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Abstract. In this paper, we explore the reduction of functionality in a complex

system as a consequence of cumulative random damage and imperfect reparation, a

phenomenon modeled as a dynamical process on networks. We analyze the global

characteristics of the diffusive movement of random walkers on networks where the

walkers hop considering the capacity of transport of each link. The links are susceptible

to damage that generates bias and aging. We describe the algorithm for the generation

of damage and the bias in the transport producing complex eigenvalues of the transition

matrix that defines the random walker for different types of graphs, including regular,

deterministic, and random networks. The evolution of the asymmetry of the transport

is quantified with local information in the links and further with non-local information

associated with the transport on a global scale such as the matrix of the mean first

passage times and the fractional Laplacian matrix. Our findings suggest that systems

with greater complexity live longer.
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1. Introduction

The study of dynamical processes taking place on networks has a significant impact in

different fields of science and engineering, leading to important applications in diverse

contexts [1]. In particular, the dynamics of a random walker that hops visiting the nodes

of the network following different strategies is an important issue due to connections

with a vast field of interdisciplinary topics like the ranking of the Internet [2], transport

on networks [3], the modeling of human mobility in urban settlements [4], chemical

reactions [5], digital image processing [6], algorithms for extracting useful information

from data [7, 8], epidemic spreading [9, 10, 11], and the huge field of continuous-

time random walks including unbiased and biased anomalous transport and fractional

dynamics [12, 13, 14, 15, 16, 17] (and many others) just to mention a few examples

related to the study of complex systems.

One of the main features observed in many “complex systems” at different scales such

as living organisms, complex materials, social systems, companies, and civilizations, is

that these systems exhibit aging and a limited lifespan associated with damage impact

and degradation of the functionality. In many cases, these systems have to maintain

a global function (for example transport) and in order to “survive”, the system needs

continuously respond to damage impact with “reparation processes” maintaining both

immediate and long-term survival. The reparation process in a complex system is

performed under a time constraint that the functionality of the entire system during the

reparation has to be maintained. Due to this time constraint of the reparation process,

when the damage impact is “too severe”, the system is not able to re-establish the

original undamaged structure but generates a repaired structure with altered properties

a so-called “misrepair” [18]. This mechanism can be considered as a compromise

between two needs: Reparation as good as possible and as fast as necessary. In many

cases, the alteration in a misrepaired structure compared to the initial undamaged

structure may be very ‘small’ and the misrepair may be even ‘close’ to perfect repair.

Therefore, the mechanism of misrepair guarantees immediate survival as a result of

a reparation process; however, the price to be paid for this fast reparation process

is a misrepaired altered structure with reduced functionality compared to the initial

undamaged structure [19].

Despite of its importance for understanding aging as a dynamical process in

complex systems, the modeling of aging associated with the accumulation of damage

(‘misrepairs’) has been less explored. Recent advances in this direction support the

idea that aging occurs as an emergent phenomenon in many biological structures and

systems [20, 21, 22, 23, 24, 25]. In this contribution, we study the aging process of a

complex system as a consequence of a preferential accumulation of damage. We model

this system as a network with weights that evolve in time due to damage generating

bias on the links and the global transport of this structure. In this case, aging is a

consequence of the reduction of the system’s capacity to communicate within the whole
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structure, modeled by ergodic random walks that navigate through the links of the

network. In the initial configuration of the system, we assume the network to be a

“perfect structure” described by a connected network gradually altered by progressing

accumulation of damage. We analyze the evolution of asymmetry and aging for networks

with different topologies allowing us to distinguish their complexities qualitatively by

considering their connectivity and robustness to maintain a specific function.

2. Transport on networks with cumulative damage

In this section, we present a phenomenological model for aging processes in a complex

system represented by a network. The model relies on three characteristics [22]: 1) We

consider a network for which the nodes and connections contribute collectively to its

global functionality which includes transport processes [26, 27], synchronization [28],

diffusion [29, 30], among others [1]. The capacity of this structure to perform these

functions is measured by a global quantity in a determined configuration of the system.

2) The entire system is subjected to stochastic damage that reduces the functionality of

the links affecting the global activity, this detriment is cumulative. 3) We compare the

global functionality of the system with the initial state (with optimal conditions and

no damage). The definition of a threshold value for the functionality required for the

system to operate allows determining if the system is alive.

The features 1)-3) may exist in different complex systems. The gradual deterioration

of the global functionality resulting from the accumulation of misrepairs in a complex

system is the subject of the model to be developed and explored in the present section.

The model incorporates the observed phenomena of self-amplification in the occurrence

of misrepairs, i.e. a structure that is already altered by misrepairs is more likely to

‘attract’ further misrepairs [31]. We also account for the observation that there are

two temporal scales. One is the “fast” time scale of functional operation; for example,

the temporal evolution of a random walk. The second “slow” time scale is where the

dynamics of accumulation of misrepairs and aging take place. These assumptions reflect

the observed fact that metabolic functions in a living organism may take some seconds

to a few hours, whereas aging changes in living beings may take years.

2.1. Network structure and cumulative damage

For the initial configuration, we consider undirected connected networks with N nodes

i = 1, . . . , N described by an adjacency matrix A with elements Aij = Aji = 1 if there

is an edge between the nodes i and j and Aij = 0 otherwise; in particular, Aii = 0

to avoid edges connecting a node with itself. In this structure, we denote the set of

nodes as V and the set of edges (links) as E with elements (i, j). For each pair in E ,

the corresponding element of the adjacency matrix is non-null. In the following the link

from i to j denoted as (i, j) is independent from (j, i), and we denote as |E| the total

number of different edges in the network.
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Additionally to the network structure, the global state of the system at time T =

0, 1, 2, . . . is characterized by a N×N matrix of weights Ω(T ) with elements Ωij(T ) ≥ 0

and Ωii(T ) = 0 which describe weighted connections between the nodes. The matrix

Ω(T ) contains information of the state of the edges and in general is not symmetric.

