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We study the boundary critical behavior of the three-dimensional Heisenberg universality class,
in the presence of a bidimensional surface. By means of high-precision Monte Carlo simulations
of an improved lattice model, where leading bulk scaling corrections are suppressed, we prove the
existence of a special phase transition, with unusual exponents, and of an extraordinary phase with
logarithmically decaying correlations. These findings contrast with näıve arguments on the bulk-
surface phase diagram, and allow us to explain some recent puzzling results on the boundary critical
behavior of quantum spin models.

Introduction.—Critical phenomena in the presence of
boundaries is a fertile source of interesting phenomena,
and has attracted numerous experimental [1] and the-
oretical [2–4] investigations. In the simplest setting,
one considers a d-dimensional system bounded (d − 1)-
dimensional surface, breaking the translation symmetry.
For a critical system, the behavior at the surface is re-
markably different than the bulk one. In fact, stan-
dard renormalization-group (RG) arguments predict that
a given bulk universality class (UC) potentially splits
into different surface UCs [3, 5], resulting in a rich bulk-
surface phase diagram. Surface UCs also determine the
critical Casimir force [6–11]. For classical models, one
generically distinguishes between the surface ordinary
UC, where the surface exhibits critical behavior as a con-
sequence of a critical bulk, the surface critical behavior
in the presence of a disordered bulk (when such a tran-
sition exists), and the surface extraordinary UC, found
for a critical bulk and strong enough surface enhance-
ment. Finally, in the bulk-surface phase diagram these
three transition lines meet at a multicritical point, the
so-called special UC [2, 3]. In this framework, one of
the most important cases is the three-dimensional O(N)
UC [12]. In the presence of a 2D surface, the scenario
above is realized for N = 1 (Ising) and N = 2 (XY )
cases. Surface critical behavior for the Heisenberg UC
is instead not yet fully understood. Experiments have
proven the realization of the ordinary surface UC for Gd
samples at its bulk critical point, in the O(3) UC [13].
Since the Mermin-Wagner-Hohenberg theorem [14–16]
forbids a surface transition, one could conclude that only
the ordinary UC is realized. While early Monte Carlo
(MC) simulations supported this picture [17], a later MC
study claimed a possible Berezinskii-Kosterlitz-Thouless-
(BKT) like surface transition [18]. This problem has
recently attracted renewed attention in the context of
quantum critical behavior, where several investigations
reported puzzling results. MC simulations of dimerized
spin-1/2 systems, exhibiting a classical Heisenberg bulk
UC, have found nonordinary surface exponents for some
geometrical settings [19–22]. Such a novel behavior has
been attributed to a relevant topological θ term at the
boundary, which is irrelevant for the bulk critical behav-

ior [22]. A theory for a direct transition between a Néel
and a valence-bond solid (VBS) in nonlocal 1D quantum
systems has been put forward to explain the observed be-
havior [23]. Nevertheless, quite remarkably a MC study
of a dimerized S = 1 system reported a surface criti-
cal exponent close (although not identical) to that of the
S = 1/2 case [24], whereas VBS correlations decay faster
than for the S = 1/2 case [25]. Similar exponents have
been found at the boundary of coupled Haldane chains
[26]. For a S = 1 system a topological θ term is absent,
and so via a standard quantum-to-classical mapping [27]
it should correspond to a classical 3D O(3) model with
a surface. It is therefore unclear whether a boundary
θ term is responsible for the observed nonordinary ex-
ponents for S = 1/2 systems. In this context, a recent
field-theoretical study has put forward different possible
scenarios for the surface transition in the Heisenberg UC
[28], the realization of which depends on the values of
some amplitudes at the so-called normal surface UC [2–
4, 29, 30]. Motivated by these developments, and by the
need to understand the classical surface O(3) UC in 3D,
we investigate here an improved lattice model by means
of MC simulations. By tuning a surface coupling we un-
veil the existence of a boundary phase transition, separat-
ing the ordinary and extraordinary phases. Our findings
provide an explanation for abovementioned results.
Model.—We simulate the φ4 model, defined on a 3D

L‖ × L‖ × L lattice, with periodic boundary conditions
(BCs) on directions corresponding to L‖, and open BCs
on the remaining direction. The reduced Hamiltonian,
such that the Gibbs weight is exp(−H), is

H =− β
∑
〈i j〉

~φi · ~φj − βs,↓
∑
〈i j〉s↓

~φi · ~φj

− βs,↑
∑
〈i j〉s↑

~φi · ~φj +
∑
i

[~φ 2
i + λ(~φ 2

i − 1)2],
(1)

where ~φx is a three-components real field on the lattice
site x, the first sum extends over the nearest-neighbor
pairs where at least one field belongs to the inner bulk,
the second and third sums pertain to the lower and upper
surface, and the last term is summed over all lattice sites.

