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The interplay of strain engineering and photon-assisted tunneling of electrons in graphene is
considered for giving rise to atypical transport phenomena. The combination of uniaxial strain
and a time-periodic potential barrier helps to control the particle transmission for a wide range
of tunable parameters. With the use of the tight-biding approach, the elasticity theory, and the
Floquet scattering, we found an angular shift of the maximum transmission in the sidebands for
uniaxial strains breaking the mirror symmetry with respect to the normal incidence, which is called
anomalous Floquet tunneling. We show that electron tunneling depends strongly on the barrier
width, incident angle, uniaxial strain, and the tuning of the time-periodic potential parameters. An
adequate modulation of the barrier width and oscillation amplitude serves to select the transmission
in the sidebands. These findings can be useful for controlling the electron current through the
photon-assisted tunneling being used in multiple nanotechnological applications.

I. INTRODUCTION

Photon-assisted tunneling is a powerful tool for con-
trolling electron current in a device through the illumi-
nation of a particular area of the system [1–24]. The tun-
ing of the laser frequency and the intensity can serve to
explore different features in quantum transport. The un-
derstanding of the interaction of electrons under external
electromagnetic fields has led to a huge number of tech-
nological applications. Nevertheless, there are many un-
usual electronic transport effects in the presence of time-
periodic potentials that requires an exhaustive study and
revision from the new perspective given by the rising of
two-dimensional materials [25–33]. Most of these materi-
als belong to the classification of Dirac matter, where the
Dirac-Weyl equation describes the dynamics of low en-
ergy excitations [25, 28, 34–42]. While that, the Floquet
scattering formalism has been the most recurrent theory
for depicting the dynamics of photon-assisted tunneling
[43–47]. This approach allows a simplified vision of elec-
tron tunneling through sidebands. Electrons impinging
the oscillating potential barrier are reflected or refracted
from different energy channels by the absorption or emis-
sion of one or multiple photons [43, 48–58]. In this way,
Floquet scattering has been used successfully for explain-
ing the constructive interference of continuum and bound
states in quantum wells, an effect known as Fano reso-
nances [59–65]. Other interesting phenomena have been
predicted based on the Floquet scattering theory, among
them the Wigner delay times [51], Hartman effect [66],
suppression of Klein tunneling [23, 49, 67, 68], Floquet
topological insulators [47, 69–76], non-Hermitian Floquet
invisibility [77], and photo-electronic induced emission
[78–80].
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The interplay between strain engineering and photon-
assisted tunneling may open more possibilities, due to
the increment of external variables to control the elec-
tron tunneling. By applying strain in graphene and re-
lated materials, the electronic band structure is modified
drastically and serves to modulate the electronic, opti-
cal, and transport properties [81–102]. Inhomogeneous
strain gave rise to the emergence of valleytronics and
pseudo-magnetic fields [93, 94, 103–106]. Outstanding
electron optics-like effects appear in uniaxially strained
graphene [34, 107]. Such a system displayed partial posi-
tive refraction in asymmetric Veselago lenses, a negative
reflection of electrons, and anomalous Klein tunneling
[31, 107, 108]. Those theoretical results may be tested
not only in uniaxially strained graphene but also hexag-
onal optical lattices and photonic crystals [73, 104, 109].
Recently, a time periodic potential in optical lattices was
experimentally realized in [73]. Photonic crystal emula-
tions of strained graphene evidenced that Klein tunneling
persists for deformations along the zig-zag and armchair
directions [110].

In this paper, we show that the combination of photon-
assisted tunneling and strain engineering present singular
transmission effects. The application of uniaxial strain
causes a strong anisotropy in the electron tunneling. De-
pendent on the amplitude of time-periodic potential and
frequency, there are preferential incidence angles for elec-
tron tunneling in the sidebands. We find suppression
of the anomalous Klein tunneling, which can be useful
for electronic confinement. Moreover, the tuning of po-
tential barrier width serves to select the transmission in
sidebands in order to produce photo-induced electronic
current.

The paper is structured as follows: In section II, we
give a short review of how the tight-binding approach
and elasticity theory is useful for the development of
a strain-modified Hamiltonian in graphene and related
anisotropic hexagonal lattices. In section III, we apply
the Floquet scattering theory in order to analyze the
transmission features of a fully strained graphene sheet
with time-periodic potential barrier. We present in IV
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the results of our numerical and analytical calculations
of the transmission probabilities for the sidebands. We
expose the conclusions and final remarks in section V.

