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Tregs self-organize into a "computing ecosystem"
and implement a sophisticated optimization
algorithm for mediating immune response
Robert Marsland IIIa,1, Owen Howella, Andreas Mayerc, and Pankaj Mehtaa,b,1

aDepartment of Physics, Boston University, Boston, MA 02215; bCollege of Data Science, Boston University, Boston, MA 02215; cLewis-Sigler Institute, Princeton University,
Princeton, NJ 08540

This manuscript was compiled on February 15, 2022

Regulatory T cells (Tregs) play a crucial role in mediating immune
response. Yet an algorithmic understanding of the role of Tregs in
adaptive immunity remains lacking. Here, we present a biophysically
realistic model of Treg mediated self-tolerance in which Tregs bind to
self-antigens and locally inhibit the proliferation of nearby activated T
cells. By exploiting a duality between ecological dynamics and con-
strained optimization, we show that Tregs tile the potential antigen
space while simultaneously minimizing the overlap between Treg ac-
tivation profiles. We find that for sufficiently high Treg diversity, Treg
mediated self-tolerance is robust to fluctuations in self-antigen con-
centrations but lowering the Treg diversity results in a sharp transi-
tion – related to the Gardner transition in perceptrons – to a regime
where changes in self-antigen concentrations can result in an auto-
immune response. We propose a novel experimental test of this tran-
sition in immune-deficient mice and discuss potential implications
for autoimmune diseases.

Adaptive immunity | Tregs | optimization | ecology | biophysics

The adaptive immune system of humans and other mam-
mals solves a challenging computational problem with

amazing reliability. Using only the information contained in
the binding affinities between certain macromolecules, the sys-
tem must distinguish potentially pathogenic cells from its own
cells, in order to eliminate the former without harming the
latter. While understanding how the immune system accom-
plishes this feat is fascinating even from a purely theoretical
point of view, this problem also has many urgent practical
implications since an increasing number of autoimmune dis-
eases and allergies are thought to stem from an inability to
accurately distinguish self and foreign antigens (1).

An important step forward in the effort to understand
adaptive immunity came with the discovery of regulatory T
cells (Tregs) (2, 3). Like all T cell phenotypes, Tregs express T
cell receptors (TCR’s) on their surface, which bind to antigen
peptides displayed on the surface of other cells via the major
histocompatibility complex (MHC). But unlike in conventional
T cells, TCR binding and activation in Tregs have the effect
of suppressing T cell proliferation and cytokine production.
This Treg-mediated suppression of self-activation complements
negative selection in the thymus against self-reactive T cell
lineages. In fact, it has been experimentally shown that even
after undergoing negative selection in the thymus, T cells can
raise a full immune response against native tissues if Tregs are
artificially removed from the immune system (2). For all these
reasons, Tregs are thought to play a critical role preventing
autoimmune responses.

The problem of distinguishing self from non-self is made
even harder by the requirement that the immune system must

be able to reliably respond to even small amounts of foreign
antigen but be robust to potentially large fluctuations in the
concentrations of self-antigens. Specifically, even in the ab-
sence of foreign antigens, the immune system needs to tolerate
fluctuations in the relative abundances of self-antigens, as
development, circadian cycles and other natural variations in
biological activities lead to very different protein expression
patterns even in healthy cells.

In this paper, we propose a simple dynamical model for the
interactions between conventional T cells, Tregs and antigens,
which captures the essential aspects of known Treg biology. We
then use this minimal model to understand how the immune
system can achieve the stringent requirements described above,
while simultaneously providing an algorithmic interpretation
for Treg-mediated adaptive immunity. This work builds on
a longstanding tradition of ecological modeling in theoretical
immunology (4–6), and to our knowledge is the first application
of this approach to Treg dynamics. Finally, we note that for
notational brevity, in this manuscript we will always use T
cells to mean conventional T cells (non-regulatory T cells).

Model Development

We now present a minimal model for Treg-mediated self-
tolerance. As shown in Figure 1, our model has three basic
components: conventional T cells, Tregs, and antigens. Upon
binding an antigen, T cells enter an active state in which they
begin to proliferate and to release various interleukin signaling
molecules. These interleukins stimulate other immune cells,
including Tregs which in turn suppress T cell proliferation
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Fig. 1. A minimal model of Treg-mediated self-tolerance. (a) Bind-
ing to antigen stimulates proliferation of conventional T cells (“T cell”), which in turn
initiates an immune response. Antigen binding also stimulates proliferation of Tregs,
which locally inhibit T cell proliferation, with inhibition strength Q. Treg proliferation
also requires a sufficient local concentration of interleukin, which is produced at rate a
by activated T cells. (b) Idealized “whitelist” network of T cell and Treg cross-reactivity
functions. Each edge represents the interaction of T cell i (pcix) or Treg α (prαx) with
antigen x. In this example, each kind of Treg only binds to one kind of self-antigen,
and no Tregs bind to the foreign antigen. We model the growth rate of the population
λi of T cells of type i as a function of the cross-reactivities, the abundance vx of
each antigen and the abundances wα of the Tregs. (c) The ideal network ensures
that T cell proliferation rates are insensitive to self-antigen concentrations vx, and
remain zero as levels of various proteins naturally fluctuate. At the same time, foreign
antigens that do not bind to the Tregs can cause net proliferation of T cells and
produce an immune response.

(Figure 1(a)). It is known that the activation of a sufficiently
large number of T cells triggers a immune response, a pro-
cess likely mediated through a quorum sensing mechanism (7).
We do not explicitly include this last process in the minimal
model presented in the main text. Instead, we focus on the
initial phase of the response and ask whether T cells will begin
to proliferate in response to a foreign ligand or a change in
the concentration of self ligands. We assume that sufficient
proliferation will result in immune response through the pro-
cesses downstream of the signaling pathways we study here.
In SI Appendix (Section I), we show that the minimal model
presented in the main text can be derived from a more bio-
logically realistic mechanistic model that includes additional
components.

A typical human immune system has been estimated to
contain about Nc ∼ 106 distinct lineages of conventional T
cells and a similar number Nr of Treg lineages, each carrying
a different TCR, specific to a different set of antigens (8).
Labeling each T cell lineage by i (i = 1, 2 . . . Nc) and each Treg
lineage by α (α = 1, 2, . . . Nr), we can encode this diversity
in the cross-reactivity functions pcix and prαx, which quantify
the strength of interaction of conventional T cells and Tregs
with possible antigens x, respectively. At the most basic level,
the index x simply represents a unique amino acid sequence
that could be displayed on the cell surface. But since T cells
are known to respond to antigens in a tissue-specific manner
(9), x can more abstractly be thought of indexing possible
tissue-antigen pairs (see SI for more details). For brevity, we
will often refer to these antigen-tissue pairs by the shorthand
antigen. One can visualize the cross-reactivity functions as
an interaction network, with nodes corresponding to T cells,
Tregs, and antigens, and edges representing the interaction
strengths (see Figure 1(b) for a particularly simple example).

Our aim is to use these cross-reactivity functions to model
the dynamics of the number of cells λi of conventional T cell
lineage i and the number of cells wα of Treg lineage α. In gen-
eral, these abundances will depend on antigen concentrations.
We will use vx to denote the abundance of antigen x. We will
assume that the time scales on which self-antigen concentra-
tions change is much slower than the Treg/T cell dynamics, so

these vx will be treated as fixed quantities when we analyze
T cell and Treg dynamics or find possible steady-states of T
cell and Treg abundances. It turns out that this assumption is
not essential to our main results, as shown in Supplementary
Figure S3, because the independence of growth rates from vx
in the emergent tiling phase implies that the same solution
exists regardless of the the variations in antigen levels.

In our minimal dynamical model, T cells of lineage i can
be activated at a rate proportional to the cross-reactivity func-
tions pcix times the antigen concentration vx. When activated,
T cells proliferate at a rate ρ. As shown in Figure 1(b), T
cell proliferation is suppressed by Tregs. Experiments indicate
that Treg-mediated suppression of T cell proliferation is highly
localized (10, 11). This is incorporated in our model by an
antigen specific suppression level Qx that is proportional to the
abundance of Tregs activated by antigen x, with a constant of
proportionality b. With these assumptions, conventional T cell
abundances can be described using the differential equation

dλi
dt

= λi
∑

x

pcixvx(ρ−Qx)

Qx = b
∑

α

prαxwα, [1]

where the first term pcixλivx gives the abundance of T cells
activated by each tissue-specific antigen x, and the second
term (ρ−Qx) is the growth rate of activated cells.

