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Percolation theory dictates an intuitive picture depicting correlated regions in com-

plex systems as densely connected clusters. While this picture might be adequate

at small scales and apart from criticality, we show that highly correlated sites in

complex systems can be inherently disconnected. This finding indicates a counter-

intuitive organization of dynamical correlations, where functional similarity decou-

ples from physical connectivity. We illustrate the phenomena on the example of the

Disordered Contact Process (DCP) of infection spreading in heterogeneous systems.

We apply numerical simulations and an asymptotically exact renormalization group

technique (SDRG) in 1, 2 and 3 dimensional systems as well as in two-dimensional

lattices with long-ranged interactions. We conclude that the critical dynamics is well

captured by mostly one, highly correlated, but spatially disconnected cluster. Our

findings indicate that at criticality the relevant, simultaneously infected sites typi-

cally do not directly interact with each other. Due to the similarity of the SDRG

equations, our results hold also for the critical behavior of the disordered quantum

Ising model, leading to quantum correlated, yet spatially disconnected, magnetic

domains.

Introduction

Correlated clusters emerge in a broad range of systems, ranging from magnetic models

to out-of-equilibrium systems [1–3]. Apart from the critical point, the correlation length
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is finite, limiting the spatial separation between highly correlated sites, leading to spatially

localized, finite clusters. Although at the critical point the correlation length diverges, our

traditional intuition is driven by percolation processes, indicating that highly correlated

critical clusters remain connected, while broadly varying in their size. As an alternative

scenario, we show that at the critical point, highly correlated clusters can break up into

spatially disconnected regions in both classical and quantum systems. As a proof-of-concept

example, we focus on the Disordered Contact Process (DCP), a simple (out-of-equilibrium)

infection spreading model [4–6]. The critical behavior of the model is well understood

in the presence of disorder, at least at the level of statistical properties averaged over a

large numbers of samples [6–10]. The detailed simulation of individual samples is much

more challenging, due to large dynamical fluctuations and extremely slow dynamics around

criticality [11, 12].

As an alternative, efficient approach, the strong disorder renormalization group (SDRG)

method provides asymptotically exact results for the critical contact process in the presence

of disorder, at least below d = 4 spatial dimensions [11–14]. Besides being computationally

efficient, the SDRG method also offers some counter-intuitive insights into the underlying

correlation structure. Namely, the SDRG predicts that highly correlated sites at long time

scales (simultaneously infected individuals) typically do not know each other directly, only

via indirect connections through the rest of the contact network. According to the SDRG,

only a few of these highly correlated, but essentially disconnected, clusters govern the large-

scale behavior of the system. Observing these clusters in simulations is notoriously difficult

due to extremely slow dynamics, inducing anomalously large fluctuations and poor statistical

properties. As a key step, here we show how to find the highly correlated sites efficiently

via a quasi-stationary simulation. The simulated density profile is then found to be in a

good agreement with the SDRG predictions, confirming that the asymptotic dynamics is

governed by spatially disconnected clusters in stark contrast to traditional intuition.

The disordered contact process

The contact process, in the most general case, is defined on a network given by an

adjacency matrix Aij. As a special case, the network is often chosen to be a d-dimensional

hypercubic lattice with nearest-neighbour edges. The state of the system is given by a set of
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binary variables, ni = 0, 1, characterizing the sites of the network. As the contact process is

frequently interpreted as a simple epidemic spreading model, sites with ni = 1 are referred

as ’infected’, while sites with ni = 0 are ’healthy’ or ’susceptible’. The contact process

is a continuous-time Markov process on this state space, specified by the rates of possible

(independent) transitions, which are the following (for an illustration see Fig. 1).

1 32

λ23
µ2λ21

FIG. 1: Illustration of allowed transitions in the contact process. Allowed transitions of

an active (infected) site and two of its neighbours, connected by two links (12 and 23). Active

(inactive) sites are depicted by red (white) dots. The corresponding transition rates are written on

the arrows.

First, infected sites become spontaneously healthy with a rate µi, which may be site-

dependent. Second, infected sites attempt to infect their adjacent sites with rates λij , and

the trial is successful if the target site j was healthy. Again, the infection rates λij can

vary from link to link. We will assume that the infection rate from site i to site j are the

same as that from site j to site i, i.e. λij = λji. This variant of the model is also known

as the susceptible-infected-susceptible (SIS) model [15]. This technical restriction, which is

necessary for the applicability of the SDRG method, is irrelevant from the point of view of

universal critical properties [16].

The contact process exhibits a continuous, non-equilibrium phase transition between

a non-fluctuating (absorbing) phase in which all sites are healthy and a fluctuating phase,

where the density of infected sites is non-zero [17]. For regular lattices and uniform transition

rates the transition falls into the robust universality class of directed percolation [18–21].