In order to capture in the model the damage impact affecting the complex system, we

introduce the variable T as the measure of the total number of damage hits in the links

of the network. The variable T can also be conceived as a time measure by assuming

a constant damage impact rate, i.e. successive damage events occur with a constant

difference of times ∆T = 1. We introduce for each link (i, j) ∈ E a stochastic integer

variable hij(T ) where hij(T )− 1 counts the number of random faults that exist in this

link at time T . The values hij(T ) for all the edges are numbers that evolve randomly,

and a new fault in the link (i, j) appears at time T with a probability πij(T ) which is

given by

πij(T ) =
hij(T − 1)

∑

(l,m)∈E hlm(T − 1)
(i, j) ∈ E , (1)

for T = 1, 2, . . . with the initial condition hij(0) = 1, i.e. no faults exist for all the edges

at T = 0. Equation (1) indicates the probability for the event that at time T the number

of faults hij(T ) = hij(T − 1) + 1 are increased by one. In our analysis, the damage is

distributed without maintaining the symmetry of the initial undirected network. In this

manner, in the general case hij(T ) is independent of the value hji(T ) and also πij(T ) from

πji(T ) which is generating a biased network. With Eq. (1) at T = 1 the first hit (fault)

is randomly generated for any selected link (i, j) with equal probability πij(1) =
1
|E|
. The

occurrence of the second fault at T = 2 depends on the previous configuration and so on.

An asymptotic analysis of the time-evolution of the fault number distribution resulting

from Eq. (1) shows that a power-law scaling with features of a stochastic fractal emerge

(See Eq. (A.11) in Appendix A and consult also Ref. [22]). An essential feature of the

probabilities in Eq. (1) is that they produce preferential damage if a link has already

suffered damage in the past. A link has a higher probability to get a fault with respect

to a link never being damaged. Such preferential random processes have been explored

in different contexts in science (see Ref. [32]), being a key element in our model that

generates complexity in the distribution of damage reflected by asymptotically emerging

power-law and fractal features (See Appendix A).

The choice of generating law of faults in Eq. (1) is based on the observation of aging

changes in living beings. The development of aging changes such as age spots is self-

amplifying and inhomogeneous. Age spots develop in this way because misrepaired

structures have increased damage-sensitivity and reduced reparation-efficiency [19, 31].

Now, we aim to describe how the structure reacts to the damage hits occurring

stochastically to the edges. We describe the effects of the damage by using the

information in the matrix of weights Ω(T ). In terms of the values hij(T ), the matrix

Ω(T ) defines the global state of the network containing the complete information on



Random walks on networks with preferential cumulative damage 5

the network topology at time T . Its matrix elements

Ωij(T ) = (hij(T ))
−αAij (2)

contain the local information on the damaged state of edge (i, j) and α ≥ 0 is a real-

valued parameter that quantifies the effect of the damage in each link. We call α

the misrepair parameter since it describes the capacity of the system to repair damage

in the links: In the limit α → 0 the system responds with perfect reparation with

Ωij(T ) → Aij as in a perfect undamaged structure, and the effect of the stochastically

generated faults is null. In contrast, in the limit α → ∞, a hit in a link is equivalent

to its removal from the network. This limit corresponds to a complex system without

repair capacity. The fault accumulation dynamics described by Eq. (1) together with

the ‘misrepair equation’ (2) is therefore able to mimic the phenomena related to aging

processes observed in living beings [18, 33]. In Fig. 1, we illustrate the algorithm for the

generation of cumulative damage in a network with N = 10 nodes formed by a comb-like

structure with a ring. For this directed graph, we generate random hits in the links at

times T = 1, 2, . . . , 100. The probability to generate a hit at time T in the directed edge

(i, j) is proportional to the previous configuration given by hij(T − 1) in Eq. (1). In

this way, using Monte Carlo simulations, we depict the damage in two realizations. The

values of hij in the edges are represented with colors codified in the colorbar whereas

the respective widths reflect their capacity of transport given by Ωij(T ) in Eq. (2) with

the parameter α = 2. The results in the final configuration at T = 100 give us an idea

of the variety of structures how the damage can be distributed in the network affecting

the nodes in the periphery or in the central ring.

2.2. Master equation and mean first passage times

Let us now come back to the general algorithm for cumulative damage described before,

at a completely different scale of times (significantly less than the characteristic times

for the damage) takes place the movement of a random walker in the network with

discrete steps ∆t at times t = 0,∆t, 2∆t, . . .. For each state of the network’s weights,

the random walker can move visiting nodes and is capable to visit all the nodes of the

structure that changes very slowly with time T . In a determined configuration at time

T , the transition probability matrix W(T ) describing the random walker is defined by

the elements wi→j(T ) with the probability to pass from node i to node j

wi→j(T ) =
Ωij(T )

∑N

ℓ=1Ωiℓ(T )
. (3)

We assume a Markovian time-discrete random walker that performs at any time

increment ∆t a random step from one node to another. This process is defined by

the master equation [3, 26, 34]

Pij(t+∆t, T ) =

N
∑

ℓ=1

Piℓ(t, T )wℓ→j(T ) (4)
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Figure 1: (Color online) Monte Carlo simulation of the reduction of functionality in a

network with random faults in the links. We generate a random hit in the edges at times

T = 1, 2, . . . and in each line, we have a value hij that depends on T . At each time T , the

value hij−1 gives the number of random hits that the link (i, j) has suffered (considering

the initial values hij = 1 at T = 0). The probability to have a new fault in one of the

edges is determined by the Eq. (1). By using this algorithm, we implement Monte Carlo

simulations to generate random faults in the graph described at time T = 0. The values

in the colorbar indicate hij for all the links, we use the value α = 2 in Eq. (2). We

present the configurations of the system at times T = 0, 25, 50, 100 for two different

realizations of this process.

valid for t ≪ ∆T = 1. In this master equation Pij(t, T ) indicates the probability that

the walker that starts its walk at node i at t = 0 occupies node j at the n-th time step

t = n∆t.