II. DIRAC-WEYL HAMILTONIAN OF
UNIAXIALLY STRAINED GRAPHENE

Uniaxially strained graphene and anisotropic hexag-
onal lattices are composed by two deformed triangular
sublattices A and B with a basis of two atoms per unit
cell, as shown in Fig. 1(a). According to the elasticity
theory, the application of a uniaxial strain deformes the
lattice vectors in the pristine configuration, and they are
given by [34, 81, 107]

a1 = (a1x, a1y) =
√

3a(1 + ρ−ε+ ρ+ε cos 2ζ, ρ+ε sin 2ζ)

a2 = (a2x, a2y) =

√
3

2
a(1 + ρ−ε+ 2ρ+ε cos(2ζ − 60◦),

√
3(1 + ρ−ε) + 2ρ+ε sin(2ζ − 60◦)),

(1)

where the constants ρ± are defined as

ρ± =
1

2
(1± ν) (2)

and ν = 0.18 is the Poisson ratio, while a = 0.142 nm
is the bond length in pristine graphene [25]. The vec-
tors δj with j = 1, 2 and 3 indicate the three nearest
neighbors site on the underlying sublattice A, as shown
in Fig. 1(a). The strain parameters ε and ζ quantify
the percentage of tensile strain and the direction of the
applied tension T with respect to the x axis. The failure
strain has been estimated to occur at the approximated
value ε ≈ 28% [111, 112]. However, we use a moder-
ated range of ε from 0 to 10% in all our calculations
within the linear elastic regimen, where Tight-Binding
(TB) and Density Functional Theory (DFT) calculations
have been demonstrated to have a good agreement [84].
Nevertheless, controlled and reversible extreme strains
ε > 10% has been realized experimentally [113]. Using
the TB approach to first nearest neighbors, we consider
one orbital per atom in the unit cell and neglect the over-
lap orbital among neighboring sites. The scaling rule
τj = τ exp[−β(δj/a − 1)] relates the hopping parame-
ters τj with the deformed bond lengths δj . In graphene,
β = 2.6 is the Grüneisen constant and τ = 2.7 eV is the
isotropic hopping [25, 114]. This scaling rule evidences
that the Fermi velocity is anisotropic and has a tensorial
character. In the Fourier basis and expanding around the
Dirac cone, the Hamiltonian is [34, 107]

HD = ~
[

0 vc∗ · k
vc · k 0

]
, (3)

where k = (kx, ky) is the wave vector and

vc = (vcx, v
c
y) =

i

~
(
a1τ1e

−iKD·δ1 + a2τ2e
−iKD·δ2

)
, (4)

are the complex velocities, being KD the Dirac point
position, which is the solution of

3∑
j=1

τje
−iKD·δj = 0. (5)

The Hamiltonian (3) is the Dirac-Weyl type H = vijσipj ,
where vij is the Fermi velocity tensor and pj = ~kj are
the components of linear momentum. The electronic
band structure of anisotropic hexagonal lattice, in the
semimetallic phase, present generally elliptical and ro-
tated Dirac cones. The dispersion relation

E = s~|vc · k| (6)

of the Hamiltonian (3) displays this cone around the
Dirac point in the reciprocal space, where s is the
band index [107]. The eigenstates of the Dirac-Weyl-like
Hamiltonian (3) have the form

Φs,k(r) =
1√
2

(
1

seiφ(k)

)
eik·r (7)

and the definition of pseudospin angle φ(k) is

tanφ(k) =
−vxkx sinµx + vyky sinµy
vxkx cosµx + vyky cosµy

, (8a)

vcx = vxe
−iµx , (8b)

vcy = vye
iµy . (8c)

Here vcx,y are the x- and y-components of the complex
vector vc with norm vx,y and phase µx,y. The pseudo-
spin direction, wave vector, and the group velocity are
generally not parallel.

The direction of group velocity is found to be [107]

tan θ =
v2yky + vxvykx cos(µx + µy)

v2xkx + vxvyky cos(µx + µy)
(9)

and allows to obtain the wave vector in terms of incidence
angle. The application of uniaxial strains out of the zig-
zag and armchair direction have led to the emergence
of anomalous Klein tunneling [107], which occurs at the
incidence angle

θKT = arctan[vy cos(µx + µy)/vx] (10)

when ky = 0 in Eq. (9).
We now rewrite the dispersion relation (6) in the more

explicit form

E = s~
√
k2xv

2
x + 2kykxv2x tan θKT + k2yv

2
y. (11)

In next sections, we shall evidence that this symmetry
breaking with respect to the x axis modifies drastically
the electron transmission for the sidebands.
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(a) (b)

Figure 1. (a) Schematic representation of uniaxially strained graphene in a time-periodic potential. Violet and blue circles
indicate the sites of triangular sublattices A and B, respectively. The vector T corresponds to the applied tension in the ζ
direction. Each nearest-neighbor possesses a hopping parameter τj and bond length δj . The quantities a1 and a2 are the
deformed lattice vectors. The external gates induce a time-periodic potential barrier in region II. (b) Description of the Floquet
scattering across the time-periodic potential and Dirac cone structure. Horizontal green lines represent the energy channels
E −m~ω, where transmission in the sidebands occur.