Experiments also indicate that T cell activation stimulates
proliferation of nearby Tregs (3). One potential mechanism for
this interaction is the local production of interleukin signals
by activated T cells. Tregs are known to be particularly
sensitive to interleukin levels and to rapidly take up interleukin
from their environment (12). We denote the local interleukin
concentration in the vicinity of cells displaying a particular
tissue-specific antigen concentration x by ILx. The change in
number of Tregs from lineage α, wα, can be written as the
product of the abundance of Tregs bound to a tissue-specific
antigen x (given by prαxvxwα) and an interleukin-dependent
local proliferation rate crILx (with proportionality constant
cr). We also assume that the in absence of interleukin Tregs
die at a rate m. These Treg dynamics can be summarized in
the differential equation

dwα
dt

= wα
∑

x

prαxvx[crILx −m]

ILx =
a

∑
j
pcjxλj

cr
∑

β
prβxwβ

. [2]

In the SI Appendix (Section I) we show that Eq. 1 and Eq. 2
can be derived from a realistic mechanistic model in the limit
where interleukin dynamics are assumed to be fast compared
to T cell and Treg proliferation.

Surprisingly, we can rewrite these dynamics in a slightly
different way that makes no explicit reference to antigens. The
central objects in this formulation are the “overlap kernels”
φiα – which measure the similarity between the activation
profiles of a T cell from lineage i and a Treg from lineage α
– and φαβ – which measures the overlap between Tregs from
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lineages α and β – with

φiα =
∑

x

vxp
r
αxp

c
ix

φαβ =
∑

x

vxp
r
αxp

r
βx. [3]

Notice that these overlaps depend on the cross-reactivity func-
tions as well as the antigen concentrations. In SI Appendix (,
we describe an approximation that is exact in the “emergent
tiling” regime discussed below, which allows the dynamics of
Eq. 1 and Eq. 2 to be written entirely in terms of the overlaps:

dλi
dt

= λiri

[
ρ− br−1

i

∑

α

φiαwα

]

dwα
dt

= m∑
β
wβ p̄β

wα

[
κα −

∑

β

φαβwβ

]
, [4]

with κα = a
∑

j
λjφjα/m, ri =

∑
x
vxpix and p̄β =

∑
x
prβx.

Surprisingly the explicit dependence on antigens has com-
pletely disappeared from Eq. 4. Instead, all information about
antigen concentrations appears only through the overlap ker-
nels. This is similar to the “kernel trick” in Machine Learning
where all information about overlaps in a feature space can
be encoded in a kernel function (13).

These new equations also naturally lend themselves to
an ecological interpretation in terms of Consumer Resource
Models and generalized Lotka-Volterra models. We can view
T cells as exponentially growing “resources”, with growth rate
r−1
i ρ, that are consumed by Tregs, with the consumption rate
depending on the “resource utilization function” φiα. Notice
that the Treg dynamics in Eq. 4 take the form of a Lotka-
Volterra equation. Tregs grow at a rate κα that depends how
many resources they consume but also compete with other
Tregs. The strength of competition depends on the overlap
kernel φαβ . Ecologically, φαβ can be thought of as the“niche-
overlap” between Tregs in antigen space. The mechanistic
origins of this competition can be traced to the fact that higher
niche-overlaps mean Tregs are more likely to be colocalize and
hence more likely to compete for interleukins produced by T
cells at a given tissue/antigen (see Fig. 1).

Results

We now analyze the implications of these dynamics in greater
detail. Our analysis exploits the ecological interpretation
described above by making use of our recently discovered
mapping between ecological dynamics and constrained opti-
mization (14–16). This allows us to naturally give an algorith-
mic interpretation of the computations performed by Tregs
and identify a novel phase transition in the behavior of Treg
mediated self-tolerance as a function of Treg diversity.

Tregs minimize "niche-overlap" in antigen space. If Treg and
conventional T cell dynamics are fast compared to the the
rate at which antigen concentrations change, we can focus on
analyzing the steady-state abundances of Tregs and T cells.
In this case, we can set the left hand side of equations in Eq.
4 equal to zero and the resulting steady-state equations have
a natural interpretation in terms of constrained optimization.
In SI Appendix (Section II), we show that the steady states of

Fig. 2. Emergent tiling of self-antigen space required for robust
self-tolerance. (a) Cross-reactivity network with perfect tiling of self-antigens by
Tregs. Each self-antigen binds to exactly one Treg receptor, and all nonzero affinities
are equal. (b) Local Treg-mediated suppression in this scenario, with the height of the
each colored region representing the suppression level contributed by a given Treg
in the vicinity of a given self-antigen. The two Treg lineages are shown in the same
colors as the first panel, and antigens are arranged along the horizontal axis. Perfect
tiling ensures that the suppression strength is uniform across all self-antigens, exactly
canceling the basal proliferation rate ρ. Also shown is a conventional T cell (black
circle) that binds to two of the antigens (x and y). (c) Net proliferation rate of T cell
from previous panel. Rate is shown as a function of the concentration vx of antigen
x, assuming that the concentration vy of antigen y is held fixed. (d) Generic cross-
reactivity network, with non-uniform affinities and overlap between the cross-reactivity
functions of different Tregs. (e) Possible result for Treg-mediated suppression, which
is no longer uniform across antigens. (f) Proliferation rate of T cell from previous panel
as a function of vx at fixed vy . (g) Generic cross-reactivity network, as above. (h)
Treg coverage under “emergent tiling,” where a set of Treg abundances wα is found
that restores uniform suppression levels, despite the heterogeneity and overlaps in
the cross-reactivity network. Note that this solution is generically only possible at
much higher levels of Treg diversity for the given number of antigens. (i) Proliferation
rate of T cell from previous panel as a function of vx at fixed vy .

the dynamical equations Eq. 4 are equivalent to the solutions
of the following the constrained optimization problem:

argmin
w

1
2

∑

α,β

wαφαβwβ

subject to : r−1
i

∑

α

φiαwα ≥ ρ

b
and wα ≥ 0. [5]

The T cell concentrations λi play the role of generalized La-
grange multipliers in the Karush-Kuhn-Tucker (KKT) condi-
tions that enforce the inequality constraints above.

This optimization problem has a very beautiful biological
interpretation. To see this, note that the φαβ is a measure
of the similarity between Tregs. Thus, this optimization tells
us that Treg populations self organize to minimize overlaps
in the activation profile of Tregs. However, when performing
this optimization, one must ensure that no T cell lineage i
can be activated in the absence of foreign ligands to prevent
undesirable autoimmune responses. This last condition is
represented in the inequality constraint r−1

i

∑
α
φiαwα ≥ ρ

b

which simply states that Treg must be able to suppress the
proliferation of any T cell lineage i. Equivalently, from an eco-
logical perspective, this means that Tregs must be able to cover
the potential space of activated T cells while simultaneously
minimizing niche overlap between Tregs. This is analogous to
niche partitioning and species packing in ecological systems

Marsland et al. PNAS | February 15, 2022 | vol. XXX | no. XX | 3
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(17, 18), with Treg lineages playing the roles of species and T
cells playing the role of resources.

Emergent tiling is required for robust self-tolerance. The pre-
vious results relied on the overlap kernel formulation of our
model. We now reanalyze these dynamics from the perspective
of antigens. As discussed in the introduction, an important
property of an effective immune system is that it must reliably
respond to foreign antigens but also be robust to fluctuations
in the concentrations of self-antigens. One simple, but biophys-
ically unrealistic, way of achieving this robustness is depicted
in Figure 1(b). The figure depicts a simple “whitelist” sce-
nario for Treg-mediated self-tolerance, with a specialized Treg
for each self-antigen and all Tregs having the same binding
affinity. In such a scenario, the sums over x in Eqs. (1-2)
are unnecessary, since each equation contains only one term.
Setting dλi/dt = dwα/dt = 0 then yields uniform equilib-
rium Treg coverage Qx = ρ and a uniform interleukin profile
ILx = m/cr over all antigens x that interact with a surviving T
cell and Treg. As can be immediately seen from the equations,
these conditions guarantee that proliferation rates dλi/dt and
dwα/dt remain zero for all choices of the antigen concentra-
tions vx. A direct consequence of this is that Treg-mediated
self tolerance is robust against fluctuations in the antigen
abundances. Nonetheless, if a foreign antigen is introduced
that does not interact with any of the Tregs, T cells that bind
to the new antigen will still proliferate at the original rate ρ
since there is no specialized Treg to inhibit their growth.