The one-step transition matrix in Eq. (3) is constructed such that the walker has to

change the node at any step (i.e wi→i(T ) = 0). The canonical representation of the

(t = n∆t) of the n-step transition matrix is

P(n∆t, T ) = (W(T ))n =

N
∑

m=1

(λm(T ))
n|φm(T )〉〈φ̄m(T )|. (5)

Where we use Dirac’s (bra-ket) notation. In Eq. (5), |φm(T )〉, 〈φ̄m(T )| denote,

respectively, the right and left eigenvectors of the transition matrix with the respective

eigenvalues 0 ≤ |λm(T )| ≤ 1. The walk which we assume to take place on a (strongly
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connected) directed weighted and finite network is ergodic with the unique eigenvalue

λ1(T ) = 1∀T reflecting row stochasticity (with corresponding right-eigenvector having

identical components) of the transition matrix
∑N

j=1wi→j(T ) = 1 and |λm(T )| ≤ 1

maintained ∀T for m = 1, . . . , N (see Ref. [30] for a detailed analysis of undirected

networks, and Refs. [35, 36] for directed networks). The stationary distribution

P
(∞)
j (T ) ≡ limt→∞

1
t

∑t

t′=0 Pij(t
′, T ), that gives the probability to find the random

walker at the node j in the limit t → ∞, is given by [27, 30, 37]

P
(∞)
j (T ) = 〈i|φ1(T )〉〈φ̄1(T )|j〉 (6)

where, since 〈i|φ1(T )〉 = constant (independent of i), the stationary distribution

P
(∞)
j (T ) does not depend on the initial condition.

Additionally, we have the mean first passage time 〈Tij〉 that gives the average number

of time steps (in units of ∆t) the walker needs to travel from node i to node j in the

form (see Refs. [30, 35, 37, 38] for a complete derivation)

〈Tij(T )〉 =
1

P
(∞)
j (T )

[

δij +
N
∑

ℓ=2

〈j|φℓ(T )〉
〈

φ̄ℓ(T )|j
〉

− 〈i|φℓ(T )〉
〈

φ̄ℓ(T )|j
〉

1− λℓ(T )

]

. (7)

In this relation for i = j the second term and for j 6= i the first term vanishes. For i = j

this relation gives the mean first return time or mean recurrence time [30, 39]

〈Tjj(T )〉 =
1

〈j|φ1(T )〉
〈

φ̄1(T )|j
〉 . (8)

This is the Kac-formula relating the mean recurrence time with the inverse of the

stationary distribution P
(∞)
j (T ).

The results in Eqs. (5) and (7) show that the eigenvalues of the transition matrix

W(T ) at different times T contain important information of the diffusive transport of

each configuration at times T = 0, 1, . . .. Also, due to the asymmetry in some edges, in

the general case, the eigenvalues λj(T ) can take complex values. However, the process of

cumulative damage for α finite maintains the ergodicity of the random walker described

by W(T ) since the initial structure is connected and none of the edges is completely

removed with the hits at different times (for a detailed discussion about ergodicity on

directed networks see Ref. [35] and references therein) thus the mean first passage times

in Eqs. (7)-(8) are well defined. The relation between the eigenvalues of the transition

matrix and node or edge removal strategies in various dynamical processes on networks

has been explored numerically by Restrepo et. al. in Refs. [40, 41].

In the following part, we explore the effects of cumulative damage in the network

topologies illustrated in Fig. 2. In Fig. 3 we depict the eigenvalues of the transition

matrix W(T ) for different initial networks with N = 50 nodes and two realizations

of the random cumulative damage algorithm. Figure 3(a) displays the results for a

wheel graph formed by a single node connected to all nodes of a cycle (with 49 nodes).

In Fig. 3(b) we show the eigenvalues for a barbell graph, i.e., a network with two

well-defined communities composed of two fully connected networks (with 20 nodes
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Figure 2: Different types of networks with N = 50 nodes.

each) connected by a linear graph (with 10 nodes) [42]. Conversely, in Figs. 3(c)-(d)

the initial structures without damage are random networks obtained with the Watts-

Strogatz algorithm [43] generated from a ring with nearest-neighbor and next-nearest-

neighbor links and a rewiring probability of p = 0.05 and the Barabási-Albert algorithm,

generated with the preferential attachment rule [44].

The results in Fig. 3 show the evolution of the eigenvalues with the damage at times

T = 1, 2, . . . , 100000, the initial eigenvalues are real and are represented with circles in

each case. The damage in each directed edge induce asymmetry and the bias generated

produces complex eigenvalues depicted with different colors. Here it is worth mentioning

that we apply the same approach to several types of trees where we found that in this

type of graph the eigenvalues are real. This is an important case for which we do not have

an analytical result but we hope this leads to future research in the spectral properties

of directed weighted trees. These findings motivate the introduction of a measure to

quantify the evolution of bias generated with the accumulation of damage in different

networks. We discuss this point in the following part.