III. PHOTON-ASSISTED TUNNELING
THROUGH A TIME-PERIODIC POTENTIAL

BARRIER

We study the tunneling of electrons in uniaxially
strained graphene under the presence of a time-periodic
potential barrier, as shown in Fig. 1. The photon-
assisted mechanism, such as a time-periodic potential
used here, causes the appearance of many sidebands
[43, 49, 67]. These sidebands correspond to multiple
copies of the dispersion relation with a relative energy
separation ~ω, where ~ and ω is the Planck constant
and the potential frequency, respectively. The Floquet
scattering is the usual theory to describe the tunneling
of a single electron with energy E to cross the time-
periodic potential gaining or losing the energy quan-
tity m~ω, where m = 0,±1,±2, . . . indicates the side-
band (see Fig. 1(b)). The tunneling is elastic (inelas-
tic) if the electron crosses the oscillating barrier with-
out (with) changes in the energy. Most of the exper-
imental realizations that involved photon-assisted tun-
neling are observed generally in the frequency range
from the microwave to infrared electromagnetic spectrum
[1, 9, 11, 14, 17–21, 24, 74, 75, 79, 80].

We have several external variables to control the elec-
tron tunneling by means of the application of uniaxial
strain and tuning of amplitude, frequency, barrier height
and width of the time-periodic potential. From a general
point to view, we write the time-dependent Schrödinger
equation as

[H(p) + V (r, t)]ψ(r, t) = i~∂tψ(r, t), (12)

where H(p) can be a general Hamiltonian that depends
only on the linear momentum p. Therefore, the follow-
ing development from Eqs. (12) to (18) can be applied

to multiple systems in condensed matter to depict the
Floquet scattering of electrons in the presence of a time-
periodic potential barrier.

The eigenvectors of H(p) are the wave functions
Φs,k(r) of the electron belonging to the momentum k
and band index s. For instance, in the particular Hamil-
tonian (3) the wave functions Φs,k(r) are given by (7).
We define E(s,k) to be the corresponding eigenvalue

H(p)Φs,k(r) = E(s,k)Φs,k(r). (13)

The time-periodic potential is given by

V (x, t) =

{
V0 + V1 cos(ωt), for 0 < x < D

0, otherwise
(14)

To solve this, we divide the system in three regions,
namely x ≤ 0, 0 ≤ x ≤ D and D ≤ x, denoted by I,
II, and III respectively. We define

α =
V1
~ω

(15)

and find the general plane wave solutions for all three
regions:

WsIkI
(r, t) = ΦsI,kI

(r) exp [−iE(sI,kI)t/~] (16a)

WsIIkII
(r, t) = ΦsII,kII

(r) exp
[
−(i/~)

(
V0t

+E(sII,kII)t+ V1 sin(ωt)/ω
)]

= ΦsII,kII
(r)

∞∑
m=−∞

Jm(α) exp
[
−(i/~)

(
V0

+E(sII,kII) +m~ω
)
t
]

(16b)

WsIIIkIII(r, t) = ΦsIII,kIII(r) exp [−iE(sIII,kIII)t/~] (16c)
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The second equality in (16b) follows from the identity

exp [−iα sin(ωt)] =

∞∑
m=−∞

Jm(α)e−imωt, (17)

where Jm(α) are Bessel functions of the first kind. We
now determine linear superpositions of these various solu-
tions ΦsI,kI

(r, t), ΦsII,kII
(r, t), and ΦsIII,kIII

(r, t) in such
a way as to yield continuous behaviour at the interfaces
x = 0 and x = D for all times.

We assume that the incoming wave in region I is char-
acterized by a wave vector k0 and a band index s0. To
match this in region II, we need all momenta qm such
that

E := E(s0,k0) = E(s′m, q
±
m) + V0 +m~ω (18a)

ky,0 = q±y,m, (18b)

where the second relation follows from the conserva-
tion of ky,0 at all interfaces. The expressions (18a) are
the sidebands for the system described by the Hamilto-
nian H(p) in the presence of the time-periodic poten-
tial V (x, t). Using the specific Hamiltonian of uniaxially
strained graphene (3) in this general development, we
have

q±m,x = ±s′m

√
(E − V0 −m~ω)2

~2v2x
−
v2y
v2x
k2y,0 sin2(µx + µy)