For λ → ∞, the Hamiltonian (1) reduces to the clas-
sical O(3) model. In the (β, λ) plane, the bulk ex-
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hibits a second-order transition line in the Heisenberg UC
[12, 31]. At λ = 5.17(11) the model is improved [32], i.e.,
leading bulk scaling corrections ∝ L−ω1 , ω1 = 0.759(2),
are suppressed and those due to the next-to-leading ir-
relevant bulk operator decay fast as L−ω2 , ω2 ≈ 2 [33].
Additional corrections to scaling originate from the pres-
ence of surfaces. Improved lattice models are instrumen-
tal in high-precision MC simulations [12], and in particu-
lar in boundary critical phenomena [34–43]. For λ = 5.2,
the model is critical at β = 0.687 985 21(8) [32]. The
couplings βs,↓, βs,↑ control the surface enhancement of
the order parameter. Here we fix L‖ = L, λ = 5.2,
β = 0.687 985 21, βs,↓ = βs,↑ = βs and study the surface
critical behavior on varying βs. We compute improved
estimators of surface observables by averaging them over
the two surfaces. MC simulations are performed by
combining Metropolis, overrelaxation, and Wolff single-
cluster updates [44, 45].

Special transition.—For βs = β there is no surface en-
hancement and at the bulk critical point the model real-
izes the ordinary UC. Its critical behavior will be stud-
ied elsewhere [46]. To investigate the surface critical be-
havior we proceed in two steps. We first analyze RG-
invariant quantities, with the aim of locating the onset
of a phase transition, and determine the fixed-point val-
ues. Then, we employ these results in a finite-size scaling
(FSS) [47] analysis to compute universal critical expo-
nents. In the vicinity of a surface transition at βs = βs,c,
and neglecting for the moment scaling corrections, a RG-
invariant observable R satisfies

R = f((βs − βs,c)Lysp), (2)

where ysp is the scaling dimension of the relevant scal-
ing field associated with the transition. We consider the
surface Binder ratio U4:

U4 ≡
〈( ~M2

s )2〉
〈 ~M2

s 〉2
, ~Ms ≡

∑
i∈surface

~φi. (3)

In Fig. 1 we show U4 as function of βs for lattice sizes
L = 16, 32, 48, 64, 96, 128. We observe a crossing in-
dicating a surface phase transition. Its existence is visu-
ally more evident when data are plotted on a larger scale
[45]. The slope of U4 appears to increase rather slowly
with L, such that a rather high precision in the MC data
(≈ 10−5) is needed in order to show the crossing. Within
such a high accuracy, scaling corrections are visible, al-
though for instance the data for L = 16 deviate by a
mere . 0.1% from the data at L = 64. For a quantita-
tive determination of critical parameters, we expand the
right-hand side of Eq. (2) in Taylor series [52], including

FIG. 1. Plot of the RG-invariant quantity U4 defined in
Eq. (3) as a function of βs. MC error bars [48–51] are ≈ 10−5.

possible scaling corrections, as:

R = R∗ +

m∑
n=1

an(βs − βs,c)nLnysp

+ L−ω
k∑

n=0

bn(βs − βs,c)nLnysp ,
(4)

where ω is the leading correction-to-scaling exponent.
We first consider fits of R = U4 neglecting scaling correc-
tions and for m = 1. Corresponding results are reported
in Table I, as a function of the minimum lattice size Lmin

taken into account. Results are overall stable, exhibit-
ing however a small detectable drift on increasing Lmin,
which is larger than the statistical accuracy of the fit.
Furthermore, a good χ2/d.o.f. (d.o.f. denotes the degrees
of freedom) is found only for Lmin ≥ 48. In line with the
above observation on the slope of U4, the fitted value of
ysp is unusually small. Increasing m to 2 does not change
significantly χ2/d.o.f., indicating that the approximation
m = 1 is adequate [45]. The small value of ysp can poten-
tially result in slowly decaying analytical scaling correc-
tions ∝ L−ysp , originating from nonlinearities in the scal-
ing field [53]. To check their relevance, we have repeated
the fits including a quadratic correction to the relevant

TABLE I. Fits of R = U4 to the right-hand side of Eq. (4),
with m = 1, neglecting scaling corrections ∝ L−ω (above),
and including corrections to scaling with ω = 1 and k = 0
(below).

Lmin U∗4 βs,c ysp χ2/d.o.f.
16 1.06385(5) 1.16941(6) 0.27(2) 50.2
32 1.06463(2) 1.16847(3) 0.40(2) 3.9
48 1.06481(3) 1.16827(3) 0.40(3) 1.0
64 1.06487(4) 1.16821(5) 0.39(4) 1.0
96 1.0649(2) 1.1681(2) 0.36(11) 0.9
16 1.06557(5) 1.16764(5) 0.40(2) 1.0
32 1.0654(1) 1.16779(9) 0.39(2) 0.8
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scaling field (βs − βs,c) → (βs − βs,c) + B(βs − βs,c)
2.