Real immune systems, however, cannot achieve this one-to-
one correspondence between self-antigens and Tregs because
of biophysical constraints stemming from the nature of TCR-
peptide interactions (19). Figure 2 illustrates three other
possible scenarios of response to fluctuations in self-antigen
concentrations (Fig. 2(a-c)). In the first scenario, each Treg
binds with equal strength to a different set of non-overlapping
antigens. These sets perfectly tile the set of self-antigens, cov-
ering all of them without gaps or overlaps. Since each antigen
interacts with only one Treg (though Tregs will generically
interact with multiple antigens), a set of Treg abundances can
still easily be found for which the proliferation rate vanishes
everywhere. However, just as in the original whitelist example,
this scenario can only achieved by requiring a biophysically
implausible fine tuning of TCR-peptide binding. In the ab-
sence of such fine tuning, the system becomes sensitive to
fluctuations in self-antigen abundances vx since generically the
Treg coverage of antigen space will be uneven (Fig. 2(d-f )).

These examples suggest that the only biophysically plau-
sible way for the immune system to achieve robustness to
fluctuations in self-antigens while maintaining sensitivity to
foreign antigens is to tune the relative abundances of the Tregs
and T cells to produce uniform coverage and a uniform inter-
leukin profile, with Qx = ρ and ILx = m/cr at every antigen
x, despite the biophysically unavoidable overlaps between the
Treg cross-reactivity functions (Fig. 2(d-f )). We call such a
tilling of the antigen space an “emergent tiling.” Note that
emergent tiling is generically impossible in the simple cross-
reactivity network sketched here, with many antigens and
only two Tregs, and the schematic is only meant to convey
the idea of uniform coverage in the presence of overlaps. We
now proceed to investigate the conditions for emergent tiling
without fine-tuning in more complex networks.

Fig. 3. A phase transition from imperfect tiling to emergent
tiling as a function of Treg diversity. (a) Mean squared deviation 〈δQ2

x〉
of Treg coverage from the ideal uniform solution Qx = ρ versus the ratio Nr/Na of
the number of Treg lineages to the number of antigens. Equilibrium Treg and T cell
abundances were obtained by convex optimization as described in the main text and
SI. Na and the number of conventional T cell lineages Nc were held fixed at 100
and 1,000, respectively, while Nr was swept from 100 to 300. The elements of the
cross-reactivity functions prαx and pcix were sampled independently from Bernoulli
distributions with success probability p from 0.1 to 0.3. (b) Mean squared deviation
〈δIL2

x〉 of local interleukin levels from the ideal uniform solution ILx = m/cr , for the
same set of simulations. (c) Same as first panel, but with structured cross-reactivity
functions prαx and pcix encoding a one-dimensional shape space, as described in
the main text and SI. The horizontal axis indicates the ratio of the effective number
of Tregs Neff

r to Na, where Neff
r is defined as the number of singular values of the

cross-reactivity matrix prαx that exceed a cutoff threshold of ε = 10−6. (d) Mean
squared deviation of local interleukin levels for the same set of simulations.

Emergent tiling is possible above a threshold level of Treg
diversity. Inserting the full expressions for ILx and Qx from
Eqs. 1-2 into the conditions for uniform coverage discussed
above (Qx = ρ, ILx = m/cr), we find that sufficient conditions
for a stable emergent tiling solution can be written as

∑

α

prαxwα = ρ

b
and

∑

j

pcjxλj = mρ

ab
, [6]

where as before α runs over Treg lineages, j over T cell lineages,
and x over possible self antigens. Note that we have used the
first condition to simplify the expression for ILx in the second.
When a solution to these equations exists, it also solves the
optimization problem stated in Eqs. 5 above, but this is not
immediately clear from the formulation in terms of overlaps.
In SI Appendix (Section II), we perform a series of duality
transformations to rewrite the optimization problem in such
a way that Eqs. 6 naturally arise. In general, whether these
conditions can be satisfied will depend on the dimensionality of
the space we are working in (i.e. the number of Tregs Nr, the
number of T cells Nc, the number of tissue specific antigens
Na, and the structure of the cross-reactivity function).

The question of whether the Treg dynamics achieve emer-
gent tiling is thus reduced to the question of whether the
equations in Eq. 6 have solutions. We begin by investigat-
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ing the simplest kind of cross-reactivity function, where the
entries of the matrix prαx and pcix are independently drawn
from a Bernoulli distribution. ( As we discuss below, real
cross-reactivity functions are much more complicated than
this but it is helpful theoretically to start with this simple
model to gain intuition. This problem has been considered in
various contexts including the theory of perceptrons (a simple
model of statistical learning) and more recently in the context
of ecology (20–22). In fact, it is possible to show that in high
dimensions when Nr, Nc, Na � 1 a solution generically exists
if there are at least twice as many T cell and Treg lineages as
types of antigens: Nr/Na > 2 and Nc/Na > 2 and no solution
exists if the opposite is true. These two regimes are separated
by a phase transition known as the Gardner transition in
the statistical physics literature (20, 22, 23). We give a brief
overview of this relation in SI Appendix (Section IIID).

In Figure 3(a)-(b), we plot the equilibrium deviations from
uniform Treg coverage 〈δQ2

x〉 = 1
Na

∑
x
(Qx−ρ)2 and from uni-

form interleukin concentration 〈δIL2
x〉 = 1

Na

∑
x
(ILx−m/cr)2

as a function of the ratio Nr/Na, for randomly generated
cross-reactivity functions with Na = 100 antigens, with prαx
sampled from Bernoulli distributions with three different prob-
abilities of interaction. To make these plots, we solved the
corresponding constrained optimization problem (Eq. 5) us-
ing standard numerical techniques for convex optimization
(see SI Appendix Section IV). We see that in all cases, the
nonuniformity vanishes near the predicted transition point
Nr/Na = 2.

To determine the number of Treg lineages Nr needed to
achieve emergent tiling, we must estimate the number of
distinct self-antigens Na. The maximum number of cleavage
points for creating a peptide for display on the MHC is the
total number of codons (∼ 107) in the coding regions of the
human genome. Since some of these peptides are redundant,
and only a fraction can be successfully cleaved and loaded onto
MHC’s, a conservative upper bound would have 10 percent of
the possible cleavage sites result in displayed peptides, yielding
Na ∼ 106. This number is the same order of magnitude as the
observed Treg diversity, which has been estimated at 3.5× 106

(8). It is therefore not implausible that Nr/Na > 2 in real
immune systems.

However, biologically realistic cross-reactivity functions dif-
fer significantly from the i.i.d cases described above since anti-
gens with similar shapes bind to similar sets of receptors. Re-
ceptor affinities in TRegs and conventional T cells are shaped
through a complex process of positive and negative selection in
the Thymus. For example, experiments suggest that Tregs may
in fact have higher affinity for self antigens than conventional
T cells (24). In general, quantitatively understanding cross-
reactivity functions in different cell types is an important open
problem. In light of this incredible and unknown complexity,
we sought to ask if the intuition above also holds for slightly
more biologically realistic scenarios. To do so, we used a toy-
models for cross-reactivity based on antigen low-dimensional
shape spaces that have been extensively used in the statistical
physics literature to model TCR repertoires (25). Fig. 3(c)-
(d) shows numerical simulations of a one-dimensional shape
space with Na = 5, 000 antigens. Each of Nr = 500 Tregs and
Nc = 500 conventional T cells binds to a group of similar anti-
gens, with prαx = e−(x−xα)2/2σ2

, pcix = e−(x−xi)2/2σ2 , where
the center of the group xα or xi is randomly chosen for each

Fig. 4. Proposed experimental test for emergent tiling transition.
(a) T cells (circles) are purified from a wild-type mouse, and Tregs are selectively de-
pleted from the sample following standard protocols (e.g., antibody plus complement).
The number of Treg clonotypes (open circles) remaining after depletion will depend
on the size of the resulting population bottleneck, allowing a variety of levels of Treg
diversity to be generated. The total Treg cell count is then restored to its original level
using standard protocols for clonal expansion of Tregs. These Tregs, along with the
rest of the T cells from the original sample, are then introduced into athymic nude mice,
which lack native T cells. After an appropriate waiting period, the mouse is evaluated
for an autoimmune response, for instance by measuring levels of antibodies against
various self-peptides. (b) Schematic of Treg coverage before and after the population
bottleneck. As in Fig. 2, each colored region represents a different Treg, and the
height of the region represents the contribution of that Treg to the total suppression
Qx. The wild-type mouse has sufficient Tregs to achieve emergent tiling (left), but
this is no longer possible if the Treg diversity is driven below the threshold (right). (c)
Schematic of predicted autoimmune activity (e.g., self-antibody levels) as a function of
Treg diversity. Our model predicts a sharp transition at a critical diversity level, which
is significantly higher than what is required simply to cover all the self-antigens.

