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Abstract 

 

Dynamical charge transfer processes at molecule-metal interfaces proceed in the few fs time 

scale that renders them highly relevant to electronic excitations in optoelectronic devices. Yet, 

knowledge thereof is limited when electronic ground state situations are considered that 

implicate charge transfer directly at the fermi energy. Here we show that such processes can be 

accessed by means of vibrational excitations, with non-adiabatic electron-vibron coupling 

leading to distinct asymmetric line shapes. Thereby the characteristic time scale of this 

interfacial dynamical charge transfer can be derived by using the vibrational oscillation period 

as an internal clock reference. 

 

Introduction 
 

In modern material sciences, molecule - metal interfaces play a decisive role in the functionality 

of molecular electronic devices. Despite their importance in technological applications our 

microscopic understanding is lagging behind, probably due to the experimental difficulties to 

detect and single out the weak interface signatures. Acquiring comprehensive and conclusive 

evidence to expand our knowledge base regarding charge transfer processes at the molecule - 

metal interface remains challenging, though, especially defining the dynamics at ultrafast time 

scales [1].  
 

Electron transfer processes across an interface connecting two weakly coupled electronic 

systems can be accessed in various ways, e.g. by means of breaking junctions [2], scanning 

tunneling microscopy [3], or by using photoemission spectroscopy, often in combination with 

pump-probe techniques [4-6]. While the former provide a precise map of the charge transport 

through well-defined single molecule junctions, the dynamics and time frame of the very 

process is revealed by the latter only. In photoemission experiments excitation typically 

involves electronic states far above F; adoption of the derived dynamical properties to the 

neutral ground state (or the-like) might then be problematic. Even more so, it is the charge 

transport at (or close to) zero energy, i.e. right at the Fermi energy, that is most relevant to the 

functioning of molecular electronic circuitry. To assess the role of the molecule - metal interface 

in charge transport within devices it is thus indispensible to focus on charge transfer processes 

at or close to F.  
 



In this Letter we will explore the electron dynamics for ground-state configurations of 

molecular adsorbates by means of vibrational mode excitation, provoking charge oscillations 

between the molecule and the metal substrate. Strictly speaking, this approach comprises a non-

ground state situation as well (vibrational excitation); however, deviation thereof is only minor, 

representing a key advantage with respect to the mentioned electron spectroscopies. In our 

analysis we will take advantage of the fact that the degree of non-adiabaticity in the electron - 

vibron coupling is directly reflected in the vibrational line shape. As a key ingredient we will 

be using the vibrational frequency of specific modes of the molecular constituents to serve as  

an intrinsic and precise clock to extract the relevant time scale. The usage of an internal clocking 

scheme is both compelling and effective and has been used in a different context in core level 

photoemission studies (core hole clock) to derive charge transfer times down to the sub fs range 

for adsorbed rare gas atoms and diatomic molecules [7, 8].  
 

We will be examining vibrational line shapes to address the topic of electron - phonon/vibron 

coupling in general, as well as questions regarding adiabaticity in particular. Electron - vibron 

coupling describes the oscillatory motion of atoms within (adsorbed) molecules in the context 

of their coupling to electronic levels of the molecule and the metal substrate; given that the 

Born-Oppenheimer approximation is satisfied, the coupling between these two entities will 

proceed adiabatically. As vibrational excitations represent a non-equilibrium situation, e.g. in 

view of the electronic response of the surroundings, non-adiabaticity, to some extent, is 

commonly expected.  
 

Historically, non-adiabatic electron - vibron coupling, in combination with electron - hole pair 

excitation has been introduced to explain short lifetimes of vibrational modes associated with 

(small) molecules (CO, NO) adsorbed on metal substrates [9]. This irreversible process must 

be distinguished from the reversible charge oscillations across the molecule-metal interface 

(interfacial dynamical charge transfer, IDCT). Essentially, the former process primarily 

accounts for the homogeneous line broadening, studied in various instances in the past, while 

the latter produces asymmetric line shapes of the respective vibrational bands; these can be 

accessed experimentally and have been described theoretically by Persson and Persson [9, 10], 

as well as Langreth [11], who have derived expressions for the associated Fano-type line shapes. 

The model system at that time, adsorbed CO, however, did not show a noteworthy asymmetry, 

pointing at a negligible deviation from adiabaticity in the electron - vibron coupling. For quite 

some time, H(D) on W(100) was the only system displaying pronounced asymmetric 

vibrational line shapes [12, 13].  
 

