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1 Introduction

In the last decades, asymptotic methods have been used to derive and justify
simplified models for three-dimensional solid mechanics problems for beams, plates
and shells. The foundation for these methods was established by Lions in [14]
and some of the first applications were to plate bending models in [9,10]. Many
other models for plates have been justified by using asymptotic methods and a
comprehensive review concerning plate models can be found in [7].

Since then, its application has been extended over the years to many other prob-
lems like beam bending, rod stretching and elastic shells. For example, Bernoulli-
Navier model was justified in [1] and the Saint-Venant, Timoshenko and Vlassov
models of elastic beams were justified in [22], while a model for Kelvin-Voigt
viscoelastic beams was justified in [21] and models for piezoelectric beams were
obtained in [23], all of them by using the asymptotic expansion method followed
by rigorous convergence results. The asymptotic modelling of rods in linearized
thermoelasticity was also studied in [22].

Regarding elastic shells, a complete theory can be found in [8], where models
for elliptic membranes, generalized membranes and flexural shells are presented.
In there, the reader can find a full description of the asymptotic procedure that
leads to the corresponding sets of two-dimensional equations. More recently, in a
series of papers we studied the asymptotic analysis of viscoelastic shells [3,4,5,
6] and contact problems for elastic shells [19,18,2,20]. For the dynamic case, the
authors in [12,13] use the asymptotic analysis to derive two-dimensional sets of
equations for elastic membranes and flexural shells, though no strong convergence
results are provided. Dynamic problems for shells is a topic which is attracting a
considerable effort in modeling, analysis and numerical approximation, due to the
abundance of real world applications, see for example [17] and references therein.

The aim of the present paper is to provide the first results of the asymptotic
analysis devoted to thermoelastic shells in a dynamic regime. Here we briefly
describe the formal asymptotic analysis and the limit two-dimensional problem
and we focus in the case of elliptic membrane shells, for which we provide a rigorous
convergence result. We also discuss the existence and uniqueness of solution for
both the three-dimensional problem and the corresponding two-dimensional limit
problem.

The structure of the paper is the following: in Section 2 we shall describe
the variational and mechanical formulations of the problem in cartesian coordi-
nates in a general domain, and present a result of existence and uniqueness of
solution for that problem. In Section 3 we consider the particular case when the
deformable body is, in fact, a shell and reformulate the variational formulation in
curvilinear coordinates. Then we give the scaled formulation. To do that, we will
use a projection map into a reference domain and we will introduce the scaled
unknowns and forces as well as the assumptions on coefficients. We also devote
this section to recall and derive results that will be needed later. In Section 4 we
briefly describe the formal asymptotic analysis which leads to the formulation of
limit two-dimensional problems. Then, in Section 5 we discuss the existence and
uniqueness of solution for the two-dimensional limit problem and then we focus
on the elliptic membrane case, for which we provide a rigorous convergence result.
Finally, in Section 6 we show that the solution to the re-scaled version of this
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problem, with true physical meaning, also converges. The paper ends with Section
7, devoted to the conclusions and future work.

2 A three-dimensional dynamic problem for thermoelastic bodies

Let Ω̂ε be a three-dimensional bounded domain and assume that ¯̂
Ωε is the ref-

erence configurarion of a deformable body made of an elastic material, which is
homogeneous and isotropic, with Lamé coefficients λ̂ε ≥ 0, µ̂ε > 0. Let Γ̂ ε = ∂Ω̂ε

denote the boundary of the body, which is divided into two disjoint parts Γ̂ ε
N and

Γ̂ ε
0 , where the measure of the latter is strictly positive. Let x̂ε = (x̂εi ) be a generic

point of ¯̂
Ωε. Notice that at first glance, the notation for sets, variables and func-

tions seems unnecessarily complex. Indeed, the ε andˆmarks are only meaningful
in the context of the shells setting, to be detailed in the forthcoming sections. But,
given that there we are going to recall results and arguments developed in this
current section, we decided to keep here this notation, in favor of future coherence.

We suppose that the material has a thermal dilatation coefficient α̂ε
T , a thermal

conductivity coefficient k̂ε, a specific heat coefficient β̂ε and a specific mass density
ρ̂ε. The constitutive equation relating the stress tensor components σ̂εij to the

linearized strain tensor êεij(û
ε) components, and the temperature ϑ̂ε is given by the

linearized Duhamel-Neumann law (see, for example [22] and references therein):

σ̂
ε
ij = λ̂

ε
ê
ε
kk(û

ε)δij + 2µ̂εêεij(û
ε)− α̂

ε
T (3λ̂

ε + 2µ̂ε)ϑ̂εδij , (1)

where êεij(v̂
ε) = 1

2 (∂̂j v̂
ε
i + ∂̂iv̂

ε
j ) denotes the deformation operator. Here δij rep-

resents the Kronecker’s symbol and ∂̂i the partial derivative with respect to x̂εi .
Notice that here and below, and for the sake of a clearer exposition, we shall omit
the explicit dependence of the various functions on space and time variables, as
long as there is no ambiguity. We assume that the body is subjected to a boundary
condition of place; in particular, the displacements field vanishes on Γ̂ ε

0 .
The body is under the effect of a heat source q̂ε and applied volume forces of

density f̂
ε
= (f̂ i,ε) acting in Ω̂ε, and tractions of density ĥ

ε
= (ĥi,ε) acting upon

Γ̂ ε
N .
Then, the set of equations describing the mechanical behaviour of a regular

three-dimensional deformable solid in thermoelasticity are the following:

Problem 1 Find the displacements field ûε = (ûεi ) and the temperature field ϑ̂ε

verifying

ρ̂
ε¨̂uε − divσ̂ε = f̂

ε
in Ω̂ε × (0, T ),

β̂
ε ˙̂
ϑ
ε = ∂j(k̂

ε
∂̂
ε
j ϑ̂

ε)− α̂
ε
T (3λ̂

ε + 2µ̂ε)êεkk( ˙̂u
ε) + q̂

ε in Ω̂ε × (0, T ),

û
ε = 0 on Γ̂ ε

0 × (0, T ),

ϑ̂
ε = 0 on Γ̂ ε

0 × (0, T ),

σ̂
ε
n̂
ε = ĥ

ε
on Γ̂ ε

N × (0, T ),

k̂
ε
∂̂
ε
j ϑ̂

ε
nj = 0 on Γ̂ ε

N × (0, T ),

˙̂uε(·, 0) = û
ε(·, 0) = 0 in Ω̂ε

,

ϑ̂
ε(·, 0) = 0 in Ω̂ε

,
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where σ̂ε = (σ̂εij) is described in (1).

Remark 1 We only consider homogeneous boundary and initial conditions for the
sake of simplicity. Besides, our main interest is in the asymptotic analysis which
follow in the sections below, and nonhomogenous initial conditions do not intro-
duce major additional difficulties in that sense.

Now, to derive the variational formulation of the problem, we first define the space
of admissible displacements

V (Ω̂ε) := {v̂ε = (v̂εi ) ∈ [H1(Ω̂ε)]3; v̂ε = 0 on Γ̂ ε
0 },

which is a Hilbert space equipped with the norm

‖v̂ε‖V (Ω̂ε)
=

∫

Ω̂ε

ê
ε
ij(v̂

ε)êεij(v̂
ε)dx̂ε.

We also define the space of admissible temperatures

S(Ω̂ε) := {ϕ̂ε ∈ H
1(Ω̂ε); ϕ̂ε = 0 on Γ̂ ε

0 },

which is a Hilbert space equipped with the norm

‖ϕ̂ε‖S(Ω̂ε)
=

∫

Ω̂ε

∂̂
ε
j ϕ̂

ε
∂̂
ε
j ϕ̂

ε
dx̂

ε
.

Besides, as long as there is no room for confusion, we shall avoid specifying the
domain in the subindices for the norms’ notation. Further, for the sake of simplicity
in the formulations to come, we define the following operators:

– The bilinear, continuous and coercive forms

a
V,ε : V (Ω̂ε)× V (Ω̂ε) → R

(ûε
, v̂

ε) → a
V,ε(ûε

, v̂
ε) =

∫

Ω̂ε

Â
ijkl,ε

ê
ε
kl(û

ε)êεij(v̂
ε)dx̂ε,

a
S,ε : S(Ω̂ε)× S(Ω̂ε) → R

(ϕ̂ε
, ψ̂

ε) → a
S,ε(ϕ̂ε

, ψ̂
ε) =

∫

Ω̂ε

k̂
ε
∂̂
ε
j ϕ̂

ε
∂̂
ε
j ψ̂

ε
dx̂

ε
,

where Âijkl,ε = λ̂εδijδkl+ µ̂ε(δikδjl+δilδjk) denotes the elasticity fourth-order
tensor.

– The continuous form

c
ε : S(Ω̂ε)× V (Ω̂ε) → R

(ϕ̂ε
, v̂

ε) → c
ε(ϕ̂ε

, v̂
ε) =

∫

Ω̂ε

α̂
ε
T (3λ̂

ε + 2µ̂ε)ϕ̂ε
ê
ε
kk(v̂

ε)dx̂ε.

– The functional Ĵε(·) is defined a.e. in (0, T ) as
〈

Ĵ
ε(t), v̂ε

〉

=

∫

Ω̂ε

f̂
i,ε(t)v̂εi dx̂

ε +

∫

Γ̂ ε

N

ĥ
i,ε(t)v̂εi dΓ̂

ε
, ∀ v̂ε ∈ V (Ω̂ε),

where we use the notation for a duality pair 〈·, ·〉 in V ′(Ω̂ε) × V (Ω̂ε), and
similarly,

〈

Q̂
ε(t), ϕ̂ε

〉

=

∫

Ω̂ε

q̂
ε(t)ϕ̂ε

dx̂
ε ∀ ϕ̂ε ∈ S(Ω̂ε).
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Then, it is straightforward to obtain the following variational formulation:

Problem 2 Find a pair t 7→ (ûε(x̂ε, t), ϑ̂ε(x̂ε, t)) of [0, T ] → V (Ω̂ε) × S(Ω̂ε) veri-
fying

ρ̂
ε
〈

¨̂uεi , v̂
ε
i

〉

+ a
V,ε(ûε

, v̂
ε)− c

ε(ϑ̂ε, v̂ε) =
〈

Ĵ
ε(t), v̂ε

〉

∀v̂ε ∈ V (Ω̂ε), a.e. in (0, T ),

(2)

β̂
ε
〈

˙̂
ϑ
ε
, ϕ̂

ε
〉

+ a
S,ε(ϑ̂ε, ϕ̂ε) + c

ε(ϕ̂ε
, ˙̂uε) =

〈

Q̂
ε(t), ϕ̂ε

〉

∀ϕ̂ε ∈ S(Ω̂ε), a.e. in (0, T ),

(3)

with ˙̂uε(·, 0) = û
ε(·, 0) = 0 and ϑ̂ε(·, 0) = 0.

In favour of simplicity, we are going to assume that the different parameters
of the problem (thermal conductivity, thermal dilatation, specific heat coefficient,
mass density, Lamé coefficients) are constants.

Theorem 1 Let us assume that










f̂
ε ∈ H1(0, T ; [L2(Ω̂ε)]3),

ĥ
ε ∈ H2(0, T ; [L2(Γ̂ ε

N )]3), and ĥ
ε
(·, 0) = 0,

q̂ε ∈ H1(0, T ;L2(Ω̂ε)).

