
ar
X

iv
:2

01
2.

00
20

6v
2 

 [
q-

fi
n.

G
N

] 
 7

 D
ec

 2
02

0

Wealth concentration in systems with unbiased binary exchanges

Ben-Hur Francisco Cardoso∗ and Sebastián Gonçalves†
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Abstract

Aiming to describe the wealth distribution evolution, several models consider an ensemble of inter-

acting economic agents that exchange wealth in binary fashion. Intriguingly, models that consider

an unbiased market, that gives to each agent the same chances to win in the game, are always out

of equilibrium until the perfect inequality of the final state is attained. Here we present a rigorous

analytical demonstration that any system driven by unbiased binary exchanges are doomed to drive

the system to perfect inequality and zero mobility.
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I. INTRODUCTION

Statistical physics, in particular the kinetic theory of gases, provides a useful framework

for describing the complexity of microscopic market interactions [1]. Like a physical system

composed of many particles that exchange their energy in binary conservative collisions,

the kinetic exchange models [2–5] consider a set of interacting agents where, sequentially,

two randomly chosen agents exchange a conserved quantity called “wealth”. Following this

approach, given a system with N agents, each agent i is characterized by the wealth xi ≥ 0.

So in an exchange between agents i and j, we have:

x∗
i = xi +∆i and x∗

j = xj +∆j , (1)

where x∗
i(j) is the wealth after the exchange and ∆i(j) is the stochastic gain of agent i(j).

Since the kinetic exchange models work as zero-sum games, we have that ∆j = −∆i.

The first model within this general framework is the so-called loser rule [6, 7], where the

wealth exchanged is

∆i = ǫλxj − (1− ǫ)λxi, ǫ ∈ {0, 1}, E[ǫ] =
1

2
, (2)

and 0 ≤ λ ≤ 1 can be a random or constant number. The model was criticized by Lux [8],

noting that within this mechanism E[∆i] ∝ (xj − xi); so it favors, on average, the poorer

agents. Why then would a rational agent participate in this type of transaction with a

partner less wealthy than him/her? The same criticism could be applied for the variations

of the loser rule [9–11]. It is important to note that the criticism is not about the existence

of a poor-biased wealth dynamics, but the assumption that such a mechanism emerges from

free market exchanges. To stabilize the wealth distribution, some kind of poor-favoring

mechanism is necessary, but, as we will see, in the form of a regulation policy.

In contrast, other models overcome the criticisms by proposing rules where the expected

wealth gain is the same, regardless of whether the agent is rich or poor. Mathematically, a

zero-sum exchange process is unbiased [12] if E[∆i] = E[∆j ] = 0. The best-known unbiased

model is the Yard-Sale [6]

∆i = ηλmin(xi, xj), η ∈ {−1, 1}, E[η] = 0, (3)

where 0 ≤ λ ≤ 1 can be a constant or a random number. In addition, it was proposed

2



recently a modified version of the loser rule [12], stating that

∆i = ǫλxj − (1− ǫ)λxi, ǫ ∈ {0, 1}, E[ǫ] =
xi

xi + xj

, (4)

where 0 ≤ λ ≤ 1 can be a random or constant number. Finally, a similar model was proposed

by Iglesias and Almeida [13], where

∆i = η
xixj

xi + xj

, η ∈ {−1, 1}, E[η] = 0. (5)

Although all these rules are supposed to be unbiased, the system always converges to

condensation [3, 9, 12–14], where one or a few agents concentrate all the wealth and there

are no more exchanges. To avoid condensation, it is necessary to include some bias toward

the poorer in the models, such as taxation [3, 12, 15–17], redistribution [16], or a factor that

increases the probability of the poorest agent to win in an exchange [9, 13, 14].

The rest of the paper is organized as follows. In section II we will define the economic

metrics of inequality and mobility and describe the evolution of unbiased kinetic exchange

models in the thermodynamic limit (N → ∞), following a Boltzmann-like Master Equa-

tion [2, 5, 18]. In section III we will proof that condensation is the asymptotic state of

any unbiased kinetic exchange model, in the thermodynamic limit. In other words, we will

demonstrate that wealth concentration and mobility reduction is a natural consequence of

free exchanges in an unregulated market, with rules that are in principle unbiased or “fair”.

Section IV is devoted to the conclusions.

