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ON PIECEWISE HYPERDEFINABLE GROUPS

ARTURO RODRÍGUEZ FANLO

Abstract. The aim of this paper is to generalise and improve two of the main
model-theoretic results of “Stable group theory and approximate subgroups” by
E. Hrushovski to the context of piecewise hyperdefinable sets. The first one is
the existence of Lie models. The second one is the Stabilizer Theorem. In the
process, a systematic study of the structure of piecewise hyperdefinable sets is
developed. In particular, we show the most significant properties of their logic
topologies.

Introduction

Various enlightening results were found in [Hru12] with significant consequences
on model theory and additive combinatorics. Two of them are particularly relevant:
the Stabilizer Theorem and the existence of Lie models.

The Stabilizer Theorem [Hru12, Theorem 3.5], subsequently improved in [MOS20,
Theorem 2.12], was originally itself a generalisation of the classical Stabilizer The-
orem for stable and simple groups (see for example [Wag10, Section 4.5]) changing
the stability and simplicity hypotheses by some kind of measure-theoretic ones.
Here, we extend that theorem to piecewise hyperdefinable groups in Section 3.
Once one has the right definition of dividing and forking for piecewise hyperdefin-
able sets, the original proof of [Hru12], and its improved version of [MOS20], can
be naturally adapted. However, we also manage to simplify the proof in such a way
that we get a slightly stronger result.

In [Hru12], Hrushovski studied piecewise definable groups generated by near-sub-
groups, i.e. approximate subgroups satisfying a kind of measure-theoretic condition.
In particular, he worked with ultraproducts of finite approximate subgroups. In
that context, Hrushovski proved that there exist some Lie groups, named Lie mod-
els1, deeply connected to the model-theoretic structure of the piecewise definable
group [Hru12, Theorem 4.2]. Furthermore, among all these Lie groups, Hrushovski
focused on the minimal one, showing its uniqueness and its independence of expan-
sions of the language.

Here, in Section 2, we improve these results by defining the more general notion of
Lie core. Then, we prove the existence of Lie cores for any piecewise hyperdefinable
group with a generic piece and the uniqueness of the minimal Lie core. In the
process, we adapt the classical model-theoretic components (with parameters) G0,
G00 and G000 for piecewise hyperdefinable groups — our definitions extend some
particular cases already studied (e.g. [HKP22]). We also introduce a new component
Gap; Gap is the smallest possible kernel of a continuous projection to a locally
compact topological group without non-trivial compact normal subgroups. We use

these components to show that the minimal Lie core is precisely G
0
/Gap. Using this
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1In [Hru12] they are simply called associated Lie groups. The term Lie model was later

introduced in [BGT12].
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canonical presentation of the minimal Lie core, we conclude that the minimal Lie
core is piecewise 0-hyperdefinable and independent of expansions of the language.

Hyperdefinable sets, originally introduced in [HKP00], are quotients of
∧

-defin-
able (read infinitely-definable or type-definable) sets over

∧
-definable equivalence

relations. Hyperdefinable sets have been already well studied by different authors
(e.g. [Wag10] and [Kim14]). Here we extend this study to piecewise hyperdefinable
sets.

A piecewise hyperdefinable set is a strict direct limit of hyperdefinable sets. We
are interested in the piecewise hyperdefinable sets as elementary objects in them-
selves that inherit an underlying model-theoretic structure. In particular, we are
principally interested in studying the natural logic topologies that generalise the
usual Stone topology and can be defined for any piecewise hyperdefinable set.

We will discuss the general theory of piecewise hyperdefinable sets in Section 1,
elaborating the basic theory that we need for the rest of the paper. Mainly, we study
their basic topological properties such as compactness, local compactness, normality,
Hausdorffness and metrizability, and also their relations with the quotient, product
and subspace topologies. All this study leads naturally to the definition of locally
hyperdefinable sets, which is in fact one of the main notions of this document.

The original motivation of this paper comes from the study of rough approx-
imate subgroups. Rough approximate subgroups are the natural generalisation of
approximate subgroups where we also allow a small thickening of the cosets. This
generalisation is particularly natural in the context of metric groups, where the
thickenings are given by balls. In [Tao08] (see also [Tao19]), Tao showed that a
significant part of the basic theory about approximate subgroups can be exten-
ded to rough approximate subgroups of metric groups via a discretisation process.
In [GL20], this generalisation to the context of metric groups has recently shown
interesting applications.

It is a well-known fact in first-order model theory that, when working with
metric spaces, non-standard real numbers appear as soon as we get saturation. To
solve this issue, we have to deal with some kind of continuous logic. Piecewise
hyperdefinable sets provide a natural way of doing it. Roughly speaking, the idea
behind continuous logic is to restrict the universe to the bounded elements and to
quotient out by infinitesimals via the standard part function, as can be done using
piecewise hyperdefinable sets.

Hrushovski already indicated in unpublished works that, using piecewise hyper-
definable groups, it should be possible to extend some of the results of [Hru12] to
the context of metric groups. The aim of this paper is to give the abstract basis for
that kind of results, to find in the end possibly interesting applications to combin-
atorics. We conclude the paper giving the natural generalisation of the Lie model
Theorem for rough approximate subgroups. Applications of this result to the case
of metric groups will be studied in a future paper.

We study in general piecewise hyperdefinable sets in Section 1, focussing on the
properties of their logic topologies. The most important results of this section are
given after the introduction of locally hyperdefinable sets in Section 1.4. Section 2
is the core of this paper and is devoted to the general study of piecewise hyperdefin-
able groups. The first fundamental result of the section is Theorem 2.22, in which
we show that piecewise hyperdefinable groups satisfying a natural combinatorial
condition are locally hyperdefinable. In Section 2.3, we define the model-theoretic
components for piecewise hyperdefinable groups, proving the existence of Gap in
Theorem 2.32. Finally, we focus on the study of Lie cores, proving their exist-
ence (Theorem 2.34), the uniqueness of the minimal one (Theorem 2.36), giving a
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canonical representation of the minimal one in terms of the model-theoretic compon-
ents (Theorem 2.40) and showing its independence of expansions of the language
(Corollary 2.41). Section 3 is devoted to the Stabilizer Theorem for piecewise hyper-
definable groups, which is divided over Theorems 3.23 and 3.25 and Corollary 3.24
— Theorem 3.25 being the standard statement of the Stabilizer Theorem. We
conclude the paper stating the Rough Lie model Theorem 3.31 which generalises
Hrushovski’s Lie Model Theorem to the case of rough approximate subgroups.

Notations and conventions: From now on, unless otherwise stated, fix a many-
sort first order language, L, and an infinite κ-saturated and strongly κ-homogeneous
L-structure, M, with κ > |L| a strong limit cardinal. We say that a subset of M is
small if its cardinality is smaller than κ.

We would like to remark that our assumptions on M are far stronger than needed.
While saturation is fundamental, strong homogeneity is actually irrelevant. Also,
assuming that κ is a strong limit cardinal is much more than necessary. Most of
the results and arguments work when we only assume κ > |L|. The only significant
exceptions are sections 2.3 and 2.4, where we need to assume κ > 2|A|+|L|, with A
the set of parameters we are using.

Against the common habit, we consider the logic topologies on the models them-
selves, rather than on the spaces of types. This has the unpleasant consequence of
handling with non T0 topological spaces. In particular, we need to study normality
and local compactness without Hausdorffness.

Anyway, whether on the model or on the space of types, these two topologies are
in fact the “same". Indeed, the spaces of types are obtained from the logic topo-
logies on the model after saturation (i.e. compactification) as the quotient by the
equivalence relation of being topologically indistinguishable (i.e. the Kolmogorov
quotient). In particular, the canonical projections tpA : a 7→ tp(a/A) are continu-
ous, open and closed maps2 from the A-logic topologies to the spaces of types over
A. Moreover, based on this, we will show that piecewise hyperdefinable sets with
their logic topologies generalise type spaces, the latter being the particular case of
T0 logic topologies.

We choose to work with logic topologies over the models for three reasons. The
first one is that we save one unneeded step (the Kolmogorov quotient). The second
one is that the spaces of types of products are not the products of the spaces of
types, while we want to be able to prove and naturally use Proposition 1.19, which
says that the global logic topology of the product is the product topology of the
global logic topologies. The last one, and related with the previous one, is that the
space of types of a group does not preserve usually the group structure, which makes
odd the statement of the Isomorphism Theorem 2.24 for piecewise hyperdefinable
groups, fundamental in Section 2, expressed trough the spaces of types.

From now on, except when otherwise stated, we use a, b, . . . and A,B, . . .
to denote hyperimaginaries and small sets of hyperimaginaries respectively, while
a∗, a∗∗, . . . and A∗, A∗∗, . . . denote associated representatives. If we use a∗ or A∗

without mention of a or A, we mean real elements. To avoid technical issues, we
assume that A contains a subset Are ⊆ A of real elements such that every element
of A is hyperimaginary over Are.

We use x, y, z, . . . to denote variables. Except when otherwise stated, variables
are always finite tuples of (single) variables. Sometimes, to simplify the notation,
we also allow infinite tuples of variable. We write x, y, z, . . . to denote infinite tuples

2In fact, X 7→ {tp(x/A) : x ∈ X} is an isomorphism (in the sense of lattices of sets) between
the topologies. Also, tp−1

A
[tpA[X]] = X for any A-invariant set.
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of variables. If in some exceptional place we need to consider single variables, we
will explicitly indicate it.

Except when otherwise stated, elements are finite tuples of (single) elements.

We write a, b, . . . and a∗, b
∗
, . . . to indicate when we consider infinite tuples of ele-

ments. In this paper, we do not study piecewise hyperdefinable sets of infinite
tuples. It seems that our results can be generalised in that sense by taking also
inverse limits.

By a type we always mean a complete type. The Stone space of types contained
in the set X with parameters A∗ is denoted by SX(A∗). The set of formulas of L
with parameters in A∗ and variables in the (possibly infinite) tuple x is denoted by
Forx̄(L(A∗)). The cardinality of the language is the cardinality of its set of formulas;
|L| := |For(L)|. In particular, |L| is always at least ℵ0.

Here, definable means definable with parameters. Also,
∧

-definable means
infinitely-definable (or type-definable) over a small set of parameters. Similarly,∨

-definable means coinfinitely-definable (or cotype-definable) over a small set of
parameters. To indicate that we use parameters from A, we write A-definable,

∧
A-

definable and
∨

A-definable. We also use cardinals and cardinal inequalities. In that
case, the subscript should be read as an anonymous set of parameters whose size
satisfies the indicated condition. For example,

∧
<ω-definable means

∧
A-definable

for some subset A with |A| < ω. The same notation will be naturally used for
hyperdefinable, piecewise hyperdefinable and piecewise

∧
-definable sets.

Following the terminology of [TZ12], a κ-homogeneous structure is a structure
such that every partial elementary internal map defined on a subset with cardinality
less than κ can be extended to any further element, while a strongly κ-homogeneous
structure is a structure such that every partial elementary internal map defined on
a subset with cardinality less than κ can be extended to an automorphism.

Let R ⊆ X × Y be a set-theoretic binary relation. For x ∈ X , we write
R(x) := {y ∈ Y : (x, y) ∈ R}. For a subset V ⊆ X , we write R[V ] := {y ∈ Y :
∃x ∈ V (x, y) ∈ R}. We also write R−1 := {(y, x) : (x, y) ∈ R}, so R−1(y) :=
{x ∈ X : (x, y) ∈ R} for y ∈ Y and R−1[W ] := {x ∈ X : ∃y ∈ V (x, y) ∈ R} for
W ⊆ Y . We denote the image and preimage functions between the power sets by
Im R : V 7→ R[V ] and Im−1R : W 7→ R−1[W ]. Most of the time, this notation
is used for partial functions, which are always identified with their graphs — note
that f−1 is only a function when f is invertible.

Cartesian projections are denoted by proj, quotient maps are denoted by quot,
quotient homomorphisms in groups are denoted by π, inclusion maps are denoted
by ι and identity maps are denoted by id.

A lattice of sets is a family of sets closed under finite unions and intersections.
A complete algebra on a set X is a family of subsets of X closed under complements
and arbitrary unions.

The class of ordinals is denoted by On. The cardinal of a set X is |X |.

We use product notation for groups. Also, unless otherwise stated, we consider
the group acting on itself on the left. In particular, by a coset we mean a left coset.
A subsetX of a group is called symmetric if 1 ∈ X = X−1. For subsetsX and Y of a
group, we write XY for the set of pairwise products, and abbreviate Xn := XXn−1

and X−n := (X−1)n for n ∈ N. We say that X normalises Y if x−1Y x ⊆ Y for
every x ∈ X .

By a Lie group we always mean here a finite-dimensional real Lie group.
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1. Piecewise hyperdefinable sets

1.1. Hyperdefinable sets. Let A∗ be a small set of parameters. An A∗-hyperde-
finable set is a quotient P = X/E where X is a non-empty

∧
A∗-definable set and

E is an
∧

A∗ -definable equivalence relation. If we do not indicate the set of para-
meters, we mean that it is hyperdefinable for some small set of parameters. Write
quotP : X → P for the quotient map given by x 7→ [x]E := x/E := E(x) = {x′ ∈
X : (x, x′) ∈ E}. The elements of A-hyperdefinable sets are called hyperimaginar-
ies over A. Given a hyperimaginary element a, a representative of a is an element
a∗ ∈ a of the structure such that quotP (a

∗) = a. The elements of the structure will
be called real.

An
∧

A∗-definable subset, V ⊆ P , is a subset such that quot−1
P [V ] is

∧
A∗ -defin-

able in X . We will say that a partial type defines V ⊆ P if it defines quot−1
P [V ]. If

V ⊆ P is a non-empty
∧

-definable set, after declaring the parameters, we will write
V to denote a partial type defining quot−1

P [V ]. The following basic proposition is
the starting point to study hyperdefinable sets.

Lemma 1.1 (Correspondence Lemma). Let P = X/E be an A∗-hyperdefinable set.
Then, the image by quotP of any

∧
A∗-definable subset of X is an

∧
A∗-definable

subset of P . Moreover, the preimage function Im−1quotP is an isomorphism, whose
inverse is Im quotP , between the lattice of

∧
A∗-definable subsets of P and the lattice

of
∧

A∗-definable subsets of X closed under E.

The main part of this lemma can be further generalised to Lemma 1.3. For
this, note firstly that, given two A∗-hyperdefinable sets P = X/E and Q = Y/F ,
the Cartesian product P × Q is canonically identified with the hyperdefinable
set X × Y/E×̂F via ([x]E , [y]F ) 7→ [x, y]E×̂F , where E×̂F := {((x, y), (x′, y′)) :
(x, x′) ∈ E, (y, y′) ∈ F}. Then, we can talk about

∧
A∗ -definable relations and

partial functions.

Example 1.2. The inclusion ι : V → P of an
∧

A∗-definable set V is
∧

A∗ -
definable. The Cartesian projections projP : P ×Q→ P and projQ : P ×Q→ Q
are

∧
A∗-definable. Also, the quotient map quotP : X → P is

∧
A∗ -definable.

Lemma 1.3. Let P = X/E and Q = Y/F be two A∗-hyperdefinable sets and f
an

∧
A∗-definable partial function from P to Q. Then, for any

∧
A∗-definable sets

V ⊆ P and W ⊆ Q, f [V ] and f−1[W ] are
∧

A∗-definable.

Proof. It is enough to check that the projection maps satisfy the proposition. It is
trivial that proj−1

P [V ] = V × Q is
∧

A∗ -definable for any
∧

A∗ -definable subset V .
On the other hand, if V ⊆ P ×Q is

∧
A∗ -definable, by compactness, Σ(x) = {∃y∧

∆(x, y) : ∆ ⊆ V finite} defines quot−1
P [projP [V ]]. Q.E.D.

Remark 1.4. Let f : P → Q and g : Q → R be functions. As subsets of P × R,
we have g ◦f = projP×R[(f ×R)∩ (P ×g)], where projP×R : P ×Q×R→ P ×R is
the natural projection. Thus, compositions of

∧
A∗ -definable partial functions are

also
∧

A∗-definable partial functions.
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A type over A∗, or A∗-type, in P is an
∧

A∗ -definable subset of P which is ⊂-
minimal in the family of non-empty

∧
A∗-definable subsets. For a ∈ P , we write

tp(a/A∗) for the type over A∗ containing a. As the lattice of
∧

A∗ -definable sets is
closed under arbitrary intersections, the type of a hyperimaginary element always
exists.

As usual, for infinite tuples a = (at)t∈T and b = (bt)t∈T of hyperimaginaries over
A∗, we write tp(a/A∗) = tp(b/A∗) to mean that tp(a|T0

/A∗) = tp(b|T0
/A∗) for any

T0 ⊆ T finite.

Lemma 1.5. Let P be an A∗-hyperdefinable set, a ∈ P and a∗ ∈ a. Then,
tp(a/A∗) = quotP [tp(a

∗/A∗)]. In particular, b ∈ tp(a/A∗) if and only if there
is b∗ ∈ b such that tp(a∗/A∗) = tp(b∗/A∗). In other words, tp(a/A∗) is the orbit of
a under the action of Aut(M/A∗) on P .

Proof. By the Correspondence Lemma 1.1 and minimality. Q.E.D.

Let P be A∗-hyperdefinable. A subset V ⊆ P is A∗-invariant if tp(a/A∗) ⊆ V
for any a ∈ V . As immediate corollaries of Lemma 1.5 we get the following results:

Corollary 1.6. Let P be A∗-hyperdefinable and V ⊆ P . Then, V is A∗-invariant
if and only if it is setwise invariant under the action of Aut(M/A∗) on P , if and
only if quot−1[V ] is A∗-invariant.

Proof. Obvious by Lemma 1.5. Q.E.D.

Corollary 1.7. Let P be A∗-hyperdefinable and V ⊆ P an
∧

-definable subset.
Then, V is

∧
A∗-definable if and only if it is A∗-invariant.

We also want to be able to use hyperimaginary parameters. To do that we need
to redefine the previous notions. Let A be a set of hyperimaginaries. We start by
defining types over A and A-invariance for real elements. Then, we can say what
is an A-hyperdefinable set, an A-invariant set, an

∧
A-definable set and a type over

A for hyperimaginaries.
Since we assume that every element in A is hyperimaginary over Are, the group

Aut(M/Are) naturally acts on the elements of A, i.e. σ(a) makes sense for a ∈ A
and σ ∈ Aut(M/Are). The group of automorphisms Aut(M/A) pointwise fixing
A is defined as the subgroup of elements of Aut(M/Are) fixing each element of A.
Note that, obviously, Aut(M/A∗) ≤ Aut(M/A) for any set of representatives A∗ of
A.

Let a∗ be a tuple of real elements. The type of a∗ over A is the set tp(a∗/A) :=
{b∗ : tp(a∗, A) = tp(b∗, A)}. Equivalently, by Lemma 1.5, tp(a∗/A) is the orbit of a∗

under Aut(M/A). A set of real elements X is A-invariant if we have tp(a∗/A) ⊆
X for any a∗ ∈ X . Equivalently, X is A-invariant if and only if it is setwise
invariant under the action of Aut(M/A). We say that a hyperdefinable set P =
X/E is A-hyperdefinable if X and E are A-invariant. Note that, as Aut(M/A∗) ≤
Aut(M/A), an A-hyperdefinable set is, in particular, A∗-hyperdefinable for any set
of representatives A∗ of A. If P is A-hyperdefinable, it follows that Aut(M/A)
naturally acts on P .

A subset of an A-hyperdefinable set is A-invariant if its preimage by the quotient
map is A-invariant. Equivalently, it is A-invariant if and only if it is setwise invariant
under the action of Aut(M/A). By Corollary 1.6, as Aut(M/A∗) ≤ Aut(M/A),
every A-invariant set is in particular A∗-invariant for any set of representatives.
An

∧
A-definable subset is an A-invariant

∧
-definable subset. By Corollary 1.7,

every
∧

A-definable set is
∧

A∗ -definable for any set of representatives. Note that
the A-invariant subsets of P form a complete algebra of subsets of P . Thus,

∧
A-

definable sets are a lattice of sets closed under arbitrary intersections.
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Lemma 1.8. Let P = X/E and Q = Y/F be two A-hyperdefinable sets and f an∧
A-definable partial function. Then, for any

∧
A-definable sets V ⊆ P and W ⊆ Q,

f [V ] and f−1[W ] are
∧

A-definable.

Proof. By Lemma 1.3, f [V ] and f−1[W ] are
∧

-definable. As f is A-invariant,
f(σ(a)) = σ(f(a)) for a ∈ P and σ ∈ Aut(M/A), so f [V ] and f−1[W ] are A-
invariant. Q.E.D.

A type over A, or A-type, is a ⊂-minimal non-empty
∧

A-definable subset. For
a ∈ P , we write tp(a/A) for the type over A containing a. As the lattice of

∧
A-

definable sets is closed under arbitrary intersections, the type of a hyperimaginary
element always exists. As usual, for infinite tuples a = (at)t∈T and b = (bt)t∈T ,
we write tp(a/A) = tp(b/A) to mean that tp(a|T0

/A) = tp(b|T0
/A) for any T0 ⊆ T

finite.

Lemma 1.9. Let P,Q be A-hyperdefinable sets, f : P → Q an
∧

A-definable
function and a ∈ P . Then, f [tp(a/A)] = tp(f(a)/A).

Proof. By Lemma 1.8, we have f [tp(a/A)] and f−1[tp(f(a)/A)] are
∧

A-definable.
Then, tp(a/A) ⊆ f−1[tp(f(a)/A)] and tp(f(a)/A) ⊆ f [tp(a/A)] by minimality.
Thus, f [tp(a/A)] = tp(f(a)/A). Q.E.D.

As an immediate corollary we get the following result:

Corollary 1.10. Let P be an A-hyperdefinable set, a ∈ P and a∗ ∈ a. Then,
tp(a/A) = quotP [tp(a

∗/A)]. In particular, tp(a/A) is the orbit of a under the
action of Aut(M/A) on P . In other words, for any A∗ representatives of A, we
have b ∈ tp(a/A) if and only if there are b∗∗ ∈ b and A∗∗ representatives of A such
that tp(a∗, A∗) = tp(b∗∗, A∗∗).

Consequently, V is A-invariant if and only if tp(a/A) ⊆ V for any a ∈ V .

Proof. Clear by Lemmas 1.5 and 1.9. Q.E.D.

We explain now how to substitute hyperimaginary parameters. Let P be A-
hyperdefinable, b a small set of hyperimaginaries over A and V ⊆ P an

∧
b-definable

subset. Let c be such that tp(b/A) = tp(c/A). The set V (c) given from V by
replacing b by c is the set σ[V ] for σ ∈ Aut(M/A) such that σ(b) = c. Note that
this does not depend on the choice of σ ∈ Aut(M/A).

Alternatively, we present a more explicit methodology using uniform definitions
that does not require the use of automorphisms. Let P = X/E be an A-hyperde-
finable set. We say that a partial type Σ(x,A∗) is weak uniform on P over A if
Σ(x,A∗∗) defines the same set on P for any set of representatives A∗∗ of A, i.e.
Σ(M, A∗)/E = Σ(M, A∗∗)/E. We say that Σ(x,A∗) is uniform on P over A if
Σ(x,A∗) ∩ Forx(L(B∗)) is weak uniform on P over B for any B∗ ⊆ A∗ such that
P is still B-hyperdefinable and Are ⊆ B. Let V ⊆ P be

∧
A-definable. A uniform

definition of V over A is a partial type V uniform on P over A that defines V .

Lemma 1.11. Let P = X/E be an A-hyperdefinable set and V ⊆ P a non-empty∧
A-definable set. Then, there is a uniform definition of V over A.

Proof. Say A = {ai}i∈I with ai ∈ Qi = Yi/Fi. Pick A∗ representatives of A and
Σ(x,A∗) partial type defining V over A∗. Write F =

∧
i F i and Γ = tp(A∗). Using

saturation, take the partial type V (x,A∗) expressing ∃y Σ(x, y) ∧ F (y,A∗) ∧ Γ(y).
By Corollary 1.10, it is a uniform definition of V over A. Q.E.D.

Lemma 1.12. Let P be an A-hyperdefinable set and V ⊆ P be a non-empty
∧

b-

definable subset with b a small set of hyperimaginaries over A and A ⊆ b. Let
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V (x, b
∗
) be a uniform definition of V . Let c be such that tp(b/A) = tp(c/A) and c∗

be representatives. Then, V (x, c∗) is a uniform definition of V (c).

Proof. Take σ ∈ Aut(M/A) with σ(b) = c, so b
∗∗

= σ−1(c∗) is a representative of

b. As V (x, b
∗
) is a uniform definition of V on P over b, we have that V (x, b

∗∗
) also

defines V . Consequently, V (c) is defined by V (x, c∗). Now, take c0 ⊆ c such that P

is still c0-hyperdefinable and say c0 = σ(b0). Then, P is still b0-hyperdefinable and,

as V (x, b
∗
) is uniform on P over b, we have that W (x, b

∗∗

0 ) = V (x, b
∗∗
)∩For(L(b

∗∗

0 ))

is weakly uniform on P over b0. Therefore, as tp(c∗0/A) = tp(b∗∗0 /A), W (x, c∗0) is
weakly uniform on P over c0. Q.E.D.

Lemma 1.13. Let P and Q be A-hyperdefinable sets and b ∈ Q. Then, for any∧
A,b-definable subset V ⊆ P there is an

∧
A-definable set W ⊆ Q × P such that

V (c) =W (c) := projP [W ∩ ({c} × P )] for any c ∈ tp(b/A).