We obtain identical results, and the fitted values of B
vanish within error bars, therefore analytical scaling cor-
rections are negligible for the range of data in exam [45].
Fits including the term ∝ L−ω, with a free ω parame-
ter, are consistent with ω & 1 [45]. Since a correction
term ∝ L−1 is in any case expected for nonperiodic BCs
[54, 55], we can safely assume that leading scaling cor-
rections are ∝ L−1. To obtain more accurate results,
we have repeated the fits to Eq. (4) setting ω = 1 and
k = 0. Corresponding results reported in Table I are sta-
ble, with a good χ2/d.o.f. By judging conservatively the
variation of estimates, we obtain the critical-point value
of U∗4 = 1.0652(4). We use this result to evaluate critical
exponents with the method of FSS at fixed phenomeno-
logical coupling [56, 57]. This technique consists in an
analysis of MC data done by fixing the value of a RG-
invariant observable R (here, R = U4), thereby trading
the fluctuations of R with fluctuations of a parameter
driving the transition (here, βs). This method has been
used in several high-precision MC studies of critical phe-
nomena [32, 58–60], and can lead to significant gains in
the error bars [57, 58]. A discussion of the method can
be found in Ref. [57]. For this analysis we have com-
plemented MC data shown in Fig. 1 with an additional
simulation at L = 192. To compute the exponent ysp, we
consider derivatives of a RG-invariant observable R with
respect to βs, at fixed U4 = 1.0652. According to FSS,
and including leading L−1 scaling corrections,

dR

dβs
= ALysp

(
1 +BL−1

)
. (5)

We consider R = U4 and the ratio R = Za/Zp of the
partition function with antiperiodic and periodic BCs
on a direction parallel to the surfaces, sampled with the
boundary-flip algorithm [61, 62]. In Table II we report
the various results of fits to Eq. (5). By looking conser-
vatively at the variation of the results, we estimate

ysp = 0.36(1), νsp ≡ 1/ysp = 2.78(8). (6)

This result also agrees with the less precise fits shown in
Table I. To compute the surface magnetic exponent η‖
we measure the surface susceptibility

χs =
1

L2

∑
i,j∈surface

~φi · ~φj . (7)

In agreement with standard surface FSS [2], we fit MC
data for χs at fixed U∗4 to

χs = AL1−η‖
(
1 +BL−1

)
, (8)

where as above we allow for a correction-to-scaling term
∝ L−1. Fit results are reported in Table III. We estimate

η‖ = −0.473(2). (9)

TABLE II. Fits of dR/dβs to Eq. (5) for R = U4 and R =
Za/Zp at fixed U∗4 = 1.0652. Fits above are obtained setting
B = 0 in Eq. (5), i.e., neglecting scaling corrections, fits below
include the term BL−1.

Observable Lmin ysp χ2/d.o.f.
16 0.3952(7) 37.9
32 0.381(2) 4.7

dU4/dβs 48 0.374(2) 0.2
64 0.372(4) 0.2
96 0.369(6) 0.03

16 0.364(3) 0.8
32 0.362(5) 1.0

d(Za/Zp)/dβs 48 0.364(9) 1.3
64 0.35(2) 0.01
96 0.34(3) 0.03
16 0.361(3) 0.4

dU4/dβs 32 0.357(6) 0.3
48 0.366(11) 0.07

16 0.36(1) 1.0
d(Za/Zp)/dβs 32 0.35(2) 1.3

48 0.29(4) 0.4

We checked that varying the fixed value U∗4 =
1.0652(4) within one error bar gives negligible variations
in the resulting critical exponents [45]. Finally, FSS at
fixed U∗4 allows us to estimate βs,c = 1.1678(2) [45].

Extraordinary phase.—The existence of a surface phase
transition implies an extraordinary phase for βs > βs,c.
To investigate it, we have simulated the model at βs =
1.5, for lattice sizes 8 ≤ L ≤ 384. In Figs. 2(a) and 2(b)
we plot the ratio ξ/L of the surface correlation length ξ
[63] over the lattice size L, and the product ΥL, where
Υ is the helicity modulus [64, 65]. Both quantities ex-
hibit a logarithmic growth with L, indicating a viola-
tion of standard FSS. The surface Binder ratio U4 shown
in Fig. 2(c) is rather close to 1, and exhibits a loga-
rithmic approach to 1. Nevertheless, the surface is not
ordered: its two-point function C(x)≡〈~φ0 · ~φx〉 for the
largest lattice size L = 384 shown in Fig. 2(d) exhibits
a slow, visible decay. Furthermore, for an ordered sur-

TABLE III. Fits of χs at fixed U4 = 1.0652 to the right-
hand side of Eq. (8) neglecting the scaling corrections ∝ L−1

(above), and including them (below).