Then, there exists a unique pair (ûε(x, t), ϑ̂ε(x̂, t)) solution to Problem 2 such that










ûε ∈ L∞(0, T ; V (Ω̂ε))
˙̂uε ∈ L∞(0, T ; [L2(Ω̂ε)]3) ∩ L∞(0, T ; V (Ω̂ε)),
¨̂uε ∈ L∞(0, T ; V ′(Ω̂ε)) ∩ L∞(0, T ; [L2(Ω̂ε)]3),

(4)

{

ϑ̂ε ∈ L∞(0, T ;L2(Ω̂ε)) ∩ L2(0, T ;S(Ω̂ε)),
˙̂
ϑε ∈ L∞(0, T ;L2(Ω̂ε)) ∩ L2(0, T ;S(Ω̂ε)).

(5)

Remark 2 The regularity results in (4c) and (5b) imply that the duality products

involving ¨̂uε and ˙̂
ϑε in (2) and (3) are actually the usual inner products in L2(Ω̂ε).

The proof can be derived, for example, by following [15, p. 359] or [11]. We provide
below an alternative proof by following the Faedo-Galerkin method.

Proof Let {ŵi}∞i=1 and {ŝi}∞i=1 be two sequences of functions such that



















ŵi ∈ V (Ω̂ε) ∀i,
ŵ1, . . . , ŵm are orthonormal functionsand Vm = 〈ŵ1, . . . , ŵm〉 , ∀m
V (Ω̂ε) =

⋃

m≥1

Vm.
(6)



















ŝi ∈ S(Ω̂ε) ∀i,
ŝ1, . . . , ŝm are orthonormal functions and Sm = 〈ŝ1, . . . , ŝm〉 , ∀m
S(Ω̂ε) =

⋃

m≥1

Sm.
(7)

The approximated solutions (ûm
, ϑ̂m) are defined by the following problem:
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Problem 3 Find the functions ûm : [0, T ] → Vm and ϑ̂m : [0, T ] → Sm in the form

û
m(x̂, t) =

m
∑

i=1

u
m
i (t)ŵi(x̂),

ϑ̂
m(x̂, t) =

m
∑

i=1

ϑ
m
i (t)ŝi(x̂),

such that

ρ̂
ε
〈

¨̂um
, v̂

m
〉

+ a
V,ε(ûm

, v̂
m)− c

ε(ϑ̂m, v̂m) =
〈

Ĵ
ε(t), v̂m

〉

, ∀ v̂m ∈ Vm, (8)

β̂
ε
〈

˙̂
ϑ
m
, ϕ̂

m
〉

+ a
S,ε(ϑ̂m, ϕ̂m) + c

ε(ϕ̂m
, ˙̂um) =

〈

Q̂
ε(t), ϕ̂m

〉

, ∀ ϕ̂m ∈ Sm, (9)

with the initial conditions

û
m(0) = ˙̂um(0) = 0, ϑ̂

m(0) = 0. (10)

Finding a solution for Problem 3 is equivalent to solving a first order differential
equation system

Ż(t) = F(t,Z), Z(0) = 0.

where Z(t) = (vm1 (t), . . . , vmm(t), um1 (t), . . . , umm(t), ϑm1 (t), . . . , ϑmm(t)), with vmj (t) =
u̇mj (t). The Picard-Lindeloff theorem gives a unique absolutely continuous solution
in an interval [0, tm] which depends on the supreme of function F (which does not
depend on time). Then, being the functions Fj uniformly Lipschitz in the variable
Z, if we prove that the solution Z(t) is bounded, we can extend the solution to the
whole interval [0, T ].
Now the goal is to obtain estimations in appropriate normed spaces for û

m, ˙̂um,

ϑ̂m and ˙̂
ϑm.

We can take v̂m = ˙̂um ∈ Vm and ϕ̂m = ϑ̂m ∈ Sm in (8), (9) respectively, and
adding both equations we have that

ρ̂
ε
〈

¨̂um
, ˙̂um

〉

+ a
V,ε(ûm

, ˙̂um) + β̂
ε
〈

˙̂
ϑ
m
, ϑ̂

m
〉

+ a
S,ε(ϑ̂m, ϑ̂m)

=
〈

Ĵ
ε(t), ˙̂um

〉

+
〈

Q̂
ε(t), ϑ̂m

〉

,

or equivalently

1

2

d

dt

{

ρ̂
ε
∣

∣

∣

˙̂um(t)
∣

∣

∣

2

0
+ a

V,ε(ûm(t), ûm(t)) + β̂
ε
∣

∣

∣
ϑ̂
m(t)

∣

∣

∣

2

0

}

+ a
S,ε
(

ϑ̂
m
, ϑ̂

m
)

=
〈

Ĵ
ε(t), ˙̂um

〉

+
〈

Q̂
ε(t), ϑ̂m

〉

.

(11)

Notice that we shall use the notation | · |0 for a (vector or scalar) L2 norm. The
same applies for ‖·‖1 to denote a H1 norm. Integrating in [0, t], taking into account
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(10), the coercivity of aV,ε, aS,ε, integrating by parts the term in Γ̂ ε
N and using

Korn’s inequality we get

ρ̂
ε
∣

∣

∣

˙̂um(t)
∣

∣

∣

2

0
+ C

∥

∥û
m(t)

∥

∥

2

V
+ β̂

ε
∣

∣

∣
ϑ̂
m(t)

∣

∣

∣

2

0
+ k̂C̃

∫ t

0

∥

∥

∥
ϑ̂
m(s)

∥

∥

∥

2

S
ds

≤
∫ t

0

{

∣

∣

∣
f̂
ε
(s)
∣

∣

∣

0

∣

∣

∣

˙̂um(s)
∣

∣

∣

0
+
∣

∣

∣

˙̂
h
ε(s)

∣

∣

∣

0,Γ̂ ε

N

∣

∣û
m(s)

∣

∣

0,Γ̂ ε

N

+
∣

∣q̂
ε(s)

∣

∣

0

∣

∣

∣
ϑ̂
m(s)

∣

∣

∣

0

}

ds.

(12)

Above and in what follows, C, C̃ denote positive constants whose specific value
may change from line to line, only depending on data. Next, applying Young’s
inequality to each term in the right side in (12) and the continuity of the trace
operator, yields that

∣

∣

∣

˙̂um(t)
∣

∣

∣

2

0
+
∥

∥û
m(t)

∥

∥

2

V
+
∣

∣

∣
ϑ̂
m(t)

∣

∣

∣

2

0
+

∫ t

0

∥

∥

∥
ϑ̂
m(s)

∥

∥

∥

2

S
ds

≤ C(f̂
ε
,
˙̂
h
ε
, q̂

ε) + C̃

∫ t

0

{

∣

∣

∣

˙̂um(s)
∣

∣

∣

2

0
+
∥

∥û
m(s)

∥

∥

2

1
+
∣

∣

∣
ϑ̂
m(s)

∣

∣

∣

2

0

}

ds,

(13)

which, applying Gronwall’s Lemma, gives

∣

∣

∣

˙̂um(t)
∣

∣

∣

2

0
+
∥

∥û
m(t)

∥

∥

2

V
+
∣

∣

∣
ϑ̂
m(t)

∣

∣

∣

2

0
≤ C(f̂

ε
,
˙̂
h
ε
, q̂

ε) + e
C̃T

, ∀m, (14)

from where,

˙̂um ∈ L
∞(0, T, [L2(Ω̂ε)]3), ϑ̂

m ∈ L
∞(0, T, L2(Ω̂ε)), û

m ∈ L
∞(0, T, V (Ω̂ε)).

Further, going back to (13), we have

ϑ̂
m ∈ L

2(0, T, S(Ω̂ε)).

Note that all the estimates are independent of m. Then

{

û
m}

m
is a bounded subset of L∞(0, T, V (Ω̂ε)), (15)

{

˙̂u
m
}

m
is a bounded subset of L

∞(0, T, [L2(Ω̂ε)]3), (16)

{

ϑ̂
m
}

m
is a bounded subset of L

∞(0, T, L2(Ω̂ε)) and L
2(0, T ;S(Ω̂ε)). (17)

We now add equations (8) and (9) and write the result at times t + h, with
h > 0 and 0 ≤ t ≤ T − h, then subtract the resulting equations to get:

ρ̂
ε
〈

¨̂umi (t+ h)− ¨̂umi (t), v̂mi

〉

+ a
V,ε(ûm(t+ h)− û

m(t), v̂m)− c
ε(ϑ̂m(t+ h)− ϑ̂

m(t), v̂m)

+ β̂
ε
〈

˙̂
ϑ
m(t+ h)− ˙̂

ϑ
m(t), ϕ̂m

〉

+ a
S,ε(ϑ̂m(t+ h)− ϑ̂

m(t), ϕ̂m) + c
ε(ϕ̂m

, ˙̂um(t+ h)− ˙̂um(t))

=

∫

Ω̂ε

(f̂ i,ε(t+ h)− f̂
i,ε(t))v̂mi dx̂

ε +

∫

Γ̂ ε

N

(ĥi,ε(t+ h)− ĥ
i,ε(t))v̂mi dΓ̂

ε +

∫

Ω̂ε

(q̂ε(t+ h)− q̂
ε(t))ϕ̂m

dx̂
ε

∀v̂m ∈ Vm, ∀ϕ̂m ∈ Sm, a.e. in (0, T ).
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Next we take v̂m = ˙̂um(t+ h)− ˙̂um(t) ∈ Vm and ϕ̂m = ϑ̂m(t+ h)− ϑ̂m(t) ∈ Sm to
obtain

ρ̂
ε
〈

¨̂umi (t+ h)− ¨̂umi (t), ˙̂umi (t+ h)− ˙̂umi (t)
〉

+ a
V,ε(ûm(t+ h)− û

m(t), ˙̂um(t+ h)− ˙̂um(t))

+ β̂
ε
〈

˙̂
ϑ
m(t+ h)− ˙̂

ϑ
m(t), ϑ̂m(t+ h)− ϑ̂

m(t)
〉

+ a
S,ε(ϑ̂m(t+ h)− ϑ̂

m(t), ϑ̂m(t+ h)− ϑ̂
m(t))

=

∫

Ω̂ε

(f̂ i,ε(t+ h)− f̂
i,ε(t))( ˙̂umi (t+ h)− ˙̂umi (t)) dx̂ε +

∫

Γ̂ ε

N

(ĥi,ε(t+ h)− ĥ
i,ε(t))( ˙̂umi (t+ h)− ˙̂umi (t)) dΓ̂ ε

+

∫

Ω̂ε

(q̂ε(t+ h)− q̂
ε(t))(ϑ̂m(t+ h)− ϑ̂

m(t)) dx̂ε.

Integrating in time in [0, t] we get:

1

2
ρ̂
ε
∣

∣

∣

˙̂um(t+ h)− ˙̂um(t)
∣

∣

∣

2

0
− 1

2
ρ̂
ε
∣

∣

∣

˙̂um(h)− ˙̂um(0)
∣

∣

∣

2

0

+
1

2
a
V,ε(ûm(t+ h)− û

m(t), ûm(t+ h)− û
m(t))− 1

2
a
V,ε(ûm(h)− û

m(0), ûm(h)− û
m(0))

+
1

2

∫

Ω̂ε

β̂
ε(ϑ̂m(t+ h)− ϑ̂

m(t))2dx̂ε − 1

2

∫

Ω̂ε

β̂
ε(ϑ̂m(h)− ϑ̂

m(0))2dx̂ε

+

∫ t

0

a
S,ε(ϑ̂m(r+ h)− ϑ̂

m(r), ϑ̂m(r+ h)− ϑ̂
m(r))dr

=

∫ t

0

∫

Ω̂ε

(f̂ i,ε(r + h)− f̂
i,ε(r))( ˙̂umi (r+ h)− ˙̂umi (r)) dx̂εdr

+

∫ t

0

∫

Γ̂ ε

N

(ĥi,ε(r + h)− ĥ
i,ε(r))( ˙̂umi (r+ h)− ˙̂umi (r)) dΓ̂ ε

dr

+

∫ t

0

∫

Ω̂ε

(q̂ε(r + h)− q̂
ε(r))(ϑ̂m(r + h)− ϑ̂

m(r)) dx̂εdr.