Proof. Take a uniform definition Σ(A∗, b∗, x) of V on P over A. By Lemma 1.12,
we get that Σ(A∗, y, x) defines an

∧
A-definable subset W of Q × P such that

V (c) =W (c) := projP [W ∩ ({c} × P )] for any c ∈ tp(b/A). Q.E.D.

Lemma 1.14. Let P be an A-hyperdefinable set. Then,

∆P (A) = {(a, b) ∈ P × P : tp(a/A) = tp(b/A)}

is an
∧

A-definable equivalence relation. Furthermore, it has a uniform definition
∆P (A

∗) such that ∆P (A
∗)∩For(L(B∗)) defines ∆P (B) for any subset B ⊆ A such

that P is B-hyperdefinable.

1.2. The logic topologies of hyperdefinable sets. Let P = X/E be an A-
hyperdefinable subset. The A-logic topology of P is the one given by taking as
closed sets the

∧
A-definable subsets of P . In particular, by Lemma 1.8, the A-logic

topology of P is the quotient topology of the A-logic topology of X .

Proposition 1.15. Let P and Q be A-hyperdefinable sets and f : P → Q an∧
A-definable function. Then, f is a continuous and closed function between the

A-logic topologies.

Proof. By Lemma 1.8. Q.E.D.

Proposition 1.16. Let P be an A-hyperdefinable set. Then, the A-logic topology
of P is compact and normal (i.e. any two disjoint closed sets can be separated by
open sets). The closure of a point a ∈ P is tp(a/A), so the properties T0, T1 and
T2 are equivalent to tp(a/A) = {a} for all a ∈ P .

Proof. Compactness follows from saturation. For normality we should note that
the image of a normal space by a continuous closed function is always normal.
Therefore, using quotP , from normality of the A∗-logic topology of X we conclude
the normality of the A∗-logic topology of P . Using that a 7→ a/∆P (A) is continuous

and closed from the A∗-logic topology of P to the A-logic topology of P/∆P (A),
we get normality of the latter. From there, we trivially conclude normality of the
A-logic topology of P .

Finally, as the closure of a point is its type by definition, T1 is equivalent to
tp(a/A) = {a} for every a ∈ P . By Corollary 1.10, a ∈ tp(b/A) if and only if

tp(a/A) = tp(b/A), so b ∈ {a} if and only if a ∈ {b} — this topological property is
sometimes called R0. Therefore, T0 is also equivalent to tp(a/A) = {a} for every
a ∈ P . By normality, T1 and T2 are equivalent. Q.E.D.
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Proposition 1.17. Let P be an A-hyperdefinable set and A ⊆ A′. If the A-logic
topology of P is Hausdorff, then the A-logic topology and the A′-logic topology are
equal. Thus, there is at most one Hausdorff logic topology and, if it exists, it will
be called the global logic topology.

Remark 1.18. Furthermore, the global logic topologies are preserved by expansion
of the language. Indeed, let P be a hyperdefinable set whose A-logic topology
is Hausdorff and M′ a κ-saturated and strongly κ-homogeneous expansion of M.
Then, obviously, id : P → P is a continuous bijection from the A-logic topology
in M′ to the A-logic topology in M. As both are compact and the second one is
Hausdorff, we conclude that both are the same.

Let P be an A-hyperdefinable set. Assuming that κ > 2|A|+|L|, either |P | ≥ κ
or |P | ≤ 2|A|+|L|. Then, P has a global logic topology if and only if P is small,
if and only if |P | ≤ 2|A|+|L|. Furthermore, write bdd(A) for the set of bounded
hyperimaginaries over A, i.e. hyperimaginaries over A such that |tp(a/A)| < κ.
Note that |bdd(A)| ≤ 2|A|+|L|. It follows that, for any A-hyperdefinable set P , it
has a global logic topology if and only if the bdd(A)-logic topology is the global
logic topology.

Proposition 1.19. Let P and Q be A-hyperdefinable sets. Then, the A-logic to-
pology in P ×Q is at least as fine as the product topology of the A-logic topologies.
Furthermore, P ×Q has a global logic topology if and only if P and Q have so, and
then the global logic topology of P × Q is the product topology of the global logic
topologies of P and Q.

1.3. Piecewise hyperdefinable sets. A piecewise A-hyperdefinable set is a strict
direct limit of A-hyperdefinable sets with

∧
A-definable inclusions. In other words,

a piecewise A-hyperdefinable set is a direct limit

P := lim−→(I,≺)(Pi, ϕji)j�i =
⊔

I

Pi/∼P

of a direct system of A-hyperdefinable sets and 1-to-1
∧

A-definable functions ϕji :
Pi → Pj .

Recall that (I,≺) is a direct ordered set and, for each i, j, k ∈ I with i � j � k,
ϕkj ◦ ϕji = ϕkj and ϕii = id. Also, recall that ∼P is the equivalence relation on⊔

I Pi defined by x ∼P y for x ∈ Pi and y ∈ Pj if and only if there is some k ∈ I
with i � k and j � k and ϕki(x) = ϕkj(y). Note that, in fact, as we consider only
direct systems where the functions ϕji are 1-to-1, the equivalence relation is given
by x ∼P y with x ∈ Pi and y ∈ Pj if and only if ϕki(x) = ϕkj(y) for any k ∈ I such
that i � k and j � k.

The pieces of P are the subsets Pi/∼P . The canonical inclusions are the maps

ιPi : Pi → Pi/∼P ⊆ P given by a 7→ [a]∼P for a ∈ Pi.
The cofinality cf(P ) of P is the cofinality of I, which is the minimal ordinal

α from which there is a function f : α → I such that for every i ∈ I there is
ξ ∈ α with i � f(ξ). We say that P is countably piecewise hyperdefinable if it has
countable cofinality. From now on, we always assume that cf(P ) < κ.

A piecewise
∧

A-definable subset of P is a subset V ⊆ P such that ι −1
Pi

[V ] is∧
A-definable in Pi for each i ∈ I. An

∧
A-definable subset of P is a piecewise∧

A-definable subset contained in some piece. If V ⊆ P is a non-empty
∧

-definable

set, after fixing a piece Pi/∼P containing it and declaring the parameters, we will
write V to denote a partial type defining it in Pi. In that case, we will also say that
V defines V . If a ∈ P is an element, after fixing a piece Pi/∼P containing it, we
will say that a∗ is a representative of a if ιPi(quotPi

(a∗)) = a, where quotPi
is the

quotient map of Pi as hyperdefinable set.
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Remark 1.20. The set of piecewise
∧

A-definable subsets is a lattice of sets closed
under arbitrary intersections, and the collection of

∧
A-definable subsets is the ideal

of that lattice generated by the pieces.

Note that, in the previous definitions, piecewise hyperdefinable sets are not only
sets but sets together with a particular structure. This structure is given by the
lattices of piecewise

∧
-definable subsets and the ideals of

∧
-definable subsets. It is

very important to remember this as the same set could be represented as a piecewise
hyperdefinable set in several different ways — see Example 1.54.

By the strictness condition we get the following fundamental lemma.

Lemma 1.21 (Correspondence Lemma). Let P be piecewise A-hyperdefinable and
Pi/∼P a piece of P . Then, ιPi : Pi → Pi/∼P is a bijection. Furthermore, V ⊆
Pi/∼P is

∧
A-definable as subset of P if and only if ι −1

Pi
[V ] is

∧
A-definable as subset

of Pi.

Proof. Obviously ιPi : Pi → Pi/∼P is a bijection by the strictness condition. Say

V ⊆ Pi/∼P . Using again the strictness condition, for any j, k ∈ I with i, j �
k, we have that ι −1

Pj
[V ] = ϕ−1

kj [ι
−1
Pk

[V ]] = ϕ−1
kj [ϕki[ι

−1
Pi

[V ]]]. Therefore, by
∧

A-

definability of the maps and Lemma 1.8, we conclude that V is
∧

A-definable if and

only if ι −1
Pi

[V ] is
∧

A-definable as subset of Pi. Q.E.D.

The Correspondence Lemma 1.21 says that ιPi is a true identification between

Pi and Pi/∼P in terms of the model theoretic structure. In other words, it says
that pieces of piecewise hyperdefinable sets are, indeed, hyperdefinable. From now
on, slightly abusing of the notation, we make no distinction between Pi and Pi/∼P ,

i.e. Pi := Pi/∼P and quotPi
:= ιPi ◦ quotPi

.

Corollary 1.22. Let P = lim−→IPi be piecewise A-hyperdefinable. Then, a subset

V ⊆ P is piecewise
∧

A-definable if and only if V ∩ Pi is
∧

A-definable as subset of
P for each i ∈ I.

Remark 1.23. As every piece is
∧

-definable, the lattice of piecewise
∧

A-definable
subsets can be recovered from the ideal of

∧
A-definable subsets. In other words, the

structure of P is completely determined by the ideals of
∧

-definable sets. However,
in general, the lattice of piecewise

∧
A-definable subsets does not determine the

ideal of
∧

A-definable subsets — see Example 1.54.

A type over A, or A-type, is a ⊂-minimal non-empty piecewise
∧

A-definable
subset. The type of a ∈ P over A, tp(a/A), is the minimal piecewise

∧
A-definable

subset of P containing a. Since a ∈ Pi for some i ∈ I and pieces are
∧

A-definable,
tp(a/A) is actually

∧
A-definable.

Let R ⊆ P ×Q be a binary relation between two piecewise hyperdefinable sets.
We say that R is piecewise bounded (or piecewise continuous) if the image of any
piece of P is contained in some piece of Q. We say that it is piecewise proper
if the preimage of any piece of Q is contained in some piece of P . We use this
terminology in particular for partial functions. To simplify the terminology, we
often omit reiterative uses of “piecewise” when they happen. So, for example, we
say “a piecewise bounded and proper

∧
-definable function” instead of “a piecewise

bounded and piecewise proper piecewise
∧

-definable function”.
Given two piecewise A-hyperdefinable sets P = lim−→IPi and Q = lim−→JQj , the

Cartesian product P ×Q is canonically identified with lim−→I×JPi ×Qj via the map

([x]P , [y]Q) 7→ [x, y]P×Q, where (x, y) ∼P×Q (x′, y′) if and only if x ∼P x′ and
y ∼Q y′. Thus, we say that a binary relation R between P and Q is piecewise∧

A-definable if it is so as subset of the Cartesian product.
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Lemma 1.24. Let P and Q be piecewise A-hyperdefinable sets, f : P → Q a
piecewise

∧
A-definable function and a ∈ P . Then, f [tp(a/A)] = tp(f(a)/A).

Proof. Clear from Lemma 1.9. Q.E.D.

Proposition 1.25. Let P and Q be two piecewise A-hyperdefinable sets and f a
piecewise

∧
A-definable partial function from P to Q. Then:

(1) If f is piecewise bounded, images of
∧

A-definable sets are
∧

A-definable, and
preimages of piecewise

∧
A-definable sets are piecewise

∧
A-definable.

(2) If f is piecewise proper, images of piecewise
∧

A-definable sets are piecewise∧
A-definable, and preimages of

∧
A-definable sets are

∧
A-definable.

Proof. Both are quite similar, so let us show only (1). For i ∈ I and j ∈ J with
f [Pi] ⊆ Qj , consider fji : Pi → Qj given by the restriction of f . As f is piecewise∧

A-definable, each fji is
∧

A-definable. Given an
∧

A-definable subset V ⊆ Pi,
we have that f [V ] = fji[V ], concluding that the image of V is

∧
A-definable in Q

by Lemma 1.8 and the Correspondence Lemma 1.21. On the other hand, given a
piecewise

∧
A-definable subset W ⊆ Q, we have that f−1[W ] ∩ Pi = f−1

ji [W ∩ Qj],

so f−1[W ] is piecewise
∧

A-definable in P by Lemma 1.8. Q.E.D.

An isomorphism of piecewise A-hyperdefinable sets is a piecewise bounded and
proper

∧
A-definable bijection. In that case, we will say that P andQ are isomorphic

over A.

1.4. The logic topologies of piecewise hyperdefinable sets. The A-logic to-
pology of P is the respective direct limit topology. In other words, a subset of
P is closed if and only if it is piecewise

∧
A-definable. By the Correspondence

Lemma 1.21, each piece is compact and, further, every
∧

A-definable subset is com-
pact.

As in the case of hyperdefinable sets, {a} = tp(a/A) for any a ∈ P . Thus, the
properties T0 and T1 are equivalent. If the A-logic topology is T1, for any other
small set of hyperimaginary parameters A′ containing A, the logic topologies over
A and over A′ are the same. Thus, there is at most one T1 logic topology on P
and, if it exists, it is called the global logic topology. It follows that P has a global
logic topology if and only if every piece has size at most 2|A|+|L|, if and only if the
bdd(A)-logic topology is the global logic topology. In particular, if P has a global
logic topology, then |P | ≤ 2|A|+|L|+cf(P ). Thus, assuming 2|A|+|L|+cf(P ) < κ, we
conclude that P has a global logic topology if and only if it is small.

There are still some topological properties that we want to extend from hyper-
definable sets to piecewise hyperdefinable sets. Ideally, we would like to show that
these topologies are locally compact, normal and satisfy T1 ⇔ T2. Also, we would
like to show that they are closed under taking finite products. In general, these
properties may fail — see Examples 1.57, 1.59 and 2.19 for some counterexamples.
The rest of the subsection is dedicated to give sufficient natural conditions for these
properties.

In general, for a topological space X , a covering of X is a set C ⊆ P(X) such
that

⋃
C = X , whose elements are called pieces. A covering C is coherent when, for

every U ⊆ X , U is open in X if and only if U ∩ P is open in P for each P ∈ C.
Equivalently, C is coherent when, for every V ⊆ X , V is closed in X if and only if
V ∩ P is closed in P for each P ∈ C. For example, X is compactly generated if the
family of all the compact subsets is a coherent covering.

We say that a covering is local if for every point of X there is a piece that is a
neighbourhood of it. The following topological results are straightforward:
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Lemma 1.26 (Local coverings). Let X be a topological space and C a local covering.
Then, C is coherent.

Lemma 1.27. Let X be a topological space and {Pn}n∈N a closed coherent covering
with Pn ⊆ Pn+1 for each n ∈ N. Suppose that Pn is normal for each n ∈ N. Then,
X is normal.

Proof. Let V and W be closed disjoint subsets of X . Take the continuous map
g : V ⊔W → {−1, 1} given by g|V = 1 and g|W = −1. By recursion, using Tietze’s
Theorem [Mun00, Theorem 35.1], we construct a chain (fn)n∈N of continuous maps
fn : Pn → [−1, 1], each one extending g|Pn

. Taking f =
⋃
fn, we get a continuous

map separating V and W . Q.E.D.

In the case of a piecewise hyperdefinable set P , we have a directed closed and
compact coherent covering {Pi}i∈I . In particular, it follows that logic topologies are
always compactly generated. If P is countably piecewise hyperdefinable, then it is
σ-compact (i.e. a countable union of compact sets). Furthermore, by Lemma 1.27,
we get normality:

Proposition 1.28. Let P be a countably piecewise A-hyperdefinable set. Then, P
is normal with the A-logic topology. In particular, global logic topologies of countably
piecewise hyperdefinable sets are Hausdorff.

Say that a piecewise hyperdefinable set P is locally A-hyperdefinable if its covering
is local in the A-logic topology, i.e. if for every point of P there is an

∧
A-definable

set which is a neighbourhood of it. Say that P is locally hyperdefinable if it is so
for some small set of parameters.

Remark 1.29. Piecewise definable sets are the special case of piecewise hyperdefin-
able sets when we only consider strict direct limits of definable sets with definable
maps. Definable sets are always open in the logic topology so, following the termin-
ology of this paper, every piecewise definable set is trivially locally (hyper)definable.
The distinction between these two notions only appears in the general context of
piecewise hyperdefinable sets. In particular, note that our terminology is consist-
ent with the typical use of the terms “piecewise definable” and “locally definable”
as synonyms in the literature.

Proposition 1.30. Let P and Q be piecewise A-hyperdefinable sets. Assume that
P is locally A-hyperdefinable. Let f : P → Q be a piecewise bounded and proper∧

A-definable onto map. Then, Q is locally A-hyperdefinable.

Proof. Pick y ∈ Q. By Proposition 1.25, f−1[tp(y/A)] is
∧

A-definable, so compact
in the A-logic topology of P . As P is locally hyperdefinable, we find an

∧
A-

definable set V such that f−1[tp(y/A)] ⊆ U ⊆ V , where P \ U is piecewise
∧

A-
definable. By Proposition 1.25, f [V ] is

∧
A-definable, and f [P \ U ] is piecewise∧

A-definable. As f−1[tp(y/A)] ⊆ U , tp(y/A) ∩ f [P \ U ] = ∅. Also, as f is onto,
Q = f [V ∪(P \U)] = f [V ]∪f [P \U ]. Therefore, y ∈ tp(y/A) ⊆ Q\f [P \U ] ⊆ f [V ],
concluding that f [V ] is an

∧
A-definable neighbourhood of y in the A-logic topology.

As y is arbitrary, we conclude that Q is locally A-hyperdefinable. Q.E.D.

For locally hyperdefinable sets we have a really good control of the logic topology.

Proposition 1.31. Let P be a locally A-hyperdefinable set. Then, P is locally
closed compact in the A-logic topology, i.e. every point has a local base of closed
compact neighbourhoods.

Proof. Say P = lim−→Pi. Pick x ∈ P and U open neighbourhood of x in the A-logic

topology. Take a piece Pi and U0 such that x ∈ U0 ⊆ Pi with U0 open in the
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A-logic topology of P . Then, U1 := U ∩ U0 is an open neighbourhood of x in the
A-logic topology of P . Note that tp(x/A) ⊆ U1 ⊆ Pi, so tp(x/A) and Pi \ U1

are disjoint closed subsets of Pi. By Proposition 1.16, Pi is normal, so there are
tp(x/A) ⊆ U ′ and Pi \ U1 ⊆ Pi \ V

′ with U ′ ∩ (Pi \ V
′) = ∅ such that Pi \ U

′ and
V ′ are

∧
A-definable in Pi. Therefore, x ∈ tp(x/A) ⊆ U ′ ⊆ V ′ ⊆ U1 ⊆ Pi. Now,

since U1 is open in the A-logic topology of P and U ′ ⊆ U1 is open in the subspace
topology of U1, we conclude that U ′ is open in the A-logic topology of P . Hence,
V ′ is an

∧
A-definable neighbourhood of x in the A-logic topology contained in U .

As x and U are arbitrary, we conclude that P is locally closed compact. Q.E.D.

Proposition 1.32. Let P be a locally A-hyperdefinable set. Then, every compact
subset of P in the A-logic topology is contained in the interior of some piece.

Proof. Clear from the definition. Q.E.D.

Proposition 1.33. Let P be a locally A-hyperdefinable set. Then, any two closed
compact disjoint subsets in the A-logic topology are separated by open sets. In
particular, it is T1 if and only if it is T2.

Proof. Say P = lim−→Pi. Let K1 and K2 be two disjoint closed compact subsets of P

in the A-logic topology. By Proposition 1.32, there is a piece Pi and an open subset
U of P such that K1,K2 ⊆ U ⊆ Pi. By normality of Pi, there are disjoint open
subsets U1 and U2 in the A-logic topology of Pi such that K1 ⊆ U1 and K2 ⊆ U2.
Thus, U ∩ U1 and U ∩ U2 are disjoint open subsets in the subspace topology of U
separating K1 and K2. As U is open in the A-logic topology of P , we conclude that
U ∩U1 and U ∩U2 are disjoint open subsets in the A-logic topology of P separating
K1 and K2. Q.E.D.

Recall that a function between topological spaces is proper if the preimage of
every compact set is compact. For instance, every closed function with compact
fibres is proper [Eng89, Theorem 3.7.2].

Proposition 1.34. Let P and Q be piecewise A-hyperdefinable sets and f : P → Q
a piecewise

∧
A-definable function.

(1) If f is piecewise bounded, then f is continuous between the A-logic topologies.
(2) If f is piecewise proper, then f is closed and has compact fibres between the

A-logic topologies. In particular, it is proper.
(3) If f is an isomorphism of piecewise A-hyperdefinable sets, then f is a homeo-

morphism between the A-logic topologies.
(4) If Q is locally A-hyperdefinable, then f is continuous between the A-logic

topologies if and only if it is piecewise bounded.
(5) If P is locally A-hyperdefinable, then f is proper between the A-logic topolo-

gies if and only if it is piecewise proper.
(6) If P and Q are locally A-hyperdefinable, then f is an isomorphism of piece-

wise A-hyperdefinable sets if and only if it is a homeomorphism between the A-logic
topologies.

Proof. Point (1) is given by Proposition 1.25(1).
Point (2): closedness is given by Proposition 1.25(2). On the other hand, for any

point a ∈ Q, f−1(a) ⊆ f−1[tp(a/A)] and f−1[tp(a/A)] is
∧

A-definable, so compact.
As f is A-invariant and tp(a/A) is the orbit of a under Aut(M/A) by Corollary 1.10,
it follows that f−1[tp(a/A)] is the orbit of f−1(a) under Aut(M/A), i.e. the smallest
A-invariant set containing f−1(a). Consequently, any open covering of f−1(a) in
the A-logic topology is also a covering of f−1[tp(a/A)], so f−1(a) is compact too.
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Point (3) is given by points (1) and (2). Point (4) is given by (1) and Propos-
ition 1.32. Point (5) is given by (2) and Proposition 1.32. Point (6) is given by
points (4) and (5). Q.E.D.

Proposition 1.35. Let P be a piecewise A-hyperdefinable set and Q a locally A-
hyperdefinable set whose A-logic topology is its global logic topology. Let f : P → Q
be a function. Then, f is continuous between the A-logic topologies if and only if f
is a piecewise bounded

∧
A-definable function.

Proof. By the Closed Graph Theorem [Mun00, Exercise 8, Section 26] and Propos-
itions 1.32 and 1.34. Q.E.D.

By Proposition 1.34(1), Cartesian projection maps are continuous between the
logic topologies. Therefore, the A-logic topology of a finite product of piecewise
A-hyperdefinable sets is at least as fine as the product topology of the A-logic
topologies. In the case of local hyperdefinable sets with global logic topologies, we
have that they coincide.

Proposition 1.36. Let P and Q be locally hyperdefinable sets with global logic
topologies. Then, P × Q is a locally hyperdefinable set and its product topology is
its global logic topology.

Proof. It suffices to note that, for any two topological spaces X and Y with respect-
ive local coverings C and D, C × D := {P ×Q : P ∈ C, Q ∈ D} is a local covering
of the product topology. Q.E.D.

Similarly, in the case of countably piecewise hyperdefinable sets with global logic
topologies, we also conclude that they coincide.

Proposition 1.37. Let P and Q be two countably piecewise hyperdefinable sets
with global logic topologies. Then, P ×Q is a countably piecewise hyperdefinable set
and its product topology is its global logic topology.

Proof. Say P = lim−→Pn and Q = lim−→Qn. Let Γ ⊆ P×Q be closed in the global logic

topology and (a, b) /∈ Γ arbitrary. We recursively define a sequence (Un, Vn)n∈N such
that a ∈ U0, b ∈ V0, Un ⊆ Un+1, Vn ⊆ Vn+1, Un ⊆ Pn is open in Pn, Vn ⊆ Qn is
open in Qn and (Un × V n) ∩ Γ = ∅.

For any n ∈ N, note that the product topology and the global logic topology in
Pn ×Qn coincide. As (a, b) and Γ∩ (P0 ×Q0) are disjoint and closed, by normality
in P0 × Q0, we can find U0 ⊆ P0 open in P0 and V0 ⊆ Q0 open in Q0 such that
(a, b) ∈ U0 × V0 and (U0 × V 0) ∩ Γ = ∅. Now, suppose Un and Vn are defined. By
normality of Pn+1 × Qn+1, for any (x, y) ∈ Un × V n, we can find Uxy

n+1 ⊆ Pn+1

open in Pn+1 and V xy
n+1 ⊆ Qn+1 open in Qn+1 such that x ∈ Uxy

n+1, y ∈ V xy
n+1 and

(U
xy

n+1 ×V
xy

n+1)∩Γ = ∅. As V n is compact, for each x ∈ Un there is Fx ⊆ V n finite

such that V n ⊆
⋃

y∈Fx
V xy
n+1. Take V x

n+1 =
⋃

y∈Fx
V xy
n+1 and Ux

n+1 =
⋂

y∈Fx
Uxy
n .

Then, Ux
n+1 ⊆ Pn+1 is open in Pn+1, V

x
n+1 ⊆ Qn+1 is open in Qn+1, x ∈ Ux

n+1,

V n ⊆ V x
n+1 and (U

x

n+1 × V
x

n+1) ∩ Γ = ∅. As Un is compact, there is F ⊆ Un finite

such that Un ⊆
⋃

x∈F U
x
n+1. Take Un+1 =

⋃
x∈F U

x
n+1 and Vn+1 =

⋂
x∈F V

x
n+1.

Then, Un+1 ⊆ Pn+1 is open in Pn+1, Vn+1 ⊆ Qn+1 is open in Qn+1, Un ⊆ Un+1,
V n ⊆ Vn+1 and (Un+1 × V n+1) ∩ Γ = ∅.

Let U =
⋃

n∈N Un and V =
⋃

n∈N Vn. For n ∈ N, we have U ∩Pn =
⋃

m≥n(Um ∩
Pn) and V ∩Qn =

⋃
m≥n(Vm ∩Qn). As Pn ⊆ Pm and Qn ⊆ Qm for m > n, we get

that Um ∩ Pn is open in Pn and Vm ∩ Qn is open in Qn, so U ∩ Pn is open in Pn

and V ∩Qn is open in Qn for each n ∈ N. Therefore, U ×V is open in the product
topology and (a, b) ∈ U × V with (U × V ) ∩ Γ = ∅. As (a, b) /∈ Γ is arbitrary, Γ is
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closed in the product topology. As Γ is arbitrary, we conclude that the global logic
topology in P ×Q is the same as the product topology. Q.E.D.