Treg α and T cell i, and the width σ is the same for all lineages
in a given simulation run (see SI Appendix for details). Since
the antigens are now “correlated”, instead of the absolute
number of antigens it is useful do define an effective antigen
dimension Neff

a . We define Neff
a as the effective rank of the

cross-reactivity matrix prαx, that is, the number of singular
values that exceed a cutoff threshold ε = 10−6. The effective
number of antigens decreases from Neff

a = 484 to 97 as σ varies
from 10 to 100. When we plot the nonuniformity 〈δQ2

x〉 and
〈δIL2

x〉 as a function of Nr/Neff
a , we see a very similar pattern

to the i.i.d. case, with reliable emergent tiling for Nr/Neff
a > 2.

As a further check on our model, we also ran simulations when
the cross-reactivities are drawn from a five-dimensional shape
space (see SI Appendix Section IV, Fig. S4 and Fig. S5).
Once again, we found that an emergent tiling phase when
Nr/N

eff
a > 2. We also ran simulations to check what happens

when we allow the “antigen concentrations” vx to vary in time.
SI Appendix, Fig. S3 show simulations from our full model
when vx is allowed to rapidly oscillate in time. Somewhat
surprisingly, we find that the dynamics still self-organizes into
an emergent tiling phase despite the fact that Treg and Tcell
abundances no-longer reach a steady-state. Collectively, these
results suggest that the existence of the emergent tiling phase
is a robust feature of this class of models.Finally, we note that
for more biologically realistic choices of the cross-reactivity
matrices while the exact ratio of Treg to antigen diversity
at which the transition to the emergent tiling phase occurs
may change, general arguments from statistical mechanics sug-
gest that such a phase will exist even in these more complex
settings.

Proposed experimental test of emergent tiling transition. A
key prediction of our previous analysis is that lowering the Treg
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DRAFT

diversity results in a sharp transition to a regime where changes
in self-antigen concentrations can result in an auto-immune
response (see Fig. 3). We now propose an experimental test
of this prediction by repurposing a classical immunological
experimental design previously used to discover Treg function
(see Fig. 4). In the original experiments T cells (including
both Tregs and conventional T cells) were transferred from
the spleen and/or lymph nodes of a mouse with a functioning
thymus to another mouse from a strain (“athymic nude”) ho-
mozygous for a mutation that renders it congenitally incapable
of producing any kind of T cell (2, 10). If all the T cells are
transferred together, the recipient mouse remains healthy. But
if the Tregs are eliminated from the population, with only
the conventional T cells injected into the recipient, severe
autoimmune syndromes result in multiple organs.

In the decades since these original studies were carried out,
new techniques have been developed that make it possible to
modulate and assess the impact of Treg repertoire diversity.
First of all, it was shown that Tregs can undergo clonal expan-
sion in vitro after co-culture with dendritic cells (26). Specific
Treg clones can be expanded using known receptor-antigen
pairs, or all the Tregs can be expanded together, nonspecif-
ically, by loading the dendritic cells with antibodies against
CD3, one of the components of the TCR, which effectively
acts like a universal antigen. Secondly, repertoire diversity
can be directly measured with high-throughput sequencing of
the TCR genes (8, 27, 28).

These two techniques together allow one to envision exper-
iments with Treg ecology analogous to existing methods in
microbial ecology (29). In particular, one could reduce the
Treg repertoire diversity by imposing a population bottleneck.
Clonal expansion could then be applied to bring the total
cell count back to the original level, before injecting the cells
into the recipient organism. Receptor sequencing of the post-
expansion cells makes it possible to quantify the final Treg
diversity, and calibrate the bottleneck to achieve a range of
diversity levels.

Our theory predicts that emergent tiling is required for
robust self-tolerance, and that emergent tiling is only possible
if the Treg diversity exceeds a certain threshold, which is
larger than the bare minimum level required to simply cover
all the self-antigens. If the diversity is reduced to sufficiently
low levels, the Treg populations can only achieve imperfect
tiling, and conventional T cell proliferation can be induced by
natural fluctuations in self-antigen concentrations. Measures
of autoimmune activity, such as concentrations of antibodies
against self-peptides from various organs (10), should therefore
show a strong negative correlation with the number of distinct
Treg clones injected into the athymic mouse, with a sharp
Treg diversity threshold below which there is an autoimmune
response.

Comparison with Existing Data. Our model also makes several
qualitative predictions that can be compared with existing
experimental observations. First of all, we predict that au-
toimmune disorders can be caused by genetic mutations that
significantly restrict the Treg TCR repertoire but otherwise
leave the immune system intact. This prediction has been
confirmed in non-obese diabetic (NOD) mice, a standard ani-
mal model for type I diabetes (30). These mice spontaneously
develop an autoimmune disorder whereby the immune system
destroys the insulin-producing β cells in the pancreas. An

assay of thymic TCR repertoires from these mice revealed
that the diversity of insertions/deletions in one subfamily of
α-chain V domains was between 5 and 8 times smaller for
Tregs than for conventional T cells, while the diversity lev-
els of the two lineages were similar (within a factor of 2) for
wild-type (C57BL/6) mice. Furthermore, the NOD mice only
expressed between five and eight of the 49 functional α-chain
J domains in the mouse genome, as compared to more than 20
in each of the wild-type mice, resulting in a further repertoire
restriction. This data suggests that the genetic defects of
the NOD mice lead to excessively stringent thymic selection
criteria for commitment to the Treg lineage, resulting in a
Treg repertoire size below the threshold for emergent tiling.

The relationship between Treg diversity and self-tolerance
has also been tested using transgenic mice engineered to elimi-
nate all variation in the TCR β chain (31). In a similar setup
to the one proposed above, a strain of mice that is congenitally
deficient in Tregs (due to deletion of the Treg interleukin re-
ceptor) is injected with Tregs purified from either a wild-type
mouse or one of the low-TCR-diversity transgenic mice. While
the Tregs from the wild-type mouse reliably prevented autoim-
mune pathologies, most of the grafts from the low-diversity
transgenic mice resulted in some autoimmune symptoms. The
low-diversity Treg injection was sufficient, however, to keep
five out of 16 mice healthy for the duration of the experi-
ment. This suggests that the constricted Treg repertoire of
the transgenic mice may have been sufficient to provide full
coverage of self-antigens but too small to achieve emergent
tiling. Our model predicts that diversity levels in this range
can provide some short-term protection against autoimmunity,
especially in a highly controlled laboratory setting, but that
this protection is easily lost due to changes in relative antigen
abundances vx.

In this same series of Treg transfer experiments, the authors
also explored some features of the Treg population dynam-
ics. By quantifying the frequencies of individual Vα2 CD3
sequences before injection into the host and at several time
points afterwards, they showed that the relative population
sizes of Treg clones changed dramatically over the course of
three months (31). Many of the dominant clones at the end
of the experiment were extremely rare at the beginning, while
initially dominant clones were nearly driven to extinction.
This repertoire reshaping agrees with the predictions of our
model, where the high interleukin levels in Treg-deficient mice
lead to rapid proliferation of the exogenous Tregs, with the
proliferation rates of different clones highly dependent on the
distribution of displayed self-antigens within the host.