Molecular layers studied in the present work are more promising as they come with a well-

defined interface separating the two electronic systems, molecule and metal substrate; 

moreover, they display a characteristic set of vibrational modes with specific symmetry 

properties and displacement patterns. Infrared absorption spectroscopy (IRAS), used in this 

work, represents a versatile method to study such systems; due to its high spectral resolution 

and strict symmetry selection rules identification and characterization of molecular species is 

straightforward, based on their vibrational signatures (see Supplemental Material for a detailed 

description. This is essential insofar as molecule - metal charge transfer processes can be 

uniquely correlated with a particular molecular species.  

 



Experimental 
 

Experiments were performed in an ultrahigh vacuum chamber (base pressure p = 510-11 mbar) 

which contained facilities for fourier-transform infrared absorption spectroscopy (FT-IRAS), 

spot-pro le analysis low energy electron diffraction (SPA-LEED) and thermal desorption 

spectroscopy (TDS). All infrared spectra (spectral range of 600 - 4000 cm-1) were taken at a 

surface temperature of 80 K, using an evacuated Bruker IFS 66v/s instrument and a liquid N2 

cooled MCT (HgCdTe) detector; spectral resolution typically was 2 cm-1 and about 1000 scans 

have been co-added. Characterization of molecular layers regarding long range ordering is 

achieved using an Omicron SPA-LEED system. For thermal desorption experiments as well as 

examination of evaporant cleanliness, a quadrupole mass spectrometer (Pfeiffer, QMG 700) 

with mass range 0 - 1024 u was used. Temperatures have been measured using a K-type 

thermocouple, (laser)welded to the edges of the Ag(111) or Au(111) single crystals. The 

samples were mounted to a liquid He or N2 cooled cryostat and could be heated resistively with 

a linear heating rate.  
 

The various molecular species have been deposited by means of home-made evaporators. The 

sample temperature Tsample during deposition typically was 300 K; alternatively, growth has 

been carried out at Tsample  80 K, with adequate post-deposition annealing to 300 - 500K to 

ensure thermal equilibration and long range ordering. The evaporator temperatures were 

adjusted within ±0.1 K to yield deposition rates of about 0.2 monolayers per minute. 

Specifically, temperatures have been adjusted to: 310 K (Tetracene), 390 K (NTCDA), 530 K 

(PTCDA), and 500 K (CuPc). During deposition the background pressure remained below 

110-10 mbar. For Tetracene, extra precautions (permanent cooling to 273 K) had to be 

implemented to lower its vapor pressure in order to avoid unnecessary exposure of the UHV 

chamber. Before conducting the experiments, the sample was generally cleaned by Ar+ ion 

sputtering (700 eV, 1 A, Tsample = 380 K, t = 30 min), followed by annealing to 780 K for 5 

- 10 min. 

 

Results and Discussion 
 

In Figure 1, a compilation of IR spectra associated with various molecular species adsorbed on 

noble metal substrates is presented. Specifically, Tetracene, PTCDA, NTCDA and CuPc, all of 

them planar molecules, have been deposited on Ag(111) or Au(111) surfaces. According to the 

literature, all molecular species are adsorbed with their molecular plane oriented parallel to the 

surface [14-17]; deviations from planarity due to interactions with the substrate are only 

moderate or weak [15, 17]. This weak molecule - metal coupling strength is reflected in 

insignificant frequency shifts of vibrational modes with respect to the values of the respective 

isolated or bulk species. Noteworthy exceptions are the C=O stretch modes of the acyl groups 

at the corners of NTCDA and PTCDA which are subject to a bold red shift by about 150 cm-1 

when adsorbed on Ag(111), due to chemical interactions with substrate Ag atoms [17, 18]. The 

key observation when comparing individual spectra in Figure 1 is that the intensities of in-plane 

modes ( > 1000 cm-1) vary distinctly, while the IR absorptions of out-of-plane modes 

(prevailing at  < 1000 cm-1) display about similar dipolar strength. This marked variation of 

in-plane mode intensities is ascribed to IDCT being active for the bottom three spectra, while 

it is absent for the two uppermost spectra. 



