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Topological edge states in bowtie ladders with different cutting edges
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We have studied topological edge states in bowtie ladders with various edge truncations. The
symmetric bowtie ladder, which comprises two trivial Su—Schrieffer—Heeger (SSH) lattices, exhibits
an insulator-metal transition with trivial insulating states. On the other hand, the lattice can be
transformed into an extended SSH lattice depending on the edge shapes with non-trivial insulating
states in that the winding number is non-zero. The winding numbers are permutationally designated
in the phase diagram depending on the choice of unit cell. The topological edge states are affected
by the shape of the edge and the corresponding winding number. We also studied general bowtie
ladder models with richer phase diagrams using the characteristics of the localization length of the

edge states showing state bifurcation.

I. INTRODUCTION

The last decade has witnessed the discovery of topo-
logical materials with which unconventional models and
materials have been theoretically proposed and experi-
mentally revealed [I, 2]. Research on topological and
artificial models has become increasingly pervasive due
to the possibility of non-triviality. In condensed matter
physics, topological materials are defined by the winding
number /topological charge in bulk, the so-called invari-
ant of the topological band, and the corresponding edge
states imposed by boundary conditions [3]. The relation-
ship between the winding number of bulk lattices and the
edge states of finite lattices is fundamental to describe the
characteristics of topological insulators [4] [5]. The bulk-
boundary correspondence represents the fulcrum of the
strong evidence behind topological materials. Given a
unit cell, the winding number is introduced with a single
period of Bloch wave vector k by using the Bloch Hamil-
tonian in the Brillouin zone. Its wave function provides
a Berry connection that is defined by the inner product
of the wave function and its partial derivative. The in-
tegral of the Berry connection with respect to the wave
vector over the whole Brillouin zone is a Zak phase or
Chern number depending on dimensionality [0} [7]. The
Zak phase, quantized under chiral symmetry in one di-
mension, is related to the winding number correspond-
ing to modern polarization [RHIT]. The non-triviality
of those quantities is complementary to the existence of
edge states at the edges of a proper shape [3].

The prototypical model to exhibit bulk-boundary cor-
respondence is Su-Schriefer—Heeger (SSH) model [12].
Although this model provides us with a basic intuition
of topological phases, the choice of unit cell is allowed to
contain ambiguity for the topological invariants in one-
dimensional systems [8, [[3HI5]. Thus, the relative dif-
ferences in winding numbers are important to designate
topological non-triviality. In addition, different shapes of
the edges have been shown to lead to different topolog-
ical phases according to the unit cell in the SSH model,
carbon nanotubes, and graphene [4} [8] [15] [16]. Topolog-

ical defects, moreover, introduce topological edge states
in trivial insulating lattices, even breaking the symmetry
[17, 18]

In this work, we study the topological properties of
a bowtie ladder lattice with direct and cross inter-chain
hoppings and without intra-chain hoppings, depending
on the shape of the cutting edge. The bowtie ladder,
which can be considered as coupled SSH chains [19], has
attracted interest as a canonical ladder geometry from
which any other topological ladder model can be obtained
by unitary transformation [20]. It is known that a bowtie
ladder with symmetric cross inter-chain hopping exhibits
a transition between gapped and gapless states with a
trivial topological invariant, while a bowtie ladder with
asymmetric cross inter-chain hopping shows a greater va-
riety of topological phases [19]. We demonstrate non-
trivial bulk topology and corresponding edge states due
to ambiguity in the selection of unit cells in a bulk bowtie
ladder with symmetric cross inter-chain hoppings, which
until now have been considered topologically trivial. In
addition, we explore the relation between the topological
invariants of bowtie ladders, i.e., bulk winding numbers,
as determined by different unit cells in cases with sym-
metric and asymmetric cross inter-chain hoppings.