3. Quantifying the evolution of bias

In this section we discuss different ways to quantify the asymmetry in the diffusive

transport generated by the systematic accumulation of damage in the links. We

introduce local measures considering the elements of the transition matrix W(T ) and

non-local quantities that include global information of the dynamics.
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Figure 3: Eigenvalues of the transition matrices W(T ) for networks with N = 50 nodes

with cumulative damage in the edges. We show the results for the set of eigenvalues

λ(T ) in the complex plane for different times T = 0, 1, . . . , 105 codified in the colorbar.

The initial structures without damage are the undirected networks: (a) wheel graph,

(b) barbell graph, (c) random network generated with the Watts-Strogatz algorithm,

and (d) a Barabási-Albert random network. For each case we depict two realizations of

the cumulative damage with α = 1 in Eq. (2), we represent with circles the eigenvalues

of the transition matrix without damage W(0).



Random walks on networks with preferential cumulative damage 10

3.1. Local information

3.1.1. SW (T ). The first measure implemented to characterize the asymmetry of the

diffusive transport at time T is the direct comparison of the elements (i, j) and (j, i) of

the transition matrix W(T ). We use the quantity

SW (T ) = 1−
2

N(N − 1)− 2M

N
∑

i=1

N
∑

j=i+1

|wi→j(T )− wj→i(T )|

wi→j(T ) + wj→i(T )
, (9)

introduced in Ref. [45] to quantify the asymmetry in the connectivity of neural net-

works. In Eq. (9) wi→j(T ) represents the elements of the N×N transition matrixW(T )

and M is the number of times for which both wi→j(T ) and wj→i(T ) are zero, these cases

are not included in the sums in Eq. (9). If SW (T ) is close to 1, the probabilities wi→j(T )

and wj→i(T ) are close and the random walker has similar probabilities to go forward and

backward in each connection. Conversely, a value close to 0 shows that those weights and

probabilities are quite different. Therefore, this parameter allows us to quantify the local

bias of the transition matrix in each configuration of the process at times T = 0, 1, 2, . . ..

3.1.2. Random walk entropy. The asymmetry of the transport can be measured

indirectly from an information perspective. In this way, the information to define the

random walk strategy in the structure with damage evolves with T . We use the local

information [46]

H(T ) = −
N
∑

i,j=1

P
(∞)
i (T )wi→j(T ) log [wi→j(T )] , (10)

where P
(∞)
i (T ) ≡ 〈i|φ1(T )〉〈φ̄1(T )|i〉 is the i-th component of the stationary distribution.

In this way, we define the measure SEntropy(T ) as

SEntropy(T ) =
H(T )

H(0)
(11)

that gives the ratio between entropy H(T ) at time T with the initial value H(0)

calculated from the structure without damage.

The value H(T ) measures the minimum amount of information necessary to carry out

the diffusion process in the network and depends on the topology and dynamics [47].

Through the maximization of the entropy rate, it is possible to design optimal diffusion

processes and define random walkers that are maximally dispersing, which means that

they can perform every possible walk with the same probability in the graph. Normal

random walks on regular lattices are a particular case of maximum entropy rate, since

their nodes have the same degree all the trajectories of a given length are equiprobable

[48], [49]. Thus, it makes sense to propose the entropy rate as a measure of asymmetry,

since aging is changing the probabilities of certain paths in the graph, also as the damage

increases, some paths are less probable than others so the information to describe the
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random walk strategy decreases with T and it is more difficult for the random walker

to reach all nodes in the network. In our definition in Eq. (11) we are interested in the

evolution of SEntropy(T ) with the initial condition SEntropy(0) = 1.

3.2. Global information

3.2.1. SMFPT. The local measure SW (T ) in Eq. (9) only considers the elements of the

transition matrix; however, relevant information of the process is included in all the

paths connecting two nodes on the network. In this way we modify Eq. (9) to define

SMFPT(T ) = 1−
2

N(N − 1)

N
∑

i=1

N
∑

j=i+1

|〈Tij(T )〉 − 〈Tji(T )〉|

〈Tij(T )〉+ 〈Tji(T )〉
, (12)

where the elements wi→j(T ) were replaced by the mean first passage time 〈Tij(T )〉 in Eq.

(7), that gives the average number of steps that a discrete-time random walker defined

by W(T ) needs to move from node i and reach j for the first time. In contrast with the

definition in Eq. (9), now we use the value M = 0 since from Eq. (7), 〈Tij(T )〉 > 0 as

a consequence of the ergodicity of the network at any finite T .

3.2.2. Sγ. A different way to have access to non-local information in diffusive transport

is through the fractional Laplacian Lγ of a graph [30, 50, 51, 52], a formalism explored

for directed networks in Refs. [35, 53]. In terms of the matrix of weights Ωij(T ) > 0,

the Laplacian matrix L with elements i, j is given by [35]

Lij(T ) = k
(out)
i (T )δij − Ωij(T ) (13)

with the out-degree k
(out)
i (T ) =

∑N

ℓ=1Ωiℓ(T ). The fractional Laplacian Lγ with

0 < γ < 1 satisfies the following conditions [30, 35]: (i) For the fractional out-degree,

we have

k
(γ)
i ≡ (Lγ)ii = −

∑

m6=i

(Lγ)im. (14)

(ii) The diagonal elements of Lγ are positive real values; in this way k
(γ)
i > 0 for

i = 1, 2, . . . , N and, (iii) The non-diagonal elements of Lγ are real values satisfying

(Lγ)ij < 0 for i 6= j (γ ∈ (0, 1)) in ergodic networks (and (Lγ)ij ≤ 0 in non-ergodic

cases, see Ref. [35] for a discussion of ergodicity in directed networks).