−ky,0 tan θKT , (19a)

s′m = sgn(E − V0 −m~ω), (19b)

where the ± sign indicates the two possible solutions for
qm, which are obtained by the dispersion relation (11).
There are two states with these wave vectors qm and the
same energy, we shall use them to represent “left-going”
and “right-going” waves in region II, in the same way as
it would happen with kx and −kx in isotropic systems.
Now, in order to match the e−imωt behaviour in region
II, we must introduce the wave vectors km in regions I
and III, defined by

E(sm,k
±
m) = E −m~ω (20a)

ky,0 = k±y,m. (20b)

Note again that k±m are uniquely determined by k0. Also,
the ± sign is related to a choice of left-going and out-
going waves, see (21a). Similarly, the solution of (20) is
given by:

k±x,m = ±sm

√
(E −m~ω)2

~2v2x
−
v2y
v2x
k2y,0 sin2(µx + µy)

−ky,0 tan θKT , (21a)

sm = sgn(E −m~ω). (21b)

It is possible to express ky,0 in terms of the incidence
angle θ inverting Eq. (9)

ky,0 =
vx|E|(tan θ − tan θKT )

~v2y sin2(µx + µy)
√

1 +
v2x(tan θ−tan θKT )2

v2y sin2(µx+µy)

. (22)

We now make the following Ansatz for the wave func-
tion ψ(r, t) in terms of the band index and wave vector
values in the three different regions I, II, and III:

ψI(r, t) =
1√
2
eiky,0ye−iEt/~

[(
1

s0eiφ
+
0

)
eik

+
x,0x

+

∞∑
m=−∞

rm

(
1

smeiφ
−
m

)
eik

−
x,mxe−imωt

]
,

(23a)

ψII(r, t) =
1√
2
eiky,0ye−iEt/~

∞∑
n,m=−∞

Jn(α)

[
t′m

(
1

s′me
iξ+m

)
×eiq

+
x,mx + r′m

(
1

s′me
iξ−m

)
eiq

−
x,mx

]
e−i(n+m)ωt,

(23b)

ψIII(r, t) =
1√
2
eiky,0ye−iEt/~

∞∑
m=−∞

tm

(
1

smeiφ
+
m

)
×eik

+
x,mxe−imωt, (23c)

where we define the phases corresponding to the various
wave vectors, as described in (8)

φ±m = φ(k±m) (24)

ξ±m = φ(q±m) (25)

and we use the particular eigenstates (7). The coefficient
rm is the reflection amplitude of the incident wave back
into region I, t′m and r′m are the amplitudes of the right-
going and left-going waves in region II respectively, and
tm is the total transmission amplitude from I to III, while
gaining or losing an energy m~ω in the process. The side-
band index indicates the conduction (s′m = 1) or valence
(s′m = −1) band.

With the matching of the wave functions (23) at (x =
0) and (x = D) and using the orthonormality condition
of Fourier basis, we obtain the following equations system

δm0 + rm =

∞∑
l=−∞

Jm−l(α)(t′l + r′l) (26a)

smδm0e
iφ+

m + smrme
iφ−

m =

∞∑
l=−∞

s′lJm−l(α)
(
t′le

iξ+l

+ r′le
iξ−l

)
(26b)

tme
ik+x,mD =

∞∑
l=−∞

Jm−l(α)
(
t′le

iq+x,lD

+r′le
iq−x,lD

)
(26c)

smtme
ik+x,mDeiφ

+
m =

∞∑
l=−∞

s′lJm−l(α)
(
t′le

iq+x,lDeiξ
+
l

+r′le
iq−x,lDeiξ

−
l

)
(26d)
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Figure 2. Transmission probability Tm = |tm|2 for electrons with energy E from the central band to cross the oscillating
barrier and lie on the sideband E − m~ω. This transmission is obtained from the numerical solution of the linear equation
system (31b), as a function of the ratio α = V1/~ω, where V1 is the oscillation amplitude for a time-periodic potential of height
V0 = 200 meV, width D = 100 nm, and frequency ω = 5 THz. The set of uniaxial strain parameters are ε = 10% and ζ = 45◦.
Transmission probability for the cases of anomalous Klein tunneling in the incidence angle θKT = −10.8◦ and using the energy
E = 82 meV in (a), normal incidence in (b) and (c) for the energies E = 90 and 120 meV, respectively.

