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Monolayer graphene provides an ideal material to explore one of the fundamental light-field driven
interference effects: Landau-Zener-Stückelberg interference. However, direct observation of the re-
sulting interference patterns in momentum space has not proven possible, with Landau-Zener-Stück-
elberg interference observed only indirectly through optically induced residual currents. Here we
show that the transient electron momentum density (EMD), an object that can easily be obtained in
experiment, provides an excellent description of momentum resolved charge excitation. We employ
state-of-the-art time-dependent density function theory calculations, demonstrating by direct com-
parison of EMD with conduction band occupancy, obtained from projecting the time propagated
wavefunction onto the ground state, that the two quantities are in excellent agreement. For even the
most intense laser pulses we find that the electron dynamics to be almost completely dominated by
the π-band, with transitions to other bands strongly suppressed. Simple model based tight-binding
approaches can thus be expected to provide an excellent description for the laser induced electron
dynamics in graphene.

Intense laser light offers the possibility to control elec-
trons in matter on femtosecond time scales. Triumphs
of this burgeoning field include tuning the optically in-
duced current in graphene via the carrier envelope phase
of light1–3, attosecond control over magnetic order in thin
films of magnetic overlayers4,5, and controlled valley ex-
citation in the semi-conducting few layer dichalcogenides
by circularly polarized light6,7 to name only a few exam-
ples. The two band Dirac cone found in graphene pro-
vides an ideal materials platform for studying one of the
canonical light-field driven interference effects: Landau-
Zener-Stückelberg (LZS) interference8,9, which before its
observation in graphene3 had only been observed in de-
signed two state quantum systems10–14. This effect oc-
curs when an oscillating electromagnetic field drives in-
traband oscillation through the Bloch acceleration theo-
rem k→ k+A(t)/c and in the region of an avoided cross-
ing interband transitions occur even when the band gap
exceeds the dominant pulse frequency, so-called Landau-
Zener transitions. Upon repeated passing of the avoided
crossing multiple pathways exist to the conduction band
with consequent constructive and destructive interference
of electron states. This offers rich possibilities for con-
trolling electron dynamics by intense laser light, demon-
strated by the recent observation of control over optical
currents underpinned by LZS interference3, a result an-
ticipated theoretically in Ref. 15.

The ubiquity of the avoided crossing band structure
in 2d materials, found not only in the Dirac cone of
graphene but also in the the semi-conducting mono-
layer dichalcogesides16, phosphorene17,18, silicene19, and
stanene20, points towards the importance of LSZ inter-
ferometry in controlling electron dynamics in 2d mate-
rials. However, while interference physics can be eas-
ily probed theoretically through the conduction band
population18,21,22, the experimental situation is more dif-
ficult, with to date only indirect observations of LSZ
physics in materials reported. In this paper we show

that the transient electron momentum density (EMD)
difference, defined as

∆ρ(p, tf ) = ρ(p, tf )− ρ(p, t = 0) (1)

with p momentum and ρ(p, t) the electron momentum
density23 before (t = 0) and after (tf ) the pump laser
pulse, offers a tool for directly probing LZS interference
effects. The EMD may be measured experimentally via
tomographic reconstruction using Compton profiles24–28

and, in particular, for layered materials29,30. Combining
these techniques with ultrafast X-ray sources will allow
the transient EMD to be experimentally measured. This
suggests a way in which the LZS physics may be directly
observed in 2d materials, opening the way to correlate
indirect LZS physics such as induced currents with the
fundamental momentum space interference patterns.

For graphene, we demonstrate that the EMD facili-
tates both the real time observation of the formation of
LZS interference patterns, as well as the elucidation of
subtle features in the relation between pump pulse and
interference in momentum space.

In contrast to previous works that have employed sim-
ple single particle tight-binding Hamiltonians to study
the LZS effect3,18,21,22,31–34, we will here deploy the
time dependent version of density functional theory (TD-
DFT). To establish the accuracy of the EMD as a record
of LZS interference we compare it with the excited elec-
tron distribution, Nex, defined within TD-DFT as35:

Nex(k, t) =

occ∑
i

unocc∑
j

|〈ψik(t)|ψjk(t = 0)〉|2 (2)

where ψjk(t) is the time-dependent Kohn-Sham orbital
at time t, and ψik(t = 0) is the ground state orbital. In
all cases we find that the pattern of excitation in momen-
tum space generated by transient EMD and Nex is nearly
identical in the first BZ.
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Finally, we consider the role of the non-π-band states
in the electron dynamics in graphene. Remarkably, de-
spite electron excitation through the whole energy range
of the π-band (up to 10 eV above the Fermi energy, an
energy range encompassing the σ∗ bands as well as sev-
eral high l character bands), it turns out that there oc-
cur almost no transitions to states outside the π-band
manifold. We attribute this to the near vanishing of the
corresponding dipole matrix elements. Our calculations
thus suggest that even for very significant laser excitation
tight-binding based models will provide a good descrip-
tion of the electron dynamics.