Lmin η‖ χ2/d.o.f.
16 −0.47760(7) 146.9
32 −0.4753(1) 12.3
48 −0.4746(2) 3.1
64 −0.4742(2) 1.4
96 −0.4736(4) 0.2
16 −0.4721(2) 0.4
32 −0.4725(4) 0.2
48 −0.4723(8) 0.3
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FIG. 2. Observables for βs = 1.5, in the extraordinary phase.
The ratio ξ/L (a) and ΥL (b) in semilogarithmic scale. (c)
The surface Binder ratio U4 as a function of 1/ lnL. Dotted
lines are a guide to the eye. (d) The surface correlations of
the order parameter for L = 348. When not visible, statistical
error bars are of the order or smaller than the point size.

face, ξ/L ∼ L and Υ ∼ const, in contrast with Figs. 2(a)
and 2(b). These findings support the scenario of a so-
called “extra-ordinary-log” phase, recently put forward
in Ref. [28]. In such a phase, C(x→∞) ∝ ln(x)−q, where
q is a universal exponent determined by some amplitudes
in the normal UC. Fits of C(L/2), C(L/4) to ln(L/l0)−q,
and of χ to L2 ln(L/l0)−q [66], provide an estimate of
q ' 2.1(2) [45]. Moreover, in the “extra-ordinary-log”
phase U4 − 1 ∝ (lnL)−2, (ξ/L)2 ' (α/2) ln(L) and
ΥL ' 2α ln(L), for L→∞, with α = 1/(πq) a uni-
versal RG parameter [66]. Indeed, fits of (ξ/L)2 to
(α/2) lnL+B give α ≈ 0.14, showing however some drift
in the estimate as a function of the minimum lattice size
taken into account. Such a value is nevertheless consis-
tent with the estimate of q reported above, which cor-
responds to α ' 0.15(2). Corresponding fits of LΥ give
less stable results. Judging from the trends in the fit
results, one can conclude α & 0.11, again roughly consis-
tent with previous estimates. We stress that error bars
reported above should be taken with some grain of salt,
since they stem from fits that neglect subleading correc-
tions; these are likely to be important, as illustrated, e.g.,
by other critical models with marginal perturbations [67].
A more quantitative precise assessment of the extraordi-
nary phase is outside the scope of the present work.

Discussion.—In this work we have elucidated the
boundary critical behavior of the classical 3D O(3) UC,
in the presence of a 2D surface. A previous MC study,
assuming the existence of the ordinary UC only, did not
consider RG-invariant observables and reported just a
crossover to the ordinary UC for a strong enough surface
enhancement [17]. A later study observed a flattening
in the curves of the RG-invariant Q11 ≡ 1/U4 for large

enough surface coupling, and interpreted this as the onset
of a BKT-like transition, without further investigations
[18]. Here, by means of large-statistics MC simulations
of an improved model, where leading scaling corrections
are suppressed, and a quantitative FSS analysis, we have
proven the existence of a standard special phase transi-
tion, with an unusually small, but finite, leading relevant
exponent. The extraordinary phase displays slowly de-
caying correlations and, remarkably, a logarithmic viola-
tion of FSS, supportive of the “extra-ordinary-log” sce-
nario of Ref. [28]. A comprehensive theory of such a
rather uncommon FSS violation is presently unavailable;
hopefully, this work will stimulate research in this direc-
tion. These findings also provide an explanation to recent
MC results on the boundary critical behavior of quantum
spin models [19–22, 24–26]. The exponent η‖ found for
some geometrical settings is close to that of the special
transition, Eq. (9), thus suggesting that those quantum
spin models are “accidentally” close to the special transi-
tion. The observed η‖ is also close to a simple evaluation
of the two-loops ε-expansion series [3, 68–70] by setting
ε = 1 and N = 3 [21]. However, the ε-expansion result
for ysp differs significantly from Eq. (6) [45]. Generally,
the realization of the special UC requires a fine-tuning
of boundary couplings, because the corresponding fixed
point is unstable. Nevertheless, the unusually small value
of ysp [Eq. (6)] implies a slow crossover from the special
fixed point when the model is tuned away from the special
transition. In other words, a small ysp results in a (rela-
tively) large region, (βs−βs,c)Lysp = O(1), where FSS is
controlled by the special fixed point and the observed ex-
ponents are close to those of the special UC, without the
need of a fine-tuning. This plausibly explains at least the
results for S = 1 quantum models of Refs. [24, 26], where
a topological θ term is absent. Also, we observe that the
exponent η‖ reported in Refs. [24, 26] deviates for about
15% from η‖ at the special point [Eq. (9)], suggesting
that the models are not exactly at the special transition.
Concerning the S = 1/2 case, we notice that the small
value of ysp implies that the special fixed point is located
at a small, possibly perturbatively accessible, value of
the coupling constant g∗ of the field theory studied in
Ref. [28]. Accordingly, if the special transition occurs in
the presence of VBS order, η‖ is expected to be identi-
cal to the S = 1 case, whereas for a direct magnetic-VBS
transition, as advocated in Ref. [23], nonperturbative cor-
rections to η‖ due to the topological θ term are expected
to be small [28]. This would explain the similarity of the
η‖ exponent in dimerized S = 1/2 models [20–22] with
that of the special transition [Eq. (9)]. Finally, to close
the loop, it would be highly desirable to investigate the
boundary critical behavior of quantum spin models with
a tunable surface coupling, such as those considered in
Refs. [22, 24], so as to detect a surface phase transition
and compare with the present findings.
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Supplemental Material