The characteristics of the fractional Laplacian matrix allow to define the fractional

diffusion on directed weighted networks as a discrete-time Markovian process determined

by a transition matrix W(γ)(T ) with elements w
(γ)
i→j(T ) representing the probability to

hop from i to j given by [35]

w
(γ)
i→j(T ) = δij −

(Lγ)ij(T )

(Lγ)ii(T )
0 < γ ≤ 1, (15)

these transition probabilities combine the information of all possible paths connecting

nodes i and j on the network [35]. We can use this property to quantify the asymmetry
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of the transport generated with the introduction of damage; in this way, we apply Eq.

(9) for W(γ)(T )

Sγ(T ) = 1−
2

N(N − 1)

N
∑

i=1

N
∑

j=i+1

|w(γ)
i→j(T )− w

(γ)
j→i(T )|

w
(γ)
i→j(T ) + w

(γ)
j→i(T )

(16)

valid for 0 < γ < 1. In the case with γ = 1, the fractional dynamics approach recovers

the normal random walk with local displacements; however, Eq. (16) only applies for

0 < γ < 1, where for this interval in ergodic networks all the non-diagonal elements of

W(γ)(T ) are non-null [35, 36].

3.3. Asymmetry and cumulative damage

Once defined four measures to quantify the asymmetry on transport on networks, we

explore the evolution of these quantities with time T for structures with N = 50 nodes.

We analyze three deterministic networks: a ring, a wheel and a barbell graph, and

three random structures generated with the Watts-Strogatz (WS), Erdös-Rényi (ER),

Barabási-Albert (BA) algorithms. In Fig. 4 we depict the evolution of S(T ) that denotes

SW (T ), SEntropy(T ), SMFPT(T ), and Sγ(T ) considering a fractional non-locality with

γ = 0.5. The results were obtained from Monte Carlo simulations of the accumulation

of damage algorithm with a misrepair parameter α = 1 in Eq. (2). For each time T

we calculate the values of S(T ), we consider 100 realizations to obtain the ensemble

average of each S(T ).

In Fig. 4(a) we analyze a ring, for this regular network at T = 0 all the local and non-

local measures register S(0) = 1, this value occurs when the network has not suffered

any damage, therefore it is the largest value that this parameter can reach. With the

action of damage at T = 1, 2, . . . , 1000 the ensemble average of all the S(T ) analyzed

decrease with T . However, in the results for all the realizations, we see that the ensemble

average of each measure presents high dispersion, revealing the susceptibility of the ring

to damage, the dispersion is huge in the SMFPT(T ), and Sγ(T ) showing how the damage

in a single link generates asymmetry that affects the transport on the whole ring. In

Fig. 4(b) we depict the results for a wheel graph. In this case, at T = 0, the local

measure SW (0) = 0.5577 due to an initial bias in the transition matrix W due to its

normalization, an effect that is reduced in non-local measures SMFPT(0) = 0.9627, and

Sγ(0) = 0.9755. We see in the ensemble average the reduction of S(T ) with the damage;

but, the values in the realizations are less dispersed in comparison to the results obtained

for the ring. This reduced dispersion shows the resistance of the structure at local and

global scales, a consequence of the existence of multiple paths that can connect two nodes

on the network. On the other hand, the barbell graph analyzed in Fig. 4(c) combines

two fully connected networks with 20 nodes with a linear graph with 10 nodes, each two

fully connected subgraphs are resistant to damage due to the diverse alternative routes

to defective links. We see that the local measures decaying slowly with T and with

low dispersion. However, at a global scale, the nodes that form the linear graph make
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Figure 4: Average evolution of asymmetry generated by cumulative damage in networks

with N = 50. We present the results for the value S(T ) as a function of T for three

deterministic networks: (a) a ring, (b) a wheel graph, (c) a barbell graph, and three

random networks: (d) a Watts-Strogatz network with rewiring probability p = 0.05,

(e) an Erdös-Rényi (ER) network at the connectivity threshold p = log(N)/N , and (f)

a Barabási-Albert (BA) network. In this analysis S(T ) denotes the quantities SW (T ),

SEntropy(T ), SMFPT(T ), and Sγ(T ) with γ = 0.5, we present with thin lines the results

obtained for 100 realizations of the cumulative damage algorithm with α = 1 and their

respective ensemble average.

the structure fragile, this condition of the barbell graph is observed in the non-local

measures SMFPT(T ) and Sγ(T ) with fast decay under damage and with high dispersion

in the same way as the results observed for the ring in Fig. 4(a).

Regarding the random networks, in Fig. 4(d) we analyze a Watts-Strogatz network

obtained from a regular cyclic structure with four nodes (a ring with two additional links

in each node) and a random rewiring with probability p = 0.05, see Ref. [43]. In this

case, the rewiring creates a network with more complexity than the initial structure, the

alternative paths connecting two nodes make this structure more resistant to damage.

In Fig. 4(d) it is worth to notice that the average of SW (T ) and SMFPT(T ) have a
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similar behavior showing that the rewiring creates global connectivity of the network,

for this reason, SW (T ) behaves like a non-local measure. In Fig. 4(e), we explore the

evolution of the asymmetry in an Erdös-Rényi network at the connectivity threshold

p = log(N)/N . Due to the reduced number of links the connectivity of the network

can be affected with the removal of a link. We see that SEntropy(T ) decays faster with

T in comparison to the results in other networks. For the scale-free network in Fig.