Now, dividing the equation by h2 and having in mind (14), we can take limits
when h→ 0+ to have

1

2
ρ̂
ε
∣

∣

∣

¨̂um(t)
∣

∣

∣

2

0
− 1

2
ρ̂
ε
∣

∣

∣

¨̂um(0)
∣

∣

∣

2

0
+

1

2
a
V,ε( ˙̂um(t), ˙̂um(t))− 1

2
a
V,ε( ˙̂um(0), ˙̂um(0))

+
1

2

∫

Ω̂ε

β̂
ε( ˙̂ϑm(t))2dx̂ε − 1

2

∫

Ω̂ε

β̂
ε( ˙̂ϑm(0))2dx̂ε +

∫ t

0

a
S,ε( ˙̂ϑm(r), ˙̂ϑm(r))dr

=

∫ t

0

∫

Ω̂ε

˙̂
f
i,ε(r)¨̂umi (r) dx̂εdr +

∫ t

0

∫

Γ̂ ε

N

˙̂
h
i,ε(r)¨̂umi (r) dΓ̂ ε

dr +

∫ t

0

∫

Ω̂ε

˙̂qε(r) ˙̂ϑm(r) dx̂εdr.

(18)

Integrating by parts the term on Γ̂ ε
N above and applying Young’s inequality, we

get

ρ̂
ε|¨̂um(t)|20 − ρ̂

ε|¨̂um(0)|20 + || ˙̂um(t)||2V + β̂
ε| ˙̂ϑm(t)|20 − β̂

ε| ˙̂ϑm(0)|20 +
∫ t

0

‖ ˙̂ϑm(r)‖2Sdr

≤ C̃( ˙̂fε
,
¨̂
h
ε
, ˙̂qε) + C

∫ t

0

{

|¨̂um(r)|20 + || ˙̂um(r)||21 + | ˙̂ϑm(r)|20
}

dr. (19)



Thermoelastic Elliptic Shells 9

In order to obtain bounds for |¨̂um(0)|20 and | ˙̂ϑm(0)|20 we first notice that equations
(8) and (9) hold for t = 0 due to the compatibility required between initial and
boundary conditions. Therefore, taking t = 0 and v̂m = ¨̂um(0) ∈ Vm in (8) and

ϕ̂m = ˙̂
ϑm(0) ∈ Sm in (9), taking into account the initial conditions, and using

Young’s inequality, we obtain

ρ̂
ε|¨̂um(0)|20 =

∫

Ω̂ε

f̂
i,ε(0)¨̂umi (0) dx̂ε +

∫

Γ̂ ε

N

ĥ
i,ε(0)¨̂umi (0) dΓ̂ ε ≤ 1

δ
C + δ|¨̂um(0)|20,

β̂
ε| ˙̂ϑm(0)|20 =

∫

Ω̂ε

q̂
ε(0) ˙̂ϑm(0) dx̂ε ≤ 1

δ̃
C̃ + δ̃| ˙̂ϑm(0)|20,

where δ, and δ̃ are sufficiently small positive constants. Next, applying Korn’s
inequality and Gronwall’s lemma in (19) we find

|¨̂um(t)|20 + || ˙̂um(t)||2V + | ˙̂ϑm(t)|20 ≤ C.

Again, all the estimates are independent of m. Then,

{

˙̂um
}

m
is a bounded subset of L∞(0, T, V (Ω̂ε)), (20)

{

¨̂u
m
}

m
is a bounded subset of L

∞(0, T, [L2(Ω̂ε)]3), (21)
{

˙̂
ϑ
m
}

m
is a bounded subset of L

∞(0, T, L2(Ω̂ε)). (22)

Observe that (15)–(17) and (20)–(22) imply that there exists subsequences of ûm

and ϑ̂m, also denoted by ûm and ϑ̂m, and there exist elements ûε, ˙̂uε, ¨̂uε, ϑ̂ε, ˙̂
ϑε

such that

û
m ∗−−−⇀

m→∞
û
ε inL∞(0, T ; V (Ω̂ε)), (23)

˙̂um ∗−−−⇀
m→∞

˙̂uε inL∞(0, T ; [L2(Ω̂ε)]3) ∩ L∞(0, T ; V (Ω̂ε)), (24)

¨̂um ∗−−−⇀
m→∞

¨̂uε inL∞(0, T ; [L2(Ω̂ε)]3), (25)

ϑ̂
m ∗−−−⇀

m→∞
ϑ̂
ε inL∞(0, T ;L2(Ω̂ε)) ∩ L∞(0, T ;S(Ω̂ε)), (26)

˙̂
ϑ
m ∗−−−⇀

m→∞

˙̂
ϑ
ε inL∞(0, T ;L2(Ω̂ε)). (27)

(28)

Consider now v̂m = ŵj and ϕ̂m = ŝi in equations (8) and (9) fixed:

ρ̂
ε
〈

¨̂um
, ŵj

〉

+ a
V,ε(ûm

, ŵj)− c
ε(ϑ̂m, ŵj) =

〈

Ĵ
ε(t), ŵj

〉

, (29)

〈

˙̂
ϑ
m
, ŝi

〉

+ a
S,ε(ϑ̂m, ŝi) + c

ε(ŝi, ˙̂u
m) =

〈

Q̂
ε(t), ŝi

〉

. (30)

Observe that (23) and (24) imply that

a
V,ε(ûm

, ŵj) → a
V,ε(ûε

, ŵj) and cε(ŝi, ˙̂u
m) → c

ε(ŝi, ˙̂u
ε) in L

∞(0, T ).
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Analogously, from (26) we can state that

a
S,ε(ϑ̂m, si) → a

S,ε(ϑ̂ε, si) and cε(ϑ̂m, ŵj) → c
ε(ϑ̂ε, ŵj) in L

∞(0, T ).

Now, from (25) and (27) we have:

〈

¨̂um
, ŵj

〉

= (¨̂um
, ŵj) → (¨̂uε

, ŵj) and
〈

˙ϑm, si
〉

= ( ˙ϑm, si) → (ϑ̇ε, si) in L∞(0, T ).

Then, we can take m→ ∞ in (29)–(30) obtaining that

ρ̂
ε(¨̂uε

, ŵj) + a
V,ε(ûε

, ŵj)− c
ε(ϑ̂ε, ŵj) =

〈

Ĵ
ε(t), ŵj

〉

, in L
∞(0, T ), ∀ j ≥ 1,

(31)

( ˙̂ϑε, ŝi) + a
S,ε(ϑ̂ε, ŝi) + c

ε( ˙̂uε
, ŝi) =

〈

Q̂
ε(t), ŝi

〉

, in L
∞(0, T ), ∀ i ≥ 1.

(32)

Besides, since the initial conditions (10) are null, it is trivial that, whenm→ ∞,
the limit functions have null initial conditions as well, which completes the proof
for the existence and regularity of the solutions. We focus now on proving the
uniqueness.

Let us assume that there exist two solutions {ûε,1, ϑ̂ε,1} and {ûε,2, ϑ̂ε,2} for
Problem 2. Let us define wε = ûε,1 − ûε,2 and φε = ϑ̂ε,1 − ϑ̂ε,2. Now, we consider
equations (2)–(3) at time t for {ûε,i, ϑ̂ε,i}, take as test function v̂ε = ẇε(t) and
ϕ̂ε = φε(t) for both i = 1 and i = 2, and subtract the resulting equations to find:

∫

Ω̂ε

ρ̂
ε
ẅ

ε(t)ẇε(t)dx̂ε + a
V,ε(wε(t), ẇε(t))− c

ε(φε(t), ẇε(t)) = 0

∫

Ω̂ε

β̂
ε
φ̇
ε(t)φε(t)dx̂ε + a

S,ε(φε(t), φε(t)) + c
ε(φε(t), ẇε(t)) = 0, a.e. in (0, T ).

Adding these last two equations we have

∫

Ω̂ε

ρ̂
ε
ẅ

ε(t)ẇε(t)dx̂ε + a
V,ε(wε(t), ẇε(t))

+

∫

Ω̂ε

β̂
ε
φ̇
ε(t)φε(t)dx̂ε + a

S,ε(φε(t), φε(t)) = 0, a.e. in (0, T ).

Integrating in [0, t], and taking into account the initial conditions we obtain:

ρ̂
ε|ẇε(t)|20 + ||wε(t)||2V + β̂

ε|φε(t)|20 +
∫ t

0

a
S,ε(φε(r), φε(r))dr = 0, a.e. in (0, T ),

from where one easily deduce that wε = 0 and φε = 0. ⊓⊔
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3 A three-dimensional dynamic problem for thermoelastic shells

In this section we consider the particular case when the deformable body is, in
fact, a shell. We first provide key notations and some preliminary results in a
summarised form. The interested reader can consult [8] and [19] for a more detailed
exposition.

Let ω be a bounded domain of R2, with a Lipschitz-continuous boundary γ =
∂ω. Let y = (yα) be a generic point of its closure ω̄ and let ∂α denote the partial
derivative with respect to yα. Above and in what follows, Greek indices take their
values in the set {1, 2}, whereas Latin indices do it in the set {1, 2, 3}. We will
use summation convention on repeated indices. Let θ ∈ C2(ω̄;R3) be an injective
mapping such that the two vectors aα(y) := ∂αθ(y) are linearly independent.
These vectors form the covariant basis of the tangent plane to the surface S := θ(ω̄)
at the point θ(y).We also consider the two vectors aα(y) of the same tangent plane
defined by the relations aα(y) ·aβ(y) = δαβ , that constitute its contravariant basis.
We define

a3(y) = a
3(y) :=

a1(y) ∧ a2(y)

|a1(y) ∧ a2(y)|
,

the unit normal vector to S at the point θ(y), where ∧ denotes vector product in
R

3. We can define the first fundamental form, given as metric tensor, in covariant
or contravariant components, respectively, by aαβ := aα · aβ , a

αβ := aα · aβ.
The second fundamental form, given as curvature tensor, in covariant or mixed
components, respectively, is given by bαβ := a3 · ∂βaα, b

β
α := aβσ · bσα, and the

Christoffel symbols of the surface S as Γσ
αβ := aσ · ∂βaα. The area element along

S is
√
ady where a := det(aαβ).

We define the three-dimensional domain Ωε := ω × (−ε, ε) and its boundary
Γ ε = ∂Ωε. We also define the following parts of the boundary, Γ ε

N := ω × {ε} (it
could also be the lower face or the union of both), Γ ε

0 := γ0× [−ε, ε], where γ0 ⊆ γ.
Let xε = (xεi ) be a generic point of Ω̄ε and let ∂εi denote the partial derivative
with respect to xεi . Note that xεα = yα and ∂εα = ∂α. Let Θ : Ω̄ε → R

3 be the
mapping defined by

Θ(xε) := θ(y) + x
ε
3a3(y) ∀xε = (y, xε3) = (y1, y2, x

ε
3) ∈ Ω̄

ε
. (33)

By identifying Ω̂ε = Θ(Ωε), Γ̂ ε = Θ(Γ ε), Γ̂ ε
0 = Θ(Γ ε

0 ), etc. we cast this setting
into the more general three dimensional framework of the preceding section, as a
particular case. Further, in [8, Th. 3.1-1] it is shown that if the injective mapping
θ : ω̄ → R

3 is smooth enough, the mapping Θ : Ω̄ε → R
3 is also injective for

ε > 0 small enough and the vectors gεi (x
ε) := ∂εiΘ(xε) are linearly independent.