MONTE CARLO SIMULATIONS

We report here some technical details on the MC sim-
ulations. Each elementary update step consists in:

• a Metropolis sweep over the entire lattice;

• an overrelaxation sweep;

• L Wolff single-cluster updates.

For the Metropolis step, we update each lattice site in
a lexicographic order, and for each site we consider a

proposal to update the α−component φ
(α)
i of the field ~φi

as

φ
(α)
i → φ

(α)
i + r∆, (S.1)

where r ∈ [−1/2, 1/2[ is a uniformly distributed random
number and ∆ is chosen to have an good acceptance.
We fix ∆ = 2, for which we have an acceptance of about
48%. On a given lattice site, we loop over α, to update all
components of ~φi. A Metropolis sweep is followed by an
overrelaxation sweep over the entire lattice, where each
~φi is updated as

~φi → 2
~φi · ~φnn
~φnn · ~φnn

~φnn − ~φi, (S.2)

where ~φnn is the sum of {~φj} which are nearest neigh-

bor of i. The update of Eq. (S.2) is a reflection of ~φi
and it is in principle always accepted, since ~φi · ~φj re-
mains unchanged. However, for a small denominator on
the right-hand side of Eq. (S.2), such an update is po-
tentially numerically unstable. To fix this, we accept the
move only if the variation of ~φi · ~φj does not exceed a
threshold, set to 10−12. For each Wolff single-cluster up-
date [44], we flip the α component of the fields in a cluster
built around a randomly chosen root site, iterating over
all components of ~φ. MC results have been averaged over
independent simulations parallelized with the standard
Message Passing Interface (MPI). Details on the simula-
tions done are reported in Tables S.I and S.II. The inte-
grated autocorrelation time τint measured on the surface
susceptibility, in units of the update steps, is approxi-
mately τ ' 0.5 for the MC runs at the special transition,
i.e., the hybrid algorithm effectively decorrelates the MC
configurations. A larger autocorrelation is instead found
in the extraordinary phase, where it grows from τ ' 1.3
for L = 8, 16 to τ ' 12 for L = 256 and τ ≈ 20 for
L = 384. These estimates of τint have been computed
with the “automatic windowing” algorithm [48–50]. Er-
ror bars are instead estimated with standard Jackknife
techniques [51], without an explicit determination of the
integrated autocorrelation time.

L Steps/103 MPI tasks
16 1000 48
32 1000 48
48 1000 48
64 1000 48
96 400 96
128 200 240
192 50 480

TABLE S.I. Details on the MC simulations at the special
transition. Each entry corresponds to a single data point in
Fig. 1.

L Steps/103 MPI tasks
8 1000 48
16 1000 48
24 1000 48
32 500 48
48 100 48
64 100 48
96 50 48
128 100 48
192 60 48
256 30 192
384 5 480

TABLE S.II. Details on the MC simulations in the extraordi-
nary phase.

The ratio Za/Zp is computed using the boundary-
flip algorithm [61], with the generalization to O(N)-
symmetric models discussed in Ref. [62].

The second-moment surface correlation length on a fi-
nite size L is defined as

ξ =
1

2 sin(π/L)

√
C̃(0)

C̃(2π/L)
− 1, (S.3)

where C̃(p) is the Fourier transform of the surface cor-

relations. In Eq. (S.3) we average C̃(2π/L) over the
two possible minimum momenta ~p = (2π/L, 0) and
~p = (0, 2π/L). We refer to Appendix A of Ref. [72] for a
discussion of the definition of ξ in a finite size.