II. MASTER EQUATION

Definition 1: Let be a system represented by the probability density function f(x, t), where

f(x, t)dx is the fraction of agents with wealth within dx of x at time t. This probability

density function must obey the following properties:

(i) Negative wealth is not allowed, then, for all t we have that

x < 0 ⇒ f(x, t) = 0. (6)

(ii) For all t, the density distribution function must be normalized

∫ ∞

0

dx f(x, t) = 1. (7)
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(iii) The wealth is conserved. Thus, for all t, the first moment of the density distribution

function must be constant
∫ ∞

0

dx x f(x, t) = 〈x〉. (8)

Definition 2: If the dynamics of f(x, t) is driven by binary exchanges, then we can represent

this dynamics with the following Master Equation [2, 3, 5, 19, 20]

∂f(x, t)

∂t
=

∫ ∞

0

dx′

∫ x′

−x

d∆

{

ω[x+∆,x′−∆]→[x,x′]f(x+∆, t)f(x′ −∆, t)−

−ω[x,x′]→[x+∆,x′−∆]f(x, t)f(x
′, t)

}

, (9)

where ω[x,x′]→[x+∆,x′−∆] d∆f(x, t)dxf(x′, t)dx′ is the rate of transferring wealth within d∆ of

∆ from an agent with wealth within dx of x to an agent with wealth within dx′ of x′ [5, 21].

Considering that all possible values of ∆ must be in the interval −x ≤ ∆ ≤ x′, to keep wealth

non-negative, along with the fact that wealth is neither created nor destroyed, they impose

the following normalization on transfer rates:

∫ x′

−x

d∆ ω[x,x′]→[x+∆,x′−∆] = 1. (10)

Definition 3: Let be two random selected agents with wealth x and x′. An exchange process

is said unbiased if the expected gain is zero for both agents [9, 12], that is,

∫ x′

−x

d∆∆ ω[x,x′]→[x+∆,x′−∆] = 0. (11)

A. Wealth Inequality

Definition 4: Let be a probability distribution function f(x, t) described by the Definition

1. The Gini index is a measure of the inequality that is defined as [22]:

G(t) =
1

2〈x〉

∫ ∞

0

dx

∫ ∞

0

dx1 |x− x1| f(x, t)f(x1, t). (12)

The Gini index varies between 0, which corresponds to perfect equality (i.e. everyone has the

same wealth), and 1, that corresponds to maximum inequality (the absolute oligarchy [3]).

It is important to note that its difficult to translate the notion of maximum inequality

for a finite number of agents (i.e. one person has all the wealth, while everyone else has zero

wealth) to a probability density function, since it has an “infinite” number of agents. That

problem was studied by Boghosian et al. [3, 18, 23], with the following definition:
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Definition 5: The absolute oligarchy density distribution function is defined as

fc(x) = δ(x) + lim
N→∞

δ(x− 〈x〉N)

N
, (13)

that is, all wealth is in hands of an infinitesimal part of the system. Also, it is the unique

probability density function, in terms of Definition 1, that satisfies the following properties

[3, 18, 23]:

(i) fc(x) > 0 ⇐⇒ x = 0.

(ii)
∫∞

0
dx x fc(x) = 〈x〉.

(iii) for all k > 1,
∫∞

0
dx xk fc(x) diverges.

In fact, the property (i) of the previous definition says that, with the absolute oligarchy

probability density function, the probability of having agents with positive wealth is zero, that

is,

P(x > 0) = 0. (14)

This does not mean, however, that there are no agents with x > 0. This apparent

paradox stems from the nature of probability measures in infinite sets, as is the case with

the thermodynamic limit (N → ∞). For the probability to be zero, it is sufficient that there

be a finite [24] –not necessarily null– number of agents with positive wealth. In the example

of absolute oligarchy, the number of agents that concentrates all wealth is 1, regardless of

the total number of agents N . At the thermodynamic limit, the total set of agents becomes

infinite. Thus, since the set of agents with positive wealth is finite (1 agent), the probability

of having agents with positive wealth becomes zero.

B. Mobility

Keeping the constraint of wealth conservation, the flux of wealth from one agent to

another, that we call “mobility”, is only possible through exchanges. Due to this fact, we

define:

Definition 6: The mobility of agents with wealth x at time t is defined by

l(x, t) =

∫ ∞

0

dx′

∫ x′

−x

d∆ |∆| ω[x,x′]→[x+∆,x′−∆] f(x
′, t). (15)
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Definition 7: The wealth x is said to be in an absorbing state if l(x, t) = 0 whenever

f(x, t) > 0, i.e, once the agent is in this state, she/he can no longer get out of this situation.

Definition 8: The system’s mobility is the fraction of average wealth exchanged per unit

time, called the Liquidity of the system [9, 13], defined as

L(t) =
1

2〈x〉

∫ ∞

0

dx l(x, t)f(x, t), (16)

where the factor 1/2 cancel the double counting. Liquidity varies between 0, which corre-

sponds to an economy without exchanges, and 1, that corresponds to full exchange economy

(i.e. all the wealth are exchanged per unit time).