Let P = lim−→Pi be piecewise A-hyperdefinable set and V ⊆ P a non-empty

piecewise
∧

A-definable subset. Note that the subspace topology of V inherited
from the A-logic topology of P is the A-logic topology of V given as the piecewise
A-hyperdefinable set lim−→ V ∩Pi. We conclude showing that local hyperdefinability

is hereditary.

Proposition 1.38. Let P = lim−→Pi be a locally A-hyperdefinable set and V ⊆ P a

piecewise
∧

A-definable subset. Then, V with the induced piecewise hyperdefinable
substructure lim−→ V ∩ Pi is a locally A-hyperdefinable set.

Proof. It suffices to note that, for any topological space X with local covering C
and any Y ⊆ X , C|Y = {C ∩ Y : C ∈ C} is a local covering of the subspace

topology. Q.E.D.

1.5. Spaces of types. Let P = X/E be an A-hyperdefinable set and F ⊆ P × P
an

∧
A-definable equivalence relation in P . Then, P/F is actually identified with

the A-hyperdefinable set X/quot−1
P×P [F ] via the canonical bijection

η : [x]quot−1

P×P [F ] 7→ [[x]P ]F .

Furthermore, by the definition of the quotient topologies, this map is a homeo-
morphism.

Let P = lim−→(I,≺)(Pi, ϕji)j�i be a piecewise A-hyperdefinable set. Write Pi =

Xi/Ei. Let F ⊆ P × P be a piecewise
∧

A-definable equivalence relation. Write

Fi := F|Pi×Pi
. Define ϕ̃ji : Pi/Fi → Pj/Fj by ϕ̃ji([x]Fi) = [ϕji(x)]Fj . Clearly, they

are well-defined
∧

A-definable and 1-to-1 functions and ϕ̃ii = id and ϕ̃ki = ϕ̃kj ◦ ϕ̃ji.

Then, we have canonically the piecewise A-hyperdefinable structure in P/F given
by

P/F := lim−→(I,≺)(Pi/Fi, ϕ̃ji)j�i,

via the map η : [ιPi(x)]F 7→ ιPi/Fi
([x]Fi) for i such that x ∈ Pi. Furthermore,

topologically, by the definitions of the quotient and the direct limit topologies, this
bijection is clearly a homeomorphism.

Let P = X/E be an A∗-hyperdefinable set. Consider the space of types SX(A∗) =
{tp(x/A∗) : x ∈ X} with the usual topology. We define the equivalence relation
∼E in SX(A∗) as p ∼E q if and only if there are E-equivalent realisations of p(x)

and q(y). The space of types of P over A∗ is the space SP (A
∗) := SX(A∗)/∼E with

the quotient topology.
On the other hand, by Lemma 1.14, P/∆P (A

∗) = {tp(a/A∗) : a ∈ P} is an
A∗-hyperdefinable set and has its A∗-logic topology.

Proposition 1.39. Let P = X/E be an A∗-hyperdefinable set. Then, P/∆P (A
∗)

and SP (A
∗) are homeomorphic.

Proof. Consider the map

f : SP (A
∗) → P/∆P (A

∗)
[tp(a∗/A∗)]∼E

7→ tp([a∗]E/A
∗).

By saturation, it is well-defined. Clearly, it is onto. It is 1-to-1 by Lemma 1.5. By
the definition of the quotient topology, it is clear that f is continuous. As SX(A∗) is
a compact topological space, SP (A

∗) is also compact. On the other hand, P/∆P (A
∗)

is a Hausdorff space. Then, as the domain is compact, the image is Hausdorff and
f is a continuous bijection, we conclude that f is a homeomorphism. Q.E.D.
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Therefore, for hyperimaginary parameters, we define the space of types of P over
A, SP (A), as P/∆P (A) with its global logic topology.

Remark 1.40. By Lemmas 1.8 and 1.9, any
∧

A-definable function f : P → Q
induces a continuous closed map between the spaces of types.

Similarly, let P = lim−→IPi be a piecewise A∗-hyperdefinable set. For each i ∈ I,

we have the space of types SPi(A
∗) = {tp(a/A∗) : a ∈ Pi}. Given i, j ∈ I with

i � j, the map ϕji : Pi → Pj induces a continuous and closed 1-to-1 function
Im ϕji : SPi(A

∗) → SPj (A
∗) given by tp(a/A∗) 7→ tp(ϕji(a)/A

∗). Clearly, Im ϕkj ◦
Im ϕji = Im ϕki and Im ϕii = id. Therefore, we have a topological direct sequence
(SPi(A

∗), Im ϕji)j�i. The space of types of P over A∗ is then the direct limit
topological space

SP (A
∗) := lim−→ISPi(A

∗).

By Proposition 1.39, we have

P/∆P (A
∗) = lim−→

Pi/∆Pi(A
∗) ∼= lim−→ SPi(A

∗) = SP (A
∗).

Therefore, for a piecewise hyperdefinable set P , like in the case of hyperdefinable
sets, we also define the space of types of P over hyperimaginary parameters A,
SP (A), as P/∆P (A) with its global logic topology. Even more, we say that a
piecewise hyperdefinable set S is a space of types if it has a global logic topology.

Let X be a topological space. Recall that two points are topologically indistin-
guishable if they have the same neighbourhoods. A Kolmogorov map is an onto
continuous and closed map k : X → Y between topological spaces such that k(a)
and k(b) are topologically indistinguishable if and only if a and b are topologically
indistinguishable. We will use the following basic characterisation — see [Pir21] for
more details:

Lemma 1.41. Let X and Y be topological spaces and k : X → Y a function.
Then, the following are equivalent:

(a) k is a Kolmogorov map.
(b) Im k is a lattice isomorphism between the topologies with inverse Im−1k.

Remark 1.42. When Y is T0, we call a Kolmogorov map k : X → Y the
Kolmogorov quotient of X . In that case, up to a homeomorphism, Y is the quotient
space X/∼, where ∼ is the topologically indistinguishable equivalence relation, and
k is the respective quotient map.

As it is discussed in the introduction, it is useful to note that the quotient map
tpA : P → SP (A) given by tpA : a 7→ tp(a/A) = a/∆P (A) is the Kolmogorov quo-

tient between the A-logic topologies. By definition, it also satisfies that tp−1
A [tpA[V ]] =

V for any A-invariant set V . Thus, when studying P , it is typically possible to map
the discussion via tpA, argue in SP (A) and then lift the conclusions to P via tp−1

A .
Following this procedure, one can usually assume without loss of generality that
P is T0. This technique will be illustrated in the following subsection — see The-
orem 1.48 and the Metrisation Theorem 1.51.

Remark 1.43. By Proposition 1.34(1) and Lemma 1.24, any piecewise bounded∧
A-definable function induces a continuous map between the spaces of A-types.

1.6. Metrisation results.3 A uniform space is a pair (X,Φ) formed by a non-
empty set X and a filter Φ of binary relations in X satisfying that, for every

3This section is inspired on results from [BY05].
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U ∈ Φ,
(i) ∆ ⊆ U,
(ii) U−1 ∈ Φ and
(iii) there is V ∈ Φ such that V ◦ V ⊆ U ;

where ∆ := {(x, x) : x ∈ X} is the diagonal (equality) relation, U−1 := {(y, x) :
(x, y) ∈ U} and W ◦V := {(x, z) : ∃y (x, y) ∈ V, (y, z) ∈W}. The filter Φ is called
the uniform structure of the uniform space (X,Φ).

A uniformity base of (X,Φ) is a filter base of Φ. Note that a filter base B of
reflexive binary relations on X is a uniformity base of some uniform structure if
and only if, for any U ∈ B, there are V,W ∈ B such that V ◦V ⊆ U and W ⊆ U−1.

Uniform spaces generalise (pseudo-)metric spaces. In other words, every pseudo-
metric ρ induces a uniform space given by the uniformity base {ρ−1[0, ε) : ε ∈ R>0}.
We say then that a uniform structure Φ is pseudo-metrisable if it arises in this way;
that means there is a pseudo-metric ρ such that {ρ−1[0, ε) : ε ∈ R>0} is a uniformity
base of Φ.

As in the case of metric spaces, every uniform space has a topology given by
the system of local bases of neighbourhoods {U(a) : U ∈ Φ}a∈X , where U(a) :=
{b : (a, b) ∈ U}. We say that a topology T admits a uniform structure if there is a
uniform structure Φ on X with uniform topology T . Note that a topological space
could admit many different uniform structures. Uniform structures inducing the
same topology are called equivalent.

Remark 1.44. Uniform structures are the natural abstract context to study uni-
form continuity, uniform convergence, Cauchy sequences or completeness. It is im-
portant to note that two equivalent uniform structures may differ on these aspects.
For example, a uniformly continuous function with respect to one uniform structure
might not be uniformly continuous in another equivalent uniform structure.

Recall that a topological space X is functionally regular if, for any point x ∈ X
and any closed set V ⊆ X such that x /∈ V , there is a continuous function f : X →
[0, 1] such that f(x) = 0 and f|V = 1. It is a well-known fact from the theory of
uniform spaces that a topological space admits a uniform structure if and only if it
is functionally regular — see [Wil70, Theorem 38.2] for a proof. Hence, we get the
following general result for countably piecewise A-hyperdefinable sets.

Proposition 1.45. Every countably piecewise A-hyperdefinable set P with its A-
logic topology admits a uniform structure.

Proof. We know that P is normal by Proposition 1.28. Let V be piecewise
∧

A-

definable and a ∈ P \ V . As {a} = tp(a/A), we have that {a} and V are disjoint.
By normality, using Urysohn’s Lemma [Mun00, Theorem 33.1], we conclude that
P is functionally regular. Thus, we conclude that it admits a uniform structure.

Q.E.D.

Our aim now is to give a better description of the uniform structure in each piece.
In other words, we want to give an actual uniformity base for the logic topology.

Let P be an A-hyperdefinable set. We say that an
∧

A-definable binary relation
ε ⊆ P ×P is positive if ∆P (A) ⊆ ε̊, where the interior is taken in the product topo-
logy of the A-logic topology. Write EP (A) for the set of all positive

∧
A-definable

binary relations of P . It could seem odd the fact that we take the interior in the
product topology. The following lemma explains why.

Lemma 1.46. Let P be an A-hyperdefinable set and π : P × P → SP (A)× SP (A)
the quotient map (a, b) 7→ (tp(a/A), tp(b/A)). Then, for any ε ∈ EP (A), π[ε] ∈
ESP (A)(A), and for any ε′ ∈ ESP (A)(A), π

−1[ε′] ∈ EP (A).
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Remark 1.47. When the A-logic topology is the global topology, ∆P (A) is pre-
cisely the diagonal ∆ and EP (A) is the set of closed neighbourhoods of ∆ in the
global logic topology of P × P , which coincides with the product topology by Pro-
position 1.19. This in particular applies to SP (A).

We now prove the main result of this subsection:

Theorem 1.48. Let P be an A-hyperdefinable set. Then, P with the A-logic topo-
logy admits a unique uniform structure and EP (A) is a uniformity base of it.

Proof. We start by proving the proposition for SP (A) rather than P , so consider the
set ESP (A)(A) of positive

∧
A-definable binary relations on SP (A). By [Wil70, The-

orem 36.19], since SP (A) with the global logic topology is compact and Hausdorff,
it admits one and only one uniform structure, which is precisely the filter of neigh-
bourhoods of the diagonal in the product topology. Since the global logic topology
and the product topology on SP (A)×SP (A) coincide by Proposition 1.19, ESP (A)(A)
is the collection of all closed neighbourhoods of the diagonal. Thus, by normality of
SP (A) × SP (A) and closedness of ∆ (which follows from Hausdorffness of SP (A)),
the filter generated by ESP (A)(A) is exactly the collection of all neighbourhoods
of ∆, which is precisely the unique uniform structure admitted by SP (A). Hence,
ESP (A)(A) is a base of the unique uniform structure of SP (A).

We now use the quotient maps tpA : P → SP (A) and τ : P×P → SP (A)×SP (A)
given by tpA(a) = tp(a/A) and τ(a, b) = (tp(a/A), tp(b/A)) to extend the result
to P . Let Φ be any uniform structure on P inducing the A-logic topology. Note
that at least one Φ exists by Proposition 1.45. Consider τΦ := {τ [U ] : U ∈ Φ}.
Obviously, τΦ is a filter. Also, τ [U−1] = τ [U ]−1 and τ [U ] ◦ τ [U ] ⊆ τ [U ◦ U ◦ U ]
for any U ∈ Φ, so τΦ is a uniform structure on SP (A). On the other hand, for
any a ∈ P , tpA[U(a)] ⊆ τ [U ](tp(a/A)) ⊆ tpA[U ◦U(a)]. Thus, by the properties of
tpA, τΦ induces the global logic topology on SP (A). As SP (A) with the global logic
topology only admits one uniform structure, it follows that ESP (A)(A) is a uniformity

base of τΦ. In particular, we have τ−1ESP (A)(A) ⊆ Φ, where τ−1ESP (A)(A) :=

{τ−1[ε] : ε ∈ ESP (A)(A)}. On the other hand, for U ∈ Φ, take V ∈ Φ such
that V ◦ V ◦ V ⊆ U and find ε ∈ ESP (A)(A) such that ε ⊆ τ [V ]. Therefore,

τ−1[ε] ⊆ τ−1[τ [V ]] = ∆P (A) ◦ V ◦∆P (A) ⊆ V ◦ V ◦ V ⊆ U . Hence, τ−1ESP (A)(A)
is a uniformity base of Φ, concluding uniqueness.

We now show that EP (A) is a uniformity base of Φ. Since τ−1[ε] ∈ EP (A) for any
ε ∈ ESP (A)(A), it is enough to show that for any ε ∈ EP (A) there is ε′ ∈ ESP (A)(A)

such that τ−1[ε′] ⊆ ε. Take ε′′ ∈ EP (A) such that ε′′ ◦ ε′′ ◦ ε′′ ⊆ ε and set ε′ = τ [ε′′].
Then, τ−1[ε′] = ∆P (A) ◦ ε′′ ◦∆P (A) ⊆ ε. Q.E.D.

Using compactness, we can get an even smaller uniformity base:

Lemma 1.49. Let P be an A-hyperdefinable set. There is a family {εi}i<|A|+|L| of∧
A-definable positive binary relations on P which is a uniformity base of P with

the A-logic topology.

Proof. Say ∆P (A) =
∧

i<|A|+|L| ϕi with ϕi ∈ For(L(A∗)). For each i < |A| +

|L|, write Ei := quotP×P [ϕi(M)] and Ui := P × P \ quotP×P [¬ϕi(M)]. Since

quot−1
P×P [∆P (A)] ∩ ¬ϕi(M) = ∅, ∆P (A) ∩ quotP×P [¬ϕi(M)] = ∅, so ∆P (A) ⊆

Ui ⊆ Ei where Ei is closed and Ui is open in the A-logic topology. By compactness
of P ×P in the A-logic topology, we can take εi ∈ EP (A) such that εi ⊆ Ui ⊆ Ei. It
follows that {εi}i<|A|+|L| is a sequence of

∧
A-definable positive binary relations on

P such that ∆P (A) =
⋂

i<|A|+|L| εi. Now we show that {εi}i<|A|+|L| is a uniformity

base. Take ε ∈ EP (A) and U ⊆ ε open in the product topology of P × P such that⋂
i<|A|+|L| εi = ∆P (A) ⊆ U ⊆ ε. Since U is open in the product topology, it is also
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open in the A-logic topology. Then, by compactness, there is i < |A|+ |L| such that
εi ⊆ U ⊆ ε, concluding that {εi}i<|A|+|L| is a uniformity base of P with the A-logic

topology. Q.E.D.

Recall that a uniform structure is pseudo-metrisable if and only if it has a count-
able uniformity base — see [Wil70, Theorem 38.3]. Therefore, we get the following
metrisation results:

Corollary 1.50. Let P be an A-hyperdefinable set. Then, P with its A-logic to-
pology is pseudo-metrisable if and only if there is a countable family {εn}n∈N of∧

A-definable positive binary relations on P such that ∆P (A) =
⋂

n∈N εn. In par-
ticular, P with the A-logic topology is pseudo-metrisable if L and A are countable.

Theorem 1.51 (Metrisation Theorem). Let P be a locally A-hyperdefinable set of
countable cofinality. Then, P with the A-logic topology is pseudo-metrisable if and
only if each piece is pseudo-metrisable. In particular, P with the A-logic topology
is pseudo-metrisable if L and A are countable.

Proof. Assume that each piece is pseudo-metrisable. Taking the quotient map a 7→
tp(a/A), we get that SP (A) is locally metrisable and σ-compact. By σ-compactness,
SP (A) is trivially Lindelöf (i.e. every open cover has a countable subcover). By
Proposition 1.28, SP (A) is normal and Hausdorff, so it is in particular regular (i.e.
any closed set and any point outside it can be separated by open sets). Therefore, by
[Mun00, Theorem 41.5], SP (A) is paracompact (i.e. every open cover has a locally
finite open refinement). By Smirnov’s Metrisation Theorem [Mun00, Theorem 42.1],
we conclude that it is metrisable. Taking the composition with the quotient map
a 7→ tp(a/A), we conclude that P with the A-logic topology is pseudo-metrisable.

Q.E.D.

Using uniformities, it is also easy to find small dense subsets:

Corollary 1.52. Let P be a piecewise A-hyperdefinable set. Then, there is a subset
D ⊆ P with |D| ≤ |A| + |L| + cf(P ) which is dense in the A-logic topology. In
particular, when A and L are countable, every countably piecewise A-hyperdefinable
set is separable (i.e. has a countable dense subset) with the A-logic topology.

Proof. Say P = lim−→i<cf(P ) Pi. By Lemma 1.49, for each i, there is a uniformity

base Bi ⊆ EPi(A) with |Bi| ≤ |A| + |L|. By compactness, for each ε ∈ Bi, there
is Dε,i ⊆ Pi finite such that Pi ⊆

⋃
a∈Dε,i

ε(a). Take D =
⋃

i<cf(P )

⋃
ε∈Bi

Dε,i, so

|D| ≤ |A| + |L| + cf(P ). Let U be open. Then, ε(a) ⊆ U ∩ Pi for some a ∈ P ,
i < cf(P ) and ε ∈ Bi. Find ε0 ∈ Bi with ε−1

0 ⊆ ε and d ∈ Di,ε0 ⊆ D with a ∈ ε0(d),
so d ∈ ε(a) ⊆ U , concluding D ∩ U 6= ∅. As U is arbitrary, D is dense. Q.E.D.

Arguing similarly for global logic topologies, we can reduce the number of para-
meters from 2|A|+|L| to |A|+ |L|+ cf(P ).

Proposition 1.53. Let P be a piecewise A-hyperdefinable set with a global logic
topology. Then, there is B ⊆ P ∪A with |B| ≤ |A|+ |L|+cf(P ) such that the B-logic
topology of P is its global logic topology.

Proof. Say P = lim−→i∈I Pi and Pi = Xi/Ei with |I| = cf(P ). Write λ = |L| + |A| +

cf(P ). For i ∈ I, ∆i := {(x, x) : x ∈ Pi} is
∧

A∗ -definable as ∆i = Ei. Say
∆i =

∧
j∈λ ϕj(x, y) with ϕj(x, y) ∈ For(L(A∗)). Write Vj := quotPi×Pi

[ϕj(M)] and

Uj := Pi ×Pi \ quotPi×Pi
[¬ϕj(M)]. Then, ∆i ⊆ Uj ⊆ Vj where Vj is closed and Uj

is open in the global logic topology of Pi × Pi. By compactness of Pi × Pi, there
is εj positive

∧
-definable binary relation such that εj ⊆ Uj ⊆ Vi. It follows that

Bi := {εj}j∈λ forms a uniformity base of Pi with the global logic topology.
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By compactness of Pi, for each ε ∈ Bi, there is Dε,i ⊆ Pi finite such that
Pi ⊆

⋃
a∈Dε,i

ε(a). Take Di =
⋃

ε∈Bi
Dε,i and D =

⋃
i∈I Di, so |D| ≤ λ. It follows

that Di is dense in the global logic topology of Pi.
Take B = D ∪ A ⊆ bdd(A), so |B| ≤ λ. We claim that the B-logic topology of

P is its global logic topology. Indeed, take a ∈ P and σ ∈ Aut(M/B) arbitrary
and, aiming a contradiction, suppose σ(a) 6= a, so σ−1(a) 6= a. Pick i ∈ I such that
a ∈ Pi. Note that σ[Pi] = Pi. By Hausdorffness of Pi in the global logic topology,
there are U and V such that a ∈ U ⊆ V ⊆ Pi with σ−1(a) /∈ V , where U is open
and V is closed in the global logic topology of Pi. Now, Di∩U = σ[Di∩U ] ⊆ σ[V ].
As U is open and Di is dense in Pi, U ∩Di is dense in U . As σ[V ] is closed in the
global logic topology, we conclude a ∈ U ⊆ σ[V ]. Therefore, σ−1(a) ∈ V , getting a
contradiction. Q.E.D.

1.7. Examples. Most of the examples of locally hyperdefinable sets come from
the following two basic remarks, which were, in fact, already known. First, note
that any piecewise A-definable set is trivially locally A-definable. Secondly, note
that if P is locally A-hyperdefinable and E is a piecewise bounded

∧
A-definable

equivalence relation on P , then P/E is locally hyperdefinable by Proposition 1.30.

Example 1.54. A classical example is the field of real numbers R with its usual
topology, which is a locally hyperdefinable set of countable cofinality in the theory

of real closed fields. It is explicitly given as O(1)/o(1) with O(1) =
⋃

n∈N[−n, n] and
o(1) =

⋂
n∈N [−1/n, 1/n]. Furthermore, up to isomorphism of piecewise hyperdefin-

able sets, O(1)/o(1) is the unique representation of R as a locally hyperdefinable set.
Indeed, by Proposition 1.34(6), any two locally hyperdefinable sets homeomorphic
with the logic topologies are isomorphic as piecewise hyperdefinable sets.

However, note that the real numbers with the usual topology can be represen-
ted as a piecewise hyperdefinable set (non-locally hyperdefinable) in other non-iso-
morphic ways. For instance, consider the direct system of all compact subsets of
O(1)/o(1) with empty interior in the global logic topology with the natural inclusion
maps. Using that the topology is first-countable, it is easy to note that this is a
coherent covering. Therefore, the resulting direct limit with the global logic topo-
logy is a piecewise hyperdefinable set homeomorphic to R with the usual topology.

However, it is not locally hyperdefinable, so it is not isomorphic to O(1)/o(1).

Example 1.55. More generally, any topological manifold X (i.e. a locally eu-
clidean Hausdorff topological space) is a locally hyperdefinable set in the usual
theory of real closed fields. Indeed, for any m, Rm is locally hyperdefinable, so
every compact subset of Rm is hyperdefinable, concluding that the compact charts
of X are hyperdefinable. Using now Proposition 1.35, the chart changing maps are∧

-definable, so the finite unions of compact chart neighbourhoods are hyperdefin-
able. It follows then that the whole manifold is locally hyperdefinable. If it is also
second countable, then it has countable cofinality too.

Example 1.56. As Q with the usual metric topology is not locally compact, it
cannot be given as a locally hyperdefinable set. However, it is possible to give it as
a piecewise hyperdefinable set in the theory of real closed fields. Indeed, using that
Q is first countable, it is clear that Q is compactly generated. Every compact subset

of Q is a hyperdefinable subset being
∧

-definable in R = O(1)/o(1). In other words,

Q is the direct limit of all the
∧

-definable subsets of R = O(1)/o(1) contained in Q

with the standard inclusion maps. Note that it has uncountable cofinality.

Example 1.57. More generally, any first countable Hausdorff topological space X
can be given as a piecewise hyperdefinable set with a global logic topology in the
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theory of real closed fields. Indeed, let C be the family of countable compact subsets
of X . As X is first countable, C is coherent. Now, by Mazurkiewicz-Sierpiński
Theorem [Mil11, Theorem 4], every countable compact Hausdorff topological space
is homeomorphic to a countable successor ordinal with the order topology. On
the other hand, by induction, we easily see that every countable ordinal with the
order topology is homeomorphic to a subset of Q. Therefore, for every A ∈ C,
there is a compact subset PA ⊆ Q such that A with the subspace topology is
homeomorphic to PA with the subspace topology. For eachA ∈ C, pick ηA : A→ PA

a homeomorphism. For A,B ∈ C with A ⊆ B, take ϕBA = ηB ◦ η−1
A : PA → PB .

Now, as noted in the previous example, every compact subset of Q is homeomorphic
to a hyperdefinable set with a global logic topology in the theory of real closed
fields. Also, for A,B ∈ C with A ⊆ B, ϕBA is continuous, so it is

∧
-definable by

Proposition 1.35. Then, we conclude that X is homeomorphic to lim−→A∈C PA with

the global logic topology.

Example 1.58. For a countably piecewise hyperdefinable set that is not locally
hyperdefinable, consider the infinite countable rose, i.e. the infinite countable bou-
quet of circles. This is R/∼ with the equivalence relation x ∼ y ⇔ x, y ∈ Z ∨ x = y.
Note that R is countably piecewise hyperdefinable and the relation ∼ is piecewise∧

-definable in the theory of real closed fields. Thus, the infinite countable rose is
a countably piecewise hyperdefinable set. It is not locally hyperdefinable and not
first countable, so it is not pseudo-metrisable.