The helicity modulus Υ describes the response of the
system to a twist in the b.c. [64]. To fix the notation, we
recall that in the model (1) we impose periodic BCs on
the directions 1 and 2, parallel to the surfaces, and open
BCs on the remaining direction 3. To include a torsion
over the components α and β of ~φ, we replace

~φ~x · ~φ~x+ê1 → ~φ~xRα,β(θ)~φ~x+ê1 , ~x = (x1 = x1,f , x2, x3),
(S.4)

where Rα,β(θ) is a rotation matrix that rotates the α

and β components of ~φ by an angle θ. In Eq. (S.4)
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we have slightly generalized the notation, such that
~x = (x1, x2, x3) indicates the lattice site as a three-
dimensional vector, and ê1 is the unit vector in the
1−direction. The torsion of Eq. (S.4) results in a
2−dimensional “defect” plane at x1 = x1,f with size
S = L‖L = L2. The helicity modulus Υ is defined as
[64]

Υ ≡ L

S

∂2F (θ)

∂θ2

∣∣∣
θ=0

. (S.5)

To obtain an easy expression for Υ, it is useful, instead
of having a plane-defect at x1 = x1,f , to smear out the
torsion over all length L orthogonal to the plane. Specif-
ically, by a change of variables in the partition sum (a
series of rotations), one can write an equivalent Hamilto-
nian where now the replacement (S.4) is

~φ~x · ~φ~x+ê1 → ~φ~xRα,β(θ/L)~φ~x+ê1 , ∀~x. (S.6)

Using Eq. (S.6) the helicity modulus Υ is written as [65]

Υ =
1

L3

2

3
〈E1〉 −

1

3

∑
α<β

〈(
T

(α,β)
1

)2 〉 ,

E1 = β
∑

~x∈bulk

~φ~x · ~φ~x+ê1 + βs↓
∑

~x∈surface↓

~φ~x · ~φ~x+ê1

+ βs↑
∑

~x∈surface↑

~φ~x · ~φ~x+ê1 ,

T
(α,β)
1 = β

∑
~x∈bulk

(
φ
(α)
~x φ

(β)
~x+ê1

− φ(β)~x φ
(α)
~x+ê1

)
+ βs↓

∑
~x∈surface↓

(
φ
(α)
~x φ

(β)
~x+ê1

− φ(β)~x φ
(α)
~x+ê1

)
+ βs↑

∑
~x∈surface↑

(
φ
(α)
~x φ

(β)
~x+ê1

− φ(β)~x φ
(α)
~x+ê1

)
,

(S.7)

where, to obtain an improved estimator, we have aver-
aged over the N(N−1)/2 = 3 pairs of components (α, β)
where the torsion is applied. A further improved estima-
tor of Υ is obtained by averaging over the directions 1

FIG. S.1. Same as Fig. 1 over a larger interval in βs and for
lattice sizes L = 8, 16, 32.

and 2 for the torsion:

Υ =
1

2L3

2

3
〈E〉 −

∑
ê=ê1,ê2

1

3

∑
α<β

〈
(
T

(α,β)
ê

)2
〉

 ,
E ≡ β

∑
~x∈bulk
ê=ê1,ê2

~φ~x · ~φ~x+ê + βs↓
∑

~x∈surface↓
ê=ê1,ê2

~φ~x · ~φ~x+ê

+ βs↑
∑

~x∈surface↑
ê=ê1,ê2

~φ~x · ~φ~x+ê,

T
(α,β)
ê ≡ β

∑
~x∈bulk

(
φ
(α)
~x φ

(β)
~x+ê − φ

(β)
~x φ

(α)
~x+ê

)
+ βs↓

∑
~x∈surface↓

(
φ
(α)
~x φ

(β)
~x+ê − φ

(β)
~x φ

(α)
~x+ê

)
+ βs↑

∑
~x∈surface↑

(
φ
(α)
~x φ

(β)
~x+ê − φ

(β)
~x φ

(α)
~x+ê

)
(S.8)

In this work we have used the improved expression of
Eq. (S.8) and checked that it is consistent with Eq. (S.7).

Finally, to validate the program, we have performed a
series of tests, the most crucial of which are as follows.
By setting periodic BCs, we have checked the MC re-
sults for a small value of β with the high-temperature
series of Ref. [31]. Also, for periodic BCs we have repro-
duced the universal values of the RG-invariants reported
in Ref. [32]. Furthermore, we have set β = 0 in the Hamil-
tonian (1) and computed the surface observables which
correspond to 2 independent bidimensional surfaces. The
results have been successfully compared with MC simula-
tions of the same model in two dimensions, and periodic
BCs.

BINDER RATIO AT THE SPECIAL
TRANSITION

In Fig. S.1 we show U4 over an interval in βs larger
than that of Fig. 1, exhibiting a clear crossing between
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Lmin U∗4 βs,c ysp χ2/d.o.f.
16 1.06386(5) 1.16939(6) 0.28(2) 52.1
32 1.06463(2) 1.16847(3) 0.40(2) 4.1
48 1.06481(3) 1.16827(3) 0.41(3) 1.0
64 1.06487(4) 1.16821(5) 0.40(4) 1.1
16 1.06385(5) 1.16941(6) 0.27(2) 52.1
32 1.06463(2) 1.16847(3) 0.40(2) 4.1

TABLE S.III. Fits of U4 to Eq. (4) at the special transition, with m = 2, neglecting scaling corrections (above), and with m = 1
including analytical scaling corrections (below).