4(f), SW (0) = 0.5166 showing that the heterogeneity of the network already includes a

bias that increases the probability to pass to high connected nodes, the slow variation

of SW (T ) with the damage shows that the distribution of weights in the links has a

similar “complexity” since the damage is generated with a preferential aggregation.

Also, we see a low dispersion of the values SMFPT(T ), showing that the high number of

paths connecting two nodes make this structure capable to resist the damage without

creating strong non-local asymmetry. Our findings in Fig. 4 for deterministic and

random networks show that the variations of the local asymmetry measures are in a

good approximation rescaled versions; in this sense, the two local measures are similar

in quantifying variations of the asymmetry due to damage. Something similar occurs

with the two non-local measures; however, in this case, the variation of the parameter

γ can be used to consider other non-local effects.

In addition to the temporal evolution, it is important to understand the modifications

introduced by the parameter α in Eq. (2) that modifies the effect of damage in the

transport. In our ‘misrepair picture’ small α corresponds to high reparation capacity of

a damaged link and large α can be related to ‘bad’ reparation capacity in the complex

system. In the limit α = 0, the damage does not alter the transport and α → ∞ is

equivalent to the complete removal of the link. In Fig. 5 we analyze the ensemble average

of local and non-local symmetry measures S with α = 0.5, 1.0, 1.5, 2.0 and T = 1000

for the networks explored in Fig. 4. The results are generated with 1000 Monte Carlo

simulations of the process, the error bars represent the standard deviation of the data.

All the asymmetry measures in the six networks analyzed decrease with the increase of

α. Regarding the dispersion of the data in the error bars, we see that the values SW (T )

are less disperse for all the networks; in contrast, the values SMFPT(T ) have the largest

dispersion revealing that this measure is more susceptible to how damage is distributed.

Finally, we see that the non-local measures behave in a similar way with α showing

that Sγ(T ) with γ = 0.5 is a good measure to quantify the average asymmetry in the

transport.

4. Functionality reduction and aging

In this section, we study the capacity of the network to perform a specific function and

how this property evolves with the accumulation of damage. In the context of transport

on networks, we use a ‘functionality’ F(T ) that quantifies the global transport capacity
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Figure 5: Dependence of the ensemble average of asymmetry measures 〈S〉 for different

values of the parameter α. In (a)-(f) we apply the algorithm of cumulative damage for

the networks analyzed in Fig. 4. The results show the ensemble average of SW (T ),

SEntropy(T ), SMFPT(T ), and Sγ(T ) with γ = 0.5 at time T = 1000 considering 1000

realizations for α = 0.5, 1, 1.5, 2, error bars denote the standard deviation of the values.

at time T as [22]

F(T ) ≡
τ(0)

τ(T )
(17)

with

τ(T ) =
1

N

N
∑

j=1

τj(T ), (18)
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where

τi(T ) =
N
∑

l=2

1

1− λl(T )

〈i|φl(T )〉
〈

φ̄l(T )|i
〉

〈i|φ1(T )〉
〈

φ̄1(T )|i
〉 . (19)

Combining this definition with Eq. (7) and summing over all the initial conditions i

considering weights P
(∞)
i , we have

N
∑

i=1

P
(∞)
i 〈Tij(T )〉 = 1 + τj(T ) (20)

and, using the mean first return time in Eq. (8), we have τj =
∑N

i 6=j P
(∞)
i 〈Tij(T )〉,

therefore the global time τ(T ) expressed in terms of mean first passage times is given

by

τ(T ) =
1

N

N
∑

j=1

∑

i 6=j

P
(∞)
i 〈Tij(T )〉 . (21)

In this result, we see that τ(T ) is a global time that gives the weighted average of the

number of steps to reach any node of the network. In this way, the definition F(T ) in

Eq. (17) characterizes globally the effect of the damage suffered by the whole structure

and how evolves the capacity of a random walker to explore the network. The smaller

τ(T ) (i.e. the higher the transport capacity), the higher the functionality. Since the

time τ(T ) ≥ τ(0) in the damaged structure is greater than in the undamaged structure

we have F(T ) ≤ 1 (equality holds only in the undamaged state) [22].

In Fig. 6, we analyze the results of Monte Carlo simulation for the evolution of the

system subjected to stochastic damage in the edges in the six networks explored before

in Figs. 4 and 5. We analyze the values of F(T ) as a function of T for these structures

in different realizations for α = 1, we see how the global time τ(T ) in Eq. (18)

differs slightly from the previous value τ(T − 1), i.e. |τ(T ) − τ(T − 1)| ≪ τ(0). Also

τ(T )− τ(T − 1) may be positive or negative since, in particular states, the reduction of

the global functionality of a link could produce a small increment of the functionality.

However, in general, the most common effect is the damage of the structure, and

therefore, we see for α > 0 that F(T ) starts with F(0) = 1 and gradually is reduced

with the increase of T in each realization. In Fig. 6, we also present the average over

1000 realizations, and from the small deviations observed we can infer that the ensemble

average 〈F(T )〉 is a good description of the aging in the system, i.e., the global reduction

of the functionality. It is worthy to mention that due to the normalization term in

the transition probabilities in Eq. (3); once all the edges have suffered at least one

hit, the transition probabilities rescale maintaining the same proportion of damage but

increasing the values of F(T ); however, we see that the ensemble average in all the cases

decreases with T . In the insets in each plot in Fig. 6, we explore the ensemble average

〈F(T )〉 for T = 1000 as a function of α, we see how this parameter modifies the effect

of damage at a global scale in the transport.