Finally, our model makes predictions about the results of
injecting exogenous Tregs into an animal whose own Treg
populations are already established. If the recipient has high
enough Treg diversity to achieve emergent tiling, the uniform
interleukin profile barely meets the minimum level required
for proliferation. This means that no new Tregs will be able
to proliferate, regardless of their binding specificity. If the
recipient is not in the emergent tiling phase, however, some
of the local interleukin levels will be sufficient to support net
proliferation, and novel Tregs specific for the corresponding
antigens will be able to invade. This prediction is consistent
with experiments on TCR transgenic mice with Treg diversity
reduced to about half the level of the wild-type (32). When
Tregs from wild-type mice were injected into these transgenic
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mice, they proliferated and eventually made up more than 20%
of the overall Treg population in the recipient. But when Tregs
from the transgenic mice were injected into the wild-type, no
proliferation was observed.

All these qualitative observations admit of many possible
explanations, but together they demonstrate the power of
our model for providing a single underlying biologically re-
alistic mechanism that is parsimonious with a wide range of
experimental data on Treg function.

Discussion

In this work, we have constructed a minimal model of Treg-
mediated self-tolerance that is consistent with known biological
and experimental facts. Specifically, our model reflects the
empirical observation that Tregs suppress the proliferation of
conventional T cells via a highly local mechanism (10, 11),
which depends on the binding specificity of the Treg TCR
(33, 34). This feature of the biology makes the overlap φiα
between binding profiles of Tregs and conventional T cells a
crucial quantity in the analysis of Treg function. Our model
also accounts for the dependence of Treg proliferation on
local concentrations of interleukins generated by activated
conventional T cells (3, 12). It has long been recognized
that this stimulatory effect of conventional T cells on Tregs
completes a homeostatic feedback loop (see Fig. 2 of (3)).
But the fact that interleukin is internalized and degraded
after binding to a Treg’s interleukin receptor (12) allows us
to formulate a more specific hypothesis: that Treg population
dynamics can be modeled using classical resource competition
theory, with local interleukin pools acting as scarce limiting
resources. This analogy highlights the role of the overlap φαβ
between Treg binding profiles as a second crucial quantity,
and enables us to analyze the Treg behavior in terms of the
ecological concepts of species packing and niche partitioning
(17).

We have shown that the resulting immune dynamics have a
natural interpretation in terms of optimization. We also find
that for sufficiently high Treg diversities, this simple dynam-
ics allows Tregs to self-organize into a state that allows the
immune system to retain sensitivity to foreign ligands while
simultaneously being robust to fluctuations in the concentra-
tions of self antigens.

The high Treg diversity required for emergent tiling helps
explain the otherwise surprising fact that Tregs contain a
similar number of distinct TCR’s as conventional T cells, even
though the Tregs only need to interact with peptides from the
human genome, while the conventional T cells must cover all
possible pathogens (8). Even though a much smaller number of
Treg lineages would be sufficient to cover all the self-antigens,
emergent tiling in our simple models requires Nr/Na > 2, with
Na ∼ 106 in the human immune system.

This theory raises a number of further questions, which
we do not address here. The first concerns the specific re-
quirements for maintaining pathogen sensitivity. While the
repertoire of conventional T cells in an ideal immune system
should cover all possible foreign antigens, the repertoire of
Tregs must have some gaps in coverage in order to leave the
system free to respond to at least some subset of foreign anti-
gens. It has been observed that high-affinity antigen binding is
associated with commitment to the Treg phenotype, suggest-
ing a difference in positive and/or negative selection thresholds

between Tregs and other phenotypes (3, 35, 36). This seems
to be a natural way of achieving this difference in coverage,
and understanding the details of how this might be achieved
is an important area of future research. Doing so will require
us to move beyond the simple shape space models for cross-
reactivity used in this work and consider more biophysically
realistic models for antigen-TCR binding.

Another interesting question is about the acquisition of
tolerance to foreign peptides. The immune system is tolerant
to many things that are not presented in the thymus when
the Tregs are generated, such as peptides from various foods,
and commensal microbes (37). Tolerance can also be acquired
later in life. There is evidence that Tregs can be generated
from other T cell lineages in the periphery, and not just in
the thymus (3, 37). This raises the possibility that the Treg
repertoire may be adaptively repopulated on a slow timescale
with new lineages that interact with such non-self peptides.

Our theoretical framework allows us to generate hypotheses
about causes of natural autoimmune disorders. One robust
observation that has yet to be explained is the de novo onset
of autoimmune syndromes in people with persistent viral infec-
tions (38). A possible reason for this is that the characteristics
of a persistent infection somehow do not allow for adaptation
via generation of new Tregs that specifically bind to the viral
antigen, and so existing Treg populations end up clonally ex-
panding to inhibit the responding conventional T cells with
which they share a partial overlap. Since the conventional
T cells can proliferate on binding to viral antigen without
local Treg-mediated suppression, larger populations of par-
tially overlapping Tregs are required to maintain a global net
proliferation rate of zero. But this process naturally breaks the
emergent tiling needed for robustness, and thus could produce
increased sensitivity to fluctuations in self-antigen levels. In
the future, it will be interesting to further explore this scenario
to better understand if it can increase our understanding of
autoimmune diseases.

Materials and Methods

Please see SI Appendix for detailed Materials and Methods. Briefly,
we constructed a detailed, biologically realistic model for the im-
mune dynamics of Tregs, conventional T cells, and interleukins. Our
model relied of experimentally supported biological assumptions that
we outline in detail in the SI. We then derived the minimal model in
Eq. 1 and Eq. 2 presented in the main text by assuming interleukin
dynamics were fast compared to T cell and Treg proliferation rates
and that interleukin consumption of Tregs is much larger than those
of conventional T cells. By exploiting the ecological interpretation of
this minimal model, we derived a dual representation of this model
in terms of optimization (Eq. 5). We then used Eq. 5 to derive
sufficient conditions for emergent tiling using a series of duality trans-
formations. To check these analytic results, we performed numerical
simulations of both the dynamical models and corresponding opti-
mization problems. All code in the accompanying github repository
https://github.com/Emergent-Behaviors-in-Biology/immune-svm.
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I. DETAILS OF OUR MATHEMATICAL MODEL

We begin by considering a more mechanistic, biologically plausible model of Treg-mediated adaptive immunity. As
in the main text, we will always use the convention that T cells to refer to non-regulatory T cells (i.e. conventional
T cells). The basic elements of our model are as follows:

A. Assumptions and basic dynamics of the model

• λi are clone sizes of “conventional” T cells (specifically, CD25−CD4+ helper T cells).

• wα are clone sizes of Tregs.

• vx is the abundance of antigen-presenting cells (APC’s) displaying antigen x. In general, x can represent any
antigen displayed by a class II MHC, including neoantigens, but in this work we focus on the scenario where all
displayed antigens are self-peptides.

• ILx is the average local concentration of interleukin 2 (IL-2) in the vicinity of APC’s displaying antigen x.

• pcix (“cross-reactivity function”) is the probability that a conventional T cell from clone i that encounters an
APC displaying antigen x will bind and activate. The cross-reactivity function is determined by the binding
affinity ∆Gix between the T cell receptor and the antigen, via some model of the binding and activation kinetics.
For example, a simple two-state equilibrium model would give pcix = 1/(1+e−∆Gix/kBT ). In the present work, we
do not attempt to relate pcix to ∆Gix, but instead sample pcix directly from one of three probability distributions
described in Section IV below.

• prαx is the probability that a Treg from clone α that encounters an APC displaying antigen x will bind and
activate. See above for explanation of relationship to binding affinity.

• IL-2 stimulates proliferation of both Tregs and normal T cells, with the growth rate some saturating functions
gr(ILx), gc(ILx) of the local IL-2 concentration ILx.

• T cells deplete IL-2 at a rate proportional to the level of growth stimulation, with constants of proportionality
ε−1
c and ε−1

r (notation comes from analogy with the efficiency of resource conversion into biomass).

• Activated T cells produce IL-2 at rate a.

• Activated Tregs directly suppress growth of nearby activated T cells, with each Treg cell decreasing the growth
rate of T cells in its vicinity by an amount b.