III. PROPOSITIONS

Proposition 1: A system of unbiased binary exchanges has x = 0 as an absorbing state.

The proposition 1 has already been observed, considering finite size systems, in all the

unbiased models reviewed in the Introduction [3, 9, 12–14].

Proposition 2: In a system of unbiased binary exchanges, the Gini index is monotonically

increasing:
dG(t)

dt
≥ 0. (17)

The proposition 2 has already been observed, considering finite size systems, in all the

unbiased models reviewed in the Introduction [3, 9, 12–14]. In the thermodynamic limit,

with a similar methodology introduced in this section, the particular case of the Yard Sale

rule was proved by Boghosian et al. [23].

Also, as a consequence of proposition 2, the Gini index can be considered a Lyapunov

functional of the systems driven by binary unbiased wealth exchanges [23].

Proposition 3: In a system of binary unbiased exchanges, if x = 0 is the unique absorbing

state of the system, then

(i) The stationary probability density function is the absolute oligarchy one (Eq. 13)

lim
t→∞

f(x, t) = fc(x) (18)
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(ii) The stationary inequality, so, is the highest one

lim
t→∞

G(t) = 1 (19)

(iii) The stationary liquidity is the lowest one

lim
t→∞

L(t) = 0 (20)

The proposition 3 has already been observed, considering finite size systems, in all the

unbiased models reviewed in the Introduction [3, 9, 12–14].

A. Proof of propositions

Before the proof of the propositions, we prove a corollary of a lemma that will be necessary

Lemma 1: Let be g : [a, b] → R a function such that
∫ b

a
dzg(z) = 1. Then [25]

∫ b

a

dz|z|g(z) ≤
b|a| − a|b|

b− a
+

|b| − |a|

b− a

∫ b

a

dzzg(z). (21)

Corollary 1: In a system of unbiased binary exchanges, for all t and x > 0, we have that

l(x, t) ≤ 2〈x〉. (22)

proof of corollary 1. By the definition of mobility, the Lemma 1 implies that

l(x, t) =

∫ ∞

0

dx′

∫ x′

−x

d∆ |∆| ω[x,x′]→[x+∆,x′−∆]f(x
′, t) ≤

≤

∫ ∞

0

dx′f(x′, t)

[

2xx′

x+ x′
+

x− x′

x+ x′

∫ x′

−x

d∆∆ ω[x,x′]→[x+∆,x′−∆]

]

. (23)

By the condiciton of unbiased exchanges (Eq. 11), the second term in the sum is zero.

Then, we get

l(x, t) ≤ 2

∫ ∞

0

dx′f(x′, t)
xx′

x+ x′
. (24)

now, since x ≤ x+ x′, the finally poof the corollary

l(x, t) ≤ 2

∫ ∞

0

dx′f(x′, t) x′ = 2〈x〉. (25)
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proof of proposition 1. Let assume that x = 0 e x′ > 0. So, the Eq. 11 implies that

∫ x′

0

d∆∆ ω[0,x′]→[∆,x′−∆] = 0. (26)

Since in this particular case the integrand is always non-negative, the integral only becomes

zero if

∆ ω[0,x′]→[∆,x′−∆] = 0 , ∀∆ ∈ [0, x′]. (27)

So, regarding the normalization (Eq. 10), this condition is only satisfied if

ω[0,x′]→[∆,x′−∆] = δ(∆). (28)

Now, using the Eq. 15, we finally have

l(0, t) =

∫ ∞

0

dx′

∫ x′

0

d∆ |∆| δ(∆)f(x′, t) = 0, (29)

that is, x = 0 is an absorbing state.

proof of proposition 2. As written below, the Gini Index at time t is given by

G(t) =
1

2〈x〉

∫ ∞

0

dx

∫ ∞

0

dx1 |x− x1| f(x, t)f(x1, t). (30)

So, its time evolution is given by

dG(t)

dt
=

1

2〈x〉

∫ ∞

0

dx

∫ ∞

0

dx1 |x− x1|

[

∂f(x, t)

∂t
f(x1, t) +

∂f(x1, t)

∂t
f(x, t)

]

. (31)

Since the integration is over the entire range of x and x1 and they play a symmetric role,

both terms inside the brackets contribute in the same way. Then, Eq. 31 simplifies to

dG(t)

dt
=

1

〈x〉

∫ ∞

0

dx

∫ ∞

0

dx1 |x− x1| f(x1, t)
∂f(x, t)