                 
 

Figure 1:  

Collection of infrared absorption spectra, obtained from CuPc/Ag(111), NTCDA/Ag(111), 

PTCDA/Ag(111), PTCDA/Au(111), and Tetracene/Ag(111) monolayers. The spectra were obtained  

at 80 K using a spectral resolution of 2 cm-1; individual curves are vertically offset for better display.  

 

 

Apparently, the strength or weakness of in-plane vibrational modes is neither a specific property 

of the substrate, nor of a particular molecular species, as IDCT is absent for PTCDA on Au(111) 

while it is quite prominent when adsorbed on Ag(111). On Ag(111), IDCT is likewise observed 

for adsorbed NTCDA and CuPc, besides PTCDA, but not for Tetracene. A prerequisite for 

IDCT to be operative is that molecular electronic states at or close to the Fermi energy F exist 

[9, 19, 20]. In accordance with this hypothesis, studies of the electronic structure have identified 

features at or slightly below F ascribed to the former lowest unoccupied molecular orbital (f-

LUMO) for PTCDA, NTCDA, and CuPc on Ag(111) [21 - 24]; for Tetracene/Ag(111) and 

PTCDA/Au(111) the weaker adsorbate-substrate interaction renders the respective LUMO 

empty [25, 26].  
 

Partially filled molecular orbitals may form as a result of hybridization with electronic levels 

of the substrate, leading to a static charge transfer between molecule and substrate; more 

importantly, such a constellation of electronic states enables charge oscillations across the 

molecule - metal interface induced by vibrational mode excitations. 
 

To refine our understanding of IDCT we will take a closer look at the various contributions to 

a vibrational mode's dynamic dipole moment dyn. For adsorbed species the contributions to 

dyn essentially comprise two components: (i) mol coming from nuclear motion of atoms within 

a molecule carrying (static) charges, in addition to contributions connected with charge 

redistribution within the molecule, and (ii) IDCT associated with dynamic charge transfer across 

the adsorbate - substrate interface. Electron - vibron coupling and dynamical charge flow within 



the molecule is expected to proceed adiabatically. mol must then be discriminated from IDCT, 

as coupling to the substrate, in general, is much weaker; this means that it is more difficult to 

maintain the charge equilibrium between metal and molecule at short time scales, leading to a 

delayed response of IDCT with respect to mol.  
 

The effect of such a delay in the built-up of the dynamic dipole moment and its interaction with 

incoming IR radiation has been described by Langreth by defining IDCT and accordingly dyn 

= mol + IDCT as a complex quantity [11]. dyn can then be split in a purely real mol and a 

complex term IDCT = 1,IDCT + i2,IDCT, so that dyn = (mol + 1,IDCT) + i2,IDCT. Here, the real 

part refers to the instantaneous response of the dynamical dipole moment. The complex nature 

of IDCT or dyn then accounts for the delayed response of the interfacial charge flow with 

respect to vibrational motion. The molecular layers presented in Figure 1 are ideal model 

systems as their weak adsorbate - substrate interaction leads to a significant phase lag between 

mol and IDCT, resulting in vibrational line shapes with pronounced asymmetry.  
 

To quantify the degree of non-adiabaticity, Langreth [11] has introduced a parameter y = , 

describing the ratio of the imaginary and the real part of the complex quantity dyn, that is,  

𝜔𝜏 =
𝜇2,𝐼𝐷𝐶𝑇

𝜇𝑚𝑜𝑙+𝜇1,𝐼𝐷𝐶𝑇
. A related quantity IDCT refers to IDCT alone instead of dyn so that 

𝜔𝜏𝐼𝐷𝐶𝑇 =
𝜇2,𝐼𝐷𝐶𝑇

𝜇1,𝐼𝐷𝐶𝑇
. For a particular vibrational mode at 0 with narrow linewidth  << 0, 

absorption is non-negligible in the region of the resonance only and we can take y =   0. 

We then obtain an expression that combines the charge transfer time IDCT with the asymmetry 

parameter 0 of the resulting Fano-type line shapes through 𝜏𝐼𝐷𝐶𝑇 =
1

𝜔0
(

𝜇𝑚𝑜𝑙

𝜇1,𝐼𝐷𝐶𝑇
+ 1)𝜔0𝜏. In 

fact, the sign of IDCT need not be identical to mol when considering different types of 

vibrational modes. This leads to a partial compensation of IDCT and mol and gives rise to 

negative values of 0 even though IDCT, as a rule, will always be positive. 
 