Therefore, the three vectors gεi (x
ε) form the covariant basis at the point Θ(xε)

and gi,ε(xε) defined by the relations gi,ε · gεj = δij form the contravariant basis at
the point Θ(xε). The covariant and contravariant components of the metric tensor
are defined, respectively, as gεij := gεi ·gεj , gij,ε := gi,ε ·gj,ε, and Christoffel symbols
as Γ p,ε

ij := gp,ε · ∂εi gεj . The volume element in the set Θ(Ω̄ε) is
√
gεdxε and the

surface element in Θ(Γ ε) is
√
gεdΓ ε where gε := det(gεij).

We now define the corresponding contravariant components in curvilinear co-
ordinates for the applied forces densities:

f̂
i,ε(x̂ε)êi dx̂

ε =: f i,ε(xε)gεi (x
ε)
√

gε(xε) dxε, ĥ
i,ε(x̂ε)êidΓ̂

ε =: hi,ε(xε)gεi (x
ε)
√

gε(xε)dΓ ε
,
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and the covariant components in curvilinear coordinates for the displacements
field:

û
ε(x̂ε) = û

ε
i (x̂

ε)êi =: uεi (x
ε)gi,ε(xε), with x̂

ε = Θ(xε).

Remark 3 Notice that forces above depend also on the time variable t ∈ [0, T ],
but we decided to keep it implicit for the sake of readiness, since the subject of
the change of variable is the spatial component. The same comment applies in a
number of situations below.

We also define ϑε(xε) := ϑ̂ε(x̂ε) and qε(xε) := q̂ε(x̂ε).
Let us define the spaces,

V (Ωε) = {vε = (vεi ) ∈ [H1(Ωε)]3; vε = 0 on Γ ε
0 }, S(Ωε) = {ϕε ∈ H

1(Ωε);ϕε = 0 on Γ ε
0 }.

Both are real Hilbert spaces with the induced inner product of [H1(Ωε)]d, d ∈
{1, 3}. The corresponding norm is denoted by ‖·‖1,Ωε in both cases, since no con-
fusion is possible. With these definitions it is straightforward to derive from the
Problem 2 the following variational problem (see [8] for the case in linear elasticity
and use similar arguments):

Problem 4 Find a pair t 7→ (uε(xε, t), ϑε(xε, t)) of [0, T ] → V (Ωε) × S(Ωε) veri-
fying

∫

Ωε

ρ
ε(üεαg

αβ,ε
v
ε
β + ü

ε
3v

ε
3)
√

gε dx
ε +

∫

Ωε

A
ijkl,ε

e
ε
k||l(u

ε)eεi||j(v
ε)
√

gεdx
ε

−
∫

Ωε

α
ε
T (3λ

ε + 2µε)ϑε(eεα||β(v
ε)gαβ,ε + e

ε
3||3(v

ε))
√

gεdx
ε

=

∫

Ωε

f
i,ε
v
ε
i

√

gεdx
ε +

∫

Γ ε

N

h
i,ε
v
ε
i

√

gεdΓ
ε ∀vε ∈ V (Ωε), a.e. in (0, T ),

∫

Ωε

β
ε
ϑ̇
ε
ϕ
ε
√

gεdx
ε +

∫

Ωε

k
ε(∂εαϑ

ε
g
αβ,ε

∂
ε
βϕ

ε + ∂
ε
3ϑ

ε
∂
ε
3ϕ

ε)
√

gεdx
ε

+

∫

Ωε

α
ε
T (3λ

ε + 2µε)ϕε(eεα||β(u̇
ε)gαβ,ε + e

ε
3||3(u̇

ε))
√

gεdx
ε

=

∫

Ωε

q
ε
ϕ
ε
√

gεdx
ε ∀ϕε ∈ S(Ωε), a.e. in (0, T ),

with u̇ε(·, 0) = uε(·, 0) = 0 and ϑε(·, 0) = 0.

Above, Aijkl,ε = Ajikl,ε = Aklij,ε ∈ C1(Ω̄ε), defined by

A
ijkl,ε := λg

ij,ε
g
kl,ε + µ(gik,εgjl,ε + g

il,ε
g
jk,ε), (34)

represent the contravariant components of the three-dimensional elasticity tensor,
and the functions eεi||j(v

ε) = eεj||i(v
ε) ∈ L2(Ωε) that represent the covariant com-

ponents of the linearized change of metric tensor, or strain tensor, are defined
by

e
ε
i||j(v

ε) :=
1

2
(∂εj v

ε
i + ∂

ε
i v

ε
j )− Γ

p,ε
ij v

ε
p,
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for all vε ∈ [H1(Ωε)]3, where ∂εi denotes partial derivative with respect to xεi . Note
that the following simplifications are verified,

Γ
3,ε
α3 = Γ

p,ε
33 = 0 in Ω̄ε

, A
αβσ3,ε = A

α333,ε = 0 in Ω̄ε
, (35)

as a consequence of the definition of Θ in (33). The definitions of the fourth order
tensor (34) imply that (see [8, Theorem 1.8-1]) for ε > 0 small enough, there exists
a constant Ce > 0, independent of ε, such that,

∑

i,j

|tij |2 ≤ CeA
ijkl,ε(xε)tkltij , (36)

for all xε ∈ Ω̄ε and all t = (tij) ∈ S
3 (vector space of 3×3 real symmetric matrices).

Remark 4 We recall that the vector field uε = (uεi ) : Ω
ε × [0, T ] → R

3 solution of
Problem 4 has to be interpreted conveniently. The functions uεi : Ω̄ε × [0, T ] → R

3

are the covariant, time dependent, components of the “true” displacements field
U

ε := uεi g
i,ε : Ω̄ε × [0, T ] → R

3.

For convenience, we consider a reference domain independent of the small pa-
rameter ε. Hence, let us define the three-dimensional domain Ω := ω× (−1,1) and
its boundary Γ = ∂Ω. We also define the following parts of the boundary,

ΓN := ω × {1}, Γ0 := γ0 × [−1,1].

Let x = (x1, x2, x3) be a generic point in Ω̄ and we consider the notation ∂i for the
partial derivative with respect to xi. We define the projection map πε : Ω̄ → Ω̄ε,

such that

π
ε(x) = x

ε = (xεi ) = (xε1, x
ε
2, x

ε
3) = (x1, x2, εx3) ∈ Ω̄

ε
,

hence, ∂εα = ∂α and ∂ε3 = 1
ε∂3. We consider the displacements related scaled

unknown u(ε) = (ui(ε)) : Ω̄ × [0, T ] → R
3 and the scaled vector fields v = (vi) :

Ω̄ → R
3 defined as

u
ε
i (x

ε) =: ui(ε)(x) and v
ε
i (x

ε) =: vi(x) ∀x ∈ Ω̄, x
ε = π

ε(x) ∈ Ω̄
ε
.

Besides, we define the scaled temperature ϑ(ε) : Ω̄ × [0, T ] → R defined as

ϑ(ε)(x) := ϑ
ε(xε) ∀x ∈ Ω, where x

ε = π
ε(x) ∈ Ω

ε
.

For the sake of simplicity, from now on, we are going to assume that the different
parameters of the problem (thermal conductivity, thermal dilatation, specific heat
coefficient, mass density, Lamé coefficients) are all independent of ε. Also, let the
functions, Γ p,ε

ij , gε, Aijkl,ε be associated with the functions Γ p
ij(ε), g(ε), A

ijkl(ε),
defined by

Γ
p
ij(ε)(x) := Γ

p,ε
ij (xε), g(ε)(x) := g

ε(xε), Aijkl(ε)(x) := A
ijkl,ε(xε),
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for all x ∈ Ω̄, xε = πε(x) ∈ Ω̄ε. For all v = (vi) ∈ [H1(Ω)]3, let there be associated
the scaled linearized strains (ei||j(ε)(v)) ∈ [L2(Ω)]3×3

sym, which we also denote as
(ei||j(ε; v)), defined by

eα||β(ε; v) :=
1

2
(∂βvα + ∂αvβ)− Γ

p
αβ(ε)vp, (37)

eα||3(ε; v) :=
1

2
(
1

ε
∂3vα + ∂αv3)− Γ

p
α3(ε)vp, (38)

e3||3(ε; v) :=
1

ε
∂3v3. (39)

Note that with these definitions it is verified that

e
ε
i||j(v

ε)(πε(x)) = ei||j(ε; v)(x) ∀x ∈ Ω.

Remark 5 The functions Γ p
ij(ε), g(ε),A

ijkl(ε) converge in C0(Ω̄) when ε tends to
zero.

Remark 6 When we consider ε = 0 the functions will be defined with respect to y ∈
ω̄. Notice the singularities in (38) and (39) for that case. We shall distinguish the
three-dimensional Christoffel symbols from the two-dimensional ones associated
to S by using Γσ

αβ(ε) and Γ
σ
αβ , respectively.

In [8, Theorem 3.3-2] we find an important result which shows that under suitable
regularity conditions, take for example θ ∈ C2(ω̄;R3), there exists an ε0 > 0 such
that Aijkl(ε) is positive-definite, uniformly with respect to x ∈ Ω̄ and ε, provided
that 0 < ε ≤ ε0. Further, the asymptotic behavior of Aijkl(ε) is detailed. Indeed,
it is satisfied that

A
ijkl(ε) = A

ijkl(0) +O(ε) and Aαβσ3(ε) = A
α333(ε) = 0,

for all ε, 0 < ε ≤ ε0, and

A
αβστ (0) = λa

αβ
a
στ + µ(aασaβτ + a

ατ
a
βσ), A

αβ33(0) = λa
αβ
, (40)

A
α3σ3(0) = µa

ασ
, A

3333(0) = λ+ 2µ, A
αβσ3(0) = A

α333(0) = 0. (41)

Moreover, and related with (36), there exists a constant Ce > 0, independent of
the variables and ε, such that

∑

i,j

|tij |2 ≤ CeA
ijkl(ε)(x)tkltij , (42)

for all ε, 0 < ε ≤ ε0, for all x ∈ Ω̄ and all t = (tij) ∈ S
3.

Notice that the limits are functions of y ∈ ω̄ only, that is, independent of
the transversal variable x3. We also recall [8, Theorem 3.3-1], which provides the
asymptotic behavior of Christoffel’s symbols Γ p

ij(ε), g
ij(ε) and g(ε). Indeed, if

θ ∈ C3(ω̄;R3), then

Γ
σ
αβ(ε) = Γ

σ
αβ − εx3b

σ
β |α +O(ε2), ∂3Γ

p
αβ(ε) = O(ε), Γ

3
α3(ε) = Γ

p
33(ε) = 0, (43)

Γ
3
αβ(ε) = bαβ − εx3b

σ
αbσβ , Γ

σ
α3(ε) = −bσα − εx3b

τ
αb

σ
τ +O(ε2), (44)

g
αβ(ε) = a

αβ + 2εx3a
ασ
b
β
σ +O(ε2), g

i3(ε) = δ
i3
, g(ε) = a+O(ε), (45)
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for all ε, 0 < ε ≤ ε0, where the order symbols O(ε) and O(ε2) are meant with
respect to the norm ‖·‖0,∞,Ω̄ defined by

‖w‖0,∞,Ω̄ = sup{|w(x)|;x ∈ Ω̄},

and the covariant derivatives bσβ |α are defined by

b
σ
β |α := ∂αb

σ
β + Γ

σ
ατ b

τ
β − Γ

τ
αβb

σ
τ .