According to Runge-Gross theorem36, which extends
the Hohenberg-Kohn theorem into the time domain, with
common initial states there will be a one to one corre-
spondence between the time-dependent external poten-
tials and densities37,38. Based on this theorem, a system
of non-interacting particles can be chosen such that the
density of this non-interacting system is equal to that
of the interacting system for all times, with the wave
function of this non-interacting system represented by
a Slater determinant of single-particle orbitals. These
time-dependent Kohn-Sham (KS) orbitals are governed
by the Schrödinger equation (for the spin degenerate
case):

i∂tψj(r, t) =

[
1

2

(
−i∇+

1

c
Aext(t)

)2

+ vs(r, t)

]
ψj(r, t).

(3)

In the above equation Aext(t) is the vector potential
representing the applied laser field, the effective poten-
tial vs(r, t) is given by vs(r, t) = vext(r, t) + vH(r, t) +
vxc(r, t), where vext(r, t) is the external potential, vH(r, t)
the Hartree potential, and vxc(r, t) is the exchange-
correlation (xc) potential. For the latter we have used the
adiabatic local density approximation. From the Fourier
transform of the Kohn-Sham states, ψik(r), the elec-
tron momentum density can be constructed as ρ(p) =∑

ik |ψik(p)|2. This EMD constructed from KS states
has been found to provide excellent agreement with that
obtained from Compton scattering23.

All calculations employ the state-of-the art all-electron
full potential linearized augmented plane wave (LAPW)
method39, as implemented in the ELK code40. We have
used a 30×30 k-point set; for further details of the imple-
mentation of TD-DFT within the LAPW basis we refer
the reader to Refs. 41 and 42.

LZS interference probed by 2D tr-EMD: the patterns
of excited charge in momentum space that most directly
characterise Landau-Zener-Stückelberg interference are
generally presented by plotting the conduction band oc-
cupation over the first Brillouin zone. However this in-
formation, while easy to obtain theoretically, is difficult
to obtain experimentally. We thus look at an alternative
quantity, the change in electron momentum density due
to the laser pulse.
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Figure 1: Conduction band occupation as a function of
k-vector as determined directly by projection of the time-
dependent state onto the ground-state Kohn-Sham states
(first column), see Eq. (2), and, second column, the tran-
sient electron momentum density (tr-EMD) difference, see
Eq. (1). Evidently, both quantities in a consistent way capture
the momentum space intensity fringes generated by Landau-
Zener-Stückelberg interference. The third column displays
the electric field (E-field) of the pump laser pulse (blue lines),
the A-field scaled such that it can be plotted on the same
axis (green lines), and the induced current density (red lines).
Pulses in (a)-(l) have a full width half maximum (FWHM) of
1.935 fs, a central frequency of 1.4 eV, and peak intensity of
5.43×1012 W/cm2, and carrier envelope phase as indicated in
the panels. The remaining three rows have FWHM 2.758 fs,
CEP of π/2, and central frequencies and intensities as indi-
cated in the panels. In the first and second columns, the
white hexagons represent the boundary of the 1st BZ while
the lines in the right bottom corner represent the effective
k-space trajectory given by the Bloch acceleration theorem.

In Fig. 1 are displayed the Nex, EMD, and induced
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Figure 2: Landau-Zener-Stückelberg interference in the first Bril-
louin zone (BZ) reflected by 2D transient electron momentum den-
sity (tr-EMD) at various time steps during and after the pulse.
A pulse of central frequency 1.3 eV, intensity 1.0 × 1013 W/cm2,
full width half maximum 2.758 fs, and carrier envelope phase π/2
is employed, with the A-field exhibited and laser induced current
exhibited in panel (a). The points on the A-field curve indicate
the times at which the tr-EMD is evaluated, shown in panels (b-
f). In these panels the full evolution of the Landau-Zener-Stück-
elberg (LZS) interference can be seen, including both early time
kx < 0 (left hand side of the vertical BZ boundary line) conduc-
tion band excitation, intense excitation at the pulse peak, panel
(d), before the development of the LZS interference fringes on the
falling shoulder of the pulse, panel (e), and the full time kx > 0
LZS interference.

currents for a diverse set of laser pulses exhibiting varia-
tion of several pulse parameters: carrier envelope phase
(the angular difference between the E-field and pulse en-
velope maxima), polarization, intensity, frequency, and
full width half maximum (FWHM). The magnitude of
the electric field is of the order of 5 V/nm, placing
these pulses in the strong non-perturbative regime for
graphene. As can be seen, in all cases Nex and EMD con-
vey consistent information concerning the excited charge,
establishing the latter as a reliable probe of momentum
space excitation.