Example 1.59. For a piecewise hyperdefinable set which is not normal, consider
R with the rational sequence topology. For i ∈ R, pick a sequence (in)n∈N of
rational numbers converging to i. When i ∈ Q, take in = i for every n ∈ N. Take
Pi = {in : n ∈ N} ∪ {i} for i ∈ R. For a finite subset I ⊆ R, take PI =

⋃
i∈I Pi.

Note that, for any finite I ⊆ R, PI is compact in R with the usual topology, so each
PI is hyperdefinable in the language of real closed fields. Take P = lim−→ PI with

the usual inclusion maps. We now check that P with the global logic topology is
homeomorphic to R with the rational sequence topology, i.e. the topology given by
the local bases of open neighbourhoods Un(i) := {ik : k ≥ n} ∪ {i} for i ∈ R.

Note first that Un(i) is open in P for each i ∈ R and n ∈ N. Obviously, Un(i)∩Pi

is open in Pi. For j 6= i, as (in)n∈N converges to i and (jn)n∈N converges to j, we
conclude that there is m ∈ N such that Un(i)∩Pj ⊆ {in : n ≤ m}. Thus, Un(i)∩Pj

is open in Pj .
On the other hand, suppose U ⊆ P is open in P . Take i ∈ U . As U ∩Pi is open

in Pi, there is n ∈ N such that Un(i) ⊆ U ∩Pi, so Un(i) ⊆ U . As i ∈ U is arbitrary,
we conclude that U is open in the rational sequence topology.

By Jone’s Lemma [Wil70, Lemma 15.2], P is not normal. Indeed, Q is dense,
R \Q is discrete and closed and |R \Q| ≥ 2|Q|.

For a counterexample where the product topology of global logic topologies is not
the global logic topology on the product, see Example 2.19. We have no counter-
example of a piecewise hyperdefinable set with a non-Hausdorff global logic topology.
We have no counterexample of a countably piecewise A-hyperdefinable set that is
not locally A-hyperdefinable but has a locally compact A-logic topology.

2. Piecewise hyperdefinable groups

In this section we study the particular case of piecewise hyperdefinable groups.
Our main aim is to find sufficient and necessary conditions to conclude when they
are locally compact topological groups with the logic topology. Then, we will
discuss how to extend the classical Gleason-Yamabe Theorem and some related
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results to piecewise hyperdefinable groups. We start with an introduction recalling
some fundamental facts about topological groups.

2.1. Preliminaries on topological groups. Recall that a topological group is
a Hausdorff topological space with a group structure whose group operations are
continuous.

Remark 2.1. Let G be a topological group. The following are the basic funda-
mental facts that we need:

(1) Let H E G be closed. Then, G/H is a topological group and πG/H : G →
G/H is a continuous and open surjective homomorphism. Furthermore, if H is
compact, then πG/H is also a closed map and has compact fibres. In particular, it
is proper by [Eng89, Theorem 3.7.2].

(2) Let H ≤ G be an open subgroup. Then, H is also closed.
(3) The connected component G0 of the identity is a normal closed subgroup of

G. If G is locally connected (e.g. a Lie group), then G0 is also open.
(4) (Closed Isomorphism Theorem) Let f : G→ H be a continuous and closed

surjective homomorphism between topological groups. Then, for any closed sub-
group S E K := ker(f) with S E G, the map fS : G/S → H defined by
f = fS ◦ πG/S is a continuous, closed and open homomorphism. In particular,

fK : G/K → H is an isomorphism of topological groups and f is an open map.

In the theory of topological groups, a Yamabe pair of a topological group G is a
pair (K,H) with K E H ≤ G such that K is compact, H is open and L = H/K is
a finite dimensional Lie group. We say that H is the domain, K is the kernel and
L is the Lie core. We write πH/K : H → L for the quotient map. A Lie group
is a Lie core of G if it is isomorphic, as topological group, to the Lie core of some
Yamabe pair of G.

Remark 2.2. Let G be a topological group and suppose that it has a Yamabe pair
(K,H) with Lie core L. By Remark 2.1(1), πH/K : H → L is a continuous, open,
closed and proper surjective group homomorphism. In particular, as L is locally
compact, H must be a locally compact topological group too. Since H is open in
G, we conclude that G is locally compact as well.

The following celebrated theorem, claiming that every locally compact topo-
logical group has Lie cores, is usually considered the solution to Hilbert’s fifth
problem.

Theorem 2.3 (Gleason-Yamabe). Let G be a locally compact topological group and
U ⊆ G a neighbourhood of the identity. Then, G has a Yamabe pair (K,H) with
K ⊆ U . In particular, a topological group has a Lie core if and only if it is locally
compact.

Proof. The original papers are [Gle52,MZ52,Yam53b,Yam53a]. A complete proofs
can also be found in [MZ55, Tao14]. Model-theoretic treatments can be found
in [Hir90,vdDG15]. Q.E.D.

In this paper we mainly use this classical version of Gleason-Yamabe Theorem 2.3.
Alternatively, we can use the following variation proved in [KC15, Theorem 1.25]
which provides some extra control over some parameters. Recall that two subsets of
a group are k-commensurable if k left translates of each one cover the other. Recall
that a k-approximate subgroup is a symmetric subset X which is k-commensurable
with its set of pairwise products X2.

Theorem 2.4 (Gleason-Yamabe-Kreitlon Theorem). There are functions c : N →
N and d : N → N such that the following holds:
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Let G be a locally compact topological group and U ⊆ G an open precompact
k-approximate subgroup for some k ∈ N. Then, G has a Yamabe pair (K,H) with

K ⊆ U4 such that H/K is a Lie group of dimension at most d(k) and H ∩ U4

generates H and is c(k)-commensurable to U .

A Yamabe pair (K ′, H ′) is smaller than or equal to (K,H) if K E K ′ E H ′ ≤ H .
A Yamabe pair is minimal if it has no smaller ones. A Lie core is minimal if it
is the Lie core of some minimal Yamabe pair. In other words, let us define an
aperiodic topological group to be a topological group without non-trivial compact
normal subgroups. Then, by Remark 2.1(1), a Lie core is minimal if and only if
it is an aperiodic connected Lie core. The following basic proposition implies that
every Yamabe pair has a smaller or equal minimal Yamabe pair.

Lemma 2.5. Every connected Lie group has a unique maximal compact normal
subgroup.

Proof. By Cartan-Iwasawa-Malcev Theorem [Hoc65, Chapter XV Theorem 3.1],
there is a maximal compact subgroup T , and every compact subgroup is contained
in a conjugate of it. Hence,

⋂
g∈G gTg

−1 is the unique maximal compact normal

subgroup. Q.E.D.

Remark 2.6. A different proof of the previous result, without using Cartan-Iwas-
awa-Malcev Theorem, was explained in [Hru12].

Corollary 2.7. Let G be a topological group and (K1, H1) a Yamabe pair. Then,
there is a minimal Yamabe pair (K,H) smaller than or equal to (K1, H1). Further-
more, for any clopen subset U containing K1, we have H ⊆ U2.

Proof. Write π1 := πH1/K1
: H1 → L1 for the quotient map to the Lie core of

(K1, H1). Let L̃ ⊆ L1 be the topological connected component of the identity. As

Lie groups are locally connected, L̃ is open by Remark 2.1(3). Let K̃ E L̃ be

its maximal compact normal subgroup, given by Lemma 2.5. Take H := π−1
1 [L̃]

and K := π−1
1 [K̃]. Then, by Remark 2.1(1) and the Closed Isomorphism Theorem

(Remark 2.1(4)), (K,H) is a minimal Yamabe pair of G smaller than or equal to
(K1, H1). Finally, if U is clopen and K1 ⊆ U , π1[U ] is clopen with 1 ∈ π1[U ] as π1 is

open and closed by Remark 2.1(1). Thus, L̃ ⊆ π1[U ] as L̃ is connected, concluding
that H ⊆ UK1 ⊆ U2. Q.E.D.

Two Yamabe pairs (K,H) and (K ′, H ′) of G with Lie cores π := πH/K : H → L
and π′ := πH′/K′ : H ′ → L′ are equivalent if the map η : π(h) 7→ π′(h) for
h ∈ H ∩H ′ is a well-defined isomorphism of topological groups between L and L′.
Equivalently, by the Closed Isomorphism Theorem (Remark 2.1(4)), (K,H) and
(K ′, H ′) are equivalent if and only if H ∩K ′ ⊆ K, H ′ ∩K ⊆ K ′, (H ∩H ′)K = H
and (H ∩ H ′)K ′ = H ′. It follows that minimal Yamabe pairs are unique up to
equivalence:

Lemma 2.8. Let G be a locally compact topological group and (K1, H1) and (K2, H2)
two minimal Yamabe pairs with Lie cores π1 := πH1/K1

: H1 → L1 and π2 :=
πH2/K2

: H2 → L2:

(1) Let H ′ ≤ H1 be an open subgroup. Then, (K1∩H
′, H ′) is a minimal Yamabe

pair of G equivalent to (K1, H1) and [K1 : K1 ∩H ′] is finite.
(2) K1 ⊆ K2 ⇔ H1 ⊆ H2 ⇔ K2 ∩H1 = K1. In particular, K1 = K2 if and only

if H1 = H2.
(3) (K1 ∩K2, H1 ∩H2) is a minimal Yamabe pair with K1 ∩H2 = K1 ∩K2 =

K2 ∩H1. In particular, [K1 : K1 ∩K2] and [K2 : K1 ∩K2] are finite.



24 ARTURO RODRÍGUEZ FANLO

Proof.(1) By connectedness, π1[H
′] = L1. Thus, by the Closed Isomorphism The-

orem (Remark 2.1(4)), we conclude that (K1 ∩H ′, H ′) is a minimal Yamabe pair
of G equivalent to (K1, H1). Finally, as K1 ∩ H ′ is an open subset of K1, by
compactness, [K1 : K1 ∩H

′] is finite.
(2) We already have H1 ⊆ H2 ⇒ K2 ∩ H1 = K1 ⇒ K1 ⊆ K2 by the previous

point (1). On the other hand, by connectedness, π1[H1 ∩ H2] = L1. If K1 ⊆ K2,
then K1 ≤ H1 ∩H2, so H1 = π−1

1 [π1[H1 ∩H2]] = H1 ∩H2 ⊆ H2.
(3) By point (1), (K1∩H2, H1∩H2) and (K2∩H1, H2∩H1) are minimal Yamabe

pairs with [K1 : K1 ∩ H2] and [K2 : H1 ∩ K2] finite. By point (2), K1 ∩ K2 =
K1 ∩H2 = K2 ∩H1. Q.E.D.

As an immediate consequence of the previous proposition we get the following
corollary:

Corollary 2.9. Every locally compact topological group has a unique minimal
Yamabe pair up to equivalence.

The previous uniqueness statement implies that the minimal Lie core L is unique
up to isomorphism of topological groups, but it is far stronger than that. Indeed,
it also says that there is a global minimal Lie core map extending all the minimal
Yamabe pairs which is unique up to isomorphisms of L:

Proposition 2.10. Let G be a locally compact topological group and L its minimal
Lie core. Let DL be the union of all the domains of minimal Yamabe pairs of G.
Then, there is a map πL : DL → L such that, for any minimal Yamabe pair (K,H)
of G, πL|H is a continuous, closed, open and proper surjective homomorphism with
kernel K. Furthermore, πL is unique up to isomorphisms of L.

Proof. Let Y be the set of all minimal Yamabe pairs of G and fix any minimal
Yamabe pair (K0, H0) ∈ Y and L = H0/K0. Now, for any Yamabe pair (K,H), we

define πL|H := η(K,H) ◦ πH/K : H → L where η(K,H) : H/K → L is the canonical
isomorphism given by the equivalence between (K,H) and (K0, H0). Take any
(K,H), (K ′, H ′) ∈ Y. By Lemma 2.8 and Corollary 2.9, (K ∩ K ′, H ∩ H ′) is a
minimal Yamabe pair and equivalent to (K,H), (K ′, H ′) and (K0, H0). For any h ∈
H∩H ′, as (K∩K ′, H∩H ′) is equivalent to (K0, H0), there is h0 ∈ H∩H ′∩H0 such
that h−1h0 ∈ K∩K ′∩K0. Thus, πL|H(h) = πL|H(h0) = πH0/K0

(h0) = πL|H′(h0) =
πL|H′(h). Take DL =

⋃
Y H and define πL =

⋃
Y πL|H . By Remark 2.1(1), we get

a global map πL : DL → L such that πL|H : H → L is a continuous, closed, open
and proper surjective homomorphism with kernel K for each minimal Yamabe pair
(K,H).

Suppose π′
L : DL → L is any other map such that π′

L|H is a continuous, closed,

open and proper surjective group homomorphism with kernel K for any minimal
Yamabe pair (K,H). Then, by the Closed Isomorphism Theorem (Remark 2.1(4)),

we get an isomorphism η : H0/K0 → L such that π′
L|H0

= η ◦ πL|H0
. Now, for

any (K,H) ∈ Y and g ∈ H , there is g0 ∈ H ∩ H0 such that g ∈ g0K. Then,
π′
L(g) = π′

L(g0) = η ◦ πL(g0) = η ◦ πL(g), concluding that π′
L = η ◦ πL. Q.E.D.

Note that DL = Dom(πL) is the union of all the domains of minimal Yamabe
pairs of G and ker(πL) := π−1

L (1) is the union of all the kernels of minimal Yamabe
pairs of G. Consequently, DL and ker(πL) are invariant by any automorphism of G
as topological group. In particular, both are normal sets (i.e. conjugate invariant
sets).

Among all the minimal Yamabe pairs, it could be natural to look for the ones
with maximal domain. We have the following criterion.
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Proposition 2.11. Let G be a locally compact topological group and (K,H) a
minimal Yamabe pair of G. Let K ′ be a compact subgroup of G with K ≤ K ′ such
that H normalises K ′ (i.e. hK ′ = K ′h for any h ∈ H). Then, K = H ∩ K ′,
[K ′ : K] is finite and (K ′, H ′) is a minimal Yamabe pair of G with H ′ = K ′H.
Furthermore, H ′ is a finite union of cosets of H.

In particular, (K,H) is a minimal Yamabe pair with maximal domain if and
only if there is no compact subgroup K ′ ≤ G normalised by H with K < K ′.

Proof. Clearly, K ≤ K ′ ∩H E H is compact. Then, as K is the maximal compact
normal subgroup of H , we conclude K ′ ∩ H = K and H/K ′ ∩H = H/K = L.
As K = K ′ ∩ H is open in K ′ compact, [K ′ : K] is finite. Take ∆ ⊆ K ′ finite
such that K ′ = ∆K. Note that ∆H = K ′H is a clopen subgroup and K ′ E K ′H .

Write H ′ = ∆H . Then, πH′/K′ |H : H → H ′
/K ′ is a continuous and closed onto

homomorphism. Therefore, by the Closed Isomorphism Theorem (Remark 2.1(4)),
H ′
/K ′ and H/K ′ ∩H = L are isomorphic. That concludes that (K ′, H ′) is also a

minimal Yamabe pair of G. Using also Lemma 2.8(1,2), we conclude that this gives
a necessary and sufficient condition for the maximality of the domain. Q.E.D.

Similarly, it is natural to look at minimal Yamabe pairs with minimal kernel. In
this case, this question is related to the connected component of G.

Recall that the quasicomponent of a point in a topological space is the intersec-
tion of all its clopen neighbourhoods. By definition, quasicomponents are closed
sets containing the connected components. In locally connected spaces, connected
components are clopen, so quasicomponents and connected components coincide.
Similarly, in every compact Hausdorff space, connected components and quasicom-
ponents coincide [Wil70, Lemma 29.6]. In general, however, they may be different
— even for locally compact Hausdorff topological spaces.

In a topological group G, as the inversion, the conjugations and the translations
are homeomorphisms, the connected component G0 and the quasicomponent Gqs

of the identity are both normal closed subgroups of G. When G is locally compact,
it is a well-known fact that G0 = Gqs is the intersection of all the open subgroups
of G [DPS90, Theorem 2.1.4(b)]. Hence, we conclude the following criterion for the
existence of a minimal Yamabe pair with minimal kernel.

Proposition 2.12. Let G be a locally compact topological group. Then, there is
a minimal Yamabe pair with minimal kernel if and only if G0 is open (i.e. G is
locally connected). Furthermore, in that case, for any other minimal Yamabe pair
(K,H), (K ∩G0, G0) is the minimal Yamabe pair of G with minimal kernel.

Proof. Suppose that (K,H) is a minimal Yamabe pair with minimal kernel. As H
is clopen by Remark 2.1(2), we have that G0 ⊆ H . On the other hand, for any other
open subgroupH ′ ≤ G, by Lemma 2.8(1), we have that (K∩H ′, H∩H ′) is a minimal
Yamabe pair. As (K,H) is the one with minimal kernel, it follows that H∩H ′ = H ,
so H ⊆ H ′. As G0 is the intersection of all the open subgroups, we conclude that
G0 = H . Conversely, suppose that G0 is open. Then, by Lemma 2.8(1), for any
minimal Yamabe pair (K,H), we have that (K ∩ G0, G0) is a minimal Yamabe
pair. Thus, for any minimal Yamabe pairs (K,H) and (K ′, H ′), we have that
(K∩G0, G0) and (K ′∩G0, G0) are minimal Yamabe pairs, and so K∩G0 = K ′∩G0

by Lemma 2.8(2). Therefore, (K∩G0, G0) is the minimal Yamabe pair with minimal
kernel. Q.E.D.

In general, even if G0 is not open, a similar conclusion is “asymptotically” true:
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Proposition 2.13. Let G be a locally compact topological group and L its minimal
Lie core. Then, the restriction to G0 of the global minimal Lie core map πL|G0 :

G0 → L is a continuous, open, closed and proper surjective group homomorphism.

Proof. Take (K,H) minimal Yamabe pair and πL|H : H → L. By Proposition 2.10,
πL|H is a continuous, open, closed and proper surjective group homomorphism. By

definition, G0 ≤ H . Thus, consider the restriction πL|G0 : G0 → L. As G0 is a
closed subgroup, πL|G0 is also a continuous, closed and proper group homomorph-
ism. It remains to show that it is onto and open. Let b ∈ L. We want to show
that π−1

L|H(b) ∩ G0 6= ∅. Let H ′ ≤ G be a clopen subgroup such that H ′ ≤ H .

Then, πL|H [H ′] is clopen in L. As L is connected, we get that π−1
L|H(b) ∩ H ′ 6= ∅.

Since π−1
L|H(b) is compact and H ′ is arbitrary, we conclude that π−1

L|H(b) ∩ G0 6= ∅.

Therefore, πL|G0 : G0 → L is onto. We conclude that it is also open by the Closed

Isomorphism Theorem (Remark 2.1(4)). Q.E.D.

2.2. Local compactness and generic pieces. A piecewise A-hyperdefinable group
is a group whose universe is piecewise A-hyperdefinable and whose operations are
piecewise bounded

∧
A-definable.

Example 2.14. Let G be a definable group and X ⊆ G a symmetric definable
subset. Then, the subgroup H ≤ G generated by X is a countably piecewise
definable group. If K E H is a piecewise

∧
-definable normal subgroup, the quotient

H/K = lim−→
Xn

/K is a countably piecewise hyperdefinable group too. If K ⊆ Xn

for some n, then H/K is also locally hyperdefinable. This corresponds to the case
studied in [Hru12].

Remark 2.15. Piecewise
∧

-definable subgroups of piecewise hyperdefinable groups
are piecewise hyperdefinable groups. The quotient of a piecewise hyperdefinable
group by a normal piecewise

∧
-definable subgroup is a piecewise hyperdefinable

group.

Note that the group operations are continuous between the logic topologies by
Proposition 1.34(1). However, the product topology and the logic topology may
differ, so piecewise hyperdefinable groups with the logic topologies do not need to
be topological groups.

Proposition 2.16. Let G be a piecewise hyperdefinable group with a global logic
topology. Then, every translation is a homeomorphism in its global logic topology.

Proof. Trivial by Proposition 1.34(1) and Proposition 1.17. Q.E.D.

Remark 2.17. Groups with a T1 topology such that every translation is continuous
are called semitopological groups — see [Hus18] for an introduction to semitopolo-
gical groups.

Theorem 2.18. Let G be a countably piecewise hyperdefinable group with a global
logic topology. Then, G is a topological group with the global logic topology.

Proof. Clear by Proposition 1.34(1) and Proposition 1.37. Q.E.D.

Example 2.19. We show now an example of a piecewise hyperdefinable group
with a global logic topology that is not a topological group. We simply adapt
the fundamental example given in [TSH98, Example 1.2] to the case of piecewise
hyperdefinable groups.

First, recall that Qn with the usual topology is piecewise hyperdefinable with a
global logic topology in the theory of real closed fields by Example 1.57. Now, the
inclusion ψn,m : Qm → Qn given by ψ(x) = (x, 0, . . . , 0) for n > m is a piecewise
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bounded
∧

-definable 1-to-1 map. Also, the set of pairwise sums of two compact
countable subsets of Qn is a compact countable subset of Qn, so + is a piecewise
bounded

∧
-definable map. Then,

⊕
N Q = lim−→Qn is a piecewise hyperdefinable

group. Now,
⊕

N Q is not a topological group. Consider the set U = {x : |xj | <
| cos(jx0)| for j ∈ N>0}. As x0 ∈ Q for any x ∈

⊕
N Q, we have cos(jx0) 6= 0, so

U is an open neighbourhood of 0. However, there is no open neighbourhood V of
0 such that V + V ⊆ U , concluding that

⊕
N Q is not a topological group. Aiming

a contradiction, suppose otherwise; take V an open neighbourhood of 0 such that
V + V ⊆ U . As V is an open neighbourhood of 0, there is ε0 ∈ R>0 such that
{x : |x0| < ε0 and xi = 0 for i ∈ N>0} ⊆ V . Take n ∈ N>0 such that 2nε0 > π.
There is then ε1 ∈ R>0 such that {x : |xn| < ε1 and xi = 0 for i 6= n} ⊆ V . Hence,
{x : |x0| < ε0, |xn| < ε1 and xi = 0 for i ∈ N \ {0, n}} ⊆ V +V ⊆ U . In particular,
(−ε0, ε0)Q × (−ε1, ε1)Q ⊆ {(x0, x1) ∈ Q × Q : |x1| < | cos(nx0)|}. However, this is
impossible when 2nε0 > π, getting a contradiction.

Theorem 2.20. Let G be a locally hyperdefinable group with a global logic topology.
Then, G is a locally compact topological group with this topology.

Furthermore, a countably piecewise hyperdefinable group G is a locally compact
topological group with some logic topology if and only if this logic topology is the
global logic topology and G is locally hyperdefinable.

Proof. We know that the global logic topology of G is locally compact by Propos-
ition 1.31 and Hausdorff by Proposition 1.33. By Proposition 1.36 and Proposi-
tion 1.34(1), we conclude that G is a locally compact topological group.

By definition, a logic topology is T1 if and only if it is the global logic topology.
On the other hand, assuming G = lim−→n∈NGn, by Baire’s Category Theorem [Mun00,

Theorem 48.2], if G is locally compact Hausdorff, there are h and n ∈ N such that
Gn is a neighbourhood of h. Thus, for any g ∈ G, gh−1Gn is an

∧
-definable

neighbourhood of g. Q.E.D.

Example 2.21. We give an example of a countably piecewise hyperdefinable group
with a global logic topology which is not locally hyperdefinable; this is the infinite
countable direct sum of circles with the inductive topology. Denote the unit circle
by S := {x ∈ C : |x| = 1}, which is hyperdefinable in the theory of real closed fields
as quotient of the common definable circle by the infinitesimals. For n > m, we
take the map ψn,m : Sm → Sn by ψn,m(x) = (x, 1, . . . , 1). Then,

⊕
N S := lim−→Sn

is a countably piecewise hyperdefinable group with a global logic topology that is
not locally hyperdefinable.

A local base of open neighbourhoods of the identity in the global logic topology
of

⊕
N S is the family of subsets Uε := {x : dS(xi, 1) < εi for i ∈ N} for sequences

ε = (εi)i∈N with εi ∈ (0, 1], where dS is the normalised usual distance in the
unit circle. Indeed, suppose U is an open neighbourhood of 1 in

⊕
N S. By using

compactness in Sn for each n ∈ N, we recursively find a sequence ε = (εi)i∈N with
εi ∈ (0, 1] such that {x : dS(xi, 1) ≤ εi for i ≤ n} ⊆ U ∩ Sn.

Unfortunately, proving that a particular piecewise hyperdefinable set is locally
hyperdefinable may be truly hard, as it requires to check a property about a topolo-
gical space that we understand only vaguely. Until now, the only method available
to show that a piecewise hyperdefinable set is locally hyperdefinable relies on Pro-
position 1.30 and the fact that piecewise definable sets are trivially locally hyper-
definable (i.e. piecewise definable and locally definable are the same). Sometimes
that is not enough. To solve this problem we introduce generic sets.

Let G be a piecewise hyperdefinable group. A generic subset is an
∧

-definable
subset V such that, for any other

∧
-definable subset W , [W : V ] := min{|∆| :W ⊆
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∆V } is finite, i.e. there is a finite ∆ ⊆ G with W ⊆ ∆V . Obviously, if V is a
generic set and V ⊆ W for

∧
-definable W , then W is also a generic set. In other

words, if there are generic sets, the generic sets form an upper set of the family of∧
-definable subsets. Hence, if there is a generic set, then there is in particular a

generic piece, i.e. a piece which is a generic set.
The following theorem is a generalisation of an unpublished example due to

Hrushovski.