• Tregs only suppress conventional T cells bound to the same APC, as suggested by the experiments of [1].

• Each antigen x is displayed on a small fraction f � 1 of the total population of APC’s. This implies that a Treg
binding to antigen x suppresses a conventional T cell bound to a different antigen y only on a much smaller
fraction f2 � f of APC’s. Under these conditions, we can neglect cross-antigen suppression, and consider only
the suppression that occurs between Tregs and conventional T cells that are activated by the same antigen x.

• Both Tregs and conventional T cells circulate rapidly through the body, so that the total populations (including
both activated and unactivated cells) are evenly distributed over all APC’s.

• In the absence of extracellular IL-2, activated T cells proliferate at a basal rate ρ.

• Extracellular IL-2 is degraded by some external mechanisms, and has a lifetime τ in the absence of T cells.

These statements result in the following set of differential equations:

dλi
dt

= λi
∑

x

vxp
c
ix

[
ρ+ gc(ILx)− b

∑

α

wαp
r
αx

]
(S1)

dwα
dt

= wα
∑

x

vxp
r
αx [gr(ILx)−m] (S2)

dILx
dt

= a
∑

i

λip
c
ix − ε−1

c

∑

i

λip
c
ixgc(ILx)− ε−1

r

∑

α

wαp
r
αxgr(ILx)− τ−1ILx. (S3)
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B. Considering limit of fast interleukin dynamics yields minimal model in main text

To derive the minimal model in the main text, we assume that interleukin dynamics is fast compared to Treg and
T cell proliferation. In this case, we can make a quasi-adiabatic approximation by setting dILx/dt = 0. We further
assume that the responses of the T cells and Tregs to interleukin concentrations are far from saturation so that we can
approximate the growth rates using linear functions gc(ILx) = ccILx, gr(ILx) = crILx. With these two assumptions,
one gets that steady-state concentration of interleukins near antigen x takes the form

ILx =
a
∑
i λip

c
ix

τ−1 + ε−1
c cc

∑
i λip

c
ix + ε−1

r cr
∑
α wαp

r
αx

. (S4)

We will work in the regime where Tregs are the main sink for IL-2, and dominate the denominator of this expression.
This results in the following dynamics for the two populations:

dλi
dt

= λi
∑

x

vxp
c
ix


ρ+

ccεra

cr
∑
α wαp

r
αx

∑

j

λjpjx − b
∑

α

wαp
r
αx


 (S5)

dwα
dt

= wα
∑

x

vxp
r
αx


 εra∑

β wβp
r
βx

∑

j

λjp
c
jx −m


 . (S6)

If we additionally assume that cc/cr small (consistent with the assumption of Treg-dominated interleukin consump-
tion), we can ignore the positive feedback term in the first equation, yielding the system of equations:

dλi
dt

= λi
∑

x

vxp
c
ix

[
ρ− b

∑

α

wαp
r
αx

]

dwα
dt

= wα
∑

x

vxp
r
αx


 εra∑

β wβp
r
βx

∑

j

λjp
c
jx −m


 , (S7)

which are identical to the dynamics in the main text (where for notational simplicity we write εra simply as a).

C. Rewriting our dynamics in terms of overlap kernels

We now describe the approximation mentioned in the main text that is required to rewrite the above dynamics in
terms of overlap kernels. As stated in the main text, the overlap kernels are defined by (see Fig. S1):

φαβ =
∑

x

vxp
r
αxp

r
βx

φiα =
∑

x

vxp
r
αxp

c
ix

ri =
∑

x

pcixvx. (S8)

Rearranging Eq. S7 yields a set of equations where the cross-reactivity function and antigen concentrations almost
always appear within an overlap expression:

dλi
dt

= λi

(∑

y

vyp
c
iy

)[
ρ− b

∑
α,x vxp

r
αxp

c
ixwα∑

y vyp
c
iy

]
(S9)

dwα
dt

= wα


εra

∑

j,x

vxp
r
αxp

c
jxλj∑

γ wγp
r
γx

−m
∑

β,x

vxp
r
αxp

r
βxwβ∑

γ wγp
r
γx


 . (S10)

The final step requires an uncontrolled approximation, whereby we ignore the correlations between the numerators
and denominators in the dynamics of wα, and sum over x separately for both sides of the fraction. This approximation
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FIG. S1. Defining the overlaps. The cross-reactivity functions prαx and pcix define a network of interactions, with edges
connecting Tregs and conventional T cells to antigens that can bind to their TCR, and edge weights representing the affinity of
the interaction. The strength of the indirect interaction between two T cells can be quantified in terms of the product of their
affinities for the same antigen, summed over all antigens and weighted by the antigen abundance. This procedure gives rise
to three “overlap kernels”: (A) φαβ for (competitive) effective interactions between Tregs, (B) φij for (mutualistic) effective
interactions between conventional T cells, and (C) φiα for effective interactions between conventional T cells and Tregs. Note
that φij only appears in the positive feedback term of the full dynamical model defined in the first section of the SI. This term
may be important at later stages of the immune response, when conventional T cell populations become large, but is neglected
in the present analysis of the initial proliferation dynamics.

is strictly justified only in the emergent tiling regime, where the denominator
∑
γ pγxwγ is the same (equal to ρ/b) for

all x. But in numerical simulations it appears to work well even outside of this regime, as well as during the transient
on the way to an emergent tiling fixed point (see Fig. S2).

Using this approximation along with the overlap definitions provided above, we obtain the dynamics stated in Eq.
4 of the main text:

dλi
dt

= λiri

[
ρ− br−1

i

∑

α

φiαwα

]

dwα
dt

=
wα∑
β wβ p̄β


εra

∑

j

φjαλj −m
∑

β

φαβwβ


 (S11)

where p̄β ≡
∑
x p

r
βx.

II. TREG DYNAMICS AS OPTIMIZATION

We now show the dynamics above have a natural interpretation in terms of constrained optimization. To do so,
we make use of the duality between the steady states of the equations above and constrained optimization. For
completeness, we briefly explain this duality here. Please see our earlier papers [2, 3] for a detailed discussion.
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FIG. S2. Comparing full dynamics and overlap kernel approximation. (a) Sample trajectories of Treg abundances wα
and conventional T cell abundances λi using the approximate dynamics of Eq. S11. Cross-reactivity functions were generated
using the one-dimensional shape space described in the final section of the SI (“Details on numerical simulations”), with cross-
reactivity width σ = 8, and the other parameters set to Na = 100, Nc = 100, Nr = 50, ρ = a = b = m = 1. Initial abundances of
Tregs and conventional T cells were sampled from a lognormal distribution with logarithmic mean 0 and logarithmic standard
deviation σ = 2. (b) Trajectories of the full dynamics of Eq. S7, using the same cross-reactivity functions, parameter values
and initial conditions as the previous panel. (c) Comparison of exact and approximate dynamics from the previous two panels.
Each point represents the abundance of a single Treg or conventional T cell lineage at a single time point in the two simulations.
(d) Histogram of final Treg abundances in the simulation of the full dynamics from panel b. Note that the horizontal axis is
the base-10 logarithm of the abundance.

Notice that the steady states of Eq. S13 satisfy the following equations

0 = λi

[
ρ− br−1

i

∑

α

φiαwα

]

0 =


εra

∑

j

λjφjα −m
∑

β

wβφαβ


 . (S12)
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Let us define λ̃i = εrari
mb λi. Then we can rewrite the equation above as

0 = λ̃i

[
ρ− br−1

i

∑

α

φiαwα

]

0 =


−

∑

j

λ̃jbr
−1
j φjα −

∑

β

wβφαβ


 . (S13)

If we define the functions

gi({wα}) =

[
ρ− br−1

i

∑

α

φiαwα

]
(S14)

and

f({wα}) =
1

2

∑

β

wβφαβwα, (S15)

then the steady-state equations take the form

0 =
∑

j

λ̃j
∂gj({wα})

∂wα
− ∂f({wα})

∂wα

0 = λ̃jgj({wα}), (S16)

We recognize the equations above as precisely the Karush-Kuhn-Tucker (KKT) conditions for constrained opti-
mization with f({wα}) the function being optimized and the functions gj({wα}) specifying the constraints. Thus, the
steady-states of the equations above coincide with the solutions of the following constrained optimization problem:

argmin
w

1

2

∑

α,β

wαφαβwβ

subject to :

r−1
i

∑

α

φiαwα ≥
ρ

b
. (S17)

wα ≥ 0 (S18)

As an aside, this is very nearly single-class SVM, with training data r−1
i φiα. It finds a hyperplane that separates

all the data from the origin while maximizing the distance between the plane and the origin. It would be exactly a
single-class SVM if φαβ were the identity matrix and the wα ≥ 0 condition was not enforced. The wα ≥ 0 slightly
changes the geometrical interpretation of the 1-class SVM. Specifically, the requirement that wα ≥ 0 forces the simplex∑
α wαφα − p to have all positive coordinate intercepts. See [4] for more details on this interpretation.