If the transition rates are independent, random variables, the universality class is well

characterized in one, two- and three-dimensional regular lattices due to large-scale Monte

Carlo simulations [6–10]. The observed critical behavior is in line with the results of the

strong-disorder renormalization group method [11–14]. According to this, the dynamical
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scaling of average quantities is ultra-slow, characterized by power-laws of the logarithm of

time rather than the time itself, whereas the static critical exponents are also altered com-

pared to the directed percolation class [11, 12, 22]. Most interestingly, the critical exponents

are independent of the form of the distribution of transition rates. Besides low dimensional

regular lattices, a similar behavior has been found in spatially embedded networks with long-

range connections [23–25]. These networks consist of a regular, d-dimensional, hypercubic

lattice and a set of long links, which exist with a probability pij ∼ βd(i, j)−s, where d(i, j) is

the Euclidean distance between i and j. Note, that even for uniform transition rates these

networks contain a so-called topological disorder due to the random connectivity of sites by

long links. In the case s = 2d, the topological dimension is finite and varies with β [26–28].

As it was demonstrated in Refs. [23–25] for d = 1 and s = 2, the contact process shows

an ultra-slow scaling and the critical exponents vary with β, while an additional disorder in

the transition rates is irrelevant. According to a general scaling argument presented in Ref.

[29], a qualitatively similar behavior is expected in higher dimensions for s = 2d.

Strong-disorder renormalization group

The strong-disorder renormalization group is the key method to understand the long-

time behavior of the disordered contact process (DCP). For a general review and a detailed

introduction we refer the reader to Ref. [13, 14]. The first application of the method to the

DCP was in Ref. [11, 12]. Next, we recapitulate the essential features of the method.

The SDRG is a sequence of iterative steps operating on blocks of sites containing the

largest rate (either an infection rate or a healing rate) of the model, see Fig. 2. If the largest

rate is an infection rate, λij, the block of sites i and j is merged to a cluster, characterized

by an effective healing rate:

ln µ̃ij = lnµi + lnµj − lnλij + ln 2. (1)

This simplification is a good approximation if µi and µj are much smaller than λij . If the

largest parameter is a healing rate, µi, site i is deleted, and effective infection rates are

generated between all neighbors of site i:

ln λ̃jk = lnλji + lnλik − lnµi. (2)
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FIG. 2: Illustration of the SDRG method. Two types of reduction steps of the SDRG pro-

cedure: formation of a cluster (a) and elimination of a site (b). The thickness of lines indicates

the magnitude of the infection rate on the corresponding link. The link (a) and the site (b) to be

decimated is shaded in green. For details, see the text.

This approximation is justified under the condition λji, λik ≪ µi. Apart from a one-

dimensional lattice, it may happen that a newly formed cluster has, through its constituents,

two infection rates to a third site. Similarly, if a new infection rate is generated, there may

be a pre-existing infection rate between those two sites. These situations are usually treated

by discarding the smaller infection rate, which is known as the maximum rule.

The above steps are applied sequentially, lowering thereby gradually the number of de-

grees of freedom, as well as the rate scale Ω = max{µi, λij}. Regarding the set of clusters

present in the system, the SDRG procedure can also be viewed as a special coagulation-

annihilation process with extremal dynamics. The critical behavior of the DCP is gov-

erned by the so called infinite-randomness fixed-point (IRFP) of the SDRG transformation

[11, 12, 30, 31], at least for sufficiently strong initial disorder [8, 11, 12, 32–34]. As the IRFP

is approached along the critical renormalization trajectory, the distribution of logarithmic

rates broadens without limits, and both types of reduction steps become asymptotically ex-

act. Furthermore, this feature also justifies the applicability of the maximum rule, and even

the neglection of the ln 2 term in Eq. (1). In the numerical SDRG calculations we therefore

resorted to these approximations, which, as a further advantage, enable a computationally

very efficient implementation of the SDRG procedure [35, 36].

Following the SDRG transformation of the DCP at a given realization of random rates

down to a rate scale Ω ≪ 1 provides an effective DCP with a smaller set of degrees of

freedom, which approximates well the dynamics of the original system for times t ≫ Ω−1.
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Consider, for instance, the state of the system, evolved from a fully occupied initial state, at

some late time t. Applying the SDRG procedure down to rate scale Ω = t−1, provides the

set of sites with an O(1) occupation as the constituents of the clusters of the renormalized

system, while the sites eliminated during the procedure will have an almost zero occupation

probability.