Before exploring the LZS interference physics of
graphene revealed in Fig. 1 we first provide a theoret-
ical basis to this observed coincidence in the pattern of
momentum space excitation between Nex and EMD. The
Kohn-Sham electron momentum density is defined as

ρ(p, t) =
∑
jk

fjk|ψjk(p, t)|2 (4)

where

ψjk(p, t) =

∫
dp eip·rψjk(r, t) (5)

is the Fourier transform of the KS wavefunction ψjk and
fjk the occupation. Upon expansion of the Bloch func-
tions in plane waves of the reciprocal lattice vectors, G,

ψjk(r, t) =
∑
G

ckjG(t)ei(k+G)·r (6)

and insertion into Eqs. (4) and (5), we find that the EMD

can be expressed as

ρ(p, t) =
∑
jk

fjk
∑
G

|ckjG(t)|2δ(p− k−G). (7)

The EMD will therefore only change with respect to the
ground-state EMD (see Eq. (1)) at points p = k + G
where the coefficients ckjG(t) change. In particular, in al-
most all systems, this will include the G = 0 point, i.e.
the k point itself within the first Brillouin zone. As the
coefficient, ckjG=0(tf ), will change (w.r.t the GS value) at

points in k-space where Nex(k, tf ) is non-zero, ∆ρ(k, tf )
must also then be non-zero. Hence, any interference pat-
tern seen in Nex(k, tf ) will also be seen in ∆ρ(k, tf ). For
2 electron systems, it is known that the EMD produced
from the KS wavefunction can differ significantly from
the exact EMD43,44, however in periodic systems, it was
shown that the KS-EMD gives excellent agreement with
Compton Scattering profiles23.

For a carrier envelope phase (CEP) of φ = ±π/2 the
maximum E-field intensity, and hence the interband tran-
sition at the avoided crossing, occurs at turning point of
the path in momentum space executed due to the A-field.
As a result, the LZ transitions generate excited conduc-
tion band charge at either the positive (φ = +π/2) or
negative (φ = −π/2) kx sides of the Dirac point. This
can be seen in rows (a-c) and (h-j) of Fig. 1. Note that
positive and negative kx, measured from the Dirac point,
corresponds to the left and right hand sides of the verti-
cal BZ boundary as seen in Fig. 1. In contrast, for φ = 0
the maximum E-field intensity occurs at A = 0 result-
ing in a symmetric excitation about the Dirac point, see
row (c-e). In the past such asymmetric LZS interference
has been indirectly accessed by means the net current
that results from the asymmetric momentum space oc-
cupation for non-zero CEP, and to date this represents
the only observation in experiment of LSZ in a material3.
This coherent current (current per unit cell) induced by
the laser pulse is displayed in the third column of Figs. 1
and 2, and corresponds well with that seen in experiment.
The experimentally accessible EMD, however, provides a
wealth of additional information, as we now describe.

By comparing rows (g-i) and (m-o) we observe almost
identical residual coherent current, and yet a very dif-
ferent momentum space LZS excitation as revealed by
the EMD. In particular, in row (m-o) we observe a sub-
dominant kx < 0 charge excitation absent in row (g-i)
and reflecting multiple passes of the avoided crossing due
to the side peaks of the former pulse, see panel (i). The
presence of the main and side peaks in the pulse struc-
ture allows for multiple pass k-space trajectories which,
due to the pulse envelope, consist of a series of passes of
the avoided crossing from trajectories of different length
in momentum space. This yields both asymmetric occu-
pation and more complex interference patterns. Further
enhancement of these side peaks, see row (s-u) of Fig.
1 for which the CEP is again φ = +π/2, results in well
developed interference fringes both for positive and neg-
ative kx, quite different to the right hand side only mo-
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mentum space occupation seen for the lower frequency
φ = +π/2 pulse shown in panels (g-i). The EMD thus
represents a much more sensitive probe of the LZS effect,
able to unveil subtitles of the interference physics lost in
the residual current.