∂t
. (32)

Defining

φ(x, t) ≡

∫ ∞

0

dx1 |x− x1| f(x1, t), (33)

we rewrite Eq. 32 as
dG(t)

dt
=

1

〈x〉

∫ ∞

0

dx φ(x, t)
∂f(x, t)

∂t
. (34)

Now, using Eq. 9, we have that

dG(t)

dt
=

1

〈x〉

∫ ∞

0

dx

∫ ∞

0

dx′

∫ x′

−x

d∆ φ(x, t) ω[x+∆,x′−∆]→[x,x′]f(x+∆, t)f(x′ −∆, t)−

−
1

〈x〉

∫ ∞

0

dx

∫ ∞

0

dx′

∫ x′

−x

d∆ φ(x, t) ω[x,x′]→[x+∆,x′−∆]f(x, t)f(x
′, t). (35)
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We can represent the first integral by

I =

∫ ∞

0

dx

∫ ∞

0

dx′

∫ x′

−x

d∆ φ(x, t) ω[x+∆,x′−∆]→[x,x′] f(x+∆, t)f(x′ −∆, t) =

=

∫ ∞

−∞

dx

∫ ∞

−∞

dx′

∫ ∞

−∞

d∆ φ(x, t) ω[x+∆,x′−∆]→[x,x′] f(x+∆, t)f(x′ −∆, t)×

×θ(x)θ(x′)θ(∆ + x)θ(x′ −∆). (36)

Defining y = x+∆ e y′ = x′ −∆, we get

I =

∫ ∞

−∞

dy

∫ ∞

−∞

dy′
∫ ∞

−∞

d∆ φ(y −∆, t) ω[y,y′]→[y−∆,y′+∆] f(y, t)f(y
′, t)×

×θ(y −∆)θ(y′ +∆)θ(y)θ(y′). (37)

With a new variable substitution, ∆′ = −∆, the integral becomes

I =

∫ ∞

−∞

dy

∫ ∞

−∞

dy′
∫ ∞

−∞

d∆′ φ(y +∆′, t) ω[y,y′]→[y+∆′,y′−∆′] f(y, t)f(y
′, t)×

×θ(y +∆′)θ(y′ −∆′)θ(y)θ(y′) =

=

∫ ∞

0

dy

∫ ∞

0

dy′
∫ y′

−y

d∆′ φ(y +∆′, t) ω[y,y′]→[y+∆′,y′−∆′] f(y, t)f(y
′, t), (38)

in which the change in the differential signal was compensated by permuting the limits in

the integral over ∆′.

Comparing the integral Eq. 38 with the second integral of Eq.35, we see that the only

difference between them, besides the name of variables, is the signal and the argument of φ.

Thus, the time derivative of Gini, Eq. 35, becomes

dG(t)

dt
=

1

〈x〉

∫ ∞

0

dx

∫ ∞

0

dx′f(x, t)f(x′, t)×

×

[

∫ x′

−x

d∆ ω[x,x′]→[x+∆,x′−∆]

(

φ(x+∆, t)− φ(x, t)
)

]

. (39)

With the definition of φ (Eq. 33) and using the normalization of the transfer rate (Eq. 10),

we finally get

dG(t)

dt
=

1

〈x〉

∫ ∞

0

dx

∫ ∞

0

dx′

∫ ∞

0

dx1 f(x, t)f(x
′, t)f(x1, t)×

×

[
∫ x′

−x

d∆ ω[x,x′]→[x+∆,x′−∆] |x+∆− x1| − |x− x1|

]

. (40)

To prove the proposition, it is enough to show that the term in the brackets is always

non-negative. Let us first note that

− |x+∆− x1| ≤ (x+∆− x1) ≤ |x+∆− x1|. (41)
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Multiplying the terms by ω[x,x′]→[x+∆,x′−∆] and integrating it over ∆ in the domain [−x, x′],

we then have

−

∫ x′

−x

d∆ ω[x,x′]→[x+∆,x′−∆]|x+∆− x1| ≤

≤

∫ x′

−x

d∆ ω[x,x′]→[x+∆,x′−∆](x+∆− x1) ≤

≤

∫ x′

−x

d∆ ω[x,x′]→[x+∆,x′−∆]|x+∆− x1|. (42)

Second, we can note that, due to the property of the unbiased transfer rate (Eq. 11) and

its normalization (Eq. 10), the second term in the inequality Eq. 42 is

∫ x′

−x

d∆ ω[x,x′]→[x+∆,x′−∆](x+∆− x1) = (x− x1). (43)