The linear equations system (26) must be truncated
up to a maximum number of terms because in principle,
it is infinite. We can define this maximum number L in
the sum and impose the conditions

rm = t′m = r′m = tm = 0 (|m| ≥ L+ 1). (27)

In this way, the dimension of the system is d× d, where
d = 4(2L+1), and the sum index m runs over −L to L in
resemblance to the Lz angular momentum quantization.
We chose the ordered basis for the amplitude coefficients
defining the vector of d components by

X = (r−L, . . . , rL, t
′
−L, . . . , t

′
L, r
′
−L, . . . , r

′
L, t−L, . . . , tL)T

=
[(
rm
)L
m=−L

(
t′m
)L
m=−L

(
r′m
)L
m=−L

(
tm
)L
m=−L

]T
(28)

We now write the equations system (26) in a slightly
more compact form as follows:

M1 = [−IJJO], (29a)

M2 = [OJJ − I], (29b)

J = Jml = Jm−l(α), (29c)

D1 = diag

[(
sme

iφ−
m

)L
m=−L

(
s′me

iξ+m

)L
m=−L(

s′me
iξ−m

)L
m=−L

(
sme

iφ+
m

)L
m=−L

]
, (29d)

D2 = diag

[(
eik

−
x,mD

)L
m=−L

(
eiq

+
x,mD

)L
m=−L(

eiq
−
x,mD

)L
m=−L

(
eik

+
x,mD

)L
m=−L

]
, (29e)

b1 =
(
δm,0

)L
m=−L , (29f)

b2 = s0e
iφ0b1 (29g)

where the square sub-matrices I and O are the identity
and null matrix of size d/4×d/4, respectively. Therefore,
equations (26) can be written as ,

M1X = b1 (30a)

M1D1X = b2 (30b)

M2D2X = 0 (30c)

M2D1D2X = 0 (30d)

On the one hand, we can identify that the rectangular
matrices M1 and M2 control the scattering of electrons
in the time-periodic potential barrier through a unique
tunable parameter α. On the other hand, the diagonal
matrices D1 and D2 contain the effect of strain from the
phases in (24) and wave vectors given by Eqs. (19a) and
(21a). The photon-assisted tunneling amplitudes tm are
provided by the last 2L+ 1 components of vector

X =M−1b, (31a)

M = [M1 M1D1 M2D2 M2D1D2]T. (31b)

Here M is the total square matrix of the system defined
by Eqs. (26b)-(26d) and b = (b1, b2,0,0). Therefore, the
coefficients are given by Tm = |tm|2 which quantify the
transmission probabilities of electrons from the central
band E to cross the time-periodic potential barrier and
transit to the sideband E −m~ω.

In appendix A, we show an approximate solution of
this equation system with validity in the range 0 < α < 1.

IV. DISCUSSION AND RESULTS

The application of uniaxial strain along the ζ =
45◦ changes drastically the transport properties in
anisotropic hexagonal materials. Electrons impinging the
electrostatic potential barrier at the specific incidence
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Figure 3. Anomalous Floquet tunneling of electrons at the energy E = 100 meV as a function of the incidence angle θ. The
set of values for the time-periodic potential are V0 = 200 meV, D = 100 nm, and ω = 5 THz. Transmission probabilities
Tm = |tm|2 using the strain parameters ε = 0, 5, 10% and ζ = 45◦ with α = 2 in (a), (b), and (c) respectively.
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-12
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Figure 4. Anomalous Klein tunneling angle (Eq. (10)) and
the numerically determined angular shift of the maximum
transmission T0 as a function of the tensile strain parame-
ter ε at the direction ζ = 45◦ and the ratio α = V1/~ω = 2.

angle θKT present the anomalous Klein tunneling [107].
This effect emerges for strains that break the mirror sym-
metry with respect to the x axis. We set the values
ε = 10% and ζ = 45◦, where anomalous Klein tunnel-
ing appears for the incidence angle θKT = −10.8◦ in the
static barrier α = 0, (see Fig. 2(a)). This perfect trans-
mission occurs when the wave vector is perpendicular to
the barrier, as obtained setting ky,0 = 0 in Eq. (9). The
incidence angle is different to zero due to that the wave
vector, pseudo-spin, and group velocities are generally
not parallel [31, 107]. If we turn on the time-periodic po-
tential, the anomalous Klein tunneling suppresses. The
transmission probabilities in the central and sidebands
depend on α. In most of the cases, we only consider
the transmission coefficients Tm with m = −2,−1, 0, 1, 2
because the other ones with |m| > 2 have a maximum
value smaller than 0.1 in the whole range of 0 < α < 8
and therefore, they can be neglected. The transmission
probability Tm starts to be relevant for α > |m|, as shown

Figure 5. Anomalous Klein tunneling angle as a function of
the strain parameters ε (radius from 0 to 10%) and ζ (polar
angle in degrees).

in Fig. 2. We can see that electrons absorbing or emit-
ting m photons have the same probability to cross the
barrier (see Fig. 2(a)). This equiprobability appears for
the specific case where the wave vector is perpendicular
to the barrier and also by the linear dispersion relation
of electrons.