Theorem 2.22 (Generic Set Lemma). Let G be a piecewise hyperdefinable group
and V a symmetric generic set. Then, for each n ∈ N, V n+2 is a neighbourhood of
V n in some logic topology. In particular, if G has a generic piece, then G is locally
hyperdefinable. Furthermore, when G is small, G is locally hyperdefinable if and
only if it has a generic piece.

Proof. Using that V is generic, find a well-ordered sequence (aξ)ξ∈α in G such that,
for every

∧
-definable subset W ⊆ G, there is ∆W ⊆ α finite with W ⊆

⋃
ξ∈∆W

aξV .

Let A be a set of parameters containing {aξ}ξ∈α and such that G = lim−→ Gi is

a piecewise A-hyperdefinable group and V is
∧

A-definable. From now on, we
work on the A-logic topology. We want to show that V n+2 is a neighbourhood of
V n. Let ∆ ⊆ α be finite and minimal such that V n+4 ⊆ V n+2 ∪

⋃
ξ∈∆ aξV . Let

U = V n+4 \
⋃

ξ∈∆ aξV . Obviously, U ⊆ V n+2 and U is open in V n+4. Note also

that V n ⊆ U ; otherwise, taking a ∈ V n \ U , there is ξ ∈ ∆ such that a ∈ aξV , so
aξ ∈ V n+1 and aξV ⊆ V n+2, contradicting minimality of ∆. Similarly, for each
piece Gi such that V n+4 ⊆ Gi, pick a finite and minimal subset ∆i ⊆ α such that
Gi ⊆ V n+2 ∪

⋃
ξ∈∆i

aξV and ∆ ⊆ ∆i. Define Ui = Gi \
⋃

ξ∈∆i
aξV . Again, it is

clear that Ui ⊆ V n+2 ⊆ V n+4 and Ui is open in Gi. Also, by minimality of ∆i, it
follows that V n ⊆ Ui.

We claim that Ui = U for any i ∈ I such that V n+4 ⊆ Gi. It is clear by
definition that Ui ⊆ U . On the other hand, take a ∈ V n+2 \ Ui. As a /∈ Ui and
a ∈ V n+2 ⊆ V n+4 ⊆ Gi, there is ξ ∈ ∆i such that a ∈ aξV . As a ∈ V n+2,
aξ ∈ a · V ⊆ V n+3, concluding aξV ⊆ V n+4. Then, by minimality of ∆i, it follows
that ξ ∈ ∆, so a /∈ U . That shows that U is open in G, so V n+2 is a neighbourhood
of V n.

In particular, V 3 is a neighbourhood of V . As G =
⋃

ξ∈α aξV , for every a ∈ G

there is ξ ∈ α such that a ∈ aξV ⊆ aξU ⊆ aξV
3 with aξU open in the A-logic

topology. Thus, aξV
3 is an

∧
A-definable neighbourhood of a in the A-logic topology,

concluding that G is locally A-hyperdefinable.
On the other hand, if G is locally hyperdefinable and small, it is a locally compact

topological group by Theorem 2.20. Therefore, the identity is in the interior of some
piece of G. Every

∧
-definable subset W of G is compact, and so covered by finitely

many translates of this piece. As W is arbitrary, this piece is generic. Q.E.D.

If G has a generic subset, so has G/K for K E G piecewise
∧

-definable. There-
fore, by the Generic Set Lemma (Theorem 2.22), when G has a generic subset,
G/K is a locally hyperdefinable group for any piecewise

∧
-definable normal sub-

group K E G.

A T -rough k-approximate subgroup of a group G is a subset X ⊆ G such that
X2 ⊆ ∆XT with |∆| ≤ k ∈ N>0 and 1 ∈ T ⊆ G. In particular, a k-approximate
subgroup is a 1-rough k-approximate subgroup.

It is clear from the definitions that every symmetric generic set is in particular
an approximate subgroup. Conversely, any

∧
-definable approximate subgroup is a

generic set of the piecewise hyperdefinable group that it generates. Thus, we can
understand generic sets as a strengthening of

∧
-definable approximate subgroups.
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The next corollary follows from Theorem 2.20 and the Generic Set Lemma (The-
orem 2.22) as a particular case:

Corollary 2.23. Let G = lim−→Xn be a piecewise hyperdefinable group generated

by an
∧

-definable symmetric set X and T E G be a normal piecewise
∧

-definable

subgroup of small index. Then, G/T is a locally compact topological group if and
only if Xn is a T -rough approximate subgroup for some n. In particular, if T is∧

-definable, G/T is a locally compact topological group if and only if Xn is an
approximate subgroup for some n.

An isomorphism of piecewise A-hyperdefinable groups is an isomorphism of
groups which is also an isomorphism of piecewise A-hyperdefinable sets.

Theorem 2.24 (Isomorphism Theorem). Let f : G → H be an onto piece-
wise bounded and proper

∧
A-definable homomorphism of piecewise A-hyperdefin-

able groups. Then, for each
∧

A-definable subgroup S ≤ K := ker(f) with S E G,

there is a unique map f̃S : G/S → H such that f = f̃S ◦ πG/S. This map f̃S is
a piecewise bounded and proper

∧
A-definable homomorphism of groups with kernel

K/S. In particular, f̃K : G/K → H is a piecewise
∧

A-definable isomorphism.
Furthermore, if G has a global logic topology, then f is an open map between the
global logic topologies.

Proof. Existence and uniqueness are given by the usual Isomorphism Theorem. Say

G = lim−→Gi and H = lim−→Hj . We get that f̃S is obviously piecewise
∧

A-definable

as, for any pieces Gi and Hj , quot−1

(Gi/S)×Hj
[f̃S] = quot−1

Gi×Hj
[f ]. It is trivially

piecewise bounded and proper as f and πG/S are so. Assuming that G has a global
logic topology, one-side translations are continuous. Since, by Proposition 1.34(3),

f̃K is a piecewise
∧

A-definable homeomorphism, it is in particular an open map.

Since π−1
G/K [πG/K [U ]] = KU =

⋃
x∈K xU , we see that πG/K is open. Therefore,

f = f̃K ◦ πG/K is open too. Q.E.D.

Digression on Machado’s Closed Approximate Subgroup Theorem: The Generic Set
Lemma (Theorem 2.22) can be rewritten in purely topological terms. Written in
this way, it is likely that this result was already (partially) known in the theory
of topological groups. Recall that a semitopological group is a group with a T1

topology such that left and right translations are continuous.

Theorem 2.25. Let G be a semitopological group with a coherent covering C by
closed symmetric subsets such that, for any A,B ∈ C, there is C ∈ C with AB ⊆ C.
Let V be a generic piece, i.e. an element V ∈ C such that [W : V ] is finite for
every W ∈ C. Then, V has non-empty interior. In particular, if V is compact
Hausdorff with the subspace topology, then G is a locally compact topological group.
Furthermore, if C is a countable covering by compact Hausdorff subsets, then G is
locally compact Hausdorff if and only if C has a generic piece.

Proof. Mimicking the proof of Theorem 2.22, we show that V 2 is a neighbourhood of
the identity, and so V has non-empty interior as finitely many translates of it cover
V 2. If V is compact Hausdorff, as left translations are homeomorphisms, we get
that every point has a compact Hausdorff neighbourhood. Therefore, G is locally
compact Hausdorff, so a topological group by Ellis’s Theorem [Ell57, Theorem 2].
The “furthermore” part is an immediate consequence of Baire’s Category Theorem
[Mun00, Theorem 48.2]. Q.E.D.

As a corollary we get the following notable Closed Approximate Subgroups
Theorem, which was first proved by Machado in [Mac23, Theorem 1.4]. Recall
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that the commensurator in G of an approximate subgroup Λ ⊆ G is the subset
Comm(Λ) = {g ∈ G : g−1Λg and Λ are commensurable}. The commensurator
was first introduced by Hrushovski in [Hru22]. The following is one of the most
fundamental results about the commensurator:

Lemma 2.26. [Hru22, Lemma 5.1] Let G be a group and Λ ⊆ G an approximate
subgroup. Then, Comm(Λ) =

⋃
{Λ′ ⊆ G approximate subgroup : Λ′ and Λ are

commensurable} and Comm(G) ≤ G.

Corollary 2.27 (Machado’s Closed Approximate Subgroups Theorem). Let G be
a locally compact topological group and X a closed approximate subgroup. Take
Λ = X2 ∩K2 where K is a compact symmetric neighbourhood of the identity. Then,
Comm(Λ), with the direct limit topology given by Ω = {Λ′ : Λ′ compact approximate
subgroup commensurable to Λ}, is a locally compact topological group such that
ι : Comm(Λ) → G is a continuous 1-to-1 group homomorphism, X ⊆ Comm(Λ),
ι|X is a homeomorphism and X has non-empty interior. Furthermore, if G is a
Lie group, then Comm(Λ) is a Lie group too.

Proof. As Λ is compact, for any B commensurable to Λ, we have that B is compact
and commensurable to Λ. Thus, Ω is a covering of Comm(Λ) by Lemma 2.26.
By construction, Λ is generic in Ω. Also, by an easy computation, if Λ1 and Λ2

are commensurable approximate subgroups, then Λ1Λ2 ∪ Λ2Λ1 is an approximate
subgroup commensurable to Λ1 and to Λ2. Thus, by Theorem 2.25, Comm(Λ)
with the direct limit topology is a locally compact topological group such that
ι : Comm(Λ) → G is a continuous proper 1-to-1 group homomorphism and Λ
has non-empty interior. As any two compact neighbourhoods of the identity are
commensurable, by [Mac23, Lemma 2.2, Lemma 2.3], we get that X2 ∩ (K ′)2 ⊆
Comm(Λ) for any compact neighbourhood of the identity K ′, concluding that X ⊆
X2 ⊆ Comm(Λ). Since Λ ⊆ X2 has non-empty interior, we get that X2 has non-
empty interior and so X has non-empty interior. If Y ⊆ X is closed in G, by
continuity of ι, it is closed in Comm(Λ). On the other hand, if Y ⊆ X is closed

in Comm(Λ), then Y ∩ (K ′)2 = Y ∩X2 ∩ (K ′)2 is closed in X2 ∩ (K ′)2 (and so in
G) for any compact symmetric neighbourhood of the identity K ′ of G. By local
compactness of G, the family of compact symmetric neighbourhoods of the identity
forms a local covering of G. Thus, by the Local Covering Lemma 1.26, Y is closed
in G. Since X is closed, we conclude that the subspace topologies of X in G
and in Comm(Λ) coincide. Finally, if G is a Lie group, Comm(Λ) is a Lie group
by [Bou75, Chapter III, §8.2, Corollary 1]. Q.E.D.

Remark 2.28. [Mac23, Theorem 4.1] If X is compact, we do not need to assume
that G is locally compact; in that case, we can simply take Λ = X .

2.3. Model-theoretic components. We define now some model-theoretic com-
ponents for piecewise hyperdefinable groups. Let G be a piecewise A-hyperdefinable
group.

The invariant component of G over A is

G000
A :=

⋂
{H ≤ G : H is A-invariant with [G : H ] small} .

The infinitesimal component of G over A is

G00
A :=

⋂{
H ≤ G : H is p/w.

∧
-def. with G000

A ≤ H
}
;

The connected component of G over A is

G0
A :=

⋂{
H ≤ G : H and G \H are p/w.

∧
-def. with G000

A ≤ H
}
.

Obviously, G000
A ≤ G00

A ≤ G0
A ≤ G.
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Lemma 2.29. Let G be a piecewise A-hyperdefinable group and T ≤ G be an
A-invariant subgroup of small index. Then, there is a unique maximal normal

subgroup T̃ E G contained in T . Furthermore, T̃ is A-invariant and has small

index. Moreover, T̃ is piecewise
∧

-definable when T is so.

Proof. Take T̃ =
⋂

i∈[G:T ] T
gi with {gi}i∈[G:T ] set of representatives. Q.E.D.

Let B be a set of parameters with A ⊆ B. The B-logic topology in G/G000
A

is

the one such that V ⊆ G/G000
A

is closed if and only if π−1
G/G000

A
[V ] is piecewise

∧
B-

definable. The global logic topology in G/G000
A

is the one such that V ⊆ G/G000
A

is

closed if and only if π−1
G/G000

A
[V ] is piecewise

∧
-definable.

Theorem 2.30. Let G be a piecewise A-hyperdefinable group. Then:

(1) G000
A is an A-invariant normal subgroup of G and [G : G000

A ] is small. In

fact, [V : G000
A ] ≤ 2|A|+|L| for any

∧
-definable subset V ⊆ G.

(2) Let B be a small set of parameters with A ⊆ B. The inversion map is

continuous on G/G000
A

with the B-logic topology.

(3) The global logic topology on G/G000
A

coincides with the B-logic topology for

every small B containing A and a set of representatives of G/G000
A

. Every transla-

tion map is continuous on G/G000
A

with the global logic topology.

(4) G00
A is a piecewise

∧
A-definable normal subgroup of G. Furthermore, G

00
A/G000

A

is the closure of the identity in the global logic topology of G/G000
A

.

(5) Let π : G/G000
A

→ G/G00
A

be the natural quotient map given by πG/G00
A

=
π ◦πG/G000

A
. Then, π is a Kolmogorov map between the B-logic topologies for any B

small with A ⊆ B. In particular, it is the Kolmogorov quotient between the global
logic topologies. If G/G00

A
is a topological group, then the group operations in G/G000

A
are continuous.

(6) G0
A is a piecewise

∧
A-definable normal subgroup of G.

(7) G/G00
A

is a locally compact topological group whenever G has a generic piece

modulo G00
A . In that case, G

0
A/G00

A
is the connected component of G/G00

A
in the global

logic topology and G
0
A/G000

A
is the connected component of G/G000

A
in the global logic

topology.

Proof. (1) Trivially, G000
A is A-invariant and [G : G000

A ] is small. Using Lemma 2.29,
it is obvious that G000

A is a normal subgroup. Finally, recall that, for real elements,
an A∗-invariant equivalence relation on a definable set with a small amount of equi-
valence classes has at most 2|A

∗|+|L| equivalence classes — indeed, such a relation
is coarser than having the same type over an elementary substructure containing
A∗. The same holds for A-invariant equivalence relations on hyperdefinable sets.
Consequently, we actually have [V : G000

A ] ≤ 2|A|+|L| for any
∧

-definable V .
(2) Trivial.

(3) Take B small containing A and a set of representatives of G/G000
A

. We have

that, for any V ⊆ G/G000
A

, π−1
G/G000

A
[V ] is B-invariant. In particular, the global logic

topology on G/G000
A

is the B-logic topology, so it is a well-defined topology. Finally,
as πG/G000

A
is a homomorphism and every translation map is piecewise bounded∧

-definable, we conclude, by Proposition 1.34(1), that every translation map is
continuous in G/G000

A
with the global logic topology.

(4) Let V̂ be the closure of the identity on the global logic topology of G/G000
A

and V = π−1
G/G000

A
[V̂ ]. Obviously, V ⊆ G00

A . On the other hand, as translations

are continuous by point (3), it follows that V̂ −1V̂ ⊆ V̂ and ḡV̂ ḡ−1 ⊆ V̂ for any
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ḡ ∈ G/G000
A

. Thus, V is a normal subgroup, concluding G00
A = V . In particular,

G00
A is a piecewise

∧
A-definable normal subgroup.

(5) As translations are continuous, for any ḡ ∈ G/G000
A

, the closure of ḡ in the

global logic topology is ḡ·G
00
A /G000

A
. Thus, π is the Kolmogorov quotient between the

global logic topologies. By Lemma 1.41, Imπ is a lattice isomorphism between the
global logic topologies with inverse Im−1π. Now, as π is A-invariant, it follows that
Imπ is a lattice isomorphism between the B-logic topologies with inverse Im−1π.
Therefore, by Lemma 1.41, we conclude that π is a Kolmogorov map between the
B-logic topologies.

Now, supposeG/G00
A

is a topological group. Take U ⊆ G/G000
A

open and ḡ1ḡ2 ∈ U .

Then, π(ḡ1)π(ḡ2) ∈ π[U ]. As π[U ] is open, there are Û1 and Û2 open in G/G000
A

such that π(ḡ1) ∈ Û1 and π(ḡ2) ∈ Û2 and Û1Û2 ⊆ π[U ]. Write U1 = π−1[Û1] and

U2 = π−1[Û2]. By Lemma 1.41, π−1[π[U ]] = U . Then, U1U2 ⊆ U with ḡ1 ∈ U1,
ḡ2 ∈ U2 and U1 and U2 open. As U , ḡ1 and ḡ2 are arbitrary, we conclude that the
product operation is continuous.

(6) For any H ≤ G with G000
A ≤ H such that H and G \ H are piecewise∧

-definable, we have that H/G00
A

is a clopen subgroup in the global logic topology.

Hence, G
0
A/G00

A
is the intersection of all the clopen subgroups of G/G00

A
in the global

logic topology. It follows that G
0
A/G00

A
is closed in the global logic topology, so G0

A

is piecewise
∧

-definable. As it is A-invariant, we conclude that G0
A is piecewise

∧
A-

definable. Finally, as every translation is a homeomorphism in G/G00
A

, we conclude

that G
0
A/G00

A
is a normal subgroup of G/G00

A
. Thus, G0

A E G.

(7) By the Generic Set Lemma (Theorem 2.22) and Theorem 2.20, G/G00
A

with
the global logic topology is a locally compact topological group if it has a gen-

eric piece. In that case, by [DPS90, Theorem 2.1.4(b)], G
0
A/G00

A
is the connec-

ted component of G/G00
A

. By point (5), G
0
A/G000

A
is the connected component of

G/G000
A

. Q.E.D.

We define now a final special model-theoretic component which has no analogues
in the definable or hyperdefinable case. I want to thank Hrushovski for all his help
via private conversations in relation with this result. Recall that an aperiodic
topological group is a topological group that has no non-trivial compact normal
subgroups.

Let G be a piecewise hyperdefinable group with a generic piece. The aperiodic
component Gap of G is the smallest piecewise

∧
-definable normal subgroup of G

with small index such that G/Gap is an aperiodic locally compact topological group
with its global logic topology.

Lemma 2.31. Let G be an aperiodic locally compact topological group which is the
union of λ compact subsets with λ ≥ ℵ0. Then, |G| ≤ (λ+ 2ℵ0)λ.

Proof. By Gleason-Yamabe Theorem 2.3 and Corollary 2.7, there is an open sub-
group H ≤ G and a compact subgroup K E H such that H/K is an aperiodic
connected Lie group. Thus, [H : K] ≤ 2ℵ0 . On the other hand, as G is a union
of λ compact subsets, [G : H ] ≤ λ, so [G : K] ≤ λ + 2ℵ0 . Now, take {ai}i∈λ a set

of representatives of G/H and write Ki := Kai = aiKa
−1
i for each i. As K E H ,

for any g ∈ G, we have Kg = Ki for some i ∈ λ. Note that [G : Ki] ≤ λ + 2ℵ0 ,
so [G :

⋂
i∈λKi] ≤ (λ + 2ℵ0)λ. As G is aperiodic,

⋂
i∈λKi = 1, so we conclude

|G| ≤ (λ+ 2ℵ0)λ. Q.E.D.
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Theorem 2.32. Let G be a piecewise 0-hyperdefinable group with a generic piece.
Then, Gap exists, is piecewise

∧
0-definable and does not change by expansions of

the language.

Proof. Let λ = cf(G) and τ = (λ + 2ℵ0)λ. By assumption κ > λ + 2ℵ0 is a strong
limit cardinal, and so κ > τ+. For any small subset of parameters A, let HA be
the family of normal subgroups H E G of small index which are piecewise

∧
≤τ -

definable with parameters from A (i.e. piecewise
∧

B-definable for some B ⊆ A

with |B| ≤ τ) such that G/H, with its global logic topology, is an aperiodic locally
compact topological group.

Claim. For any A small, HA is closed under arbitrary intersections. Furthermore,
for any F ⊆ HA there is F0 ⊆ F with |F0| ≤ τ and

⋂
F0 =

⋂
F .

Proof. Take F ⊆ HA. Then, H :=
⋂
F is a piecewise

∧
A-definable normal sub-

group of G of small index. As G has a generic piece, G/H has a generic piece as
well, so G/H is a locally compact topological group with its global logic topology
by the Generic Set Lemma (Theorem 2.22) and Theorem 2.20. Take K ≤ G such

that K/H E G/H is a compact normal subgroup in its global logic topology. Take
F ∈ F arbitrary. We know that π : G/H → G/F is a continuous homomorphism

between the global logic topologies, so K/F is a compact normal subgroup of G/F .

As G/F is aperiodic, we conclude that K ≤ F . As F ∈ F is arbitrary, we conclude
that K ⊆

⋂
F = H , so G/H is aperiodic. Since G/H is an aperiodic locally compact

topological group, by Lemma 2.31, [G : H ] ≤ τ .
If |F| ≤ τ , then H is piecewise

∧
≤τ -definable, so H ∈ H. Now, we claim that

there is F0 ⊆ F with |F0| ≤ τ such that
⋂
F0 = H . Indeed, suppose otherwise,

then we can find recursively a sequence (Fi)i∈τ+ of elements in F such that H <⋂
i∈α Fi ⊂

⋂
i∈β Fi for β < α < τ+. Thus, we can find a sequence (gi)i∈τ+ such

that gi ∈ Fj/H for j ≤ i and gi /∈ Fi+1/H; contradicting that [G : H ] ≤ τ . �

Take a τ+-saturated elementary substructure N � M. Set Gap =
⋂
HN , so

Gap ∈ HN . By τ+-saturation of N, we have that Gap is 0-invariant, so it is
piecewise

∧
0-definable. As Gap is 0-invariant and N is τ+-saturated, we conclude

that Gap =
⋂
HA for any A. Therefore, Gap is the smallest piecewise

∧
≤τ -definable

normal subgroup of G with small index such that G/Gap is an aperiodic locally
compact topological group with its global logic topology.

Now, we show that Gap does not change by expansions of the language. In
any κ-saturated and strongly κ-homogeneous L′/L-expansion M′ of an elementary
extension of M, we find a piecewise

∧
0-definable normal subgroup Gap

L′
E G which

is the smallest
∧

≤τ -definable normal subgroup of G of small index such that G/Gap
L′

is an aperiodic locally compact topological group with its global logic topology.
Since [G : Gap

L′
] ≤ τ by Lemma 2.31, there is a large enough κ-saturated and

strongly κ-homogeneous L0/L-expansion M0 of an elementary extension of M such
that, for any further κ-saturated and strongly κ-homogeneous L1/L0-expansion M1

of an elementary extension of M0, we have that Gap
0 (M1) = Gap

1 — where Gap
1 is

computed in M1, G
ap
0 is computed in M0 and Gap

0 (M1) is the realisation of Gap
0 in

M1|L0 .
Take this base expansion M0 of an elementary extension of M, with language L0.

By replacing M0 by an elementary extension, we can assume that its L-reduct M0|L

is a κ-saturated and strongly κ-homogeneous elementary extension of M. Let Gap
0

be computed in M0. Take α ∈ Aut(M0|L). Consider the language L1 expanding L0

by adding a new symbol αx of the same sort that x for each symbol x of L0 which is
not in L. Take the L1-expansion M′

1 of M0 given by interpreting (αx)M
′

1 = α(xM0 ).
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Let M1 be a κ-saturated and strongly κ-homogeneous elementary extension of M′
1.

Let Gap
0 (M1) be the realisation of Gap

0 in M1|L0 , G
ap
1 be computed in M1 and

Gap
α be computed in M1|L1\(L0\L). By the choice of M0, we know that Gap

0 (M1) =

Gap
1 ⊆ Gap

0 ∩ Gap
α . Since Gap

α (M0) is precisely α(Gap
0 ), we get that Gap

0 ⊆ α(Gap
0 ).

Therefore, as α is arbitrary, we conclude that Gap
0 is Aut(M0|L)-invariant. By

Beth’s Definability Theorem [TZ12, Exercise 6.1.4], we conclude that Gap
0 is already

piecewise
∧

0-definable in L. Therefore, Gap
0 = Gap and Gap does not change by

expansions of the language.
Finally, by invariance under arbitrary expansions of the language, we have that

Gap is the smallest
∧

-definable normal subgroup of G of small index such that
G/Gap is an aperiodic locally compact topological group with its global logic topo-
logy. Q.E.D.

2.4. Lie cores. Now, we adapt the results about Lie cores to piecewise hyperdefin-
able groups.

Let G be a piecewise A-hyperdefinable group. An A-Yamabe pair of G is a pair
(K,H) of subgroups K E H ≤ G which is a Yamabe pair modulo G00

A for the

global logic topology of G/G00
A

and K/G00
A

is
∧

-definable. In other words, it is a
pair satisfying the following three properties:

(i) H ≤ G is a piecewise
∧

-definable subgroup whose complement is also piece-
wise

∧
-definable.

(ii) K E H is a piecewise
∧

-definable normal subgroup of H such that G00
A ≤ K

and K/G00
A

is
∧

-definable.

(iii) L := H/K with the respective global logic topology is a finite dimensional
Lie group.

We say that H is the domain, K is the kernel and L is the Lie core. Write
π := πH/K : H → L and π̃ := π̃H/K : H/G00

A
→ L for the quotient maps with

π = π̃ ◦ πG/G00
A

where πG/G00
A

: G → G/G00
A

. We say that a Lie group is an A-Lie
core of G if it is isomorphic, as Lie group, to the Lie core of some A-Yamabe pair
of G.

Remark 2.33. Let G be a piecewise A-hyperdefinable group. Let (K,H) be an A-
Yamabe pair ofG and π := πH/K : H → L its Lie core and π̃ := π̃H/K : H/G00

A
→ L

such that π = π̃ ◦ πG/G00
A

.