In Figure 2 enlarged sections of the IR spectra of CuPc/Ag(111) and of NTCDA/Ag(111) are 

shown. The displayed frequency regions contains various in-plane as well as out-of-plane 

vibrational modes. We find that the respective asymmetry parameter values differ notably for 

the two types of modes; in fact, they consistently show a reversal of their asymmetry. 

Specifically, CuPc in-plane modes (a1g) at 671 and 835 cm-1 display positive asymmetry 

parameters, while out-of-plane modes (a2u) at 719 and 768 cm-1 yield negative 0. Similarly, 

the asymmetry changes its sign for the NTCDA modes located at 742 and 862 cm-1, both 

representing out-of-plane modes (b3u), as compared to those at 995 and 1118 cm-1 which have 

been identified as in-plane modes (ag). We conclude that rather than the particular vibrational 

frequency, it is the specific character of a vibrational mode that decides on the sign of the 

respective asymmetry parameter. 
 

By applying the Langreth expression [11], the asymmetry parameter 0 is readily retrieved by 

means of curve fitting. We have analyzed various in-plane vibrational modes of NTCDA, CuPc 

and PTCDA adsorbed on Ag(111) that display pronounced asymmetric or even dispersive line 

shapes [16, 27]; the derived values are summarized in Table 1. For NTCDA/Ag(111) and 

PTCDA/Ag(111) the asymmetry parameters amount to 0 = 0.3 - 0.4, while notably higher 

values up to 1.0 are found for CuPc/Ag(111).  



 

                   
 

Figure 2:   

Infrared absorption spectra of (a) CuPc/Ag(111), and (b) the relaxed NTCDA/Ag(111) monolayers. 

The asymmetric lines have been fitted using Fano-type line shapes according to Langreth [11]. The 

derived parameters are indicated in the respective panels. The indicated irreducible representations 

refer to the D4h and the D2h symmetry groups of CuPc and NTCDA, respectively.  

 

 

We stress that 0 must not be used directly to derive the molecule - metal charge transfer time 

IDCT, as IDCT ≠  and only for |mol| << |IDCT| can we expect IDCT  . This condition is actually 

favorably fulfilled for in-plane vibrational modes of parallel oriented planar molecules adsorbed 

on noble metal surfaces, used throughout in our study. We can thus conclude that dyn = mol + 

IDCT  IDCT, so that 0IDCT  0, i.e. the derived asymmetry parameter 0 represents a 

realistic measure of the phase delay 0IDCT associated with the electron transfer between 

molecule and Ag(111) substrate. We note that examination of out-of-plane vibrational modes 

is much more demanding as they come with a non-negligible mol, so that mol << IDCT does 

not hold anymore; the extraction of IDCT from observed asymmetry parameters then requires 

knowledge of the magnitudes of mol and of IDCT (actually, it is their relative ratio that is 

relevant). 



Table 1:   

Asymmetry parameters 0 and charge transfer times IDCT derived from a line shape analysis of 

various in-plane vibrational modes of CuPc, NTCDA, and PTCDAa adsorbed on Ag(111).  
 

               
 

a For PTCDA the number of suitable modes is limited as the majority of vibrational bands  

  display a complex internal structure, impeding their proper evaluation 
b 0 is derived from vibrational mode line positions 0 according to 0 [1/s] = 2c0 [cm-1]  

 

 

Using the above expression for IDCT, the asymmetry values in Table 1 can now be used to 

extract the characteristic charge transfer time IDCT, with 0 acting as an internal clock 

reference. We find that the effective charge transfer times IDCT varies notably for individual 

molecular species, reflecting the respective molecule-metal interaction strength. Specifically, 

values of about 1.5 fs are derived for NTCDA and PTCDA on Ag(111) and around 3.5 fs for 

CuPc/Ag(111), signaling a distinctly higher degree of non-adiabaticity in the latter case.  
 