II. HAMILTONIANS OF BOWTIE LADDERS

The bulk states of a periodic system are determined
by crystal momentum k. The quantum number £ is
replaced with k& = —i% via Peierls substitution giving
trial wave function v = e**. Counting the winding num-
ber is equivalent to the Zak phase for the Hamiltonian
H(k), and quantized winding numbers give information
on the edge states [I0]. On the other hand, secular equa-
tions det[H (k) —er] = 0 give the eigenvalues e with
eigenfunctions for the Hamiltonian. These bulk states,
however, cannot describe localized states at the interface
or on the edges in a finite lattice, which are delocalized
through the entire lattice. We try a decaying wave func-
tion with oscillation for the ansatz as a generalized Bloch



FIG. 1: (color online). (a) Bowtie ladder with direct inter-
chain hopping amplitude d (black dotted lines) and cross
inter-chain hopping amplitudes ¢; and t2 (solid lines). The
system consists of two sublattices A and B, indicated by
upper and lower spheres, respectively. The black (V), red
dashed (O™), and blue dashed (O~) boxes represent unit cells
with vertically, positively, and negatively rotated obliquely
arranged sublattices, respectively. (b—d) Finite-sized bowtie
ladders with a vertical edge shape (b), and positively (c) and
negatively (d) rotated oblique edge shapes, corresponding to
the unit cells with vertically and obliquely arranged sublat-
tices.

factor, in order to find the edge states. The ansatz con-
tains the complex momentum k = ¢q + ix, where ¢q is a
wave number and & is the spatial decay rate [13, 21| 22)].
The secular equation with the complex momentum de-
termines ¢ and the localization length £ = 1/k with cor-
responding eigenvalue [22-24].

We introduce a general bowtie ladder, as shown in Fig.
(a), and clarify the topological edge states on the lat-
tices. The states on the sublattices A and B in unit cell m
are denoted by |m, A) and |m, B), respectively. To repre-
sent a bipartite Hamiltonian, it practical to separate the
external degrees of freedom (unit cell index m) from the
internal degrees of freedom (sublattice indices A and B).
We can use a tensor product basis, |m, a) — |m)®|a) and
H = H.yternal @ Hinternal, with a € A, B. The Hamil-
tonian H conserves the combination of the time reversal
T = K and inversion M = ¢, symmetries [H,TM] =0
and satisfies anti-commutation relations with charge con-
jugate C = 0,k and chiral symmetry S = o, where K is
complex conjugation operator. The Hamiltonians based
on a vertical unit cell and rotated oblique unit cells can
be written as follows,

Oy +ioy

H' =Y "Wt @ 5Lt HC, (1)

where 1 = (—,0,+) indicates the unit cell and h# is
the hopping sectors of the whole Hamiltonian which are

defined by

K, = dlm){m| + ta|m + 1) (m| + talm — 1){m|
i = ta|m) (m] + djm + 1) (m| + tolm + 2)(m| ~ (2)
iy, = tolm) (m] + dm — 1)(m| + t1|m — 2){m],

respectively, where d is a direct inter-chain hopping pa-
rameter, ¢; and to are cross inter-chain hoppings [as
shown in Fig. [1| (a)], and o is the Pauli matrix. The
Hamiltonian based on a negatively rotated oblique unit
cell can be obtained by changing ¢; » into ¢ ;1 and using a
time reversal operator (kK — —k). The two-band Hamil-
tonian H (k) in momentum space (i.e., a model with two
internal states per unit cell), reads

H(k) =dy(k)oy + dy(k)oy +d.(k)o, =d(k)-o. (3)

The real numbers d; , . € R, the components of the k-
dependent three-dimensional vector d(k), and the inter-
nal structure of the eigenstates with momentum k are all
given by the direction in which vector d(k) points.