In the case of a finite sample, the true steady state is always the absorbing, empty lattice

state. Accordingly, all clusters are removed during the SDRG procedure, the last one at

some rate Ω1, the second last at Ω2 > Ω1, in general, the nth cluster becomes irrelevant

at Ωn > Ωn−1. The inverse rates, Ω−1

1 ,Ω−1

2 , . . . , are interpreted as the mean lifetimes of

the corresponding clusters removed during the procedure. Clearly, the last one, Ω−1

1 , gives

the mean lifetime of the sample needed to be absorbed in the empty state. In finite but

large systems in the vicinity of the critical point, the last few lifetimes such as Ω−1

1 and

Ω−1

2 are typically well separated, meaning that they differ by orders of magnitude, and

this time-scale separation becomes more and more pronounced with increasing system size.

Consequently, in typical samples there is a considerable time span, Ω−2

1 ≪ t ≪ Ω−1

1 , within

which practically no sites but the constituents of the lastly removed cluster are occupied.

The structure of the lastly removed cluster can also be used to determine a sample-

dependent pseudo-critical point: making a double sized system by glueing together two

copies of the original one, the onset of the active phase is indicated when the last cluster is

different from that of the original system [22].

Quasi-stationary simulation

The simulations were implemented for regular lattices in the following way. An occupied

site (i) is randomly chosen and, with a probability µ/(µ+1) it is made unoccupied, or, with

a probability 1/(µ+ 1), one of its n neighbors (j) is picked with a uniform probability and

infected with the probability λij, provided it was healthy. The time increment related to

such a move is ∆t = 1/Ns, where Ns is the total number of infected sites.

For non-regular networks, where the sites may have different coordination numbers, a

different implementation is needed in order to correctly simulate the process. Here, besides

the list of infected sites, also a list of active links is stored, which contains all directed links

with an infected source site. The number of elements of this list is denoted by Ne. Then, with
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a probability µNs/(µNs + Ne), a healing event occurs on one of the infected sites, chosen

equiprobably, whereas, with the complementary probability, Ne/(µNs + Ne), an infection

event is attempted. In this case, an active link (ij) is chosen with a uniform probability

from the corresponding list, and the target site (j) is infected with a probability λij , provided

it was healthy. The time increment of such an elementary move is ∆t = 1/(µNs +Ne).

We apply a quasi-stationary simulation with a reflecting boundary condition. This means

that, at the point where there is only a single active site in the system, the healing event

is rejected. This way we only need to validate that the system reached the quasi-stationary

state, easily done by checking whether the mean density and its variance remain unchanged

under increasing the relaxation time. The total simulation time was typically 1028, the first

half of which is left for relaxation, while the measurements are performed in the second half.

First, in each sample, we determine an individual pseudo-critical point, which, for the

system sizes we use, can significantly deviate from the ensemble average. Following the

method proposed in Ref. [37], we identify the pseudo-critical point with the maximum of

susceptibility [38] defined as

χ = N
〈ρ2〉 − 〈ρ〉2

〈ρ〉
, (3)

where N is the total number of sites, ρ denotes the global density of active sites, and 〈·〉

stands for the expected value in the quasi-stationary state.

Having estimated the pseudo-critical point, we performed here quasi-stationary simula-

tions for a longer time, 1030, and measured the mean local densities (Figs. 3-6). In addition,

we started a number of independent simulations and averaged over them, in order to avoid

the (rather improbable) possibility that the long-lasting activity is stuck at a cluster other

than the one with the longest lifetime.

For a satisfying agreement with the SDRG method for moderate system sizes, the strength

of the disorder needs to be sufficiently large, i.e. the distribution of the logarithmic infection

rates needs to be sufficiently broad. In practice, the infection rates were chosen from a

power-law distribution, P<(λ) = λ1/α, where the exponent α > 0 controls the strength of

disorder.
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FIG. 3: Results in 1D systems. Asymptotic probability of being active in the quasi-stationary

simulations as the function of the spatial coordinate for N = 1000 sites with periodic boundary

conditions and strength of disorder α = 1. As illustrated by the purple and red clusters the SDRG

is able to efficiently capture the activity profile even with a few clusters. The correlated clusters

are disconnected fractals with a fractal dimension df = 1+
√
5

4
≈ 0.819 [30, 31], corresponding to

a highly uneven activity profile. Gaps of strongly reduced density inside the clusters can be seen

already at small scales, indicating asymptotically disconnected clusters of activity.

Comparison of the cluster structure with the simulations

The average order parameter of the DCP is related to the fraction of original sites com-

prised by the clusters of the renormalized system, which decreases gradually as the SDRG
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FIG. 4: Results in 2D systems. A good agreement is found between the asymptotic density

profile in the simulations and the largest clusters obtained by the SDRG method. In 2D the fractal

dimension of the clusters is df = 1.02(2) [22], illustrated here for N = 200× 200 sites with periodic

boundary conditions and strength of disorder α = 4. The grayscale indicates the site probability of

being active in the simulations and the cluster size in the SDRG calculations, respectively.

proceeds. Its critical scaling properties can then be inferred from its dependence on the

inverse time scale Ω and inverse length scale (the number density of clusters) along the crit-

ical trajectory of the SDRG [13, 14]. Instead of this, here we compare the spatial structure

of SDRG clusters with the map of local occupancies obtained by simulations in individual

samples.