Therefore, Eq. 42 reduces to

−

∫ x′

−x

d∆ ω[x,x′]→[x+∆,x′−∆]|x+∆− x1| ≤

≤ (x− x1) ≤

≤

∫ x′

−x

d∆ ω[x,x′]→[x+∆,x′−∆]|x+∆− x1|. (44)

As the only difference between the inferior and superior limits of (x−x1) is a sign, we finally

arrive to

|x− x1| ≤

∫ x′

−x

d∆ ω[x,x′]→[x+∆,x′−∆]|x+∆− x1|, (45)

which proves that

dG(t)

dt
≥ 0. (46)

proof of proposition 3. Since the Gini Index is limited above by G(t) ≤ 1, it will increase

until its stationary value Gs associated with the density probability function fs(x), defined

as

Gs = lim
t→∞

G(t) e fs(x) = lim
t→∞

f(x, t). (47)

Also, for each value of x, we define its stationary mobility as

ls(x) = lim
t→∞

l(x, t). (48)
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Since the integrand of Eq. 40 is always non-negative, the stationary state is only achieved

when

∫ ∞

0

dx′

[

∫ x′

−x

d∆ ω[x,x′]→[x+∆,x′−∆] |x+∆− x1| − |x− x1|

]

fs(x)fs(x1)fs(x
′) = 0 (49)

for all x, x1 ∈ [0,∞). For x = 0, due to the proposition 1, this equality is trivially satisfied.

Now, assuming that x = 0 is the unique absorbing state (ls(x) > 0 for all x > 0), there is

no x > 0 such that fs(x) > 0, since the integrand in the particular case x1 = x would be

∫ ∞

0

dx′

∫ x′

−x

d∆ ω[x,x′]→[x+∆,x′−∆] |∆|fs(x)fs(x)fs(x
′) =

(

fs(x)
)2

ls(x) > 0. (50)

Then, the integrand is only zero if fs(x) = 0 for all x > 0. The unique probability density

function that satisfies this condition is the absolute oligarchy one

fs(x) = δ(x) + lim
N→∞

δ(x− 〈x〉N)

N
, (51)

associated with the Gini Index Gs = 1.

Finally, the stationary value of Liquidity (Eq. 16) os given by

Ls ≡ lim
t→∞

L(t) =
1

2〈x〉

∫ ∞

0

dx ls(x) fs(x) =
ls(0)

2〈x〉
+

1

2〈x〉
lim

N→∞

1

N
ls

(

N〈x〉
)

. (52)

The first term is zero by the Proposition 1. Moreover, by the Corollary 1, we have that

0 ≤
1

2〈x〉
lim

N→∞

1

N
ls

(

N〈x〉
)

≤
1

2〈x〉
lim

N→∞

2〈x〉

N
= lim

N→∞

1

N
= 0 ⇒

⇒
1

2〈x〉
lim

N→∞

1

N
ls

(

N〈x〉
)

= 0. (53)

This proves that Ls = 0.

IV. CONCLUSIONS

The second law of thermodynamics has as a corollary the thermal death of the universe.

We have presented the proof that any model of binary wealth exchange based on a priori

unbiased rule, i.e., no bias toward any agent in every microscopic wealth exchange, will end

up in the “thermal death of the market” at the maximum unequal state.

There are previous numerical [6, 9, 12, 13] and analytical [12, 14, 23, 26] restricted demon-

strations that some unbiased binary exchange rules lead to condensation. The present one,
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however, is the first general analytical demonstration that condensation occurs for all unbi-

ased games, regardless of its particularities.

Thus, what is the implications of the prepositions here demonstrated in the real world?

The worldwide data about economies show a clear tendency toward increasing inequali-

ties [27]. As for an example, we can cite the US case, where the fraction of national wealth

in hands of the top 1% risen from 22% in 1980 to 37% in 2015 [27].

We might think that a system without regulatory policies is fair since no individual has

systematic or a priori advantages [28–32]. However, we have proved that such apparent

“fairness” is the cause of the growing inequality.

The only restrictions of the present demonstration are pairwise exchanges and the con-

servation of the total wealth. It is our feeling that the demonstration could be extended to

many-body interaction, as we are planning to explore. The same could be said for a growing

economy, with a reformulation of the impartial market.
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Quintanilla, The European Physical Journal Special Topics 143, 75 (2007).

[15] H. Lima, A. R. Vieira, and C. Anteneodo, arXiv preprint arXiv:2007.11680 (2020).

[16] J. R. Iglesias, B.-H. F. Cardoso, and S. Gonçalves, arXiv preprint arXiv:2005.06106 (2020).
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