III. BOWTIE LADDERS WITH SYMMETRIC
CROSS INTER-CHAIN HOPPINGS

Let us start with a Hamiltonian of a bowtie ladder
with symmetric cross inter-chain hoppings, t = t; = to,
using a vertical unit cell with given k in momentum space
hO(k) = d°(k) - o, where the vectors d) (k) = 1+ 2t cosk
and df(k) = d2(k) = 0 with a cross inter-chain hop-
ping parameter ¢t. All parameters are normalized by di-
rect inter-chain hopping amplitude d throughout this pa-
per. This symmetric bowtie ladder lattice can be con-
sidered as a combination of two trivial SSH models that
shows a insulator-metal transition. As the wave number
runs through the Brillouin zone, £k = 0 — 27, the path
that the endpoint of the vector d(k) traces out is a line
on the (dy,dy) plane due to the periodicity of the bulk
momentum-space Hamiltonian, and it needs to avoid the
origin to describe an insulator or conversely needs to
meet the origin to do so a conductor. A bowtie lad-
der described by a vertical unit cell can thus become a
topologically trivial insulator or conductor depending on
the parameters. This can be explained via the quantum
phase transition associated with the spontaneous sym-
metry breaking between gapped and gapless states with
a trivial topological invariant, i.e., a zero winding num-
ber, in coupled SSH chains [19]. From the view point of
the winding number, it shows a metal-insulator transi-
tion at ¢ = 1/2 with the metal showing a gapless energy
band under ¢ > 1/2 and the insulator showing a trivial,
gapped energy band under ¢ < 1/2. Solutions of the sec-
ular equation, however, provide the zero energy condition
of this system, X2 + X/t + 1/4t?> = 0, where X = cosk.
Considering a finite boundary condition with complex
momentum k = ¢ + ik, the solution is coshx = 1/2¢
when ¢ = 7. This means that a localized state exists in
the trivial insulating regime having a finite localization



length, ¢ = 1/k = 1/arccosh (1/2t), which seems to be
discrepant with the bulk-boundary correspondence.

This discrepancy implies that there are various topo-
logical phases in the lattices containing multiple sites in
a unit cell. There are three ways to take unit cells in a
bowtie ladder based on three different orientations: neg-
ative oblique (O7), vertical (V), and positive oblique
(O1), as shown in Fig. [l (a). For the oblique orien-
tations, the constituent vectors of the Hamiltonians hav-
ing oblique unit cells are d (k) = cosk + t(cos 2k + 1),
d;t(k‘) = +(sink + tsin2k), and d¥(k) = 0, as distin-
guished from the case of the vertical unit cell. All of the
Hamiltonians can be diagonalized as

By = £1/1 4 2t2 + 4t cos k + 22 cos 2k. (4)

We show the dispersion relations for the three choices
of parameters in Fig. [2] (¢). The bowtie ladder model
describes a conductor when ¢t > 0.5, while there is an
energy band gap separating the lower filled band from
the upper empty band when ¢ < 0.5. A marginal case
occurs at t = 0.5.

Although dispersion relations are useful to check off a
number of the physical properties of the bulk of the sys-
tem, there is also important system information that they
do not reveal. Here, the corresponding winding numbers
are 7 = {—1, 0, 1} for the unit cells of the negative
oblique, vertical, and positive oblique orientations, re-
spectively, in the insulating phase ¢ < 1/2. The bowtie
ladders described by an oblique unit cell reach an in-
sulating phase with a non-trivial topological invariant,
or corresponding winding number v* = +1 as shown in
Fig.[2|(b). In bowtie ladders with oblique unit cells, there
is a quantum phase transition associated with non-zero
winding numbers, unlike the quantum phase transition
associated with the zero winding number in bowtie lad-
ders with a vertical unit cell.