The functions bαβ , b
σ
α, Γ

σ
αβ , b

σ
β |α and a are identified with functions in C0(Ω̄). Fur-

ther, there exist constants a0, g0 and g1 such that

0 < a0 ≤ a(y) ∀y ∈ ω̄,

0 < g0 ≤ g(ε)(x) ≤ g1 ∀x ∈ Ω̄ and ∀ ε,0 < ε ≤ ε0. (46)

Let the scaled heat source q(ε) : Ω × (0, T ) → R and scaled applied forces f(ε) :
Ω × (0, T ) → R

3 and h(ε) : ΓN × (0, T ) → R
3 be defined by

q
ε(xε) =: q(ε)(x) ∀x ∈ Ω, where x

ε = π
ε(x) ∈ Ω

ε
,

f
ε = (f i,ε)(xε) =: f(ε) = (f i(ε))(x) ∀x ∈ Ω, where x

ε = π
ε(x) ∈ Ω

ε
,

h
ε = (hi,ε)(xε) =: h(ε) = (hi(ε))(x) ∀x ∈ ΓN , where x

ε = π
ε(x) ∈ Γ

ε
N .

Also, we define the spaces

V (Ω) = {v = (vi) ∈ [H1(Ω)]3; v = 0 on Γ0}, S(Ω) = {ϕ ∈ H
1(Ω);ϕ = 0 on Γ0},

which are Hilbert spaces, with associated norms denoted by ‖·‖1,Ω . The scaled
variational problem can then be written as follows:

Problem 5 Find a pair t 7→ (u(ε)(x, t), ϑ(ε)(x, t)) of [0, T ] → V (Ω)×S(Ω) verifying
∫

Ω

ρ(üα(ε)g
αβ(ε)vβ + ü3(ε)v3)

√

g(ε)dx+

∫

Ω

A
ijkl(ε)ek||l(ε;u(ε))ei||j(ε; v)

√

g(ε)dx

−
∫

Ω

αT (3λ+ 2µ)ϑ(ε)(eα||β(ε; v)g
αβ(ε) + e3||3(ε; v))

√

g(ε)dx

=

∫

Ω

f
i(ε)vi

√

g(ε)dx+
1

ε

∫

ΓN

h
i(ε)vi

√

g(ε)dΓ ∀v ∈ V (Ω), a.e. in (0, T ), (47)

∫

Ω

βϑ̇(ε)ϕ
√

g(ε)dx+

∫

Ω

k(∂αϑ(ε)g
αβ(ε)∂βϕ+

1

ε2
∂3ϑ(ε)∂3ϕ)

√

g(ε)dx

+

∫

Ω

αT (3λ+ 2µ)ϕ(eα||β(ε; u̇(ε))g
αβ(ε) + e3||3(ε; u̇(ε)))

√

g(ε)dx

=

∫

Ω

q(ε)ϕ
√

g(ε)dx ∀ϕ ∈ S(Ω), a.e. in (0, T ), (48)

with u̇(ε)(·,0) = u(ε)(·,0) = 0 and ϑ(ε)(·,0) = 0.

Remark 7 Notice that the time-dependent version of the linearized strain tensor
above is well posed when we define

ei||j(ε;u(ε))(t) := ei||j(ε;u(ε)(t)).

See for example [17]. Further, as commented earlier, we usually omit the explicit
time dependence for the sake of a shorter notation.
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Remark 8 The unique solvability of Problem 5 for ε > 0 small enough is similar to
Problem 4 and the regularity obtained for the solutions is analogue. In particular,
we find u̇(ε)(·, t) ∈ V (Ω) and ϑ̇(ε)(·, t) ∈ S(Ω) a.e. in (0, T ).

We now present some additional results which will be used in the next section. In
[8, Theorem 3.4-1], we find the following useful result:

Theorem 2 Let ω be a domain in R
2 with boundary γ, let Ω = ω × (−1,1), and let

g ∈ Lp(Ω), p > 1, be a function such that

∫

Ω

g∂3vdx = 0, for all v ∈ C∞(Ω̄) with v = 0 on γ × [−1,1].

Then g = 0 a.e in Ω.

We provide here, as a standalone theorem, a result which can be found inside
the proof of [8, Theorem 4.4-1].

Theorem 3 Let X(Ω) := {v ∈ L2(Ω); ∂3v ∈ L2(Ω)} (∂3v being a derivative in the

sense of distributions). Then, the trace v(·, z) of any function v ∈ X(Ω) is well defined
as a function in L2(ω) for all z ∈ [−1,1] and the trace operator defined in this fashion

is continuous. In particular, there exists a constant c1 > 0 such that

‖v‖L2(ΓN ) ≤ c1

(

|v|20,Ω + |∂3v|20,Ω
)1/2

for all v ∈ X(Ω). As consequence there exists a constant c2 > 0 such that

‖v3‖L2(ΓN ) ≤ c2





∑

i,j

|ei||j(ε; v)|20,Ω





1/2

∀v ∈ V (Ω). (49)

4 Formal asymptotic analysis

In this section we briefly describe the formal procedure to identify possible two-
dimensional limit problems, depending on the geometry of the middle surface,
the set where the boundary conditions are given, the order of the applied forces
(the procedure is described in detail in [8] for elastic shells in the static case). We
consider scaled applied forces and heat source of the form

f(ε)(x) = ε
m
f
m(x), q(ε)(x) = ε

m
q
m(x) ∀x ∈ Ω, h(ε)(x) = ε

m+1
h
m+1(x) ∀x ∈ ΓN ,

where m is an integer number that will show the order of the volume, heat source
and surface forces, respectively. We substitute in (47) to obtain the following prob-
lem:
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Problem 6 Find a pair t 7→ (u(ε)(x, t), ϑ(ε)(x, t)) of [0, T ] → V (Ω)×S(Ω) verifying

∫

Ω

ρ(üα(ε)g
αβ(ε)vβ + ü3(ε)v3)

√

g(ε)dx+

∫

Ω

A
ijkl(ε)ek||l(ε;u(ε))ei||j(ε; v)

√

g(ε)dx

−
∫

Ω

αT (3λ+ 2µ)ϑ(ε)(eα||β(ε; v)g
αβ(ε) + e3||3(ε; v))

√

g(ε)dx

=

∫

Ω

ε
m
f
i,m

vi
√

g(ε)dx+

∫

ΓN

ε
m
h
i,m+1

vi
√

g(ε)dΓ ∀v ∈ V (Ω), a.e. in (0, T ),

(50)
∫

Ω

βϑ̇(ε)ϕ
√

g(ε)dx+

∫

Ω

k(∂αϑ(ε)g
αβ(ε)∂βϕ+

1

ε2
∂3ϑ(ε)∂3ϕ)

√

g(ε)dx

+

∫

Ω

αT (3λ+ 2µ)ϕ(eα||β(ε; u̇(ε))g
αβ(ε) + e3||3(ε; u̇(ε)))

√

g(ε)dx

=

∫

Ω

ε
m
q
m
ϕ
√

g(ε)dx ∀ϕ ∈ S(Ω), a.e. in (0, T ), (51)

with u̇(ε)(·,0) = u(ε)(·,0) = 0 and ϑ(ε)(·,0) = 0.

Assume that θ ∈ C3(ω̄;R3) and that the scaled unknowns u(ε), ϑ(ε) admit
asymptotic expansions of the form

u(ε) = u
0 + εu

1 + ε
2
u
2 + . . . , (52)

ϑ(ε) = ϑ
0 + εϑ

1 + ε
2
ϑ
2 + . . .

where u0 ∈ V (Ω), uj ∈ [H1(Ω)]3, ϑ0 ∈ S(Ω), ϑj ∈ H1(Ω), j ≥ 1. The assumption
(52) implies an asymptotic expansion of the scaled linear strain as follows

ei||j(ε) ≡ ei||j(ε;u(ε)) =
1

ε
e
−1
i||j + e

0
i||j + εe

1
i||j + ε

2
e
2
i||j + ε

3
e
3
i||j + ...

where,



















e
−1
α||β = 0,

e
−1
α||3 =

1

2
∂3u

0
α,

e
−1
3||3 = ∂3u

0
3,























e
0
α||β =

1

2
(∂βu

0
α + ∂αu

0
β)− Γ

σ
αβu

0
σ − bαβu

0
3,

e
0
α||3 =

1

2
(∂3u

1
α + ∂αu

0
3) + b

σ
αu

0
σ ,

e
0
3||3 = ∂3u

1
3,























e
1
α||β =

1

2
(∂βu

1
α + ∂αu

1
β)− Γ

σ
αβu

1
σ − bαβu

1
3 + x3(b

σ
β|αu

0
σ + b

σ
αbσβu

0
3),

e
1
α||3 =

1

2
(∂3u

2
α + ∂αu

1
3) + b

σ
αu

1
σ + x3b

τ
αb

σ
τ u

0
σ ,

e
1
3||3 = ∂3u

2
3.

Besides, the functions ei||j(ε; v) admit the following expansion,

ei||j(ε; v) =
1

ε
e
−1
i||j(v) + e

0
i||j(v) + εe

1
i||j(v) + ...
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where,



















e
−1
α||β(v) = 0,

e
−1
α||3(v) =

1

2
∂3vα,

e
−1
3||3(v) = ∂3v3,























e
0
α||β(v) =

1

2
(∂βvα + ∂αvβ)− Γ

σ
αβvσ − bαβv3,

e
0
α||3(v) =

1

2
∂αv3 + b

σ
αvσ ,

e
0
3||3(v) = 0,















e
1
α||β(v) = x3b

σ
β|αvσ + x3b

σ
αbσβv3,

e
1
α||3(v) = x3b

τ
αb

σ
τ vσ ,

e
1
3||3(v) = 0.

Upon substitution on (50) and (51), we proceed to characterize the terms involved
in the asymptotic expansions by considering different values for m and grouping
terms of the same order. In this way, taking in (50) the orderm = −2 and particular
cases of test functions, we reason that f−2 = h−1 = 0, which leads to ∂3u

0 = 0.
From (51), we reason that q−2 = 0 and find that ∂3ϑ

0 = 0. Thus the zeroth
order terms of both unknowns would be independent of the transversal variable
x3. Particularly, u

0 can be identified with a function ξ0 ∈ V (ω), and ϑ0 can be
identified with a function ζ0 ∈ S(ω) where

V (ω) := {η = (ηi) ∈ [H1(ω)]3; ηi = 0 on γ0}, S(ω) := {ϕ ∈ H
1(ω);ϕ= 0 on γ0}.