When electrons impinge under normal incidence to the
time-periodic potential, as shown in Figs. 2(b) and (c),
the wave vector is not perpendicular anymore as a con-
sequence of the uniaxial strain out of the main axes x
and y. Hence, Klein tunneling deviates from the nor-
mal direction, and the transmission probability splits
out slightly for the absorption and emission of photons,
namely, Tm 6= T−m. The perfect transmission for normal
incidence by the Klein tunneling in the static case α = 0
is destroyed, as verified by changing the energy values to
E = 90 and 120 meV in Fig. 2(b) and (c). This resonant
tunneling is atypical for normal incidence.

We call anomalous Floquet tunneling to the angular
shift of the maximum transmission by the application of
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(a) (b) (c)

Figure 6. Transmission probability (a) T0, (b) T−1, and (c) T−2 as a function of uniaxial strain parameters ε (radius from 0 to
10%) and ζ (polar angle in degrees) for electrons with normal incidence and energy E = 100 meV in a time-periodic potential
V0 = 200 meV, D = 100 nm, α = 2, and ω = 5 THz.

(a) (b) (c)

Figure 7. Transmission probabilities of (a) T0, (b) T1, and (c) T2 as a function of barrier width and incidence angle for the
potential height V0 = 200 meV.

a uniaxial tension different to the direction ζ = 0◦ and
90◦, as shown in Figs. 3 (a)-(c). Such a shift in the trans-
mission probability usually appears in other systems by
time-reversal symmetry breaking with an external mag-
netic field [67]. That vector potential, which generates
the magnetic field, shifts the Dirac cone in the reciprocal
space. Although the strain here affects the Dirac cone
differently, changing the circular shape to a rotated and
elliptical one, both systems present a particular feature
in common: incident electrons with a wave vector per-
pendicular to the interface have a nonzero parallel group
velocity vy. In Fig. 3, we chose a shortened incidence
angle range to avoid the evanescent waves. The incident
electrons have critical angles that depend on the side-
band. Increasing ε in Figs. 3(a)-(c), we observe that
this angular deviation in the maximum of transmissions
improves. We show the angular shift of the maximum
transmission θmax as a function of the tensile strain in
Fig. 4. This angular shift has a good agreement with
the anomalous Klein tunneling angle θKT predicted by
Eq. (10). It is worth noting that this angular shift of
the maximum transmission depends only on the tensile
strain ε and tension angle ζ. The expansion of Eq. (10)
(see appendix B), keeping only the first-order terms in ε,
we lead to a very simple and straightforward relation of

the anomalous Klein tunneling angle with the parameters
ε and ζ

θKT ≈
360◦

π
ρ+(1− β)ε sin 2ζ, (32)

which has a negligible deviation of the exact relation (10)
in the whole strain range considered. Uniaxial strain
along with the directions ζ = 0◦ and 90◦ (not shown)
does not break the mirror symmetry with respect to the
normal axis. In this case, the group velocity and the
wave vector are parallel for normal incidence which re-
stores the angular transmission symmetry. We quantify
the anomaly in the transmissions using the direction of
the Klein tunneling deviation in Eq. (10), which depends
only on the strain parameters ε and ζ. Fig. 5 shows this
anomaly in the whole strain range. As expected, the uni-
axial strains along the perpendicular and parallel direc-
tions to the interface keep the symmetry in the transmis-
sion. While tensions in a different direction to ζ 6= 0 and
90◦ cause the anomalous Floquet tunneling. We found
that the highest angular shift value is θKT ≈ −10.8◦ for
the set of parameters ε = 10% and ζ = 45◦.

To understand how the uniaxial strain affects the be-
havior of photon-assisted tunneling, we show the proba-
bility transmission as a function of ε and ζ in Fig. 6 for
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(a) (b) (c)

Figure 8. Transmission probabilities of (a) T0, (b) T1, and (c) T2 as a function of the parameter α and incidence angle θ for
the potential height V0 = 200 meV and width D = 100 nm.

the case of normal incidence. We can see that in a wide
range of ζ, the behavior of Tm is strongly anisotropic
with the angle ζ, and the increase of ε causes a reduction
in the probability transmission T0, as shown in Fig. 6(a).
However, for the tension angle ζ = 90◦, normal incident
electrons have an almost constant probability of crossing
the barrier regardless of the tensile strain. It is worth
noting that the independence of transmission on the ten-
sile strain at ζ = 90◦ also appears for other sidebands,
as shown in Fig. 6(b) and (c). The transmission T1
and T2 present an identical behavior with respect to the
emission counterpart. The application of strain in the
directions near the x-axis shows an increase of T−1 and
T−2. While uniaxial strain along the y-axis decrease the
electron transmission in the sidebands. The time expo-
sition of electrons to the oscillating barrier explains the
strain-induced transition from elastic to inelastic tunnel-
ing. Positive tensile strains in the direction ζ = 0◦ in-
crease the bond lengths. Therefore, the probability am-
plitude of electrons decreases to hop among neighboring
sites. In this way, there is more time exposition to in-
teract with the time-periodic potential. Thus, electrons
cross the barrier inelastically with transmission probabil-
ities T1 and T2. In contrast, deformations parallel to the
interface decrease the zigzag bond lengths, and electrons
have a major probability to cross the barrier elastically.