In addition to our discussion about the evolution of asymmetry and the efficiency of
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Figure 6: Temporal evolution of functionality F(T ) of the transport on networks with

cumulative damage with α = 1. We explore 1000 realizations of this algorithm for: (a)

a ring, (b) a wheel graph, (c) a barbell graph, (d) a Watts-Strogatz network, (e) an

Erdös-Rényi and (f) a Barabási-Albert network. Dashed lines represent the ensemble

average 〈F(T )〉 and the insets depict this quantity for T = 1000 and different values of

α.

transport, the gradual reduction of functionality can be associated with the ability of

a system to survive or its “longevity” considering its capacity to maintain the global

function. We are interested in comparing the previously analyzed systems to determine

which topology is the most robust under damage. For this comparison, it is important

to notice as a consequence of damage occurring in the edges, more links can generate

apparently greater resistance. However, in different cases, these links also mean a cost

in the initial configuration of the system. Therefore, it is more convenient to normalize
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Figure 7: Comparison of the values 〈F(T )〉/ρE at T = 1000 for the transport on

different network topologies with cumulative damage generated with α = 1 and 1000

realizations. (a) Networks with N = 50 in Fig. 2, (b) 〈F〉/ρE as a function of the size

N , error bars were obtained with the standard deviation of the values. Dashed lines

represent the linear fit 〈F〉/ρE = ν N +κ, the values of the slope ν are presented in each

panel.

〈F(T )〉 using the quantity

ρE =
|E|

N(N − 1)
, (22)

where |E| is the total number of edges (including the direction of each line) and N(N−1)

is the total number of connections on a fully connected graph without loops.

In Fig. 7(a) we present the values 〈F(T )〉/ρE at T = 1000 for the networks with N = 50

nodes depicted in Fig. 2 and analyzed in detail in Figs. 4–6. We sort the structures from

the most fragile under damage to the most resistant according to their values 〈F(T )〉/ρE .

We see that the barbell graph (|E| = 782) is the graph with the largest number of edges

but globally this structure is the most fragile due to the linear path connecting the

two fully connected communities, similar resistance to damage is observed for the ring

but with a much lower number of links (|E| = 100). After the ring, we have the ER
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network build at the connectivity threshold (|E| = 138), a condition that makes the

global structure fragile under the removal of a line. These first three structures can be

considered simple due to their regularity or completely random character. In contrast,

the WS, BA and wheel networks are more complex. Our findings reveal that the WS

(|E| = 200) produced with rewiring of a regular network has a more robust structure in

comparison with the fully random case in the ER network. The more resistant structures

are the BA network (|E| = 194) and the wheel (|E| = 196). A common feature in these

two networks is the presence of hubs that increment the connectivity with a high number

of routes to connect two nodes on the network and a small average distance between

nodes.

Finally, in Fig. 7(b), we analyze the dependence of the values 〈F(T )〉/ρE with the size

of the network. To this end, we explore networks with N = 100, 150, . . . , 250, 300 nodes

but preserving the same topology of the networks with N = 50 in Fig. 2. Rings and

wheels maintain the same characteristics by definition. For the Barbell structures, we

consider two fully connected subgraphs with 2N/5 nodes connected by a path with N/5

nodes. For the WS networks, we maintain the same initial structure and the rewiring

probability p = 0.05, all ER networks are generated at the connectivity threshold, and

for BA networks, the algorithm to build the networks is the same. In this manner,

each network type maintains the same “complexity”. Our findings in Fig. 7(b) reveal

the linear relation 〈F(T )〉/ρE = ν N + κ for T = 1000 and α = 1 for each type of

network in the interval of values explored. The observed values for the slopes ν reaffirm

that an important factor in aging is the complexity of the structure. We see that the

normalized functionality measured by 〈F(T )〉/ρE turns out to be much more sensitive

to the increase of size in more complex structures.

5. Conclusions

In this paper, we explore aging as a consequence of preferential cumulative stochastic

damage as a dynamical process on weighted networks. The formalism introduced

includes three characteristics: 1) an algorithm to produce preferential random damage

on directed links concentrating the damage in particular parts of the structure, 2) the

capacity of transport of the structure and, 3) a global measure that quantifies the

performance of the structure in a determined configuration. The algorithm for the

generation of damage acts on the links producing a bias in the transport in any type

of network that we analyze. We use two local measures that include explicitly the

transition probabilities between nodes and two non-local measures considering mean first

passage times and the fractional Laplacian of a weighted graph, these quantities include

information of all the possible paths connecting two nodes on the network. Finally,

we explore aging associated with the reduction of the global transport capacity due to

the accumulation of damage. We apply this framework to the study of deterministic

networks (ring, wheel, and a barbell) and random networks generated with the Erdös-

Rényi, Watts-Strogatz, and Barabási-Albert algorithms. Our findings allow us to classify



Random walks on networks with preferential cumulative damage 20

the complexity of these structures as a combination of their topology and robustness

under damage impact.

The presented methods and approach can be adapted to consider other global measures

to characterize the performance of different dynamical processes on networks and provide

a framework to understand the relation between the complexity of systems, their

fragility, and their lifespan.

Appendix A. Asymptotic fault-distribution - continuous-time limit

In this appendix, we recall the asymptotic fault time-evolution that emerges from the

preferential fault accumulation equation (1). To this end, we assume that the network

in a time increment δT accumulates the fault measure dξ ∼ δT . Then we introduce the

total number of faults accumulated up to time N (T, δT ) = T/δt thus we have from Eq.