For finite systems, we can truncate both edges accord-
ing to the shapes of the unit cells, as shown in Fig.
(b—d). The spectrum of an open bowtie ladder of N = 40
unit cells evolves as we continuously turn on the hopping
amplitude ¢ with the prepared lattices. Independent of
the choice of unit cell, the eigenenergies always appear
as a pair, i.e., £ and —F, because of particle-hole sym-
metry. According to the bulk-edge correspondence [11, 2],
there should be gapless edge states when the bulk states
are topologically non-trivial for the oblique shapes, while
there is no edge state for the vertical shape. The spectra
in Fig. [2[ (d) reveal that the energies of the edge states
in the bowtie ladders with oblique cutting edges remain
very close to zero energy, while there are no edge states
in the case with a vertical cutting edge in Fig. [2] (c).
The wavefunctions of a pair of almost-zero-energy edge
states have to be exponentially localized at both the left
and right edges, because the zero energy is in the bulk
band gap. The zero energy edge states in the case of
insulators show a link between the bulk winding num-
ber and the absence or presence of edge states, known
as bulk-boundary correspondence. Solutions of the sec-

FIG. 2: (color online). (a,b) Paths of the vector d(k) on the
(dz,dy) plane with respect to the Brillouin zone, k = 0 — 2,
of bowtie ladders with vertical (a) and oblique (b) unit cells
corresponding to t = 0.25, 0.5, and 0.75, respectively. The red
dots represent the origin. (c¢,d) Eigenenergies as a function of
t in bowtie ladders in which cross inter-chain hoppings are
symmetric with vertical (¢) and oblique (d) cutting edges.
The red line represents zero energy edge states. The insets in
(c) are the band structures for ¢t = 0.25, 0.5, and 0.75.

ular equations H (k) — eg|c,—o with complex momentum
k = q+ ik provide the inverse localization length at zero
energy,

1
k = arccosh <2t) (5)

The localization length of the zero energy edge states is
¢ = 1/k [4], which corresponds to the localization length
of the zero energy states when 0 < ¢ < 0.5 in Fig. [2f (d).

IV. GENERALIZED BOWTIE LADDERS WITH
ASYMMETRIC CROSS INTER-CHAIN
HOPPINGS

Next, we consider the Hamiltonian of a bowtie ladder
with asymmetric cross inter-chain hoppings. The con-
stituent vectors of the Hamiltonians in the cases of ver-
tical, positive oblique, and negative oblique orientations
are

d2(k) = (t; +t2)cosk +1, (6)
dy(k) = —(t1 — t2)sink,

df(k) = cosk +tycos2k +ty, (7)
df (k) = sink + tosin 2k,

d, (k) = cosk + ti cos2k + ta, (8)
d, (k) = —sink —t;sin2k,

respectively. The phase diagram of a bowtie ladder with
the vertical unit cell corresponding to a vertical cutting
edge is well known [19], as shown in Fig.[3| The topologi-
cal properties in each phases can be characterized by the
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FIG. 3: (color online). Phase diagram of a bowtie ladder on
the (t1, t2) plane. The winding numbers [v~, 1%, v1] as a
function of (t1,t2) correspond to 2|v| edge states. The num-
bers [v™, v°, v*] represent the winding number in bowtie lad-
ders with negatively rotated oblique, vertical, and positively
rotated oblique cutting edges, respectively. The red and blue
lines represent conductors, and the black dashed line denotes
4t1t2 = 1 where the localization lengths bifurcate. The black
solid line indicates to = 0.75.

loop of the curve obtained from Eq. @ on the (dy,dy)
plane [25]. When (t1 + t2) < 1, the system describes
inter-chain dimerization resulting in an insulator with
trivial topological invariants, corresponding to winding
number v° = 0. Therefore, there are no edge states.
When (t; + ¢2) > 1, the system describes a conductor if
t1 = to and thus the winding number 2° is undefined,
while the system describes an insulator with non-trivial
topological invariants corresponding to winding numbers
10 = &1 fort; <ty and t; > to, respectively. In this case,
two zero energy edge states emerge. Figure {4| (a) shows
the eigenenergy spectra as t; increases with fixed to. At
to = t. where 0.5 < t. < 1, there are no zero energy edge
states when t; < t, = 1 — t., while a pair of zero energy
edge states with positive and negative winding numbers
appear when t, < t; < t. and t; > t., respectively, in
Fig. 4| (a).