We examine the behavior of the transmission proba-
bility Tm as a function of barrier width and incidence
angle, as shown in Fig. 7. In general, the reminiscence
of the anomalous Klein tunneling makes that almost
all the transmission occurs around the incident angle
θ = −10.8◦. We found that the tuning of barrier width
can serve as a selector of the transmission in the side-
bands. In thin barriers D < 50 nm (see Fig. 7(a)), the
transmission is mainly due to the central band, where
other sidebands participate only scarcely. The increase
of the barrier width can suppress the transmission in the
central band and favors the emergence of another trans-
missions in the sidebands. Fig. 7(b) shows that electrons
absorbing or emitting one photon have a higher proba-
bility of crossing the time-periodic barrier if the width
is within the range of 100 to 150 nm. The same occurs

for T2 in Fig. 7(c) in the range 150 < D < 300 nm.
This is due that electrons to cross the barrier have more
exposition time to interact with the time-periodic poten-
tial, and therefore, it favors the promotion of electrons
to travel through other sidebands with a higher energy
difference. We note a similar behavior (not shown) for
the transmissions T−1 and T−2 compared with T1 and
T2, respectively. These results imply that an adequate
selection of the barrier width allows that the device con-
verts incoming electron current with energy E to two
outcoming photo-excited currents, with a difference be-
tween them of 2n~ω. Although this effect can also be
obtained for the unstrained case [19–21], the uniaxial de-
formation improves the inelastic tunneling to favor the
output of photon-excited currents.

Another alternative way to select transmission in a par-
ticular sideband is to modulate the oscillating amplitude
V1. Fig. 8 shows the transmissions T0, T1, and T2 as a
function of α and θ for a constant value of the barrier
width. Anomalous Klein tunneling and resonant peaks
are suppressed by increasing α, while electron transmis-
sions in other sidebands arise. Dependent on the ampli-
tude of the oscillation, the device in Fig. 1(a), can convert
electron current to a photo-excited one.

V. CONCLUSIONS AND FINAL REMARKS

We have studied the effect of uniaxial strain on the
transport properties of electrons in graphene in the pres-
ence of a photon-assisted tunneling mechanics. The in-
terplay of uniaxial strain and photon-assisted tunneling
opens possibilities to control electron flow. We applied
the Floquet scattering theory in anisotropic hexagonal
lattices. This approach serves to understand the inter-
action of electron current with the time-periodic poten-
tial in systems such as uniaxially strained graphene, pho-
tonic crystals, molecular graphene, and optical lattices.
We calculate the transmission probabilities with the ab-
sorption or emission of multiphoton processes. The main
transmission features as anomalous Floquet tunneling oc-
cur with the application of uniaxial strains out of the x
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and y axes. We found that applying uniaxial strain in the
parallel direction at the interface, photon-assisted tunnel-
ing is unaffected by the increase of the tensile parameter.
Whereas, uniaxial strain perpendicular to the barrier en-
hances the electron transmission from the sidebands. An
appropiate design of the barrier width, or tuning the am-
plitude of oscillation, can select the electron tunneling to
absorb or emit n photons. Therefore, the device converts
an electron current to a photo-excited one. Such findings
may be useful to control the electron flow in nanoelec-
tronic devices through the photon-assisted tunneling and
strain engineering.
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APPENDIX A: APPROXIMATE SOLUTION OF
FLOQUET SCATTERING OF ELECTRONS IN

UNIAXIALLY STRAINED GRAPHENE

It is possible to obtain an approximate solution for
the transmission coefficient Tj = |tj |2 with j = −1 and
1 using the exposed method in section III. As we can
see, the fact that the Jn(α) is negligible at n � L in
the range 0 < α < L, it causes that the infinite system
evolves a finite one from −L up to L. In the case L = 0,
the equation system has dimension d = 4 and we can
calculate the transmission coefficient for the static barrier

Tsm =
cos2 χm cos2 χ′m

cos2 χm cos2 χ′m cos2 γ′m + [1− sms′m sinχm sinχ′m]2 sin2 γ′m
, (A1)

which is the probability of an electron to cross the barrier
from the same sideband with energy E −m~ω, where