Lmin U∗4 βs,c ysp ω χ2/d.o.f.
16 1.0651(2) 1.1680(1) 0.40(2) 1.5(2) 0.8
32 1.0650(5) 1.1681(2) 0.39(2) 2.4(1.7) 0.8

TABLE S.IV. Fits of U4 to Eq. (4) at the special transition, with m = 1 and a free parameter ω.

lattices L = 8, 16, and 32.
In Table S.III we report additional fits to U4 at the

special transition. Fits to the right-hand side of Eq. (4)
with m = 2 and neglecting scaling corrections give results
almost identical to those of Table I, thereby confirming
that m = 1 is an adequate approximation. To study the
influence of analytical scaling corrections, we substitute
(βs−βs,c)→ (βs−βs,c)+B(βs−βs,c)2 in Eq. (4) and fit
the data with m = 1. The results shown in Table S.III
are identical to those in Table I. Furthermore, for these
fits we find that B = 0 within error bars, hence analyti-
cal scaling corrections do not play a role for the MC data
considered here. Finally, we consider fits to Eq. (4), leav-
ing ω as a free parameter. Corresponding results shown
in Table S.IV support a value for ω compatible with 1.

ADDITIONAL ANALYSIS AT FIXED U4 AT THE
SPECIAL TRANSITION

We consider here the impact on the fitted critical ex-
ponents of varying the fixed value of U∗4 = 1.0652(4)
between one error bar. In Tables S.V and S.VI we re-
port fits for ysp and η‖, where we fix U4 = 1.0648 and
U4 = 1.0656.

FITS OF βs,c

FSS at fixed RG-invariant R = Rf allows to determine
the value of the critical surface coupling βs,c at the special
transition. For each lattice size L, the FSS analysis re-

sults in a pseudocritical coupling β
(f)
s,c (L) that converges

to βs,c for L→∞ as

β(f)
s,c (L) = βs,c +AL−e, (S.9)

where e = ysp for a generic fixed value Rf , and e = ysp+ω
if Rf corresponds to the critical one [56, 57]. In Table

S.VII we report the results of fit to Eq. (S.9). We con-
sider a variation of U∗4 = 1.0652(4) between one error bar.

Fits of β
(f)
s,c (L) at the lower bound of U∗4 , i.e., at fixed

U4 = 1.0648, deliver a large χ2/d.o.f.. Furthermore,
for Lmin = 32 the fit is unstable. For the central value
U∗4 = 1.0652, as well as for the upper bound U∗4 = 1.0656
fits are overall stable, and with a good χ2/d.o.f.. Nev-
ertheless, there is a small deviation between the fitted
values of βs,c at U∗4 = 1.0652 and at U∗4 = 1.0656. There-
fore, the final estimate of βs,c is chosen to be compatible
with both these fits.

FITS IN THE EXTRAORDINARY PHASE

In Table S.VIII we report fit results of the surface sus-
ceptibility χs to AL2 ln(L/l0)−q, and of the correlations
C(L/2), C(L/4) to A ln(L/l0)−q, leaving A, l0, and q as
free parameters; in practice, to obtain fit stability, we
employ as Ansatz AL2(ln(L) + c)−q and A(ln(L) + c)−q.
Lmin is the minimum lattice size taken into account.

In Table S.IX we report fit results of (ξ/L)2 to
(α/2) ln(L) + B and of ΥL to 2α ln(L) + B [66], leav-
ing α and B as free parameters.

COMPARISON WITH FIELD-THEORY RESULTS

For the O(N) UC, the two-loops ε−expansion series for
η‖ at the special transition and the crossover exponent
Φ ≡ yspν are [3, 68]

η‖ = −n+ 2

n+ 8
ε+

5(4− n)(2 + n)

2(8 + n)3
ε2 +O(ε)3, (S.10)
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U4 = 1.0648 U4 = 1.0656
Obs. Lmin ysp χ2/d.o.f. ysp χ2/d.o.f.

16 0.3949(7) 38.5 0.3955(7) 37.0
32 0.380(2) 4.7 0.381(1) 4.6

dU4/dβs 48 0.373(2) 0.2 0.374(2) 0.2
64 0.372(3) 0.2 0.373(3) 0.2
96 0.369(6) 0.03 0.370(6) 0.03

16 0.364(3) 0.9 0.365(3) 0.8
32 0.361(5) 1.0 0.363(5) 1.0

d(Za/Zp)/dβs 48 0.363(9) 1.3 0.365(9) 1.3
64 0.34(2) 0.02 0.35(2) 0.02
96 0.34(3) 0.02 0.35(3) 0.05
16 0.361(3) 0.4 0.362(3) 0.4

dU4/dβs 32 0.357(6) 0.3 0.357(6) 0.3
48 0.365(11) 0.09 0.367(11) 0.06

16 0.36(1) 1.0 0.36(1) 1.0
d(Za/Zp)/dβs 32 0.35(2) 1.3 0.36(2) 1.3

48 0.29(4) 0.3 0.29(4) 0.4

TABLE S.V. Same as Table II for fixed U∗4 = 1.0648 and U∗4 = 1.0656.