Taking m = −1, and using particular cases of test functions, we reason that f−1 =
h0 = 0 and we find that

e
0
α||3 = 0, λa

αβ
e
0
α||β + (λ+ 2µ)e03||3 = αT (3λ+ 2µ)ϑ0, e

0
α||β = γαβ(ξ

0),

where

γαβ(η) :=
1

2
(∂βηα + ∂αηβ)− Γ

σ
αβησ − bαβη3, (53)

denote the covariant components of the linearized change of metric tensor asso-
ciated with a displacement field ηia

i of the surface S. From (51) we reason that
q−1 = 0 and find that ∂3ϑ

1 = 0.
Having these results in mind, for m = 0, developing Aijkl(0) and taking v =

η ∈ V (ω) and ϕ ∈ S(ω) leads to the following two-dimensional problem, to which
we shall refer as thermoelastic membrane problem:

Problem 7 Find a pair t 7→ (ξ0(y, t), ζ0(y, t)) of [0, T ] → V (ω)× S(ω) verifying

2

∫

ω

ρ(ξ̈0αa
αβ
ηβ + ξ̈

0
3η3)

√
ady +

∫

ω

a
αβστ

γστ (ξ
0)γαβ(η)

√
ady − 4

∫

ω

αTµ(3λ+ 2µ)

λ+ 2µ
ζ
0
a
αβ
γαβ(η)

√
ady

=

∫

ω

F
i,0
ηi
√
ady ∀η = (ηi) ∈ V (ω), a.e. in (0, T ),

2

∫

ω

(

β +
α2
T (3λ+ 2µ)2

λ+ 2µ

)

ζ̇
0
ϕ
√
ady + 2

∫

ω

k∂αζ
0
a
αβ
∂βϕ

√
ady

+ 4

∫

ω

αTµ(3λ+ 2µ)

λ+ 2µ
ϕa

αβ
γαβ(ξ̇

0
)
√
ady =

∫

ω

Q
0
ϕ
√
ady ∀ϕ ∈ S(ω), a.e. in (0, T ),

with ξ̇
0
(·, 0) = ξ0(·, 0) = 0 and ζ0(·, 0) = 0.
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Above, we have introduced F i,0 :=
∫ 1

−1
f i,0dx3+h

i,1
N , with hi,1N (·) = hi,1(·,+1), and

Q0 :=
∫ 1

−1
q0dx3. Also, aαβστ denotes the contravariant components of the fourth

order two-dimensional elasticity tensor, defined as follows:

a
αβστ :=

4λµ

λ+ 2µ
a
αβ
a
στ + 2µ(aασaβτ + a

ατ
a
βσ). (54)

The problem above will be analyzed in more detail in the following section. There,
we shall study the existence and uniqueness of solution under additional hypothe-
ses of geometric nature and a more suitable set of functional spaces, and provide
a rigorous convergence result. To that end, the following ellipticity result for the
elasticity tensor will be used. There exists a constant ce > 0 independent of the
variables and ε, such that

∑

α,β

|tαβ |2 ≤ cea
αβστ (y)tστ tαβ , (55)

for all y ∈ ω̄ and all t = (tαβ) ∈ S
2 (vector space of 2×2 real symmetric matrices).

5 Elliptic membrane case. Convergence

In what follows, we assume that the family of three-dimensional linearly thermoe-
lastic shells consist of elliptic membrane shells, that is, the middle surface of the
shell S is uniformly elliptic and the boundary condition of place is considered on
the whole lateral face of the shell, that is, γ0 = γ. Further, from the formal asymp-
totic analysis made in the preceding section, we assume the hypotheses which led
to Problem 7, namely,

f(ε)(x) = f
0(x), q(ε)(x) = q

0(x) ∀x ∈ Ω, h(ε)(x) = εh
1(x) ∀x ∈ ΓN .

Since there is no possible ambiguity, in what follows we drop the superindices
indicating the order of the different functions.

We also recall that for elliptic membranes it is verified the following two-
dimensional Korn’s type inequality (see, for example, [8, Theorem 2.7-3]): there
exists a constant cM = cM (ω,θ) > 0 such that

(

∑

α

‖ηα‖21,ω + |η3|20,ω

)1/2

≤ cM





∑

α,β

|γαβ(η)|20,ω





1/2

∀η ∈ VM (ω), (56)

where

VM (ω) := H
1
0 (ω)×H

1
0(ω)× L

2(ω),

is the right space for the well-posedness of Problem 7. In this section and in the
sequel, C represents a positive generic constant whose specific value may change
from line to line, independent of ε and the unknowns. Besides, for the sake of
simplicity, we assume that all the parameters involved are constant. Also, the
notation v̄ stands for the average on x3, i.e., v̄ := 1

2

∫ 1

−1
v(x3)dx3.

To favour a clearer exposition, let us reformulate Problem 7:
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Problem 8 Find a pair t 7→ (ξ(y, t), ζ(y, t)) of [0, T ] → VM (ω)×H1
0(ω) verifying

2

∫

ω

ρ(ξ̈αa
αβ
ηβ + ξ̈3η3)

√
ady +

∫

ω

a
αβστ

γστ (ξ)γαβ(η)
√
ady − 4

∫

ω

αTµ(3λ+ 2µ)

λ+ 2µ
ζa

αβ
γαβ(η)

√
ady

=

∫

ω

F
i
ηi
√
ady ∀η = (ηi) ∈ VM (ω), a.e. in (0, T ), (57)

2

∫

ω

(

β +
α2
T (3λ+ 2µ)2

λ+ 2µ

)

ζ̇ϕ
√
ady + 2

∫

ω

k∂αζa
αβ
∂βϕ

√
ady

+ 4

∫

ω

αTµ(3λ+ 2µ)

λ+ 2µ
ϕa

αβ
γαβ(ξ̇)

√
ady =

∫

ω

Qϕ
√
ady ∀ϕ ∈ H

1
0(ω), a.e. in (0, T ),

(58)

with ξ̇(·, 0) = ξ(·, 0) = 0 and ζ(·, 0) = 0.

Above, we have used F i :=
∫ 1

−1
f idx3 + hiN with hiN (·) = hi(·,+1) and Q :=

∫ 1

−1
qdx3. The following shows that there is a unique solution for this problem.

Theorem 4 Let ω be a domain in R
2, let θ ∈ C2(ω̄;R3) be an injective mapping

such that the two vectors aα = ∂αθ are linearly independent at all points of ω̄. Let f i

and q ∈ H1(0, T ;L2(Ω)), hi ∈ H2(0, T ;L2(ΓN )).Then the Problem 8, has a unique

solution (ξ, ζ) such that

ξ ∈ L
∞(0, T ; VM(ω)), ξ̇ ∈ L

∞(0, T ; [L2(ω)]3) ∩ L∞(0, T ; VM (ω)), ξ̈ ∈ L
∞(0, T ; [L2(ω)]3),

ζ ∈ L
∞(0, T ;L2(ω)) ∩ L2(0, T ;H1

0(ω)), ζ̇ ∈ L
∞(0, T ;L2(ω)) ∩ L2(0, T ;H1

0(ω)).

Like in Theorem 1, we can cast this problem into the setting of problems solved
in [11] or [15, p. 359], for example. Yet again, we provide an alternative proof by
using the Faedo-Galerkin method.

Proof. Like in Theorem 1, we will use a Faedo-Galerkin approach to prove the
existence part. Then, a proof by contradiction will show uniqueness.

Existence: Since VM (ω) is a separable space, there exists a countable base
{vm} ⊂ VM (ω) such that

VM (ω) =
⋃

m≥1

Vm, where Vm = span{v1
,v

2
, . . . ,v

m}.

Similarly, there exists a countable base {χm} ⊂ H1
0(ω) such that

H
1
0(ω) =

⋃

m≥1

Sm, where Sm = span{χ1
, χ

2
, . . . , χ

m}.

We now formulate Problem 8 for the finite dimensional subspaces:
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Problem 9 Find a pair t 7→ (ξm(y, t), ζm(y, t)) of [0, T ] → Vm × Sm verifying

2

∫

ω

ρ(ξ̈mα a
αβ
η
m
β + ξ̈

m
3 η

m
3 )

√
ady +

∫

ω

a
αβστ

γστ (ξ
m)γαβ(η

m)
√
ady − 4

∫

ω

αTµ(3λ+ 2µ)

λ+ 2µ
ζ
m
a
αβ
γαβ(η

m)
√
ady

=

∫

ω

F
i
η
m
i
√
ady ∀ηm = (ηmi ) ∈ Vm, ∀ t ∈ [0, T ], (59)

2

∫

ω

(

β +
α2
T (3λ+ 2µ)2

λ+ 2µ

)

˙ζmϕm√
ady + 2

∫

ω

k∂αζ
m
a
αβ
∂βϕ

m√
ady

+ 4

∫

ω

αTµ(3λ+ 2µ)

λ+ 2µ
ϕ
m
a
αβ
γαβ( ˙ξm)

√
ady =

∫

ω

Qϕ
m√

ady ∀ϕm ∈ Sm, ∀ t ∈ [0, T ],

(60)

with ξ̇
m
(·, 0) = ξm(·, 0) = 0 and ζm(·, 0) = 0.

Now, the classical theory of systems of ordinary differential equations guarantees
the existence and uniqueness of solution for Problem 9. Taking ηm = ξ̇

m
in (59)

and ϕm = ζm in (60), adding both expressions and integrating the time variable
in [0, t] gives

ρ|ξ̇m(t)|2a,ω +
1

2
‖ξm(t)‖2a,ω +

(

β +
α2
T (3λ+ 2µ)2

λ+ 2µ

)

|ζm(t)|20,ω + 2k

∫ t

0

‖|ζm(r)‖|2a,ω dr

=

∫ t

0

∫

ω

Q(r)ζm
√
ady dr

+

∫ t

0

∫

ω

∫ 1

−1

f
i(r)dx3ξ̇

m
i (r)

√
ady dr +

∫ t

0

∫

ΓN

h
i(r)ξ̇mi (r)

√
adΓ dr, (61)

where we have introduced the following norms:

|η|2a,ω :=

∫

ω

(ηαa
αβ
ηβ + (η3)

2)
√
ady ∀η ∈ [L2(ω)]3,

which is equivalent to the usual norm | · |0,ω because of the ellipticity of (aαβ) and
the regularity of θ. Also,

‖η‖2a,ω :=

∫

ω

a
αβστ

γστ (η)γαβ(η)
√
ady ∀η ∈ VM (ω),

which is a norm in VM (ω) because of the Korn inequality (56) and the ellipticity
of aαβστ (see (55)). Finally,

‖|ϕ‖|2a,ω :=

∫

ω

∂αϕa
αβ
∂βϕ

√
ady,

which is a norm in H1
0(ω) equivalent to the usual ‖ · ‖1,ω because of the ellipticity

of (aαβ), the regularity of θ and the Poincaré inequality.

By using the Hölder inequality in the right-hand side terms of (61), then using
Theorem 3 for the terms on ΓN followed by the use of Gronwall inequality, we
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obtain that the following weak convergences take place for subsequences indexed
by m as well:

ξ
m ∗−−−⇀

m→∞
ξ in L∞(0, T ; VM(ω)), ξ̇

m ∗−−−⇀
m→∞

ξ̇ in L∞(0, T ; [L2(ω)]3), (62)

ζ
m ∗−−−⇀

m→∞
ζ in L∞(0, T ;L2(ω)), ζ

m −−−⇀
m→∞

ζ in L2(0, T ;H1
0(ω)), (63)

(64)

Using these convergences back in (59)–(60), we find Problem 8.