(1) the relation
∑

(k,l)∈E

(hkl(T )− 1) = N (T, δT ) =
T

δT
(A.1)

where N (0, δT ) = 0 reflecting hkl(0) = 1 where hkl(T )− 1 ∈ N0 denotes the number of

faults in the edge (k, l) ∈ E at time T . We observe that the fault numbers in the edges

are bounded as 0 ≤ hkl − 1 ≤ N (T, δT ). Let now M(h, T ) be the number of edges with

h−1 faults at time T and P (h, T ) = M(h,T )
|E|

be the fraction of edges having h−1 faults.

Then with
∑

T

δT
+1

h=1 M(h, T ) = |E| we observe that

T

δT
+1

∑

h=1

P (h, T ) = 1 (A.2)

and Eq. (A.1) can be rewritten as

T

δT
+1

∑

h=1

P (h, T )(h− 1) =
T

δT |E|
. (A.3)

Now by introducing the damage measure ξ(h, δT ) = (h− 1)δT ∈ δTN0 with P (h, T ) =

P(ξ(h, δT ), T )δT where we consider the continuous-time limit δT → dξ → 0 and assume
dξ
δT

= 1. Then with ξ(h, δT )|h=1 = 0 and ξ
(

T
δT

+ 1, δT
)

= T we arrive at
∫ T

0

P(ξ, T )dξ = 1 (A.4)

and
∫ T

0

P(ξ, T )ξdξ =
T

|E|
. (A.5)

Now let us consider the preferential damage accumulation Eq. (1) which tells us that a

damage arrival dξ ∼ δT accumulates at with probability ∼ ξ. We hence can establish
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the following master equation

P(ξ, T )−P(ξ, T − δT )

=
(ξ − dξ)

T − δT
P(ξ − dξ, T − δT )−

ξ

T − δT
P(ξ, T − δT ).

(A.6)

By choosing without loss of generality δT
dξ

= 1 and δT → 0 this equation writes

T
∂

∂T
P(ξ, T ) = −

∂

∂ξ
(ξP(ξ, T )) . (A.7)

In view of normalization (A.4) which holds for all T we infer the initial condition

P(ξ, 0) = δ(ξ) of the form of a Dirac’s δ-distribution (concentrated at 0+). The master

equation (A.7) can be solved by the following separation ansatz

P(ξ, T ) = U(ξ)V (T ) (A.8)

to give

T

V (T )

∂

∂T
V (T ) = −

1

U(ξ)

∂

∂ξ
(ξU(ξ)) = −λ (A.9)

with the solutions U(ξ) = C1ξ
λ−1 and V (T ) = C2T

−λ where C1,2, λ are constants to be

determined. Hence with C = C1C2 we can write

P(ξ, T ) = C
ξλ−1

T λ
. (A.10)

From the normalization (A.4) follows C = λ. Plugging in this result into Eq. (A.5)

yields λ
λ+1

= 1
|E|

thus λ = 1
|E|−1

and hence

P(ξ, T ) = Θ(T − ξ)
1

|E| − 1

ξ
1

|E|−1
−1

T
1

|E|−1

(A.11)

where P(ξ, T )dξ can be conceived as the probability of occurrence of the damage

measure within [ξ, ξ + dξ] and in the case of |E| ≫ 1 we can replace |E| − 1 → |E|. We

added in this relation the Heaviside-step function Θ(T − ξ) to indicate that P(ξ, T ) = 0

for ξ > T and we observe that −1 < 1
|E|−1

− 1 < 0 thus the fault accumulation follows a

weakly singular power law ∼ ξ
1

|E|−1
−1

in ξ and the larger T the smaller the probability

to find the a given fixed damage value ξ0 in a link which decays with inverse power-law

∼ T− 1

|E|−1 → 0 where this decay is the slower the larger the number of edges E . This

behavior can be understood as for increasing T more and more edges exceed a certain

fixed fault value ξ0 and therefore a fixed value ξ0 is met less likely. Indeed the self-similar

power-law scaling in the fault distribution (A.11) can be attributed to the emergence

of a stochastic fractal distribution in the limit T/δT → ∞ as a landmark of complexity

[54].
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[48] Sinatra R, Gómez-Gardeñes J, Lambiotte R, Nicosia V and Latora V 2011 Phys. Rev. E 83 030103

[49] Burda Z, Duda J, Luck J M and Waclaw B 2009 Phys. Rev. Lett. 102 160602

[50] Michelitsch T, Collet B, Riascos A, Nowakowski A and Nicolleau F 2017 J. Phys. A: Math. Theor.

50 505004

[51] Riascos A P and Mateos J L 2014 Phys. Rev. E 90 032809

[52] Allen-Perkins A and Andrade R F S 2019 J. Stat. Mech. 2019 123302

[53] Benzi M, Bertaccini D, Durastante F and Simunec I 2020 J. Compl. Net. 8(3) cnaa017

[54] Clauset A, Shalizi C R and Newman M E J 2009 SIAM Rev. 51 661–703


	1 Introduction
	2 Transport on networks with cumulative damage
	2.1 Network structure and cumulative damage
	2.2 Master equation and mean first passage times

	3 Quantifying the evolution of bias 
	3.1 Local information
	3.1.1 SW(T).
	3.1.2 Random walk entropy.

	3.2 Global information
	3.2.1 SMFPT.
	3.2.2 S.

	3.3 Asymmetry and cumulative damage

	4 Functionality reduction and aging
	5 Conclusions
	Appendix A Asymptotic fault-distribution - continuous-time limit

