(t− τ)fy(τ)dτ ,(A3)

g4(t) = uy(t)−
(

Ȧ(t)y(0) + Ḃ(t)x(0) + Ċ(t)uy(0)− Ḋ(t)ux(0)
)

−

(
∫ t

0

Ḣ0(t− τ)ay(τ)dτ − Ω2

∫ t

0

Ḣ ′

0(t− τ)ay(τ)dτ − Ω

∫ t

0

Ḣ(t− τ)ax(τ)dτ

)

= uy(t)− [c4 + py]

= uy(t)− c4
′

=

∫ t

0

Ḣ0(t− τ)fy(τ)dτ − Ω2

∫ t

0

Ḣ ′

0(t− τ)fy(τ)dτ − Ω

∫ t

0

Ḣ(t− τ)fx(τ)dτ ,(A4)

where
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A ≡ A(t) = χ0(t) + Ω2ω2χ(t) , (A5)

B ≡ B(t) = Ωω2H ′(t) , (A6)

C ≡ C(t) = H0(t)− Ω2H ′

0(t) , (A7)

D ≡ D(t) = ΩH(t) , (A8)

with

χ0(t) = 1− ω2

∫ t

0

H0(τ)dτ , (A9)

χ(t) =

∫ t

0

H ′

0(τ)dτ . (A10)

The above Eqs.(A9-A10) implies that χ0(0) = 1.0 and χ(0) = 0.

Now we have to define the functions H0(t), H
′

0(t), H(t) and H ′(t) which appear in the

above equations. These are the inverse Laplace transformation of H̃0(s), H̃ ′

0(s), H̃(s) and

H̃ ′(s), respectively. Here we have used H̃(s) = sH̃ ′(s) and H̃ ′

0(s) = s2H̃00(s). H̃0(s), H̃ ′(s)

and H̃00(s) are defined as

H̃0(s) =
1

s2 + sγ̃(s) + ω2
, (A11)

H̃ ′(s) =
1

(s2 + sγ̃(s) + ω2)2 + (Ωs)2
, (A12)

and

H̃00(s) =
1

(s2 + sγ̃(s) + ω2)[(s2 + sγ̃(s) + ω2)2 + (Ωs)2]
. (A13)

Here γ̃(s) is the Laplace transform of γ(t).

We now consider the fluctuations in position and velocity, respectively. All the second

moments corresponding to the fluctuations (as given by Eqs.(A1-A4)) can be represented

by the matrix, A′(t) with A′

ij = 〈gi(t)gj(t)〉. Using Eqs.(A1-A4), one can read the matrix
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A
′(t) as

A
′ =















A1 0 A3 A4

0 A1 −A4 A3

A3 −A4 A2 0

A4 A3 0 A2















(A14)

where we have used A′

11 = A′

22 = A1, A
′

33 = A′

44 = A2, A
′

13 = A′

31 = A′

24 = A′

42 = A3,

A′

14 = A′

41 = A4, and A′

23 = A′

32 = −A4. Then the inverse of the above matrix can be

written as

A
′−1

(t) =
adj(A′(t))

|A′(t)|
=

1

(A1A2 − A2
3 −A2

4)















A2 0 −A3 −A4

0 A2 A4 −A3

−A3 A4 A1 0

−A4 −A3 0 A1















(A15)

Appendix B: Time-dependent coefficients of the Fokker-Planck equation (57)

Following Ref.[40] we use the distribution function (55) in Eq. (57) and then get the time

dependent coefficients as

H1 =

[

−Äãx(t)− B̈ãy(t)− C̈ãvx(t)− D̈ãvy (t))
]

∆m

, (B1)

H2 =

[

Äb̃x(t)− B̈b̃y(t)− C̈b̃vx(t)− D̈b̃vy(t))
]

∆m

, (B2)

H3 =

[

−Äd̃x(t) + B̈d̃y(t)− C̈d̃vx(t) + D̈d̃vy(t))
]

∆m

, (B3)

H4 =

[

−Äc̃x(t) + B̈c̃y(t) + C̈c̃vx(t)− D̈c̃vy(t))
]

∆m

, (B4)

H5 =
[

Ȧ4 +H2A4 +H3A3 −H4A1

]

, (B5)

H6 =
[

Ȧ3 −A2 −H3A4 +H1A1 +H2A3

]

, (B6)

H7 =
1

2

[

Ȧ2 + 2H1A3 + 2H2A2 − 2H4A4

]

, (B7)

Here we have used

25



∆m = (A2+B2)(Ċ2+Ḋ2)+(C2+D2)(Ȧ2+Ḃ2)−2(AC−BD)(ȦĊ−ḂḊ)−2(AD+BC)(ȦḊ+ḂĊ) ,

(B8)

ãx(t) = A(Ċ2 + Ḋ2)− C(ȦĊ − ḂḊ)−D(ȦḊ + ḂĊ),

c̃x(t) = B(Ċ2 + Ḋ2) +D(ȦĊ − ḂḊ)− C(ȦḊ + ḂĊ),

b̃x(t) = B(CḊ − ĊD) + C(AĊ − ȦC) +D(AḊ −DȦ),

d̃x(t) = B(CĊ +DḊ)− C(AḊ + CḂ) +D(AĊ −DḂ). (B9)

ãy(t) = B(Ċ2 + Ḋ2) +D(ȦĊ − ḂḊ)− C(ȦḊ + ḂĊ),

c̃y(t) = A(Ċ2 + Ḋ2)− C(ȦĊ − ḂḊ)−D(ȦḊ + ḂĊ),

b̃y(t) = A(CḊ − ĊD)− C(BĊ − ḂC)−D(BḊ − ḂD),

d̃y(t) = A(CĊ + ḊD) + C(BḊ − ȦC)−D(BĊ + ȦD). (B10)

ãvx(t) = C(Ȧ2 + Ḃ2)− A(ȦĊ − ḂḊ)−B(ȦḊ + ḂĊ),

c̃vx(t) = D(Ȧ2 + Ḃ2) +B(ȦĊ − ḂḊ)−A(ȦḊ + ḂĊ),

b̃vx(t) = A(AĊ − ȦC) +B(BĊ − ḂC)−D(AḂ − ȦB),

d̃vx(t) = A(AḊ + ḂC) +B(BḊ − ȦC)−D(AȦ+ ḂB). (B11)

ãvy(t) = D(Ȧ2 + Ḃ2) +B(ȦĊ − ḂḊ)− A(ȦḊ + ḂĊ),
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c̃vy(t) = C(Ȧ2 + Ḃ2)−A(ȦĊ − ḂḊ)− B(ȦḊ + ḂĊ),

b̃vy (t) = A(AḊ − ȦD) +B(BḊ − ḂD) + C(AḂ − ȦB),

d̃vy(t) = A(AĊ − ḂD) +B(BĊ + ȦD)− C(AȦ+ ḂB). (B12)

It is to be noted here that all the time-dependent coefficients (as given by Eqs.(B1-B7)) do

not depend on c1, c2, c3and c4 as like as the previous cases with a(t) = 0. Then following

the earlier cases we have

G1 = ṗx +H1qx +H2px −H3py +H4qy, (B13)

G2 = ṗy +H1qy +H2py +H3px −H4qx, (B14)
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