III. EMERGENT TILING AS SOLUTION TO OPTIMIZATION PROBLEM

In the previous section, we stated the optimization problem in terms of the overlap kernels φiα and φαβ , which
integrate over the whole antigen space. The emergent tiling conditions in the main text, however, involve the antigen
space explicitly (Eq. 6). In this section, we exploit dual formulations of the optimization problem to highlight the
role of the antigen space and make the connection to the emergent tiling conditions more transparent.

Before proceeding, it will be useful to collect some of the basic definitions that we stated above through out the
text: Denote the dimension of the T-cell space Nc and the dimension of the Treg space Nr. Furthermore, denote the
“naive” dimension of antigen space by Na. This is essentially the number of x we sum over. However, if the matrix pcix
and prαx are structured so that there are lots of correlations between the different antigens x, than this naive counting
might be quite misleading, and we should really thing about the effective dimension of the antigen space N eff

a . If all
the x are uncorrelated, then of course N eff

a = Na.

Also, in this section we will drop the tilde from λ̃i (defined in the previous section), with the understanding that
the solutions obtained for λi must be multiplied by mb/(εrari) in order to give the actual T cell populations.
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We will now write the optimization in Eq. S18 in a slightly different way, and in the process gain more physical
insights about what we mean by these conditions. We begin by noting that plugging in the first line of Eq. S8 and
flipping signs results in the trivial rewriting

argmax
w

− 1

2

∑

x

vx

(∑

α

prαxwα

)2

subject to :

r−1
i

∑

α

φiαwα ≥
ρ

b
.

wα ≥ 0. (S19)

A. Reformulation 1

It is now straightforward to check that

argmax
w

− 1

2

∑

x

vx

(∑

α

prαxwα

)2

(S20)

is the same as the following max-min optimization

argmin
{sx}

argmax
w

∑

x

s2
x

2vx
−
∑

α,x

sxp
r
αxwα (S21)

To see this note that we can differentiate this with respect to sx and set this expression to zero to get that the
optimum over the new auxiliary variable is

sopt
x =

∑

α

prαxwαvx, (S22)

and plugging this into Eq. S21 gives the original optimization problem Eq. S19. Thus, we see that soptx just measures
the total coverage of antigen x by Tregs.

Another useful manipulation is to note that

∑

α

φiαwα =
∑

x

pcix
∑

α

vxp
r
αxwα =

∑

x

sopt
x pcix (S23)

Combining this with the last line of Eq. S19 we can rewrite the constraint r−1
i

∑
α φiαwα ≥ ρ

b as

∑

x

pcixvx

(∑

α

prαxwα −
ρ

b

)
=
∑

x

pcix

(
sopt
x − vx

ρ

b

)
≥ 0 (S24)

Notice that one way of satisfying this constraint is by requiring sopt
x /vx =

∑
α p

r
αxwα = ρ

b . Here we see that the idea
is that we will make sure that each site x gets the same amount of coverage, set by ρ/b. This is precisely the emergent
tiling we are seeking.

This might not always be possible since in general the dimension of antigen space, Na may be larger than the
dimension of the T-cell space Nc and the dimension of the Treg space Nr. However, if the matrix prαx is structured
such that the number of Tregs is much larger than the effective dimension of antigen space N eff

a then this can be
inverted. More generally, the existence of a solution is governed by a Gardner like transition analogous to that of
perceptrons [5–7].

B. Reformulation 2: Langrange multipliers instead of inequality constraints

In this section, we will reformulate the problem again and get even more insight into how we can view the problem
in the antigen space. This will also lead to important clues about where some unexpected properties of this solution
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come from. Let us start with Eq. S26 and rewrite it in terms of pcix, prαx, and vx using expressions in Eq. S8:

argmax
{λi}

argmin
w

∑

x

vx
2

(∑

α

prαxwα

)2

−
∑

x

vx

(∑

i

λip
c
ix

)(∑

α

pxαwα

)
+
∑

i

λi ri
ρ

b
(S25)

subject to :λi ≥ 0, wα ≥ 0 (S26)

Let us focus on the quantity we are optimizing. Notice that by completing the square and changing sign we can
rewrite this as

vx
2

[(∑

α

prαxwα

)
−
(∑

i

λip
c
ix

)]2

− vx
2

(∑

i

λip
c
ix

)2

(S27)

Let us introduce two new auxiliary variables Ax and Bx that will couple to each of these square terms. Then notice
the expression above can be written as

vx
2

[(∑

α

prαxwα

)
−
(∑

i

λip
c
ix

)]2

− vx
2

(∑

i

λip
c
ix

)2

= argmax
{Ax}

−A2
x

2vx
−Ax

[(∑

α

prαxwα

)
−
(∑

i

λip
c
ix

)]
− vx

2

(∑

i

λip
c
ix

)2

argmax
{Ax}

argmin
{Bx}

−A2
x

2vx
−Ax

(∑

α

prαxwα −
∑

i

λip
c
ix

)
+
B2
x

2vx
−Bx

∑

i

λip
c
ix (S28)

With all these manipulations we can rewrite the original optimization problem as

argmax
{Ax}

argmin
{Bx}

argmax
{λi}

argmin
{wα}

∑

x

[
−A2

x

2vx
−Ax

(∑

α

prαxwα −
∑

i

λip
c
ix

)
+
B2
x

2vx
−Bx

∑

i

λip
c
ix

]
+
∑

i

λi ri
ρ

b

subject to :λi ≥ 0, wα ≥ 0 (S29)

It doesn’t look like we have done much right now. But one nice thing about this new optimization function is that it
is linear in the wα and λi. We can then take derivatives with respect to all four quantities to get a set of optimization
equations. Taking the derivative with respect to Bx yields

Bopt
x =

∑

i

vxp
c
ixλ

opt
i . (S30)

In other words, Bopt
x just measures the coverage of antigen site x by all conventional T cells. Taking the derivative

with respect to Ax gives

Aopt
x =

∑

i

vxp
c
ixλ

opt
i −

∑

α

vxpxαw
opt
α

= Bopt
x −

∑

α

vxpxαw
opt
α (S31)

This equation say that Aopt
x is just the difference between the Tcell and Treg coverages at antigen site x. Taking the

derivative with respect to wα yields

∑

x

pxαA
opt
x = 0. (S32)

To understand the meaning of this equation, it is useful to combine this with Eq. S31 and use Eq. S8 to rewrite this
as

∑

i

φiαλ
opt
i −

∑

β

φαβw
opt
β = 0, (S33)
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which is simply the statement that the growth rate of Treg α must be zero. Finally, taking the derivative with respect
to λi gives the equation

∑

x

(Bopt
x −Ax)pcix = ri

ρ

b
. (S34)

Plugging in Eq. S31 and using Eq. S8 it is easy to see that this equation just states that the Tcell growth rates
should be zero.

C. Ansatz for solution to optimization problem

Thus, far we haven’t gained much. But we will focus on what particularly interesting set of potential solutions to
this problem. If the number of antigens Na is very large compared to the number of T cells Ni, then we can in general
easily find solutions to

∑
xB

opt
x pcix = ri

ρ
b . However, we will make an even stronger ansatz. Notice that ri =

∑
x p

c
ixvx

so that the following ansatz is a solution to Eq. S34

Bopt
x = vx

ρ

b
Ax = 0. (S35)

In order for these to be good solutions, from Eq. S31 and Eq. S30 we must have that there exist solutions for wα and
λi satisfying the following set of equations.