(1) The fact that G00 ≤ K means that [G : H ] < κ. Indeed, asH/K is Hausdorff,
we already have that [H : K] < κ. Therefore, if [G : H ] < κ, we conclude that
[G : K] < κ, so G00 ≤ K (for some set of parameters). Thus, the condition of
working modulo G00 is saying that H is large in some sense.

On the other hand, the condition that K/G00
A

is
∧

-definable may seem super-

fluous. Indeed, as (K/G00
A
, H/G00

A
) is a Yamabe pair, K/G00

A
is compact. If G/G00

A
has a generic piece (as we will assume in the rest of the section), this is enough to
conclude that K/G00

A
is
∧

-definable. However, in general, G/G00
A

may have compact
sets that are not

∧
-definable, so we need to add this condition.

(2) Note that π̃ is a piecewise bounded and proper
∧

-definable map. Thus, by
Proposition 1.34, π̃ is continuous and closed between the global logic topologies. By
the Isomorphism Theorem 2.24, since π̃ is an onto homomorphism, we have that
(H/G00

A )/(K/G00
A ) and H/K are isomorphic as piecewise hyperdefinable groups and

π̃ is also an open map between the global logic topologies. Finally, as it has compact
fibres, π̃ is also proper [Eng89, Theorem 3.7.2]. In sum, π̃ deeply connects the logic

topology of G/G00
A

and the geometry of L.
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When G00
A is

∧
A-definable, π is also a piecewise bounded and proper

∧
-definable

surjective homomorphism. Consequently, π is a continuous, closed and proper map
between the logic topologies (with enough parameters), concluding that the relation

between G/G00
A

and L can be mostly lifted into a relation between G and L. In that

special case, we say that π : H → L is a Lie model of G. In general, however, G00
A

is only piecewise
∧

A-definable and π is only piecewise bounded — we could even
have G = G00

A (e.g. take G =
⋃

n∈N[−an, an] with an ∈ o(an+1) for each n ∈ N in
the theory of real closed fields). In Section 3, we give sufficient conditions to show
that G00

A is
∧

A-definable.
(3) L is a minimal Lie core if and only if it is an aperiodic connected Lie group.

In that case, K/G00
A

is the maximal compact normal subgroup of H/G00
A

, so it is its
maximal

∧
-definable normal subgroup. In particular, every automorphism over A

leaving H invariant leaves K invariant.
(4) As L is locally compact and π̃ is proper and continuous, we conclude that

H/G00
A

is locally compact. Since H/G00
A

is open, we conclude that G/G00
A

is loc-
ally compact with the global logic topology. Thus, if G is a countably piecewise
hyperdefinable group, by Theorems 2.18 and 2.20 and the Generic Set Lemma (The-
orem 2.22), we conclude that G has a generic piece modulo G00

A . For that reason,
we will assume from now on that G has a generic piece modulo G00

A .
(5) Note that our definitions of Lie core and Lie model extend the notion of Lie

model used in [Hru12]. Suppose that G is a piecewise A-definable group and G00
A

is
∧

A-definable. Then, π is proper and continuous so, for any Γ ⊆ U ⊆ L with
Γ compact and U open, π−1[Γ] is

∧
-definable and π−1[U ] is

∨
-definable. Hence,

there is a definable subset D ⊆ G such that

π−1[Γ] ⊆ D ⊆ π−1[U ].

As L is first countable, it is metrisable by Birkhoff-Kakutani Theorem [Tao14,
Theorem 1.5.2]. Thus, every closed set in L is Gδ [Mun00, Example 2, page 249]. In
particular, it follows that the preimage of any compact set is

∧
ω-definable. When

L is connected, it is also second countable, so the preimage of every open set is∨
ω-definable.

Theorem 2.34. Let G be a piecewise A-hyperdefinable group with a generic piece
modulo G00

A . Then, G has an A-Lie core. If G is countably piecewise hyperdefinable,
this condition is also necessary.

Furthermore, for any U such that U/G00
A

is an open neighbourhood of the identity

in the global logic topology of G/G00
A

, there is an A-Yamabe pair (K,H) of G with

K ⊆ UG00
A .

Proof. (⇒) From Gleason-Yamabe Theorem 2.3, using the Generic Set Lemma
(Theorem 2.22), and Theorem 2.20 and Proposition 1.32. (⇐) We have explained
the necessity of the generic piece assumption in Remark 2.33(4). Q.E.D.

Theorem 2.35. Let G be a piecewise A-hyperdefinable group with a generic piece
modulo G00

A and (K1, H1) an A-Yamabe pair of G. Then, G has a minimal A-
Yamabe pair (K,H) smaller than or equal to (K1, H1). Furthermore, H ⊆ U2 for
any U containing K1 such that U/G00

A
is a clopen neighbourhood of K1/G00

A
in the

global logic topology.

Proof. Clear from Corollary 2.7, using the Generic Set Lemma (Theorem 2.22), and
Theorem 2.20 and Proposition 1.32. Q.E.D.

Applying also Corollary 2.9, we conclude the following result.
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Theorem 2.36. Let G be a piecewise hyperdefinable group with a generic piece
modulo G00

A . Then, G has a unique minimal A-Yamabe pair up to equivalence.

By Proposition 2.10, we get a global minimal Lie core map π̃L : DL/G00
A

→ L
extending all the minimal A-Yamabe pairs, which is unique up to isomorphisms of
L. Let πL : DL → L be the map given by πL = π̃L ◦ πG/G00

A |DL
. Here, DL is the

union of all the domains of minimal A-Yamabe pairs and ker(πL) := π−1
L (1) is the

union of all the kernels of minimal A-Yamabe pairs. Consequently, DL and ker(πL)
are A-invariant.

Remark 2.37. As noted in [Hru12], the uniqueness of the minimal Lie core is
achieved at a price. Indeed, while Gleason-Yamabe Theorem 2.3 gives us Yamabe
pairs of arbitrarily small kernel, we have lost the control over the kernel in The-
orem 2.35. If we do not care about uniqueness (as in [BGT12] or [MW15]), it
could be better just to apply Theorem 2.34 to find a Yamabe pair (K,H) with ar-
bitrarily small kernel. Also, it may be natural to apply Gleason-Yamabe-Kreitlon
Theorem 2.4 rather than Gleason-Yamabe Theorem 2.3 to get some extra control
on some parameters.

In Proposition 2.11, we gave a criterion to find minimal Yamabe pairs with
maximal domain in topological groups. Applying it modulo G00

A , this result can be
easily adapted to piecewise hyperdefinable groups. Similarly, we can easily adapt
Propositions 2.12 and 2.13 to the context of piecewise hyperdefinable groups by
applying them modulo G00

A . In particular, it follows that the minimal A-Lie core is
piecewise A-hyperdefinable:

Proposition 2.38. Let G be a piecewise A-hyperdefinable group with a generic
piece modulo G00

A and let L be the minimal A-Lie core of G. Then, the restriction
to G0

A of the global minimal Lie core map πL|G0
A
: G0

A → L is a piecewise bounded∧
-definable surjective group homomorphism. Furthermore, we conclude that L ∼=

G0
A/ker(πL|G0

A
).

The previous Proposition 2.38 gives us a canonical presentation of the minimal A-

Lie core of G as the piecewise A-hyperdefinable group G
0
A/K with K := ker(πL|G0

A
).

Similarly, we get a canonical A-invariant presentation of the global minimal Lie
core map πL : DL → L by taking πL|G0

A
= πG0

A/K . We now give a more precise

description of K := ker(πL|G0
A
) using Gap.

Lemma 2.39. Let G be a piecewise 0-hyperdefinable group with a generic piece and
Gap the aperiodic component of G. Let (K,H) be a minimal A-Yamabe pair of G
with Lie core πH/K : H → L. Then, Gap ∩H ≤ K.

Proof. Let B be the small set of parameters with A ⊆ B such that the B-logic
topology of G/G00

A
is its global logic topology. Denote by clB the closure in the

B-logic topology of G. We define by recursion the sequence (Jα)α∈On of piecewise∧
B-definable normal subgroups of G given by J0 = G00

A , Jγ = clB(
⋃

i∈γ Ji) for

γ limit and Jα+1 = clB(
⋃
Kα) where Kα is the family of piecewise

∧
-definable

normal subgroups which are
∧

-definable modulo Jα.

Claim. For α0 ∈ On large enough, Jα = Gap for any α ≥ α0.

Proof. We prove inductively that Jα ⊆ Gap for any α ∈ On. Obviously, J0 ⊆ Gap.
For γ limit, assuming that Ji ⊆ Gap for each i ∈ γ, as Gap is piecewise

∧
B-

definable, we get that Jγ ⊆ Gap. Finally, assuming that Jα ⊆ Gap, we have a

piecewise bounded
∧

-definable onto homomorphism π : G/Jα → G/Gap. As G/Gap

is aperiodic, we have that every piecewise
∧

-definable normal subgroup of G which
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is
∧

-definable modulo Jα must be contained in Gap. Therefore,
⋃
Kα ⊆ Gap,

concluding that Jα+1 ⊆ Gap.
On the other hand, as there is a small amount of piecewise

∧
B-definable normal

subgroups of G, for large α0, we must have Jα0+1 = Jα0
. In particular, that means

that G/Jα0
is an aperiodic locally compact topological group with its global logic

topology, so Gap ≤ Jα0
. Thus, Gap = Jβ for β ≥ α0. �

Now, we prove by induction that, for any α ∈ On, we have Jα ∩ H ≤ K.
Obviously, J0 ∩H ≤ K. For γ limit, assuming that Ji ∩H ≤ K for any i ∈ γ, we
have H ∩

⋃
i∈γ Ji ≤ K. Therefore, H ∩ Jγ = clB(H ∩

⋃
i∈γ Ji) ⊆ K, as H is clopen

and K is closed in the B-logic topology. Finally, assuming Jα ∩H ≤ K, we have a
piecewise bounded

∧
-definable onto homomorphism π : H/Jα → L = H/K. As L is

aperiodic, we have that H∩
⋃

Kα ⊆ K. Therefore, H∩Jα+1 = clB(H∩
⋃

Kα) ⊆ K,
as H is clopen and K is closed in the B-logic topology. In particular, by the claim,
we conclude that Gap ∩H ≤ K. Q.E.D.

Theorem 2.40. Let G be a piecewise A-hyperdefinable group with a generic piece.
Let L be the minimal A-Lie core of G and πL|G0

A
: G0

A → L the restriction to G0
A of

the global minimal Lie core map of L. Then, G0
A∩Gap = ker(πL|G0

A
). In particular,

L ∼= G0
A/Gap.

Proof. By Lemma 2.39, we know that Gap ∩G0
A ≤ ker(πL|G0

A
). On the other hand,

ker(πL|G0
A
) = G0

A ∩ π−1
L (1) E G is

∧
-definable modulo G00

A ≤ Gap. Therefore,

ker(πL|G0
A
)/Gap is a compact normal subgroup of G/Gap. As it is aperiodic, we

conclude that ker(πL|G0
A
) ≤ Gap, so ker(πL|G0

A
) = Gap ∩G0

A. Q.E.D.

In sum, for any piecewise A-hyperdefinable group G with a generic piece, we
have the following structure in terms of the components G0

A, G00
A and Gap:

1. Gap ∩G0
A/G00

A
is a compact topological group.

2. G0
A/Gap is an aperiodic connected Lie group.

3. G/G0
A

is a totally disconnected locally compact
topological group, i.e. a locally profinite group.

Unfortunately, if G00
A = Gap = G0

A = G, all the previous results say nothing
about G. In the following section, we extend the Stabilizer Theorem to the context
of piecewise hyperdefinable groups. This theorem gives sufficient conditions to
conclude that, with enough parameters, G00 is

∧
-definable. As we pointed out at

the beginning of the section, in this particular situation, the minimal Lie core gives
very precise information about G since the quotient homomorphism is piecewise
bounded and proper.

We now note that the minimal Lie core is independent of the parameters. Fur-
thermore, as Gap is independent of expansions of the language, so is the minimal
Lie core.

Corollary 2.41. Let G be a piecewise 0-hyperdefinable group with a generic piece.
Then, the minimal A-Lie core of G is isomorphic to the minimal 0-Lie core of
G. Furthermore, the minimal Lie core of G does not change by expansions of the
language.

Proof. By Lemma 2.39, we have that the minimal A-Lie core of G is isomorphic
to the minimal Lie core of G/Gap. As the latter does not depend on parameters or
expansions of the language, we conclude. Q.E.D.
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The A-Lie rank LrankA(G) of a piecewise hyperdefinable group G with a generic
piece modulo G00

A is the dimension of its minimal A-Lie core. As a consequence of
Theorem 2.36, LrankA(G) is a well-defined invariant. Note that, by Corollary 2.41,
we have that Lrank(G) := LrankA(G) does not depend on the parameters when G
has a generic piece.

Proposition 2.42. Let G be a piecewise A-hyperdefinable group with a generic
piece modulo G00

A and N E G a piecewise
∧

A-definable normal subgroup of small
index. Then,

LrankA(G) ≥ LrankA(G/N) + LrankA(N).

More precisely, let L and LG/N be the minimal A-Lie cores of G and G/N respect-
ively, presented with the canonical piecewise A-hyperdefinable structures given by
Proposition 2.38. Let πL and πLG/N

be their canonical global minimal Lie core

maps. Let (K,H) be a minimal A-Yamabe pair of G. Then:

(1) (K ∩ N,H ∩N) is an A-Yamabe pair of N with Lie core H ∩N/K ∩N ∼=
LN := πL|H [N ]. The connected component of LN is aperiodic so, in particular,
LrankA(N) = dim(LN ).

(2) There is an
∧

-definable normal subgroup T E H/N with K/N E T such that
(T,H/N) is a minimal A-Yamabe pair of G/N.

(3) There is a piecewise bounded
∧

A-definable surjective group homomorphism
ψ : L→ LG/N such that ψ ◦ πL = πLG/N

◦ πG/N (on the domain of πL).

Proof. (1) Firstly, note that G00
A ≤ N , so we get N00

A = G00
A . We have that

H ∩N/K ∩N ∼= H ∩N/K ∼= LN . Note that H ∩N/G00
A

is a closed normal sub-

group of H/G00
A

. As π̃H/K : H/G00
A

→ H/K is closed between the global logic

topologies, we get that LN
∼= H ∩N/K ∼= ((H ∩N)/G00

A )/(K/G00
A ) is closed in

L ∼= H/K ∼= (H/G00
A )/(K/G00

A ). Therefore, LN is a closed normal subgroup of L,
concluding that LN is a Lie group. Then, (K ∩N,H ∩N) is an A-Yamabe pair of
N with Lie core (isomorphic to) LN . Let L0

N be the connected component of LN .
By Lemma 2.5, L0

N has a unique maximal compact normal subgroup KN . Thus, by
uniqueness, KN is characteristic in L0

N , which is characteristic in LN . Therefore,
KN is a compact normal subgroup of L, so it is trivial by aperiodicity of L. In other
words, L0

N is aperiodic. Thus, L0
N is the minimal A-Lie core of N . In particular,

LrankA(N) = dim(LN ).
(2) By point (1), we know that LN E L is a closed subgroup, so L0 := L/LN is

a Lie group too. As L is connected, L0 is connected too. By Lemma 2.5, there is a
maximal compact normal subgroup T0 E L0. Then, L0/T0 is a connected aperiodic
Lie group.

Since G/G00
A

is a topological group, we know that the quotient homomorphism

π(G/G00
A )/(N/G00

A ) : G/G
00
A

→ (G/G00
A )/(N/G00

A ) ∼= G/N

is an open map. Therefore, H/N is an open subgroup of G/N . Now, G/N is

small and contains a generic set, so G/N is a locally compact topological group by
the Generic Set Lemma (Theorem 2.22) and Theorem 2.20. Thus, H/N is clopen.

Consider, φ0 : H/N → L0 given by φ0 ◦ π(G/N)|H = πL/LN
◦ πL|H . It is clear

that φ0 is a piecewise bounded
∧

-definable surjective group homomorphism with

kernel K/N , which is
∧

-definable. Therefore, it is also piecewise proper. By the
Isomorphism Theorem 2.24, it follows that (K/N,H/N) is an A-Yamabe pair of
G/N with Lie core (isomorphic to) L0.

As L0 is locally hyperdefinable, T0 is
∧

-definable. Thus, πL0/T0
: L0 → L0/T0 is

piecewise bounded and proper
∧

-definable surjective group homomorphism. Take
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φ = πL0/T0
◦ φ0 : H/N → L0/T0. Then, φ is a piecewise bounded and proper∧

-definable surjective group homomorphism. By the Isomorphism Theorem 2.24,

we conclude that L0/T0
∼= (H/N)/T where T := ker(φ) is an

∧
-definable normal

subgroup of H/N with K/N E T . Consequently, (T,H/N) is a minimal A-Yamabe

pair of G/N with Lie core (isomorphic to) L0/T0
∼= LG/N .

(3) By the Isomorphism Theorem 2.24, take η : L0/T0 → LG/N isomorphism
such that πLG/N |(H/N) = η ◦ φ. Consider ψ = η ◦ πL0/T0

◦ πL/LN
: L → LG/N

— note that, a priori, the definition of ψ depends on (K,H). Obviously, ψ is
a piecewise bounded

∧
-definable onto group homomorphism. Also, ψ ◦ πL|H =

πLG/N |(H/N) ◦ π(G/N)|H .

Let (K ′, H ′) be any other minimal A-Yamabe pair of G. For h′ ∈ H ′, there
is h ∈ H ∩ H ′ such that πL(h

′) = πL(h), i.e. h−1h′ ∈ K ′. By point (2), it
follows that πLG/N

(πG/N (h)) = πLG/N
(πG/N (h′)). Thus, ψ(πL(h

′)) = ψ(πL(h)) =

πLG/N
(πG/N (h)) = πLG/N

(πG/N (h′)). Therefore, ψ ◦ πL = πLG/N
◦ πG/N on the

domain of πL.
It remains to show that ψ is A-invariant. Take σ ∈ Aut(M/A) and x ∈ L. Take

h such that πL(h) = x. Using that πL, πLG/N
and πG/N are A-invariant, we get

that

ψ(σ(x)) = ψ ◦ πL(σ(h)) = πLG/N
◦ πG/N (σ(x)) = σ(πLG/N

◦ πG/N (x)) = σ(ψ(h)).

Finally, putting everything together, we conclude that

LrankA(G/N) = dim(LG/N ) ≤ dim(L0) = LrankA(G)− LrankA(N).

Q.E.D.

The following proposition is a direct consequence of the results of [JTZ23]. I am
very grateful to Chieu-Minh for telling me about it.

Proposition 2.43 (An-Jing-Tran-Zhang bound). Let G be a piecewise hyperdefin-
able group and X a symmetric generic set of G. Then, Lrank(G) ≤ 12 log2(k)

2

where k = [X2 : X ].

Proof. By working modulo G00, we may assume that G is small. Let (K,H) be
a minimal Yamabe pair of G and π := πH/K : H → L the minimal Lie core. By

the Generic Set Lemma (Theorem 2.22), we have that X2 is a symmetric compact
neighbourhood of the identity in the global logic topology. Thus, as H is open,
Y = H ∩ X2 is also a symmetric compact neighbourhood of the identity in the
global logic topology. By [Mac23, Lemma 2.3], Y is a k3-approximate subgroup. As
π is a continuous and open homomorphism, π[Y ] is a compact neighbourhood of the
identity and a k3-approximate subgroup. As it is a neighbourhood of the identity,
it has positive Haar measure, so the general Brunn-Minkowski Inequality [JTZ23,
Theorem 1.1] applies and we get that 2 ≤ k

3/α with α := d−m−h, where d = dim(L),
m = max{dim(Γ) : Γ ≤ L compact} and h is the helix dimension of L. On the
other hand, by [JTZ23, Corollary 2.15], h ≤ n/3 with n := d−m, so 2n ≤ 9 log2(k).
Finally, as L has no compact normal subgroups, by [AJTZ21, Fact 3.6, Lemma 3.9],

we conclude that d ≤ n(n+1)
2 , so

d ≤
1

2

⌊
9

2
log2(k)

⌋2

+
1

2

⌊
9

2
log2(k)

⌋
≤ 12 log2(k)

2.

Q.E.D.
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2.4.1. Digression on Breuillard-Green-Tao Classification. Let A be a particular
class of piecewise hyperdefinable groups and L a finite dimensional Lie group. It is
then natural to study the direct problem for A or (dually) the inverse problem for
L:

What are the Lie cores of elements of A?
Is L a Lie core of an element of A?

The classification theorem by Breuillard, Green and Tao for finite approximate
subgroups [BGT12] can be interpreted as an answer to the direct problem for the
class of piecewise definable subgroups generated by pseudo-finite definable approx-
imate subgroups. Indeed, it can be restated to say that Lie cores of piecewise
definable subgroups generated by pseudo-finite definable approximate subgroups
are nilpotent [BGT12, Proposition 9.6]. We consider it interesting to discuss the
direct and inverse problems in general. In fact, one may expect that solutions of
these questions would yield classification results similar to the one of [BGT12].

The following easy examples show that the inverse problem is trivially solved for
some basic classes of piecewise hyperdefinable groups. In particular, these examples
show that no general classification result for the Lie cores analogous to the one
of [BGT12] could be found in those cases.

Example 2.44. Any Lie group L is a Lie core of some piecewise hyperdefinable
group in the theory of real closed fields. Indeed, L is in particular a second count-
able manifold, so it is a locally hyperdefinable subset of countable cofinality. By
Proposition 1.35, the group operations are piecewise bounded

∧
-definable, so L is

a locally hyperdefinable group. Clearly, L is its own Lie core.

For a slightly more explicit construction, note that any connected Lie group
L is the Lie core of some piecewise definable group generated by a definable ap-
proximate subgroup. Indeed, connected Lie groups are metrisable by Birkhoff-
Kakutani Theorem [Tao14, Theorem 1.5.2], so take a left invariant metric d for
L. As L is locally compact, we may assume that the closed unit ball D is a com-
pact symmetric neighbourhood of the identity. Consider the structure of L with
the language of groups, a sort for R with the language of ordered rings and a
function symbol for the metric d. Let L′ be an |L|-saturated elementary exten-
sion of it. Consider the subgroup H ≤ L′ generated by the closed unit ball and
E = {(a, b) : d(a, b) < 1/n for any n ∈ N}. Clearly, D is a definable approximate
subgroup and H is the piecewise definable group generated by it. Then, L is a Lie
core of H , as, in fact, we have H/E ∼= L.

In the case of a linear connected Lie group L, we can combine both examples.
Indeed, in that case, in the real numbers, L is piecewise definable and its metric
and group operations are definable, so, after saturation, we just need to take the
piecewise definable group generated by the closed unit ball and quotient out by the
infinitesimals as in the previous example.

3. Stabilizer Theorem

In this section, we aim to extend the Stabilizer Theorem [Hru12, Theorem 3.5] to
piecewise hyperdefinable groups. The main point of this theorem is that it provides
sufficient conditions to conclude that G00 is

∧
-definable. As we already noted in

the previous section, this result has significant consequences for the projection πL
of the minimal Lie core.

To prove the Stabilizer Theorem, we need first to extend the model-theoretic no-
tions of dividing, forking and stable relation to piecewise hyperdefinable sets. Once
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these model-theoretic notions have been properly defined for piecewise hyperdefin-
able groups, adapting the original proof of the Stabilizer Theorem is straightfor-
ward.

Forking and dividing for hyperimaginaries have already been well studied by
many authors (e.g. [HKP00, Wag10, Kim14]). Here, in the first subsection, we
rewrite the definitions of dividing and forking for hyperdefinable sets in a slightly
different way which we find more natural from the point of view of this paper. After
that, it is trivial to extend the definition to the context of piecewise hyperdefinable
sets.

3.1. Dividing and forking. Let (Pt)t∈T be A-hyperdefinable sets. Write P :=∏
Pt. For infinite tuples a, b ∈ P of hyperimaginaries, we write tp(a/A) = tp(b/A)

to mean that tp(a|T0
/A) = tp(b|T0

/A) for any T0 ⊆ T finite.
Let (I,<) be a linear order. An A-indiscernible sequence in P indexed by (I,<)

is a sequence (ai)i∈I of hyperimaginary tuples ai ∈ P such that, for any n ∈ N and
any i1 < · · · < in and j1 < · · · < jn,

tp(ai1 , . . . , ain/A) = tp(aj1 , . . . , ajn/A).

Lemma 3.1 (Standard Lemma). Let P =
∏

t∈T Pt be a product of A-hyperdefinable

sets and (I,<) and (J,<) two infinite linear orders, with |T |++|J | ≤ κ. Then, given
a sequence (ai)i∈I of hyperimaginary tuples in P , for any set of representatives A∗,

there is a sequence (bj)j∈J of hyperimaginary tuples in P with an A∗-indiscernible

sequence of representatives (b
∗

j )j∈J such that

(bj1 |T0
, . . . , bjn |T0

) ∈ W

for any n ∈ N, any j1 < . . . < jn, any T0 ⊆ T finite and any
∧

A-definable set

W ⊆
(∏

t∈T0
Pt

)n
such that (ai1 |T0

, . . . , ain |T0
) ∈W for every i1 < · · · < in.

Proof. Trivial from the classic Ehrenfeucht-Mostowski Standard Lemma proved us-
ing Ramsey’s Theorem [TZ12, Theorem 5.1.5]. Q.E.D.