In the case of a bowtie ladder with an oblique cutting
edge corresponding to an oblique unit cell, the critical
lines between different physical phases are the same as
the case with the vertical cutting edge. However, the
physical phases characterized by the winding numbers are
different. The winding numbers of a bowtie ladder with
positively and negatively rotated unit cells is 1 greater or
less than those of a bowtie ladder with a vertical unit cell,
respectively. Considering the positively rotated cutting
edge, when (1 +t2) < 1, the system describes an insula-
tor with non-trivial topological invariants, corresponding
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to winding number v* = 1. Thus, there is a pair of
topologically protected edge states. When (t; + t2) > 1,
the system describes a conductor if ¢; = ¢35, and thus
the winding number vT is undefined. This system de-
scribes an insulator with trivial topological invariants,
corresponding to winding numbers v = 0 if t; > 5.
However, the system describes an insulator with non-
trivial topological invariants, corresponding to winding
number v = 2 if t; < ¢y, and accordingly, there are two
pairs of edge states. At to = t. where 0.5 < t. < 1, there
is a pair of zero energy edge states when t; < t,, two
pairs of zero energy edge states when t, < t; < t., and
no edge states when t; > t., as in Fig. [4] (b).

The topology of the energy bands in each area
can be characterized by a loop in the auxiliary space
(de(k), dy(k)), k € [—m, 7]. The feature of the quan-
tum phase is characterized by the topology of the loop.
The winding number of the loop around the origin of the
(ds, dy) plane is defined as

1
v=oo / (drdd, — d,dd,) /r?, (9)

where 72 = d2 + di. A straightforward derivation from
the above definition yields v = 0 when t; +t» < 1 for the
bowtie ladder with a vertical cutting edge. Otherwise,
W = sgn(ta — t1). As a result, the winding numbers
between bowtie ladders with vertical and oblique cutting
edges show the relation

vt=10+1. (10)

This means that the topological properties of bowtie
ladders depend on the cutting edges. It is noted that
the winding number of each configuration is a gauge-
dependent quantity, i.e., it depends on the choice of unit
cell associated with the cutting edge shape. However,
the difference between the winding numbers of the two
configurations is uniquely defined.

We consider the properties of the zero energy localized
states characterized by localization length. The local-
ization lengths of the edge states can be also obtained
from the secular equations with the complex momentum
k = q + ik used in the previous section. In general, two
kinds of solutions are possible: one in which the radicand
is positive and one in which it is negative, according to
the competition between inter- and intra-cell hopping.
Under the condition t; < 1/4¢; as shown by the black
dashed line in Fig.[3] the localization length is written as
follows,

(11)

ty £t_/1— 4t
i :1/arccosh< + ! 2),

4t 1t

where t+ = t; &+ t5 and the wave vector is constant ¢ =
7w which means that the wave function is monotonically
decaying. Under the other condition, t5 > 1/4t;, the
localization length is found as follows,

£ =2/|log (t1/t2)], (12)



where the localized edge states are spatially oscillating
with the wave vector ¢ = arctan /4t1to — 1. We can see
a transition through the bifurcation of the localization
length at to =t in Fig. [4 (e).

Figure 4| (d) shows the localization length of the local-
ized states for the vertical cutting edge. The localization
length of a pair of edge states with v% = 1 decays from
infinity to a finite value in t, < t; < t; and then increases
to infinity in ¢, < ¢ < t. as ¢ increases. The localization
length of a pair of edge states with v = —1 is diminished
as a function of ¢; in ¢t1 > t..