We will now prove the additional regularities for ξ̇, ξ̈ and ζ̇. First, we add
equations (59) and (60) and write the resulting equation at times t̃ = t+ h and t,
with h > 0 and 0 < t ≤ T − h. Then subtract these last two equations and take
ηm = ξ̇

m
(t̃)− ξ̇

m
(t) ∈ Vm and ϕm = ζm(t̃)− ζm(t) ∈ Sm to obtain

2

∫

ω

ρ((ξ̈mα (t̃)− ξ̈
m
α (t))aαβ(ξ̇mβ (t̃)− ξ̇

m
β (t)) + (ξ̈m3 (t̃)− ξ̈

m
3 (t))(ξ̇m3 (t̃)− ξ̇

m
3 (t)))

√
ady

+

∫

ω

a
αβστ

γστ (ξ
m(t̃)− ξ

m(t))γαβ(ξ̇
m
(t̃)− ξ̇

m
(t))

√
ady

+ 2

∫

ω

(

β +
α2
T (3λ+ 2µ)2

λ+ 2µ

)

( ˙ζm(t̃)− ˙ζm(t))(ζm(t̃)− ζ
m(t))

√
ady

+ 2

∫

ω

k∂α(ζ
m(t̃)− ζ

m(t))aαβ∂β(ζ
m(t̃)− ζ

m(t))
√
ady

=

∫

ω

(F i(t̃)− F
i(t))(ξ̇mi (t̃)− ξ̇

m
i (t))

√
ady +

∫

ω

(Q(t̃)−Q(t))(ζm(t̃)− ζ
m(t))

√
ady, ∀t ∈ [0, T − h],

whichgives

d

dt
ρ|ξ̇m(t̃)− ξ̇

m
(t)|2a,ω +

1

2

d

dt
‖ξm(t̃)− ξ

m(t)‖2a,ω +

(

β +
α2
T (3λ+ 2µ)2

λ+ 2µ

)

d

dt
|ζm(t̃)− ζ

m(t)|20,ω

+ 2k‖|ζm(t̃)− ζ
m(t)‖|2a,ω =

∫

ω

(F i(t̃)− F
i(t))(ξ̇mi (t̃)− ξ̇

m
i (t))

√
ady

+

∫

ω

(Q(t̃)−Q(t))(ζm(t̃)− ζ
m(t))

√
ady, ∀t ∈ [0, T − h].

Next, we integrate in [0, t] to get

ρ|ξ̇m(t̃)− ξ̇
m
(t)|2a,ω − ρ|ξ̇m(h)− ξ̇

m
(0)|2a,ω +

1

2
‖ξm(t̃)− ξ

m(t)‖2a,ω − 1

2
‖ξm(h)− ξ

m(0)‖2a,ω

+

(

β +
α2
T (3λ+ 2µ)2

λ+ 2µ

)

|ζm(t̃)− ζ
m(t)|20,ω −

(

β +
α2
T (3λ+ 2µ)2

λ+ 2µ

)

|ζm(h)− ζ
m(0)|20,ω

+ 2k

∫ t

0

‖|ζm(r + h)− ζ
m(r)‖|2a,ωdr =

∫ t

0

∫

ω

(F i(r+ h)− F
i(r))(ξ̇mi (r + h)− ξ̇

m
i (r))

√
a dy dr

+

∫ t

0

∫

ω

(Q(r+ h)−Q(r))(ζm(r+ h)− ζ
m(r))

√
a dy dr, ∀t ∈ [0, T − h],
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and dividing the equation by h2 and taking limits when h→ 0 we obtain

ρ|ξ̈m(t)|2a,ω +
1

2
‖ξ̇m(t)‖2a,ω +

(

β +
α2
T (3λ+ 2µ)2

λ+ 2µ

)

|ζ̇m(t)|20,ω + 2k

∫ t

0

‖|ζ̇m(r)‖|2a,ωdr

= ρ|ξ̈m(0)|2a,ω +
1

2
‖ξ̇m(0)‖2a,ω +

(

β +
α2
T (3λ+ 2µ)2

λ+ 2µ

)

|ζ̇m(0)|20,ω +

∫ t

0

∫

ω

Ḟ
i(r)ξ̈mi (r)

√
a dy dr

+

∫ t

0

∫

ω

Q̇(r)ζ̇m(r)
√
a dy dr, ∀t ∈ [0, T ],

from which, by Young’s inequality, we obtain

ρ|ξ̈m(t)|2a,ω +
1

2
‖ξ̇m(t)‖2a,ω +

(

β +
α2
T (3λ+ 2µ)2

λ+ 2µ

)

|ζ̇m(t)|20,ω + 2k

∫ t

0

‖|ζ̇m(r)‖|2a,ωdr

≤ ρ|ξ̈m(0)|2a,ω +
1

2
‖ξ̇m(0)‖2a,ω +

(

β +
α2
T (3λ+ 2µ)2

λ+ 2µ

)

|ζ̇m(0)|20,ω

+ C(ḟ , ḣ, q̇) + C̄

∫ t

0

{

|ξ̈m(r)|20,ωdr+
∫ t

0

|ζ̇m(r)|20,ω
}

dr, ∀t ∈ [0, T ]. (65)

In order to obtain bounds for |ξ̈m(0)|2a,ω and |ζ̇m(0)|20,ω we first notice that equa-
tions (59) and (60) hold for t = 0 due to the compatibility required between initial
and boundary conditions. Therefore, taking t = 0 and ηm = ξ̈

m
(0) ∈ Vm in (59)

and ϕm = ζ̇m(0) ∈ Sm in (60) and, taking into account the initial conditions, we
obtain

ρ|ξ̈m(0)|2a,ω =

∫

ω

F
i(0)ξ̈

m
i (0)

√
ady ≤ 1

δ
C + δ|ξ̈m(0)|20,ω

(

β +
α2
T (3λ+ 2µ)2

λ+ 2µ

)

|ζ̇m(0)|20,ω =

∫

ω

Q(0)ζ̇m(0)
√
a dy ≤ 1

δ̃
C̃ + δ̃|ζ̇m(0)|20,ω,

where δ and δ̃ are sufficiently small positive constants.
Now, back to (65), taking into account the initial conditions and the bounds above
we have

ρ|ξ̈m(t)|2a,ω +
1

2
‖ξ̇m(t)‖2a,ω +

(

β +
α2
T (3λ+ 2µ)2

λ+ 2µ

)

|ζ̇m(t)|20,ω + 2k

∫ t

0

‖|ζ̇m(r)‖|2a,ωdr

≤ C + C̄

∫ t

0

{

|ξ̈m(r)|20,ωdr +
∫ t

0

|ζ̇m(r)|20,ω
}

dr, ∀t ∈ [0, T ].

Next, we use the equivalence between then norms | · |a,ω and | · |0,ω and we apply
Gronwall’s Lemma to conclude that

|ξ̈m(t)|20,ω + |ζ̇m(t)|20,ω ≤ C, ∀t ∈ [0, T ],

and further

‖ξ̇m(t)‖2a,ω + 2k

∫ t

0

‖|ζ̇m(r)‖|2a,ωdr ≤ C ∀t ∈ [0, T ].
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Therefore, the following weak convergences take place for subsequences still in-
dexed by m.

ξ̇
m ∗−−−⇀

m→∞
ξ̇ in L∞(0, T ; VM(ω)), ξ̈

m ∗−−−⇀
m→∞

ξ̈ in L∞(0, T ; [L2(ω)]3), (66)

ζ̇
m ∗−−−⇀

m→∞
ζ̇ in L∞(0, T ;L2(ω)), ζ̇

m −−−⇀
m→∞

ζ̇ in L2(0, T ;H1
0(ω)). (67)

Uniqueness: We proceed by contradiction. We first assume that there exist two

solutions (ξ1, ζ1) and (ξ2, ζ2). Define ξ̄ = ξ1−ξ2 and ζ̄ = ζ1− ζ2. Now, take η = ˙̄ξ

in the version of (57) for ξ1 and η = − ˙̄ξ in the version of (57) for ξ2. We then sum
both expresions to find that

2

∫

ω

ρ(¨̄ξαa
αβ ˙̄ξβ + ¨̄ξ3 ˙̄ξ3)

√
ady +

∫

ω

a
αβστ

γστ (ξ̄)γαβ(
˙̄ξ)
√
ady − 4

∫

ω

αTµ(3λ+ 2µ)

λ+ 2µ
ζ̄a

αβ
γαβ(

˙̄ξ)
√
ady = 0.

Similarly, take ϕ = ζ̄ in the version of (58) for ζ1 and ϕ = −ζ̄ in the version of
(58) for ζ2. Then, we sum both expresions to find that

2

∫

ω

(

β +
α2
T (3λ+ 2µ)2

λ+ 2µ

)

˙̄ζζ̄
√
ady + 2

∫

ω

k∂αζ̄a
αβ
∂β ζ̄

√
ady + 4

∫

ω

αTµ(3λ+ 2µ)

λ+ 2µ
ζ̄a

αβ
γαβ(

˙̄ξ)
√
ady = 0.

Then, we add both expressions above and integrate with respect to the time vari-
able in [0, t], to find

ρ| ˙̄ξ(t)|2a,ω +
1

2
‖ξ̄(t)‖2a,ω +

(

β +
α2
T (3λ+ 2µ)2

λ+ 2µ

)

|ζ̄(t)|20,ω + 2k

∫ t

0

‖|ζ̄(r)‖|2a,ω dr = 0.

(68)

We deduce from (68) that ξ̄ = 0 and ζ̄ = 0, thus showing uniqueness.
⊔⊓

Now, we present here the main result of this paper, namely that the scaled
three-dimensional unknowns (u(ε), ϑ(ε)) converge, as ε tends to zero, towards a
limit (u, ϑ) independent of the transversal variable, and that this limit can be
identified with the solution (ξ, ζ) of the Problem 8, posed over the two-dimensional
set ω.

In what follows, and for the sake of simplicity, we assume that for each ε > 0
the initial condition for the scaled linear strain is

ei||j(ε)(0, ·) = 0, (69)

this is, the domain is on its natural state with no strains on it at the beginning of
the period of observation.

Theorem 5 Assume that θ ∈ C3(ω̄;R3). Consider a family of elastic elliptic shells

with thickness 2ε approaching zero and all sharing the same elliptic middle surface

S = θ(ω̄). For all ε, 0 < ε ≤ ε0 let (u(ε), ϑ(ε)) be the solution of the associated three-

dimensional scaled Problem 6 for m = 0. Then, there exist functions ϑ, uα ∈ H1(Ω)
satisfying ϑ = 0, uα = 0 on γ × [−1,1] and a function u3 ∈ L2(Ω), such that

(a) ϑ(ε) → ϑ, uα(ε) → uα in H1(Ω) and u3(ε) → u3 in L2(Ω) when ε → 0 a.e. in

(0,T),
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(b) ϑ and u = (ui) are independent of the transversal variable x3.

Furthermore, the pair (u, ϑ) can be identified with the solution of Problem 8.

Proof. We follow the structure of the proof given in [8, Theorem 4.4-1] for
the case of elastic elliptic membrane shells. Hence, we shall reference some steps
which apply in the same manner and omit some details. Also, for the sake of
readability we may use the shorter notations ei||j(ε) := ei||j(ε;u(ε)). In addition
to that, all references to (50) or (51) have to be considered as for m = 0 and drop
the superindices. The proof is divided into several parts, numbered from (i) to (v).

(i) A priori boundedness and extraction of weak convergent sequences. For ε > 0
sufficiently small, there exist bounded sequences, also indexed by ε, and weak

limits as specified below:

uα(ε)
∗−−−⇀

ε→0
uα in L∞(0, T ;H1(Ω)), u3(ε)

∗−−−⇀
ε→0

u3 in L∞(0, T ;L2(Ω)),

u̇(ε)
∗−−−⇀

ε→0
u̇ in L∞(0, T ; [L2(Ω)]3), ei||j(ε)

∗−−−⇀
ε→0

ei||j in L∞(0, T ;L2(Ω)),

ϑ(ε)
∗−−−⇀

ε→0
ϑ in L∞(0, T ;L2(Ω)), ∂αϑ(ε) −−−⇀

ε→0
ϑα in L2(0, T ;L2(Ω)),

ε
−1
∂3ϑ(ε) −−−⇀

ε→0
ϑ3,−1 in L2(0, T ;L2(Ω)).