χm = φ+m + µx, (A2a)

χ′m = ξ+m + µx, (A2b)

γ′m =
D|E − V0 −m~ω|

vx~
cos(ξ+m + µx). (A2c)

Due to the dependence on barrier width in Eq. (A1), res-
onant tunneling occurs for γ′m = Nπ being N an integer.
While anomalous Klein tunneling appears for the inci-
dence angle θ = θKT . Without deformation, the above
values are µx = 0, µy = π/2, vx = vy = 1, recovering the
expression of transmission coefficient in a static barrier
of graphene [115]. With the definition of transmission
probability in photon-assisted tunneling Tm = |tm|2 and
solving the equation systems for L = 1, we find an ana-
lytical transmission for the transmission T1 valid in the
range 0 < α < 1

T1 =

J1(α)|(Γ1 − Γ0) + (Λ1 − Λ0)|

J0(α)
∣∣∣eiφ+

1 − eiφ−
1

∣∣∣
2

Ts0Ts1, (A3)

where the quantities Γj and Λj are defined as

Γj =
eiq

−
x,jD(eiφ

−
1 + eiξ

−
j )(eiφ

+
0 + eiξ

+
j )

eiξ
−
j − eiξ

+
j

(A4a)

Λj =
eiq

+
x,jD(eiξ

+
j + eiφ

−
1 )(eiφ

+
0 + eiξ

−
j )

eiξ
−
j − eiξ

+
j

, (A4b)

with the index j = 0 or 1. An identical expression is
obtained for the transmission T−1 replacing 1 → −1 in
all the relations above. In the unstrained case, the trans-
mission probability (A3) is identical to those calculated
in [49].

APPENDIX B: LINEAR RELATION OF
ANOMALOUS KLEIN TUNNELING ANGLE

WITH THE UNIAXIAL STRAIN

In order to obtain the linear dependence on the tensile
strain ε of anomalous Klein tunneling angle, we expand
Eq. (10) keeping the first-order in ε. First, we calculate
the ratio of the complex velocities components (4)

vcy
vcx

=
a1yτ1e

−iKD·δ1 + a2yτ2e
−iKD·δ2

a1xτ1e−iKD·δ1 + a2xτ2e−iKD·δ2
. (B1)

This expression is useful to express Eq. (10) as

θKT ≈
180◦

π
Re(vcy/v

c
x) =

180◦

π

a1xa1yτ
2
1 + a2xa2yτ

2
2 + (a1xa2y + a2xa1y)τ1τ2 cos[KD · (δ1 − δ2)]

a21xτ
2
1 + a22xτ

2
2 + 2a1xa2xτ1τ2 cos[KD · (δ1 − δ2)]

. (B2)
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Taking into account that the solution for Eq. (5) is

cos[KD · (δ1 − δ2)] =
τ23 − τ22 − τ21

2τ1τ2
(B3)

and the deformed lenghts of uniaxially strained graphene
are

δj ≈ a{1 + ρ−ε+ ρ+ε cos[2ζ + (2j − 1)60◦]}, (B4)

we expand the exponential decay rule for the hopping
parameters τj up to first-order in ε

τj
τ
≈ 1− β{ρ− + ρ+ cos[2ζ + (2j − 1)60◦]}ε. (B5)

Substituting the above expression in (B3)

cos[KD ·(δ1−δ2)] ≈ −1

2
[1+3βρ+ε cos(2ζ−60◦)]. (B6)

In the same way, we expand the relations

a1xτ1 ≈
√

3aτ(1 + c1xε), (B7)

a1yτ1 ≈
√

3aτρ+ε sin 2ζ, (B8)

a2xτ2 ≈
√

3

2
aτ(1 + c2xε), (B9)

a2yτ2 ≈
√

3

2
aτ(
√

3 + c2yε), (B10)

where we used Eqs. (1) and (B5). The coefficients c1x,
c2x, and c2y are, respectively,

c1x = ρ− + ρ+ cos 2ζ − β[ρ− + ρ+ cos(2ζ + 60◦)], (B11)

c2x = ρ− + 2ρ+ cos(2ζ − 60◦)− β[ρ− − ρ+ cos 2ζ], (B12)

c2y =
√

3ρ− + 2ρ+ sin(2ζ − 60◦)−
√

3β[ρ− − ρ+ cos 2ζ].

(B13)

Substituting the relations (B7)-(B10) and (B6) on Eq.
(B2), we obtain

θKT ≈
180◦

π

2ρ+(1− β)ε sin 2ζ

1 + 3[c1x + c2x − βρ+ cos(2ζ − 60◦)]ε

≈ 360◦

π
ρ+(1− β)ε sin 2ζ, (B14)

which is the result as shown in Eq. (32).
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