In the case of the positive oblique cutting edge, as
shown in Fig. (e), the localization length of a pair
of edge states increases with v+ =11in 0 < t; < t,. The
condition provides that the localization length is £_. The
localization length approaches €& — 0 as t; — 0. It is
noted that there exist localized states with a finite local-
ization length, & = (1+(2t; —1)?)/4t1(1 —t;), although
the bulk gap is closed at the blue transition line t; = t,.
There are two pairs localized edge states with v+ = 2
in t, < t; < t., showing different localization lengths in
t1 < tp and the same localization lengths in ¢, < t; < t..
For the former case, £ is for a long localization length
and &_ is for a shorter one with the constant wave vector
g = m, while for the latter case, the localization length
follows Eq. . There are no edge states when ¢ > t..
For the negative oblique unit cell, otherwise, we have lo-
calized edge states with finite-valued localization lengths
1/[log(t2)| corresponding to winding numbers at t; = 0,
as shown in Fig. [| (f). This model is the same as the
SSH model with intra- and inter-cell hopping amplitudes
d and t, respectively.

V. DISCUSSION AND CONCLUSION

A generalized bowtie ladder in which the cross-chain
hoppings are asymmetric can be decomposed into two
SSH chains through direct inter-chain coupling d with
physical properties equivalent to the vertical bowtie lad-
der. Its rich phase diagram contains different phases
from which a quantum phase transition through the
gap closing can be distinguished. The phase bound-
aries are determined by the zero points of the spectrum,
(t1 + t2)cosk +1 = 0 and (¢; — t2)sink = 0, which
means that the bulk gap is closed at the transition point
between different insulators possessing different winding
numbers [19, 26]. It is known that the quantum phase
diagram is characterized by the edge states in finite sys-
tems, as well. For the diagonal line of the quantum phase
diagram in Fig. [3] there are metal-insulator transitions
at t1 = to = 0.5. The gap closing line t; = t5 > 0.5 sepa-
rates two kinds of insulators possessing opposite winding
numbers. The off-diagonal line to = 1 — ¢; provides a
normal/non-trivial insulator transition.

On the other hand, we can also choose two kinds of
oblique unit cells for the generalized bowtie ladder: neg-
atively and positively rotated oblique cells, for which
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FIG. 4: (color online). Eigenenergies as a function of ¢
in bowtie ladders with (a) vertical, (b) positively rotated
oblique, and (c) negatively rotated oblique cutting edges when
to = 0.75. The red lines represent localized edge states. The
black dots represent the localization lengths as a function of
t1 in bowtie ladders with (d) vertical, (e) positively rotated
oblique, and (f) negatively rotated oblique cutting edges when
to = 0.75. The blue and red dotted lines represent t; = 0.25
and t; = 0.75, respectively, where the systems are conduc-
tors. The numbers represent the numbers of corresponding
edge states.

the next nearest couplings are t; and t5, respectively.
It is notable that the oblique bowtie ladder is smoothly
transformed into an extended SSH chain with asymmet-
ric next nearest coupling. The extended SSH chain is a
simple analogue to the long-distant Haldane model that
possesses a higher-order Chern number phase [27, 28].
We treat the phase factor of the next nearest neighbor
hopping to be double compared to the nearest hopping.
The momentum vector doubling increases the winding
number and the number of localized states due to the
same topological origin of the higher-order Chern num-
ber phase.

In conclusion, we studied the topological zero-energy
edge states in bowtie ladders with different cutting edges
corresponding to the choice of unit cell. The orientations
of the unit cells designate different winding numbers as
the topological invariant such that a bowtie ladder with a
non-zero winding number contains localized edge states.
We can understand the localized edge states of the gen-
eral bowtie ladder models by means of the continuous
transformation to coupled SSH and extended SSH. More-
over, this work reports that, compared to SSH models,
the general bowtie ladder models show richer phase dia-
grams characterized by a bifurcation of the localization
lengths of the edge states. Ultimately, this approach of-
fers intuitive features to extract the topological invariant
of a lattice model.
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