U4 = 1.0648 U4 = 1.0656
Lmin η‖ χ2/d.o.f. η‖ χ2/d.o.f.
16 −0.47805(7) 153.6 −0.47714(7) 139.9
32 −0.4757(1) 13.1 −0.4749(1) 11.4
48 −0.4750(2) 3.4 −0.4742(2) 2.8
64 −0.4746(2) 1.5 −0.4738(3) 1.3
96 −0.4739(5) 0.1 −0.4733(5) 0.2
16 −0.4725(2) 0.4 −0.4718(2) 0.4
32 −0.4728(4) 0.2 −0.4721(5) 0.2
48 −0.4726(8) 0.3 −0.4720(9) 0.3

TABLE S.VI. Same as Table III for fixed U∗4 = 1.0648 and U∗4 = 1.0656.

U4 = 1.0648 U4 = 1.0652 U4 = 1.0656
Lmin βs,c χ2/d.o.f. βs,c χ2/d.o.f. βs,c χ2/d.o.f.
16 1.16828(2) 3.3 1.16790(2) 0.6 1.16759(3) 0.7
32 1.16790(5) 0.8 1.16763(5) 0.5

TABLE S.VII. Fits of the pseudocritical β
(f)
s,c (L) to Eq. (S.9). The fixed-value of U∗4 = 1.0652(4) is varied within one error bar.

Lmin χs C(L/2) C(L/4)
q χ2/d.o.f. q χ2/d.o.f. q χ2/d.o.f.

8 2.254(4) 2.6 2.049(4) 37.7 2.036(2) 161.7
16 2.243(6) 2.3 2.145(7) 1.9 2.149(4) 8.3
24 2.224(10) 1.7 2.16(1) 2.0 2.188(7) 1.9
32 2.22(2) 2.1 2.17(2) 2.2 2.21(2) 1.5
48 2.18(4) 2.1 2.12(4) 2.3 2.19(3) 1.6
64 2.10(5) 1.8 2.03(7) 2.1 2.15(4) 1.5
96 2.1(2) 2.6 2.1(2) 3.1 2.18(8) 2.2
128 2.6(3) 0.3 2.7(4) 0.1 2.4(2) 0.2

TABLE S.VIII. Fits for q in the extraordinary phase, as extracted from the surface susceptibility χs and the surface correlations
C(L/2) and C(L/4). Lmin is the minimum lattice size taken into account.
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Obs. Lmin α χ2/d.o.f.
8 0.0795(1) 4406.0
16 0.1103(2) 474.6
24 0.1228(3) 100.8
32 0.1291(5) 30.0

(ξ/L)2 48 0.1355(7) 7.1
64 0.1384(9) 2.6
96 0.142(2) 0.4
128 0.142(2) 0.4
192 0.145(5) 0.2
8 0.0773(1) 110.7
16 0.0852(3) 9.9
24 0.0897(7) 1.8

ΥL 32 0.091(1) 1.9
48 0.094(2) 1.4
64 0.096(3) 1.5
96 0.104(5) 0.8
128 0.111(9) 0.3

TABLE S.IX. Fits of α as extracted from (ξ/L)2 and ΥL, as
a function of the minimum lattice size taken into account.

Φ =
1

2
− N + 2

4(N + 8)
ε

+
N + 2

8(N + 8)3
[
8π2(N + 8)− (N2 + 35N + 156)

]
ε2

+O(ε)3.

(S.11)

Using the well-known ε−expansion result of 1/ν [69, 70]

1/ν = 2− N + 2

N + 8
ε− (N + 2)(13N + 44)

2(N + 8)3
ε2 +O(ε)3,

(S.12)
the ε−expansion series for ysp is

ysp = 1− N + 2

N + 8
ε+

(N + 2)(32 + 4N)π2 − 19N − 92

2(N + 8)3
ε2

+O(ε)3.

(S.13)

Setting N = 3 in Eq. (S.10) and Eq. (S.13), a simple
summation to ε = 1 gives η‖ = −0.445, ysp = 1.081. Em-
ploying a [1/1] Padé resummation, we find η‖ = −0.445,
ysp = 0.791. Alternatively, one can analyze the series of
Φ, and compute ysp = Φ/ν using ν = 0.7112 [31]. In this
case, we obtain ysp = 0.938 for a direct summation, and
ysp = 0.657 for a [1/1] Padé approximation.
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