∑

α

prαxw
opt
α =

ρ

b
∑

j

pjxλ
opt
j =

ρ

b
. (S36)

In general, these equations may not be solvable since the naive number of antigens Na could be larger than the
number of T cells, Nc, or number of Tregs Nr. But as long as the “effective” dimensionality of the antigen space
(accounting for correlations between antigen binding affinities) satisfies Neff

a � Nc, Nr, then we should be able to
find such a solution. In fact, such a criteria has recently been derived in the statistical physics literature [7]. When the
cross-reactivities are i.i.d, in the thermodynamic limit where Na, Nr, Nc � 1, there is a phase transition between a
regime where such a solution exists and does not depending on the ratios of Nr/Na and Nc/Na. This phase transition
corresponds exactly to the Gardner solution to the perceptron problem [5–7].

D. Relation to Gardner Transition in Perceptrons

Here, we give a brief overview of the Gardner transition in perceptrons and discuss the relationship to the problem at
hand (see books by Nishimore and Engel for details about perceptrons and statistical learning) [6, 8]. The perceptron
problem is concerned with “storing” P boolean patterns ξu, with each pattern µ consisting of N input bits Sµi = ±1
for 1 ≤ i ≤ N . Each pattern is assigned a value Rµ = ±1 according to the rule Rµ = sgn(

∑
i JiS

µ
i ). A natural

question one can ask is what is the maximum number of patterns such a function can classify correctly, where we are
allowed to choose the N parameters Ji,

It was found that if the patterns were chosen randomly, that the maximum number of patterns that any function
of this form could classify correctly was exactly equal to P = 2N . For P > 2N generically, there existed no choice of
J that will classify all P patterns correctly. This “phase transition” marks a boundary to the regime where there are
no solutions for the N variables Ji to the P equations

Rµ = sgn(
∑

i

Jiε
µ
i ). (S37)

If P < 2N , there exists a set of Ji that solve these equations. On the other hands, if P > 2N , there exists no solutions
to this problem

As can be clearly seen, this system of equations are isomorphic to the kinds considered in our immunological
problems with N playing the role of the Treg dimension, P the antigen dimension, and wopt

α playing the roles of



10

FIG. S3. Simulation with rapidly oscillating vx. The full dynamics of Eq. (S7) were integrated with the antigen abundances
vx varying in time as vx = v0x sin2(ωt). The oscillation amplitudes v0x were sampled from a uniform distribution between 0 and
1, and the oscillation frequency was ω = 0.5. The other parameters and initial conditions sampling were identical to those of
Figure S2b above. Abundances of conventional T cells and Tregs are shown as a function of time, along with the time-varying
antigen abundances vx and the Treg coverage nonuniformity 〈δQ2

x〉.

Ji. Thus, if the Treg dimension is at least twice the antigen dimension, we will have solutions to the equations for
emergent tiling derived above. Since technically, we need to solve two such set of equations, we also need the diversity
of conventional Tcells to be at least twice that of the antigen dimension. However, we make the implicit, biologically
realistic assumption that the conventional Tcell diversity is always larger than the Treg diversity. This correspondence
between perceptrons and ecology was also noted in a replica calculation in [7].

E. Insensitivity to antigen concentrations

Such a solution if it exists has some amazing properties, namely the T cell and Treg growth rates are insensitive to
the antigen concentrations vx ensuring that the Tregs exhibit an emergent tiling over the T cells:

• It balances conventional T cell and Treg activity at every antigen site x independently since Ax = 0.

• The growth rates of the T cells and Tregs become insensitive to changes in the vx.

To see this latter point, notice that we can define “growth rates” for T cells gi and Tregs gα as

dλi
dt
≡ λigi =

1

b
λi

[
riρ−

∑

α

φiαwα

]
(S38)

dwα
dt
≡ wα∑

β wβ p̄β
gα =

wαb

ρ


εra

∑

j

λjφjα −m
∑

β

wβφαβ


 . (S39)
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FIG. S4. Random sampling of cross-reactivity functions pcix and prαx. Representative samples from the three cross-
reactivity function ensembles described in SI Section IV are shown as heat maps. In all simulations, cross-reactivity functions
for conventional T cells and Tregs were drawn from the same distribution. (a) Bernoulli distribution, in which a randomly
chosen T cell and antigen have a probability p (here equal to 0.1) of interacting, and all interactions are assigned independently.
(b) One-dimensional shape space, where a given T cell can bind to antigens whose shape coordinate is within a tolerance σ (here
equal to 4) of a randomly assigned optimal shape. (c) High-dimensional shape space, where antigens and TCR’s are randomly
assigned coordinates in a shape space of specified dimension (here equal to 5), and the binding probability is determined by
the pairwise distances.

A straightforward calculations using the definitions above then yields:

∂gi
∂vx

=
∑

x

pcix

[vxρ
b

+Ax −Bx
]

= 0

∂gα
∂vx

=
∑

x

prαxAx = 0 (S40)

IV. DETAILS ON NUMERICAL SIMULATIONS

To generate Figure 3 of the main text, we generated random cross-reactivity functions according to two different
protocols, and then used the optimization formulation of the equilibrium conditions (Eqs. 5 of the main text) to effi-
ciently obtain equilibrium populations of Tregs and conventional T cells for each realization. Scripts for generating the
matrices, solving the optimization problem and plotting the results can be found in the accompanying github reposi-
tory https://github.com/Emergent-Behaviors-in-Biology/immune-svm. Optimization was performed using the
Python package CVXPY [9].

In the first protocol, the elements of prαx and pcix were sampled from Bernoulli distributions, with success probability
equal to 0.1, 0.2 or 0.3. 30 realizations were generated for 20 values of Nr ranging from 100 to 300. The other
parameters were Na = 100, Nc = 1, 000, ρ = m = a = b = cr = vx = 1.

In the second protocol, the elements of prαx and pcix were chosen in a correlated way, encoding a one-dimensional
“shape space.” Specifically, we generated a Gaussian cross-reactivity shape centered at the midpoint of the shape
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FIG. S5. Emergent tiling transition in high-dimensional shape space. Same as Figure 3 of the main text, but with
the cross-reactivity functions prαx and pcix sampled using a five-dimensional shape space as illustrated in Figure S4 above and
described in SI Section IV. The effective antigen diversity was defined as the number of singular values of pαx exceeding a cutoff
threshold of ε = 10−5.

space, given by

px = e−(x−Na/2)2/2σ2

(S41)

for a given cross-reactivity width σ, and then shifted it by a random offset xα for each Treg and xi for each conventional
T cell. The shifts were performed with periodic boundary conditions, so that all Tregs and T cells still had the same
overall binding capacity. 10 realizations were generated for each of 100 values of σ, ranging from 10 to 100. For each
sampled cross-reactivity matrix prαx, we defined an effective number of distinguishable antigens N eff

a by counting the
number of singular values above an empirically determined numerical cutoff threshold of ε = 10−6. The horizontal
axis in the right-hand panels of Fig. 3 is given by Nr/N

eff
a . The true number of antigens was Na = 5, 000, and the

other parameters were Nc = 500, ρ = m = a = b = cr = vx = 1.
We also ran simulations with cross-reactivity functions generated in a higher-dimensional shape space. Following

[10], we assigned shape coordinates ax and ri (or rα for Tregs) in a space of dimension D to the antigens and TCR’s,
respectively. We then calculated the cross-reactivity functions as

pcix = e−
||ri−ax||2

2σ2 (S42)

prαx = e−
||rα−ax||2

2σ2 (S43)

where a small distance in shape space corresponds to a good fit between TCR and antigen, while larger distances
produce bad fits that do not bind. The parameter σ sets the radius of the region of shape space that is compatible
with a given TCR. We randomly sampled all the shape coordinates (ri, rα and ax) from unit normal distributions.
For the simulations shown in Figure S5, we sampled Nr = 100 Tregs, Nc = 100 conventional T cells and Na = 1000
antigens. We chose a shape space of dimension D = 5, following dimensionality estimates derived from analysis of
hemagglutination inhibition assays for influenza [11]. We varied the cross-reactivity width σ from 5 to 20 in order to
sweep the ratio of the Treg diversity to effective antigen diversity through the emergent tiling threshold.
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