A striking example of this richness of information pro-
vided by EMD versus the residual current can be found in
rows (p-r). Here it can be seen that widespread excitation
occurs throughout the BZ driven by an intense pulse the
A-field of which drives trajectories right across the BZ
(indicated by the lines in the Nex/EMD panels). A very
complex and asymmetric LZS interference pattern results
from this intense excitation, however the widespread oc-
cupation of momentum space drives an overall cancella-
tion of current carrying states and a vanishingly small
residual current.

Experimentally, the short time coherent current ulti-
mately generates heating and a diffusive residual current.
This can therefore not provide a real time probe of the
development of LSZ physics. Transient EMD, on the
other hand, potentially provides a real time probe of the
ultrashort time evolution of LZS interference patterns in
momentum space. In Fig. 2 we show the transient EMD
evaluated before, during, and after a pump pulse induc-
ing both a coherent current and LZS interference. One
can observe an early time excitation due to pulse side
peaks, panels (b) and (c), followed by a dramatic exci-
tation in momentum space at the maximum of the main
peak, panel (d). Only after this peak has passed do the
final interference fringes develop, panels (e) and (f).

Dominance of the π-manifold in electron dynamics:
the results for the momentum resolved conduction band
occupation shown in the previous sections, correspond
very closely to results obtained on the basis of model π-
band only tight-binding Hamiltonians. This raises the
question of whether this is due simply to the relatively
low energies of the excited charge (in Fig 1 and Fig. 2 the
excited charge resides predominantly at the K point and
the K-M-K line) or whether, for a more general reason,
the π-band will always dominate ultrafast laser induced
electron dynamics in graphene. To explore this in Fig. 3
we display the partial density of states calculated before
and after the laser pulse. As can be seen, see Fig. 3a, for
the pulse of intensity 1012 W/cm2, the partial DOS after
the pulse shows conduction band occupation only up to
2.5 eV. At these energies, see Fig. 3c, only the π-band is
available for excited charge. Remarkably, when we con-
sider a very strong pulse of intensity 1014 W/cm2 the
excited electrons are again only of pz character, Fig. 3b,
despite the fact that the laser pulse is sufficiently strong
to excite charge from the minima of the π-manifold up to
the maxima of the π∗-manifold. As may be noted from
the band structure, Fig. 3c, within this energy range ex-
ist many other bands that would, in principle, be ex-
pected to be involved in the electron dynamics at such
high energies. Examination of the relevant dipole matrix
elements reveals that transitions from π to σ∗ and π∗ to
σ are negligible for laser pulses with in-plane polariza-
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Figure 3: Time dependent partial density of states (PDOS) pro-
jected onto the l = 1 spherical harmonics. Here the PDOS (in
states/atom/eV) is shown both at t = 0 before the pulse, and at
the end of the silulation after the pulse has been applied. The
pump pulse for panels (a) and (b) is polarized in the x-direction,
with intensities 1012 W/cm2 and 1014 W/cm2 respectively. As can
be seen, even for almost complete excitation of the π-band in which
charge is excited from the π-band minima up to the π∗-band max-
ima, there is no excitation into states of px or py character. (c)
Band structure of graphene showing the π and σ band character.
Negative and positive numbers indicate dominance by π- and σ-
character respectively.

tion. Thus even in the highly non-perturbative regime
transitions from the ground state to the σ∗ manifold will
be strongly suppressed. It might be argued that the par-
tial DOS, a projection within (touching) muffin tins, does
not account for excitation to delocalized bands of high l
character. Comparison of the interstitial density of states
before and after the pulse shows that there is indeed an
increase in interstitial charge at around 9 eV, possibly
indicating transitions from the π∗ manifold to delocal-
ized bands (note the intersections between π∗ and high l
character bands on the M-Γ line), however this is a rather
small effect. It would thus appear that the model π-band
only tight-binding Hamiltonians provide an excellent de-
scription of the electron dynamics even for very intense
laser pulses.

To summarize we have investigated ab-initio the laser
induced electron dynamics in monolayer graphene. This
system provides a canonical example of a material for
which Landau-Zener-Stückelberg interferometry can be
explored, and we have shown that direct visualisation of
the interference fringes in momentum space is possible
via the transient electron momentum density (EMD), es-
tablishing transient EMD as an excellent experimental
tool for exploring LZS interference in 2d materials. Ex-
amination of the excited state partial density of states
reveals that the π-band manifold decisively dominates
ultrafast laser induced dynamics in graphene, justify-
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ing the deployment of the popular Hückel tight-binding
model. Whether this remains true for the complex few
layer graphene systems, for which such an approach is
the only one that can reasonably be envisioned, remains
an open question.
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