This marked difference in charge transfer time IDCT is in accordance with the quite strong 

distortion of the initially planar structure of NTCDA and PTCDA adsorbed on Ag(111); it is 

primarily caused by the chemical bonding of O-atoms located at both ends of the molecules to 

surface Ag atoms [15, 28]. This chemical interaction is in line with the strong shift of carboxyl 

stretching frequencies in our IR spectra. Warping of CuPc/Ag(111), on the other hand, is rather 

weak [24]. The derived notably weaker molecule-substrate interaction for CuPc is in perfect 

agreement with the larger bonding distance of CuPc/Ag(111) (3.08 Å) [24], as compared to the 

values reported for the carbon backbone of NTCDA (2.997 Å) [28] and of PTCDA (2.86 Å) 

[15, 29]. 
 

For NTCDA on Ag(111) a correlation of the f-LUMO energy position and the respective 

oscillatory motion, 
𝑑𝐸𝐿𝑈𝑀𝑂

𝑑𝜉𝑖
⁄ , with 𝜉𝑖 denoting a generalized NTCDA normal mode 

coordinate, has been established based on DFT calculations [30]. Thereby the respective 

contributions to mol (denoted as 'nucl in [30]) and IDCT have been quantified. In fact and in 

accordance with our observations, out-of-plane modes (b3u) yielded non-negligible mol, as well 

as opposite signs of mol and IDCT. As a consequence, out-of-plane modes show a rather broad 

distribution of asymmetry parameters, consistent with the spectra in Figure 2. If we take the 



values for mol and IDCT reported in [30] for the 742 cm-1 mode to calculate IDCT by means of 

the expression above and using 0 = -0.2, we obtain a value of IDCT = 1.6 fs [31]. This close 

match with the values derived from our analysis of in-plane modes (Table 1) is actually not 

surprising, as the molecular orbital associated with IDCT ought to be the same for all vibrational 

modes, independent of their character.  

 

                   
 

Figure 3:  

Infrared absorption spectra of NTCDA adsorbed on Au(111) (top), Ag(111) (bottom) and an 

AgAu(111) surface alloy created by annealing an Ag/Au(111) monolayer to 580 K (center).  

Spectral resolution was 0.5 cm-1 for NTCDA/Au(111), while 2 cm-1 was used otherwise.  

 

 

In Figure 3 we have modified the substrate electronic structure by deposition of Ag atoms on 

Au(111) to create an AgAu(111) surface alloy [32] after annealing to 580 K. The idea is to 

adjust the dynamics of vibrationally induced charge transfer processes across the molecule-

metal interface. As a probe particle NTCDA has been deposited at 80 K on Au(111), the Ag/Au 

alloy, and Ag(111); all layers have been annealed to 400 K to induce lateral ordering and to 

desorb surplus second-layer species.  
 

It is apparent that IDCT is entirely absent for NTCDA on Au(111), in contrast to NTCDA 

adsorbed on Ag(111), and on the AgAu(111) alloy surface. We conclude that IDCT can 

effectively be switched on by adding Ag atoms to the Au(111) surface. The adsorption-induced 

vibrational frequency shifts for NTCDA on AgAu(111) with respect to the gas phase or bulk 

values are relatively small and we conclude that the molecule - metal interaction, while stronger 

than on Au(111), is notably weaker for the alloy surface as compared to Ag(111). Most relevant 

in the current context, the in-plane modes of NTCDA on the Ag/Au alloy substrate display 

characteristic dispersive line shapes, indicating substantially larger asymmetry parameters as 

compared to NTCDA/Ag(111). Accordingly, the time scale IDCT of molecule - metal charge 

transfer increases to about 2 fs, which is significantly slower than found for NTCDA on 

Ag(111). Functionalizing the metal substrate surface thus represents an effective way to tune 

IDCT. 



 

Summary 
 

In conclusion, we have investigated the charge transfer dynamics across the molecule-metal 

interface for various molecular contact layers. By means of vibrational excitations and 

evaluation of asymmetric line shapes induced by non-adiabatic electron - vibron coupling, the 

dynamic charge transport right at F has been probed. This is advantageous insofar as it avoids 

electronically excited states far above F that are commonly encountered in various electron 

spectroscopies and in this way is much more relevant to charge transport in molecular electronic 

devices. In our analysis the vibrational mode frequency has been used as an internal clock 

reference to derive the charge transfer time IDCT, representing an intrinsic property of the 

molecule - metal interface. Typically, IDCT is in the few fs range, corresponding to a notable 

fraction of the oscillation period. Our approach to explore the dynamics of charge transfer 

processes across molecule-metal interfaces is both accurate and generally applicable, and 

represents a powerful method to characterize this technologically highly relevant material class. 
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