Ideally, the comparison of the two methods should be done under the same circumstances:

i) for the same random sample (set of random rates), ii) at the same time (given by Ω−1

in the SDRG method). The first requirement is, however, not the appropriate choice for a

fair comparison of the methods. The reason is that the SDRG transformation, due to its

approximative nature at early stages, does not preserve the position of the critical point.
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FIG. 5: Results in 3D systems. We again find a good agreement between the asymptotic

density profile in the simulations and the clusters obtained by the SDRG method. In 3D the fractal

dimension is df = 1.16(2) [35, 36], illustrated here for N = 50×50×50 sites with periodic boundary

conditions and strength of disorder α = 4. For better visibility, only sites with at least 10% of the

maximum probability are indicated in the simulations, while we show only clusters of size above

the square root of the size of the main cluster.

For instance, a truly critical initial system will depart from the critical trajectory and, in

order to arrive at the critical IRFP, a compensatory initial shift in the control parameter

is needed to be imposed. Therefore, rather than the initial point of the renormalization

trajectory, its end point has to match the sample used in simulations. For this reason,

the first requirement, i.e. the complete identity of rates must be relaxed, but a notion of

“equivalence of the random environment” must still be preserved. Our approach to overcome

this controversy was the following. We chose the infection rates randomly, while kept the
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FIG. 6: Results in 2D with long-range interactions. Here we show our results for algebraically

decaying interaction probability with an exponent s = 4, for N = 100 × 100 sites with periodic

boundary conditions. The number of short-cuts is N/16 and the strength of disorder is α = 4. Red

links indicate long-range connections within the main cluster. The critical clusters are even more

strongly disconnected objects, with a formally zero fractal dimension [29].

healing rates constant. The latter can then serve as a control parameter and can be used

to compensate the shift induced in the SDRG. The amount of the shift is quantitatively a

priori unknown, therefore it is natural to choose the critical point as a “common point” to

which the system can be tuned in both methods by using an indicator of criticality internal

to that method. By this construction, the transition rates used in the two methods are

not completely identical, but the difference is only in the uniform healing rate, while the

random infection rates, which form the “random environment”, and which govern the shaping

of SDRG clusters, are identical.

Concerning the second requirement, we implemented the SDRG procedure up to the stage

at which only one cluster remains in the system. Provided the lifetimes of clusters are well
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separated, this corresponds to the time span between the lifetime of the second last and the

last cluster. The state of the system in this time span can be conveniently simulated, even

without knowing the above lifetimes, by the above described quasi-stationary simulation,

which prevents the system from getting absorbed in the empty state.

In Fig. 3, we illustrate for three random samples that the main SDRG cluster (purple)

not only contains all sites of nearly maximal probabilities, but also captures the majority of

the probability weight. For such, moderately sized, systems smaller clusters still play a role,

as shown by probability distribution captured by the secondary cluster. Interestingly, both

the main and secondary clusters are fractured by deep gaps in the probability distribution,

as signatures of asymptotically disconnected clusters. Overall, we see a good agreement

already for moderate system sizes as illustrated in Figs. 3-5 for d = 1, 2 and 3 dimensional

lattices as well as for a two-dimensional lattice with long-range interactions (Fig. 6).

Discussion

In this paper, we studied the disordered contact process (DCP) in a random environ-

ment. By applying the combination of quasi-static simulations and an efficient renormaliza-

tion group method, we showed that the critical behavior of the DCP is dominated by one

strongly correlated cluster. Yet, as opposed to equilibrium systems, the governing clusters

are predominantly disconnected objects, indicating that individuals who are infected at the

same time typically do not know each other directly. According to the SDRG method, such

disconnected clusters emerge from a strong, positive feedback mechanism, in which remote

sites can effectively infect each other over and over again for a prolonged amount of time

through indirect paths in the contact network [39].

Besides infection spreading, variants of the DCP have recently gained increasing interest

also in functional modeling of the brain [40]. Our results suggest that, as opposed to tra-

ditionally expected functional ’blobs’, strongly correlated brain regions are not necessarily

directly connected. In other words, functional connectivity might qualitatively deviate from

physical connectivity. This expectation exists in addition to the challenge that in the brain

correlations do not necessarily decay with increasing physical distance [41]. We leave the

extension of our results to dynamical models on experimentally obtained brain connectome

datasets for future studies.
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