Corollary 3.2. Let P =
∏

t∈T Pt be a product of A-hyperdefinable sets and (I,<)

an infinite linear order, with |T |++|I| ≤ κ. Then, a sequence (bi)i∈I of hyperimagin-
ary tuples in P is A-indiscernible if and only if, for some set of representatives A∗

of A, there is an A∗-indiscernible sequence of representatives (b
∗

i )i∈I .
Furthermore, if (bi)i∈I is A-indiscernible, for any set of representatives A∗ there

is an A∗∗-indiscernible sequence of representatives (b
∗

i )i∈I of (bi)i∈I where A∗∗ is
another set of representatives of A with tp(A∗) = tp(A∗∗).

Proof. By the Standard Lemma 3.1 and Corollary 1.10. Q.E.D.

Let P = X/E be an A-hyperdefinable set and quotP : X → P its quotient map.
An

∧
-definable subset V ⊆ P divides over A if and only if quot−1

P [V ] divides over
A∗ for some set of representatives of A.

Lemma 3.3. Let P be an A-hyperdefinable set and V ⊆ P an
∧

A,B-definable
subset. Then, V divides over A if and only if there are a finite tuple b from B and
an

∧
A,b-definable subset W ⊆ P such that V ⊆W and W divides over A.

Proof. One direction is trivial. Let us check the other. Take a uniform definition
V of V , which exists by Lemma 1.11. Take representatives A∗ of A such that
V (x,A∗, B∗) divides over A∗. There is then b finite such that W (x,A∗, b∗) :=
V (x,A∗, B∗) ∩ Forx(L(A∗, b∗)) divides over A∗. Now, as V is a uniform definition,
W is

∧
A,b-definable. Obviously, V ⊆W and W divides over A. Q.E.D.
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Lemma 3.4. Let P and Q be A-hyperdefinable sets. Let V ⊆ Q × P be an
∧

A-
definable set and b ∈ Q. Then, V (b) divides over A if and only if there is an
A-indiscernible sequence (bi)i∈ω of hyperimaginaries from Q such that tp(b0/A) =
tp(b/A) and

⋂
i∈ω V (bi) = ∅.

Furthermore, V (b) divides over A if and only if for any set of representatives
A∗ of A there is another set of representatives A∗∗ such that tp(A∗) = tp(A∗∗) and
V (b) divides over A∗∗.

Proof. Assume V (b) divides over A. Take a uniform definition V of V , which ex-
ists by Lemma 1.11. Take representatives A∗ of A such that V (x,A∗, b∗) divides
over A∗. There is then an A∗-indiscernible sequence (b∗i )i∈ω such that tp(b∗0/A

∗) =
tp(b∗/A∗) and

⋃
i∈ω V (x,A∗, b∗i ) is not finitely satisfiable. Then, (bi)i∈ω given by

bi = quotQ(b
∗
i ) isA-indiscernible and tp(b0/A) = tp(b/A). Also, quot−1

P

[⋂
i∈ω V (bi)

]
=⋂

i∈ω quot−1
P [V (bi)] =

⋂
i∈ω V (M, A∗, b∗i ) = ∅, so

⋂
i∈ω V (bi) = ∅ by surjectivity of

quotP .
On the other hand, assume there is an A-indiscernible sequence (bi)i∈ω in Q

such that tp(b0/A) = tp(b/A) and
⋂

i∈ω V (bi) = ∅. Take a uniform definition V
of V , which exists by Lemma 1.11. By Corollary 3.2, there is an A∗-indiscernible
sequence (b∗i )i∈ω of representatives of (bi)i∈ω with A∗ representatives of A. Now,
as tp(b0/A) = tp(b/A), by Corollary 1.10, there is a representative b∗∗ ∈ b and a set
of representatives A∗∗ of A such that tp(b∗0, A

∗) = tp(b∗∗, A∗∗). Take σ ∈ Aut(M)
mapping (b∗0, A

∗) to (b∗∗, A∗∗), and write b′i := σ(bi) and b′
∗
i := σ(b∗i ) for i ∈ ω.

Then, (b′
∗
i )i∈ω is an A∗∗-indiscernible sequence with b′

∗
0 = b∗∗. For this sequence, it

follows that ∅ = quot−1
P

[⋂
i∈ω V (b′i)

]
=

⋂
i∈ω quot−1

P [V (b′i)] =
⋂

i∈ω V (M, A∗∗, b′
∗
i ),

concluding that V divides over A∗∗. In particular, V divides over A.
For the “furthermore part”, note that in the previous paragraph tp(A∗) can be

chosen arbitrarily by Corollary 3.2. Q.E.D.

Combining both propositions we conclude that the definition given here is equi-
valent to the one studied previously by other authors (e.g. [HKP00,Wag10,Kim14]).
It is now straightforward to prove the following basic proposition.

Lemma 3.5. Let P and Q be A-hyperdefinable sets. Let V ⊆ P be
∧

-definable and
f : P → Q a 1-to-1

∧
A-definable function. Then, f [V ] divides over A provided

that V divides over A.

Let P be an A-hyperdefinable set. The forking ideal fP (A) of P overA is the ideal
of

∧
-definable subsets of P generated by the ones dividing over A. An

∧
-definable

subset of P forks over A if it is in that forking ideal.

Remark 3.6. Trivially, we have that V forks over A implies that V forks over
A. In the case of simple theories, the converse also holds as forking and dividing
are the same [Wag10, Proposition 3.2.7]. In general, however, the converse is not
true. For instance, let M be the monster model of the theory of dense circular
orders in the usual language, let M be the whole 1-ary universe of M and E the
trivial equivalence relation given by xEy for every x, y ∈ M . Obviously, M/E is a
singleton, so it does not fork over ∅. However, M forks over ∅.

Let P be a piecewise A-hyperdefinable set. An
∧

-definable set V ⊆ P divides
over A if it divides over A as subset of some/any piece Pi containing V . Note that,
by Lemma 3.5, this is well-defined. An

∧
-definable subset V of P forks over A

if and only if V forks over A as subset of some/any piece Pi containing V . The
forking ideal fP (A) of P over A is the family of

∧
-definable subsets of P forking

over A. Clearly, fP (A) is the ideal of
∧

-definable subsets of P generated by the
ones dividing over A.
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3.2. Ideals. From now on, λ is a cardinal with κ ≥ λ > |L|+ |A|.

Let P be a piecewiseA-hyperdefinable set and µ an ideal of
∧

<λ-definable subsets

in P . We say that µ is A-invariant if it is invariant under Aut(M/A), i.e. W (b) ∈ µ

implies W (b
′
) ∈ µ for any b

′
with tp(b/A) = tp(b

′
/A) and any

∧
b̄-definable subset

W (b) ⊆ P with |b| < λ. We say that an
∧

<λ-definable subset is µ-negligible if it is
in µ and that it is µ-wide if it is not in µ. We say that µ is locally atomic if, for
any wide

∧
B-definable subset V with |B| < λ, there is a ∈ V such that tp(a/B) is

wide.

Remark 3.7. For X ⊆ P , write µ|X := {W ∈ µ : W ⊆ X}. Clearly, µ|X is an
ideal of

∧
<λ-definable subsets of X . Say P = lim−→Pi, then write µi := µ|Pi

for each

piece. We have from the definitions that µ is A-invariant if and only if each µi is
so. Similarly, it is locally atomic if and only if each µi is so.

We say that an
∧

A-definable subset V is A-medium if for any
∧

b̄-definable subset

W (b) ⊆ V with |b̄| < λ, we have

W (b) ∈ µ⇔W (b0) ∩W (b1) ∈ µ

for any A-indiscernible sequence (bi)i∈ω realising tp(b/A). We say that an
∧

<λ-
definable subset V is A-medium if there is an A-medium

∧
A-definable subset V0

with V ⊆ V0. We say that V is strictly A-medium if it is wide and A-medium. We
say that µ is A-medium4 if every

∧
<λ-definable subset is A-medium for µ.

Remark 3.8. Note that, by definition, if µ is A-medium, µ is in particular A-
invariant. Note that the family of A-medium sets of µ is an A-invariant ideal of∧

<λ-definable subsets.

Example 3.9. (1) The forking ideal over A is an A-invariant ideal of
∧

-definable
subsets. In simple theories, the forking ideal over A is locally atomic and A-medium.
Indeed, it is locally atomic by the extension property of forking [Wag10, Theorem
3.2.8]. On the other hand, suppose V (b) is

∧
b-definable and V (b0)∩V (b1) forks over

A with (bi)i∈ω an A-indiscernible sequence realising tp(b/A). Then, by simplicity,

V (b0)∩ V (b1) divides over A, so
⋂n

i=0 V (b2i)∩ V (b2i+1) = ∅ for some n ∈ N. Thus,

V (b) divides over A, so it forks over A. As V is arbitrary, we conclude that the
forking ideal over A is A-medium.

(2) If we have an A-invariant measure on the lattice of
∧

<λ-definable sets, the
ideal of zero measure

∧
<λ-definable subsets is an A-invariant ideal. In this case,

every
∧

A-definable subset of finite measure is A-medium.

Lemma 3.10. [Hru12, Lemma 2.9] Let P be a piecewise A-hyperdefinable set and
µ an ideal of

∧
<λ-definable subsets on P . Let V ⊆ P be a strictly A-medium∧

<λ-definable subset. Then, V does not fork over A.

Proof. Take an A-medium
∧

A-definable set V0 such that V ⊆ V0. Suppose that
V forks over A. Then, there are W ′

1, . . . ,W
′
n

∧
-definable subsets dividing over A

such that V ⊆
⋃

iW
′
i . Applying Lemma 3.3, we may assume that each W ′

i is
∧

<λ-

definable. Now, V ⊆
⋃
(W ′

i∩V0) andW ′
i∩V0 divides overA. Write Wi(b) =W ′

i∩V0.
By Lemma 3.4, there is (bj)j∈ω A-indiscernible such that

⋂
j∈ω Wi(bj) = ∅. Hence,

⋂k
j=0Wi(bj) = ∅ ∈ µ for some k, concluding that Wi(b) ∈ µ by A-mediumness of

V0. This concludes that V ∈ µ, contradicting that V is wide. Q.E.D.

Lemma 3.11. Let N � M with |N | < λ and G = lim−→Gk be a piecewise N -

hyperdefinable group. Let µ be an N -invariant ideal of
∧

<λ-definable subsets of G.

4We use the terminology of [MOS20]. In [Hru12], it is said that the ideal has the S1 property.



44 ARTURO RODRÍGUEZ FANLO

Let W and U be non-empty
∧

N -definable subsets of G. If µ is invariant under left
translations and U ·W is N -medium, then W is N -medium too. Similarly, if µ is
invariant under right translations and W ·U is medium over A, then W is medium
over A too.

Proof. Let X(b) ⊆ W be
∧

b̄-definable with |b| < λ. Take an N -indiscernible

sequence (b
∗

i )i∈ω of representatives of elements in tp(b/N) and write Xi := X(bi).
Fix k such that U ⊆ Gk and take U defining U . As N ≺ M, U is finitely satisfiable
in N , so U does not fork over N [TZ12, Lemma 7.1.10]. Thus, U has a non-forking

extension to a complete type p over N, b
∗

0. As p does not fork over N , it does not

divide over N . By [TZ12, Lemma 7.1.5], there is a∗ realising p such that (b
∗

i )i∈ω is
N, a∗-indiscernible. As a∗ realises p, in particular, a ∈ U .

Suppose µ is invariant under left translations and U ·W is N -medium. Then,
we get that a · X0 ∩ a ·X1 ∈ µ if and only if a ·X0 ∈ µ. Therefore, provided left
translational invariance,

X0 ∩X1 ∈ µ⇔ a ·X0 ∩ a ·X1 ∈ µ⇔ a ·X0 ∈ µ⇔ X0 ∈ µ.

We similarly prove the case with right translations. Q.E.D.

3.3. Stable relations. Let P andQ be piecewiseA-hyperdefinable sets and V,W ⊆
P×Q disjointA-invariant subsets. We say that V andW are unstably separated over
A if there is an infinite A-indiscernible sequence (ai, bi)i∈ω such that (a0, b1) ∈ V
and (a1, b0) ∈ W . We say that they are stably separated over A if they are not
unstably separated. We say that an A-invariant binary relation R ⊆ P ×Q is stable
over A if R and Rc are stably separated over A.

Remark 3.12. (1) Clearly, being stably separated over A is invariant under piece-
wise

∧
A-definable isomorphisms.

(2) Note that V and W are stably separated over A if and only if V ∩ (Pi ×Qj)
and W ∩ (Pi ×Qj) are stably separated over A for any pieces Pi and Qj .

(3) Let P and Q be A-hyperdefinable. By Corollary 3.2, V and W are stably
separated over A if and only if quot−1

P×Q[V ] and quot−1
P×Q[W ] are stably separated

over A∗ for any set of representatives A∗ of A. In particular, if V and W are∧
A-definable, we have that V and W are stably separated over A if and only if V

and W are stably separated over A∗ for any set of representatives A∗ of A and any
partial types V and W defining V and W .

(4) Note that, by the symmetry of stability, R is stable over A if and only if Rc

is stable over A.

We need the following two lemmas from [Hru12] for the Stabilizer Theorem.
Their original proofs can be easily adapted.

Recall that we say that a partial type Σ(x, y) over A∗ divides over A∗ with
respect to a global A∗-invariant type q̂(y) if there is a sequence (b∗i )i∈ω such that
tp(b∗i /A

∗, b∗0, . . . , b
∗
i−1) |= q̂ and

∧
Σ(x, b∗i ) is inconsistent.

Lemma 3.13. [Hru12, Lemma 2.2] Let P = X/E and Q = Y/F be A∗-hyperde-
finable sets and q̂ a global A∗-invariant type with Y ∈ q̂. Let W1,W2 ⊆ P × Q
be

∧
A∗-definable sets stably separated over A∗. Assume that a ∈ P is such that

W2(a) ⊆ q̂. Then, V = W1 ∩ (tp(a/A∗)×Q) divides over A∗. Furthermore, V

divides over A∗ with respect to q̂.

For sets V and W , write

V ×nf(A) W := {(a, b) ∈ V ×W : tp(b/aA) does not fork over A}.

Similarly, V ×ndiv(A) W , V nf(A)× W and V ndiv(A)× W .
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Lemma 3.14. [Hru12, Lemma 2.3] Let P and Q be piecewise A∗-hyperdefinable
sets and R ⊆ P ×Q a stable binary relation over A∗. Let p ⊆ P and q ⊆ Q be types
over A∗. Assume that there is an A∗-invariant global type q̂ extending a partial type
q over A∗ defining q.

(1) Take a ∈ p and b ∈ q such that (a, b) ∈ R. Suppose that there are represent-
atives a∗ ∈ a and b∗ ∈ b such that b∗ |= q̂|A∗,a∗ . Then, we have that (a′, b) ∈ R for
any a′ ∈ p such that tp(a′/A∗, b) does not divide over A∗.

(2) Take a′, a ∈ p and b ∈ q. Suppose that tp(a/A∗, b) and tp(a′/A∗, b) do not
divide over A∗. Then, (a, b) ∈ R if and only if (a′, b) ∈ R.

(3) Assume that there is also an A∗-invariant global type p̂ extending a partial
type p over A∗ defining p. Then, the following conditions are equivalent:

i. p×ndiv(A∗) q ∩R 6= ∅ v. pndiv(A∗)× q ∩R 6= ∅

ii. p×nf(A∗) q ∩R 6= ∅ vi. pnf(A∗)× q ∩R 6= ∅

iii. p×nf(A∗) q ⊆ R vii. pnf(A∗)× q ⊆ R

iv. p×ndiv(A∗) q ⊆ R viii. pndiv(A∗)× q ⊆ R

3.4. Stabilizer Theorem. From now on, λ is a cardinal with κ ≥ λ > |L|+ |A|.

Let G be a piecewise A-hyperdefinable group and µ an ideal of
∧

<λ-definable
subsets of G. Let V,W ⊆ G be two

∧
<λ-definable subsets. The (left) µ-stabilizer

of V with respect to W is the set Stµ(V,W ) = {a ∈ G : a−1 · V ∩W /∈ µ}, and
the (left) µ-stabilizer group of V with respect to W is the subgroup Stabµ(V,W ) of
G generated by Stµ(V,W ). Write Stµ(V ) := Stµ(V, V ) and Stabµ(V ) := Stµ(V, V ).
We omit the subscript µ if there is no confusion.

Lemma 3.15. Let G be a piecewise A-hyperdefinable group, µ an A-invariant ideal
of

∧
<λ-definable subsets of G and V and W two

∧
A-definable wide subsets. Then:

(1) Take any B ⊇ A with |B| < λ. If µ is locally atomic, g ∈ St(V,W ) if and
only if there are a ∈ V and b ∈W such that g = ab−1 with tp(b/B, g) /∈ µ.

(2) If µ is invariant under left translations, then St(V,W )−1 = St(W,V ). In
particular, St(V ) is a symmetric subset.

We say that a subset X ⊆ G is stable over A if the relation {(a, b) : a−1b ∈ X}
is stable over A.

Example 3.16. [Hru12, Lemma 2.10]& [MOS20, Lemma 2.8] Let µ be an A-
invariant ideal of

∧
<λ-definable subsets of a piecewise A-hyperdefinable group. If

µ is invariant under left translations and V and W are A-medium
∧

A-definable
subsets, then St(V,W ) is stable over A.

Remark 3.17. Since •
−1 : G→ G is a piecewise

∧
A-definable isomorphism, X is

stable over A if and only if X−1 is stable over A. Also, X is stable over A if and
only if {(a, b) : ab ∈ X} is stable over A, if and only if {(a, b) : ab−1 ∈ X} is stable
over A.

For subsets V and W of a piecewise hyperdefinable group G, write

V ·nf(A) W := {a · b : (a, b) ∈ V ×nf(A) W}.

Similarly, V ·ndiv(A) W , V nf(A)· W and V ndiv(A)· W .

Lemma 3.18. Let G be a piecewise A∗-hyperdefinable group and µ a locally atomic
A∗-invariant ideal of

∧
<λ-definable subsets of G which is also invariant under left

translations. Let p be an A∗-medium A∗-type and X ⊆ G a stable subset over
A∗ containing p. Suppose that there is an A∗-invariant global type p̂ extending
a partial type p over A∗ defining p. Then, Stab(p) ⊆ X · X−1. Furthermore,

Stab(p) ·nf(A∗) p ⊆ X.
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Proof. We may assume that p is strictly A-medium; otherwise, St(p) = ∅ and
Stab(p) = {1}, so the lemma holds trivially. Since µ is invariant under left
translations, St(p)−1 = St(p) by Lemma 3.15(2). Thus, by definition, Stab(p) =⋃∞

n=0 St(p)
n. We prove by induction on n that b · c ∈ X for b ∈ St(p)n and c ∈ p

such that tp(c/A∗, b) does not fork over A∗.
By hypothesis, p ⊆ X , so we are done for n = 0. Assume it is true for n − 1

with n ∈ N>0. Take b = b1 · · · · · bn with bi ∈ St(p) for each i ∈ {1, . . . , n}
and c ∈ p such that tp(c/A∗, b) does not fork over A∗. We want to prove that
b · c ∈ X . As bn ∈ St(p), by Lemma 3.15(1), there is c′ ∈ p such that bn · c′ ∈ p
and tp(c′/A∗, b1, . . . , bn) /∈ µ. In particular, as p is A∗-medium, tp(c′/A∗, b1, . . . , bn)
does not fork overA∗ by Lemma 3.10. Hence, tp(c′/A∗, b) and tp(bn·c′/A∗, b1, . . . , bn−1)
do not fork over A∗. By induction hypothesis, b ·c′ = (b1 · · · bn−1) ·bn ·c

′ ∈ X . Since
(b, c′) ∈ tp(b/A∗)×nf(A∗) p, by Lemma 3.14(2), we conclude that b · c ∈ X too.

Now, for any b ∈ Stab(p) we can find c ∈ p such that tp(c/A∗, b) does not fork
over A∗ — namely, choose c∗ |= p̂|A∗,b∗ . Therefore, we conclude that Stab(p) ⊆

X · p−1 ⊆ X ·X−1. Q.E.D.

As an immediate corollary we get the following result:

Corollary 3.19. Let N ≺ M with |N | < λ. Let G be a piecewise N -hyperdefinable
group and µ a locally atomic N -invariant ideal of

∧
<λ-definable subsets invariant

under left translations. Let p be an N -medium N -type with p ⊆ St(p). Then,
Stab(p) = St(p)2 = (p · p−1)2.

Proof. If p ⊆ St(p), by Lemma 3.15, we get that St(p) ⊆ p · p−1 ⊆ St(p)2. By
Example 3.16, St(p) is a stable subset. Hence, by Lemma 3.18, taking p̂ a coheir of
p, we conclude that Stab(p) ⊆ St(p)2 ⊆ (p · p−1)2 ⊆ Stab(p). Q.E.D.

Lemma 3.20. [MOS20, Lemma 2.11] Let G be a piecewise A∗-hyperdefinable
group and µ an A∗-invariant ideal of

∧
<λ-definable subsets of G which is also

invariant under left translations. Let p be an A∗-type and W a strictly A∗-medium∧
A∗-definable subset such that p−1W is A∗-medium too. Suppose that there is an

A∗-invariant global type p̂ extending a partial type p over A∗ defining p. Then,

p ·nf(A∗) p
−1 ⊆ St(W ).

Proof. Take (a∗i )i∈ω such that a∗i |= p̂|A∗,a∗

0
,...,a∗

i−1
. Then, (ai)i∈ω is an A∗-in-

discernible sequence of realisations of p with tp(a1/A
∗, a0) non-forking. As µ

is invariant under left translations, a−1
0 W is wide. Since p−1W is A∗-medium,

we conclude that a−1
0 W ∩ a−1

1 W 6∈ µ. Thus, by invariance under left transla-

tions, a0a
−1
1 ∈ St(W ). By Lemma 3.14(2) and Example 3.16, we conclude that

p ·nf(A∗) p
−1 ⊆ St(W ). Q.E.D.

For two subsetsX and Y of a groupG, recall that [X : Y ] := min{|∆| : X ⊆ ∆Y }.
Note that [X−1 : Y −1] = min{|∆| : X ⊆ Y∆}.

Lemma 3.21. Let G be a piecewise A∗-hyperdefinable group and S ≤ G an
∧

A∗-
definable subgroup. Let p ⊆ G be an A∗-type such that there is an A∗-invariant
global type p̂ extending a partial type p defining p over A∗.

(1) If [p : S] is small, then [p : S] = 1 and p−1 · p ⊆ S.
(2) If [p−1 : S] is small, then [p−1 : S] = 1 and p · p−1 ⊆ S.

Proof. Both are very similar, so we just prove (1). Let (ai)i∈α be a sequence in p
such that α = [p : S] and ajS ∩ aiS = ∅ for i 6= j, and p ⊆

⋃
i∈α aiS. Suppose that

there is no i ∈ α such that (aiS) ∩ p is contained in p̂. Then, there are formulas

ϕi ∈ (aiS) ∩ p for each i ∈ α such that {¬ϕi}i∈α ⊆ p̂. In particular, {¬ϕi}i∈α ∪ p
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is finitely satisfiable. Thus, by saturation, there is c ∈ p such that c /∈
⋃

i∈α aiS,
getting a contradiction. That concludes that there is i ∈ α such that (aiS) ∩ p ⊆ p̂.

Since aiS ∩ ajS = ∅ for any i 6= j, we conclude that there is just one such i ∈ α.
Since p̂ and S are A∗-invariant, we get that aiS is A∗-invariant too. Indeed, take
σ ∈ Aut(M/A∗) arbitrary. Then, σ[(aiS) ∩ p] ⊆ p̂ defines (σ(ai)S) ∩ p, concluding

that σ(ai)S = aiS. As σ is arbitrary, we conclude that aiS is A∗-invariant. Thus,
aiS is

∧
A∗ -definable by Corollary 1.7. As (aiS)∩p 6= ∅, by minimality of p, p ⊆ aiS.

So, [p : S] = 1 and p−1 · p ⊆ S.
For (2), one argues analogously to point (1) but working with right cosets — as

[p−1 : S] = min{|∆| : p ⊆ S∆}. Q.E.D.

Lemma 3.22. Let G be a piecewise A-hyperdefinable group, S ≤ G an
∧

A-definable
subgroup and V ⊆ G an

∧
A-definable set. Suppose [V : S] is not small. Then, there

is an A-indiscernible sequence (ai)i∈ω in V such that ai · S ∩ aj · S = ∅ for i 6= j.

Proof. Let G, S and V be the interpretations in the monster model C. Since C

is the monster model, [V : S] /∈ On. Recall that there is τ ∈ On depending
only on |A∗| such that, for any sequence (a∗i )i∈τ of elements in C, there is an A∗-
indiscernible sequence (b∗j )j∈ω of elements in C with the property that, for any
j1 < · · · < jn, tp(a∗i1 , . . . , a

∗
in
/A∗) = tp(b∗j1 , . . . , b

∗
jn
/A∗) for some i1 < · · · < in —

see [TZ12, Lemma 7.2.12]. In particular, take (ai)i∈τ a sequence of hyperimaginaries
of V such that ai · S ∩ aj · S = ∅ for each i 6= j. Let (a∗i )i∈τ be representatives of

(ai)i∈τ . Then, there is a sequence (̃b∗j )j∈ω of A∗-indiscernible elements such that

tp(̃b∗0, b̃
∗
1/A

∗) = tp(a∗j′ , a
∗
j′′/A

∗) for some j′ < j′′. Now, by κ-saturation of M, we

can find (b∗j )j∈ω elements in M realising the same type that (̃b∗j )j∈ω over A∗. So,

the projections bj ∈ V form an A-indiscernible sequence (bj)j∈ω in V such that
bi · S ∩ bj · S = ∅ for i 6= j. Q.E.D.

We now prove the Stabilizer Theorem for piecewise hyperdefinable groups. Be-
low, Corollary 3.24 corresponds to [MOS20, Theorem 2.12 (B2)]; Theorem 3.25
corresponds to [Hru12, Theorem 3.5] and [MOS20, Theorem 2.12 (B1)]; and The-
orem 3.25(c) corresponds to [MOS20, Proposition 2.14].

Theorem 3.23. Let N ≺ M with |N | < λ. Let G be a piecewise N -hyperdefinable
group and µ a locally atomic N -invariant ideal of

∧
<λ-definable subsets invariant

under left translations. Let p ⊆ G be an N -medium N -type. Assume that there is a
wide N -type q ⊆ St(p) such that p−1 · q is N -medium. Then, Stab(p) = Stab(q) =
St(p)2 = St(q)4 = (p · p−1)2 is a wide

∧
N -definable subgroup of G without proper∧

N -definable subgroups of small index. Furthermore:

(a) Stab(q) ·nf(N) q ⊆ St(p).
(b) Every strictly N -medium N -type of Stab(p) lies in St(p).

Proof. We take p̂ and q̂ coheirs of p and q. By Lemma 3.11, q is N -medium. By

Lemma 3.20, p ·nf(N) p
−1 ⊆ St(q). Then, St(p) ⊆ p · p−1 ⊆ St(q)2. Indeed, for any

a, b ∈ p we can find c ∈ p such that tp(c/N, a, b) does not fork over N — simply,
take c∗ realising p̂|N,a∗,b∗ . Thus, ac−1, bc−1 ∈ St(q), concluding that ab−1 ∈ St(q)2

by Lemma 3.15(2).
Since q ⊆ St(p), Stab(q) ·nf(N) q ⊆ St(p) by Lemma 3.18 and Example 3.16.

In particular, Stab(q) ⊆ St(p)2 by Lemma 3.15(2). Thus, Stab(p) = Stab(q) =
St(p)2 = (p·p−1)2 = St(q)4 is an

∧
N -definable subgroup. Since q ⊆ St(p) ⊆ Stab(p),

we have that Stab(p) is wide.
Take an

∧
N -definable subgroup T ≤ Stab(p) such that [Stab(p) : T ] is small.

Since p · p−1 ⊆ Stab(p), [p−1 : T ] is also small. By Lemma 3.21(2), p · p−1 ⊆ T .
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Therefore, Stab(p) = (p · p−1)2 ⊆ T . In other words, Stab(p) does not have proper∧
N -definable subgroups of small index.
Finally, we prove property (b). Take r ⊂ Stab(p) a strictly N -medium N -type.

Set c ∈ q. Since µ is locally atomic, there is b ∈ r such that tp(b/N, c) /∈ µ.
By Lemma 3.10, tp(b/N, c) does not fork over N . Then, by Lemmas 1.9 and 3.5,
tp(b−1c−1/N, c) does not fork over N . Since c, b ∈ Stab(q), we have b−1c−1 ∈
Stab(q). Write r′ = tp(b−1c−1/N) ⊆ Stab(q). By (a), r′ ·nf(N) q ⊆ St(p). By

Lemma 3.14 and Example 3.16, we conclude that b−1 = b−1 · c−1 · c ∈ St(p), so
b ∈ St(p). Since r is a type over N , we conclude r ⊆ St(p). Q.E.D.

Corollary 3.24. Let N ≺ M with |N | < λ and G a piecewise N -hyperdefinable
group. Let µ be an N -invariant locally atomic ideal of

∧
<λ-definable subsets of G

invariant under left and right translations. Let p be a wide type over N and assume
that p−1 · p · p−1 is N -medium. Then, Stab(p) = St(p)2 = (p · p−1)2 is a wide∧

N -definable subgroup of G without proper
∧

N -definable subgroups of small index
such that every strictly N -medium N -type of Stab(p) lies in St(p).

Proof. Take a ∈ p arbitrary. By the local atomic property, there is b ∈ p such that
tp(b/N, a) is wide. By Lemma 3.11, p · p−1 is N -medium. Again by Lemma 3.11
but now using invariance under right translations, we get that p is N -medium. By
Lemma 3.10, it follows that tp(b/N, a) does not fork over N . Consider the N -type
q = tp(ba−1/N) ⊆ p nf(N)·p

−1.

By invariance under right translations, we know that q is a wide
∧

N -definable
set. As q ⊆ p · p−1 with p · p−1 N -medium, we have that q is N -medium too. Also,
note that p−1 · q ⊆ p−1 · p · p−1, so p−1 · q is N -medium too. On the other hand,
by Lemma 3.11 using invariance under right translations, p−1 · p is N -medium,
so p ·nf(N) p

−1 ⊆ St(p) by Lemma 3.20. By Example 3.16 and Lemma 3.14(3),

p nf(N)·p
−1 ⊆ St(p) too, so q ⊆ St(p). By Theorem 3.23, we conclude that Stab(p) =

St(p)2 = (p · p−1)2 is a wide
∧

N -definable subgroup of G without proper
∧

N -
definable subgroups of small index such that every strictly N -medium N -type of
Stab(p) lies in St(p). Q.E.D.

Theorem 3.25 (Stabilizer Theorem). Let N ≺ M with |N | < λ and G = lim−→Xn

a piecewise N -hyperdefinable group generated by a symmetric
∧

N -definable subset
X. Let µ be an N -invariant locally atomic ideal of

∧
<λ-definable subsets of G

invariant under left translations. Let p ⊆ X be a wide type over N and assume that
X3 is N -medium. Then, Stab(p) = St(p)2 = (p · p−1)2 is a wide and N -medium∧

N -definable normal subgroup of small index of G without proper
∧

N -definable
subgroups of small index. Furthermore:

(a) p · p · p−1 = p · Stab(p) is a left coset of Stab(p).
(b) Every wide N -type of Stab(p) is contained in St(p).
(c) Assume µ is also invariant under right translations. Then, p · p−1 · p =

Stab(p) · p is a right coset of Stab(p).

Proof. Take a ∈ p arbitrary. By the local atomic property, we find b ∈ p such that
tp(b/N, a) is wide. By Lemma 3.11, X is N -medium. As tp(b/N, a) ⊆ p ⊆ X ,
we conclude that tp(b/N, a) is N -medium, so tp(b/N, a) does not fork over N by
Lemma 3.10. Also, tp(a−1b/N, a) = a−1 · tp(b/N, a) is wide by left invariance of µ,
so q = tp(a−1b/N) ⊆ p−1 ·nf(N) p is wide. By Lemma 3.11, X2 is N -medium, so p2

is N -medium too. Using any coheir extending p−1, we get p−1 ·nf(N) p ⊆ St(p) by

Lemma 3.20. In particular, q ⊆ St(p). AsX is symmetric, p−1·q ⊆ p−1 ·p−1·p ⊆ X3,
so p−1 · q is N -medium. Thus, by Theorem 3.23, Stab(p) = Stab(q) = St(p)2 =
St(q)4 = (p · p−1)2 is a wide

∧
N -definable subgroup without proper

∧
N -definable
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subgroups of small index. By Theorem 3.23(b), every strictly N -medium type of
Stab(p) is contained in St(p). Also, Stab(q) ·nf(N) q ⊆ St(p) by Theorem 3.23(a).

We show that it is a normal subgroup of small index. First of all, note that
[X2 : Stab(p)] is small. Otherwise, by Lemma 3.22, there is an N -indiscernible
sequence (bj)j∈ω in X2 such that bi · Stab(p) ∩ bj · Stab(p) = ∅ for i 6= j. Take
d ∈ p−1 arbitrary. As p · p−1 ⊆ Stab(p), we get (bi · p · d) ∩ (bj · p · d) = ∅ for i 6= j,
so bi · p ∩ bj · p = ∅ for i 6= j. As X3 is N -medium, that implies b0 · p ∈ µ, so
p ∈ µ by invariance under left translations, contradicting our hypotheses. For any
c ∈ X , we have [tp(c/N) : Stab(p)] = 1 by Lemma 3.21(1), so tp(c/N) · Stab(p) ·
tp(c/N)−1 = c · Stab(p) · c−1 is

∧
N -definable. As X is symmetric, we also get that

[p−1 : c · Stab(p) · c−1] = [p−1 · c : Stab(p)] ≤ [X2 : Stab(p)] is small, so p · p−1 ⊆
c ·Stab(p)·c−1 by Lemma 3.21(2). Therefore, Stab(p) ⊆ c ·Stab(p)·c−1. As c ∈ X is
arbitrary and X is symmetric, Stab(p) = c · Stab(p) · c−1. Thus, X ⊆ NG(Stab(p)),
concluding Stab(p) E G. Since we have proved that [X : Stab(p)] is small, we
conclude that Stab(p) has small index by normality.

We show now property (a), i.e. p ·p ·p−1 = p ·Stab(p) = y ·Stab(p) for any y ∈ p.
As (p · p−1)2 = Stab(p), we have p · p · p−1 ⊆ p · Stab(p). As [p : Stab(p)] ≤ [X :
Stab(p)] is small, we get [p : Stab(p)] = 1 by Lemma 3.21(1). Thus, p · Stab(p) =
y · Stab(p). On the other hand, take x ∈ y · Stab(p) arbitrary, so x−1 = c · y−1

with c ∈ Stab(p) = Stab(q). By definition of q, we know that q = tp(a−1b/N)
with tp(b/N, a) wide and a, b ∈ p. Take z0 such that tp(z0, y/N) = tp(b, a/N).
By N -invariance of µ, tp(z0/N, y) is wide. By the local atomic property, we can
find z ∈ tp(z0/N, y) such that tp(z/N, y, c) is wide. Thus, tp(y−1z/N, c) is wide
by invariance under left translations. By Lemma 3.10, tp(y−1z/N, c) does not fork
over N . Thus, x−1 · z = c · y−1z ∈ Stab(q) ·nf(N) q ⊆ St(p). In particular, we

conclude x−1 ∈ St(p) · p−1 ⊆ p · p−1 · p−1, so x ∈ p · p · p−1.
As X is symmetric, p·Stab(p) ⊆ X3, so p·Stab(p) is N -medium. By Lemma 3.11,

we conclude that Stab(p) is N -medium. Thus, we get property (b).
Finally, it remains to prove property (c). In other words, assuming that µ is also

invariant under right translations, we want to show that p · p−1 · p = Stab(p) · p =
Stab(p) · y for any y ∈ p. Take a ∈ p arbitrary and, using the local atomic property,
find b ∈ p such that tp(b/N, a) is wide. As p is N -medium, by Lemma 3.10,
tp(b/N, a) does not fork overN . Consider q2 = tp(ba−1/N) ⊆ p nf(N)·p

−1. Then, by

invariance under right translations, q2 is a wide
∧

N -definable set. As q2 ⊆ X2 and
p−1 ·q2 ⊆ X3, we conclude that q2 and p−1 ·q2 areN -medium. As p·nf(N)p

−1 ⊆ St(p)

by Lemma 3.18, we get using Example 3.16 and Lemma 3.14(3) that p nf(N)·p
−1 ⊆

St(p) too, so q2 ⊆ St(p). By Theorem 3.23, we conclude that Stab(p) = Stab(q2)
and Stab(q2) ·nf(N) q2 ⊆ St(p). Take x ∈ Stab(p) · y arbitrary, so x = cy with
c ∈ Stab(p) = Stab(q2) and y ∈ p. Find z0 such that tp(z0, y/N) = tp(a, b/N), so
tp(y/N, z0) is wide. Using the local atomic property, we may find y1 ∈ tp(y/N, z0)
such that tp(y1/N, z0, c) is wide. Take z such that tp(z, y/N, c) = tp(z0, y1/N, c).
Thus, yz−1 ∈ q2 and tp(y/N, z, c) is wide. In particular, as X2 is N -medium, by
Lemma 3.10, tp(yz−1/N, c) does not fork over N . Thus, x · z−1 = c · yz−1 ∈
Stab(q2) ·nf(N) q2 ⊆ St(p), concluding x ∈ p · p−1 · p. As x is arbitrary, Stab(p) · y ⊆
p · p−1 · p. As p · p−1 · p ⊆ Stab(p) · y, we get p · p−1 · p = Stab(p) · p = Stab(p) · y
for any y ∈ p. Q.E.D.

Remark 3.26. (1) The main improvement of Theorem 3.25 with respect to the
original formulations studied in [Hru12,MOS20] is that we do not require invariance
of µ under right translations. In both papers, while they preferably considered
ideals invariant under two-sided translations, the authors already anticipated that
it should be possible to weaken the invariance under right translations hypothesis,
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perhaps losing a few properties of Stab(p). We have shown that, in fact, it can
be completely eliminated without significant consequences. Indeed, we only use
invariance under right translations for (c), but this is essentially replaced by (a).

(2) Although in [MOS20, Theorem 2.12] it was assumed that X4 is N -medium,
we only need N -mediumness of X3.

(3) Note that the locally atomic property is mostly used only for subsets of p.
The only time when we apply the locally atomic property for other subsets is in the
proof of Theorem 3.23(b). Thus, when µ only satisfies the locally atomic property
for subsets of p, we only miss (b).

For property (b), we have used the locally atomic property for subsets of Stab(p) =
(p · p−1)2. However, in fact, it suffices to assume it only for subsets of p · p · p−1.
Indeed, by Theorem 3.25(a) and invariance under left translations, if V ⊆ Stab(p)
is

∧
B-definable and wide, then y · V ⊆ p · p · p−1 is

∧
B,y-definable and wide for

any y ∈ p. By the locally atomic property on p · p · p−1, there is b ∈ V such
that tp(yb/B, y) is wide, concluding that tp(b/B) is wide by invariance under left
translations.

(4) It suffices to have µ defined only on X3, as, in that case, we may extend the
ideal by taking the one generated by the finite unions of left translates of elements
of µ. As µ is invariant under left-translations within X3 (i.e. V ∈ µ if and only if
gV ∈ µ for any V ⊆ X3 and g ∈ G such that gV ⊆ X3), this extension coincides
with µ inside of X3, so we can apply the Stabilizer Theorem 3.25 by Remark 3.26(3).

Proposition 3.27. [Hru12, Corollary 3.11]& [MOS20, Proposition 2.13] Let N ≺
M with |N | < λ and G = lim−→Xn a piecewise N -hyperdefinable group generated by

a symmetric
∧

N -definable subset X. Let µ be an N -invariant locally atomic ideal
of

∧
<λ-definable subsets of G invariant under left translations such that X is wide

and X3 is N -medium. Then, µ is N -medium on G.

Proof. By the locally atomic property, there is a wide N -type p ⊆ X . By the
Stabilizer Theorem 3.25, S := Stab(p) = (p·p−1)2 is anN -medium normal subgroup

of small index. Let Y (b) ⊆ G be
∧

N,b̄-definable with |b| < λ small. Let (bi)i∈ω

be an N -indiscernible sequence with tp(b/N) = tp(bi/N). Suppose that Y (b) /∈ µ.
By the locally atomic property of µ, there is a wide N, b-type q(b) ⊆ Y (b). By

Lemma 3.21(1), there is a such that q(b) ⊆ a·S. Let (b
′

i)i∈ω be anN, a∗-indiscernible
sequence realising tp((bi)i∈ω/N). By invariance under left translations, a−1q(b) /∈ µ.

As S is N -medium, a−1q(b
′

0)∩a
−1q(b

′

1) /∈ µ. Thus, by N -invariance and invariance

under left translations, we get that q(b0) ∩ q(b1) /∈ µ, concluding Y (b0) ∩ Y (b1) /∈
µ. Q.E.D.

3.5. Near-subgroups. Let G be a piecewise A-hyperdefinable group and µ an
ideal of

∧
<λ-definable subsets invariant under left translations with κ ≥ λ > |L|+

|A|. A µ-near-subgroup of G over A is a wide
∧

A-definable symmetric set X
generating G such that µ|X3 is locally atomic and A-medium. We say that X
is a near-subgroup if it is a µ-near-subgroup for some ideal.

Theorem 3.28. Let G be a piecewise A-hyperdefinable group, µ an ideal of
∧

<λ-
definable subsets and X a µ-near-subgroup over A. Then, there is a wide

∧
|A|+|L|-

definable normal subgroup of small index S contained in X4 and contained in every∧
A-definable subgroup of small index. Furthermore, S = (p · p−1)2 and ppp−1 =

pS = yS for any y ∈ p, where p ⊆ X is a wide type over an elementary substructure
of size |A|+ |L|.

Proof. By Löwenheim-Skolem Theorem [TZ12, Theorem 2.3.1], we find an ele-
mentary substructure N � M containing A∗ with |N | = |A∗| + |L| < λ. As
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A∗ ⊆ N , µ|X3 is N -medium. By the locally atomic property, there is a wide N -
type p ⊆ X . Applying the Stabilizer Theorem 3.25 (and Remark 3.26(3)), we
conclude that there is a wide

∧
N -definable normal subgroup S E G of small index

which does not have proper
∧

N -definable subgroups of small index. Furthermore,
S = Stab(p) = (p · p−1)2 ⊆ X4 and ppp−1 = pS = yS for any y ∈ p. As A∗ ⊆ N ,
we conclude. Q.E.D.

Theorem 3.29. Let G = lim−→Xn be a piecewise A-hyperdefinable group generated

by a near-subgroup X over A. Assume that Xn is an approximate subgroup for
some n ∈ N. Then, G has a connected Lie model πH/K : H → L = H/K with

K ⊆ X2n+4 such that

(a) H ∩X2n is
∧

|A|+|L|-definable and commensurable to Xn,

(b) πH/K [H ∩X2n] is a compact neighbourhood of the identity in L,

(c) H is generated by H ∩X2n+4, and
(d) πH/K is continuous and proper from the logic topology using |A|+ |L| many

parameters.

Proof. As X is a near-subgroup, by Theorem 3.28, G00
N ⊆ X4 with |N | ≤ |A|+ |L|.

As Xn is an approximate subgroup, X
n
/G00

N
is an approximate subgroup. Thus,

X2n
/G00

N
is a neighbourhood of the identity by the Generic Set Lemma (The-

orem 2.22). Then, by Theorem 2.34, we can find a connected Lie core πH/K :

H → L = H/K with K ⊆ X2nG00
N ⊆ X2n+4.

(a) Since X
n
/G00

A
is compact and H/G00

A
is an open subgroup in the global logic

topology, we conclude that
[
Xn

/G00
A

: H/G00
A

]
is finite. As G00

A ≤ H , we get that

[Xn : H ] is finite. Thus, by [Mac23, Lemma 2.2, Lemma 2.3], H ∩ X2n is an
approximate subgroup commensurable to Xn.

(b) AsX
2n
/G00

N
is a compact neighbourhood of the identity andH/G00

N
is an open

subgroup in the global logic topology, we conclude that H ∩X2n
/G00

N
is a compact

neighbourhood of the identity. Recall that π̃H/K : H/G00
N

→ L given by πH/K =
π̃H/K ◦πG/G00

N
is a continuous, closed, open and proper onto group homomorphism.

Thus, we conclude that πH/K [H ∩X2n] is a compact neighbourhood of the identity.

(c) Since L is connected and πH/K [X2n ∩H ] is a neighbourhood of the identity,

πH/K [H ∩ X2n] generates L. Therefore, we have that π−1
H/K [πH/K [H ∩ X2n]] =

(H∩X2n)·K generatesH . Now, K ⊆ H∩X2n+4, so (H∩X2n)·K ⊆ (H∩X2n+4)2,
concluding that H ∩X2n+4 generates H .

(d) By Proposition 1.53, the global logic topology ofG/G00
N

is given using |A|+|L|

many parameters, so H ∩ X2n is
∧

|A|+|L|-definable and πH/K is continuous and

closed using |A|+ |L| many parameters. Q.E.D.

Alternatively, using Gleason-Yamabe-Kreitlon Theorem 2.4 rather than Gleason-
Yamabe Theorem 2.3, we get the following variation which provides some extra
control over some of the parameters.

Theorem 3.30. There are functions c : N → N and d : N → N such that the
following holds for any κ-saturated L-structure M and any set of parameters A with
κ > |L|+ |A|:

Let G = lim−→Xn be a piecewise A-hyperdefinable group generated by a near-sub-

group X over A. Assume that Xn is a k-approximate subgroup for some n and
k. Then, G has a Lie model πH/K : H → L = H/K with K ⊆ X12n+4 and
dim(L) ≤ d(k) such that

(a) H ∩X2n is
∧

|A|+|L|-definable and c(k)-commensurable to Xn,
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(b) πH/K [H ∩X2n] is a compact neighbourhood of the identity in L,

(c) H is generated by H ∩X12n+4, and
(d) πH/K is continuous and proper from the logic topology using |A|+ |L| many

parameters.

Proof. As X is a near-subgroup, by Theorem 3.28, G00
N ⊆ X4 with |N | ≤ |A|+ |L|.

As Xn is a k-approximate subgroup, X
n
/G00

N
is an approximate subgroup. Thus,

X2n
/G00

N
is a neighbourhood of the identity by the Generic Set Lemma (The-

orem 2.22), and, in particular,G/G00
N

is a locally compact topological group with the

global logic topology. Thus, X
n
/G00

N
is contained in the interior, U/G00

N
, of X

3n
/G00

N

in the global logic topology. Now, we obviously have that U
2
/G00

N
⊆ X6n

/G00
N

, which

is covered by k5 left translates of X
n
/G00

N
⊆ U/G00

N
. Hence, U/G00

N
is an open pre-

compact k5-approximate subgroup.
Let c0 and d0 be the functions provided by Gleason-Yamabe-Kreitlon Theorem 2.4.

Applying Theorem 2.4, we get a Lie model πH/K : H → L = H/K with G00
N ≤ K ⊆

U4 ⊆ X12nG00
N ⊆ X12n+4 and dim(L) ≤ d(k) := d0(k

5) such that H ∩U4 generates
H and is c0(k

5)-commensurable to U . Thus, H ∩ X12n+4 generates H and c0(k
5)

left translates of H ∩X12n+4 cover Xn. As Xn is a k-approximate subgroup, k15

left translates of Xn cover X16n ⊇ H ∩ X12n+4. By [Mac23, Lemma 2.2], we get
that k15 left translates of H ∩ X2n cover H ∩ X12n+4, so H ∩ X2n and Xn are
c(k)-commensurable, where c(k) := c0(k

5)k15.

Now, H ∩X2n
/G00

N
is a compact neighbourhood of the identity in the global logic

topology. Recall that π̃H/K : H/G00
N

→ L given by πH/K = π̃H/K ◦ πG/G00
N

is a

continuous, closed, open and proper onto group homomorphism. Thus, πH/K [H ∩
X2n] is a compact neighbourhood of the identity of L.

By Proposition 1.53, the global logic topology of G/G00
N

is given using |A| + |L|

many parameters, so H ∩ X2n is
∧

|A|+|L|-definable and πH/K is continuous and

proper using |A|+ |L| many parameters. Q.E.D.

We conclude applying Theorem 3.29 to the case of rough approximate subgroups.
Recall that a T -rough k-approximate subgroup of a group G is a subset X ⊆ G such
that X2 ⊆ ∆XT with |∆| ≤ k ∈ N>0 and 1 ∈ T ⊆ G.

Let G be a group and X ⊆ G a symmetric subset. For some fixed n, assume
Xn is a Ti-rough k-approximate subgroup for a sequence (Ti)i∈N of thickenings
satisfying that

(i) it decreases in doubling scales, i.e. Ti+1T
−1
i+1 ⊆ Ti for each i ∈ N, and

(ii) it is asymptotically normalised by X , i.e. x−1Ti+1x ⊆ Ti for each x ∈ X
and i ∈ N.

Assuming saturation and
∧

-definability, we have that T =
⋂
Ti is an

∧
-definable

subgroup of G normalised by X and Xn is a T -rough k-approximate subgroup.

Theorem 3.31 (Rough Lie Model Theorem). Let G be an A-definable group, T ≤
G an

∧
A-definable subgroup and X ⊆ G a symmetric

∧
A-definable subset. Write

G̃ for the subgroup generated by X. Assume that X normalises T , X/T is a near-

subgroup of G̃/T and Xn is a T -rough approximate subgroup for some n. Then,

G̃T ≤ G has a connected Lie model πH/K : H → L = H/K with T ⊆ K ⊆ X2n+4T
such that

(a) H ∩X2nT is
∧

|A|+|L|-definable and commensurable to XnT ,

(b) πH/K [H ∩X2n] is a compact neighbourhood of the identity in L,

(c) H is generated by H ∩X2n+4T , and
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(d) πH/K is continuous and proper from the logic topology using |A|+ |L| many
parameters.

Alternatively, using Theorem 3.30:

Theorem 3.32 (Rough Lie model Theorem, version 2). There are functions c :
N → N and d : N → N such that the following holds for any κ-saturated L-structure
M and any set of parameters A with κ > |L|+ |A|:

Let G be an A-definable group, T ≤ G an
∧

A-definable subgroup and X ⊆ G a

symmetric
∧

A-definable subset. Write G̃ for the subgroup generated by X. Assume

that X normalises T , X/T is a near-subgroup of G̃/T and Xn is a T -rough k-

approximate subgroup for some n and k. Then, G̃T ≤ G has a Lie model πH/K :

H → L = H/K with T ⊆ K ⊆ X12n+4T and dim(L) ≤ d(k) such that

(a) H ∩X2nT is
∧

|A|+|L|-definable and c(k)-commensurable to XnT ,

(b) πH/K [H ∩X2n] is a compact neighbourhood of the identity in L,

(c) H is generated by H ∩X12n+4T , and
(d) πH/K is continuous and proper from a logic topology using |A| + |L| many

parameters.
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