Moreover, ϑ, uα = 0 on Γ0.

For the proof of this step we take v = u̇(ε) in (50) (see Remark 8) and
ϕ = ϑ(ε) in (51) and sum both expressions to find
∫

Ω

ρ(üα(ε)g
αβ(ε)u̇β(ε) + ü3(ε)u̇3(ε))

√

g(ε)dx+

∫

Ω

A
ijkl(ε)ek||l(ε)ėi||j(ε)

√

g(ε)dx

+

∫

Ω

βϑ̇(ε)ϑ(ε)
√

g(ε)dx+

∫

Ω

k(∂αϑ(ε)g
αβ(ε)∂βϑ(ε) +

1

ε2
∂3ϑ(ε)∂3ϑ(ε))

√

g(ε)dx

=

∫

Ω

f
i
u̇i(ε)

√

g(ε)dx+

∫

ΓN

h
i
u̇i(ε)

√

g(ε)dΓ +

∫

Ω

qϑ(ε)
√

g(ε)dx. (70)

We now introduce the following norms:

|v|2g(ε),Ω :=

∫

Ω

(vαg
αβ(ε)vβ + (v3)

2)
√

g(ε)dx ∀v ∈ [L2(Ω)]3,

which is equivalent to the usual norm | · |0,Ω because of the ellipticity of

(gαβ(ε)) and the regularity of Θ. Also,

‖v‖2A(ε),Ω :=

∫

Ω

A
ijkl(ε)ek||l(ε; v)ei||j(ε; v)

√

g(ε)dx ∀v ∈ V (Ω),

which is a norm in V (Ω) because of the Korn inequality (see [8, Theorem
4.4-1]) and the ellipticity of Aijkl(ε). Finally,

‖|ϕ‖|g(ε),Ω :=

∫

Ω

∂αϕg
αβ(ε)∂βϕ

√

g(ε)dx,

which is a seminorm in S(Ω). Because of the uniform ellipticity of the tensors
and matrices involved, and the properties of g(ε), we are going to be able to
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use constants independent of ε in the estimates below. Indeed, going back to
(70), we obtain

ρ

2

d

dt
{|u̇(ε)|2g(ε),Ω}+ 1

2

d

dt
{‖u(ε)‖2A(ε),Ω}+ β

2

d

dt
{|ϑ(ε)|20,Ω}+ k‖|ϑ(ε)‖|2g(ε),Ω +

k

ε2
|∂3ϑ(ε)|20,Ω

=

∫

Ω

f
i
u̇i(ε)

√

g(ε)dx+

∫

ΓN

h
i
u̇i(ε)

√

g(ε)dΓ +

∫

Ω

qϑ(ε)
√

g(ε)dx.

Integrating in [0, t] with respect to the time variable, using the equivalences
mentioned above, together with the uniformity with respect to ε of the con-
stants involved in those equivalences, integrating by parts the term with the
tractions hi, using Theorem 3 and Young’s inequality, we find that there exist
a constant C > 0 independent of ε such that

|u̇(ε)(t)|20,Ω + |ei||j(ε)(t)|20,Ω + |ϑ(ε)(t)|20,Ω +

∫ t

0

(|∂αϑ(ε)(r)|20,Ω +
1

ε2
|∂3ϑ(ε)(r)|20,Ω)dr

≤ C(

∫ t

0

|u̇(ε)(r)|20,Ωdr +
∫ t

0

|ϑ(ε)(r)|20,Ωdr +
∫ t

0

|ei||j(ε)(r)|20,Ωdr

+

∫ t

0

|f(r)|20,Ωdr +
∫ t

0

|q(r)|20,Ωdr+
∫ t

0

|ḣ(r)|20,ΓN
dr + |ḣ(t)|20,ΓN

)

Hence, by using Gronwall’s inequality and the three-dimensional Korn’s in-
equality that can be found in [8, Theorem 4.3-1], all the assertions of (i)
follow.

(ii) The limits of the scaled unknowns, ui, ϑ found in Step (i) are independent of x3.

The part corresponding to ui is analogous to the Step (ii) in [8, Theorem
4.4-1], so we omit it. Regarding ϑ, its independence on x3 is a consequence
of the boundedness of {ε−1∂3ϑ(ε)}.

(iii) The limits ei||j found in (i) are independent of the variable x3. Moreover, they

are related with the limits u := (ui) and ϑ by

eα||β = γαβ(u) :=
1

2
(∂αuβ + ∂βuα)− Γ

σ
αβuσ − bαβu3,

eα||3 = 0, (71)

e3||3 =
αT (3λ+ 2µ)

λ+ 2µ
ϑ− λ

λ+ 2µ
a
αβ
eα||β . (72)

Indeed, first considering v = u(ε) in (37) and η = u in (53) (par abus de lan-

gage, since u is independent of x3, but actually u ∈ [H1(Ω)]2×L2(Ω)), taking
into account Step (i) and the convergences Γσ

αβ(ε) → Γσ
αβ and Γ 3

αβ(ε) → bαβ

in C0(Ω̄) given by (43)–(45), we have that

eα||β(ε) =
1

2
(∂βuα(ε) + ∂αuβ(ε))− Γ

p
αβ(ε)up(ε)⇀ eα||β = γαβ(u) in L

2(Ω) a.e. in (0, T ).
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Moreover, eα||β are independent of x3, as a straightforward consequence of
the independence on x3 of ui (Step (ii)). In addition, let v ∈ V (Ω). As a
consequence of the definition of the scaled strains in (37)–(39), we find

εeα||β(ε; v) → 0 in L2(Ω), εeα||3(ε; v) →
1

2
∂3vα in L2(Ω),

εe3||3(ε; v) = ∂3v3 in L2(Ω), for all ε > 0.

Now, for all v ∈ V (Ω), in (50) we can take as test function εv ∈ V (Ω). Then,
taking into account (35), we have

ε

∫

Ω

ρ(üα(ε)g
αβ(ε)vβ + ü3(ε)v3)

√

g(ε)dx+ ε

∫

Ω

A
ijkl(ε)ek||l(ε)ei||j(ε; v)

√

g(ε)dx

−
∫

Ω

αT (3λ+ 2µ)ϑ(ε)(εeα||β(ε; v)g
αβ(ε) + εe3||3(ε; v))

√

g(ε)dx

= ε

∫

Ω

f
i
vi
√

g(ε)dx.

Passing to the limit as ε → 0, decomposing Aijkl(ε) into the components
with different asymptotic behaviour (see (40)–(41)), the properties of g(ε)
(see (46)) and the convergences in Step (i), we obtain the following equality:

∫

Ω

(

2µaασeα||3∂3vσ + (λ+ 2µ)e3||3∂3v3
)√

adx+

∫

Ω

λa
αβ
eα||β∂3v3

√
adx

=

∫

Ω

αT (3λ+ 2µ)ϑ∂3v3
√
adx ∀v ∈ V (Ω), a.e. in (0, T ). (73)

By taking particular test functions and using Theorem 2, we deduce (71).
Then, we go back to (73) and use again Theorem 2 to deduce (72). The
independence of e3||3 on x3 is a consequence of this relation, as well.

(iv) We find a limit two-dimensional problem verified by functions ū = (ūi) and ϑ̄.

In particular, since the solution of this problem is unique, the convergences on

Step (i) are verified for the whole families (u(ε))ε>0 and (ϑ(ε))ε>0. We have

that ū(t) = (ūi(t)) ∈ VM (ω) and ϑ(t) ∈ S(Ω) a.e. in (0,T).

By using [8, Theorem 4.2-1] (parts (a) and (b)), and Step (ii) we find that
ūα ∈ H1

0 (ω) and ϑ̄ ∈ H1
0(ω). Therefore, ū ∈ VM (ω) a.e. in (0,T). Now, let

v = (vi) ∈ V (Ω) be independent of the variable x3. Then, the asymptotic
behaviour of the functions Γ p

αβ(ε) and Γσ
α3(ε) (see (43)–(45)) implies the

following convergences when ε→ 0 (see (37)–(39)):

eα||β(ε; v) → γαβ(v) :=
1

2
(∂αvβ + ∂βvα)− Γ

σ
αβvσ − bαβv3 in L2(Ω), (74)

eα||3(ε; v) →
1

2
∂αv3 + b

σ
αvσ in L2(Ω), e3||3(ε; v) = 0. (75)

Having this in mind, let now v = (vi) ∈ V (Ω) be independent of x3 in (50)
and take the limit when ε→ 0. In the process, we make use of the asymptotic
behaviour of Aijkl(ε) (see (40)–(41)) and g(ε) (see (46)), take into account

the weak convergences ei||j(ε)
∗
⇀ ei||j in L∞(0, T ;L2(Ω)), simplify by using



28 M.T. Cao-Rial et al.

(71) and consider the precise limits of the functions ei||j(ε; v) in (74)–(75).
As a result, we obtain the equality
∫

Ω

ρ(üαa
αβ
vβ + ü3v3)

√
adx+

∫

Ω

(

λa
αβ
a
στ + µ(aασaβτ + a

ατ
a
βσ)
)

eσ||τγαβ(v)
√
adx

+

∫

Ω

λa
αβ
e3||3γαβ(v)

√
adx−

∫

Ω

αT (3λ+ 2µ)ϑaαβγαβ(v)
√
adx

=

∫

Ω

f
i
vi
√
adx+

∫

ΓN

h
i
vi
√
adΓ a.e. in (0, T ). (76)

Using (72) and since u, v and ϑ are all independent of x3 (see Step (ii)), we
can identify them with their averages and we obtain from (76) that

2

∫

ω

ρ(¨̄uαa
αβ
v̄β + ¨̄u3v̄3)

√
ady +

∫

ω

a
αβστ

γστ (ū)γαβ(v̄)
√
ady − 4

∫

ω

αTµ(3λ+ 2µ)

λ+ 2µ
ϑ̄a

αβ
γαβ(v̄)

√
ady

=

∫

ω

(
∫ 1

−1

f
i
dx3

)

v̄i
√
ady +

∫

ΓN

h
i
v̄i
√
adΓ, a.e. in (0, T ), (77)

where aαβστ denotes the contravariant components of the fourth order two-
dimensional tensor defined in (54). Now, given η = (ηi) ∈ [H1

0(ω)]
3, we can

define v = (vi) such that v(y, x3) = η(y) for all (y, x3) ∈ Ω. Then v ∈ V (Ω)
and it is independent of x3; hence, as a consequence of [8, Theorem 4.2-1],
the variational problems above are satisfied for v̄ = η. Since both sides of the
equation above are continuous linear forms with respect to v̄3 = η3 ∈ L2(ω)
for any given v̄α ∈ H1

0(ω), these expressions are valid for all η = (ηi) ∈ VM (ω),
since H1

0 (ω) is dense in L2(ω).
Similarly, let ϕ ∈ S(Ω) be independent of x3 in (51) and take the limit when
ε → 0. We take into account the weak convergences in Step (i), simplify by
using the time derivative of (72). As a result, we obtain the equality

2

∫

ω

(

β +
α2
T (3λ+ 2µ)2

λ+ 2µ

)

˙̄ϑϕ
√
ady + 2

∫

ω

k∂αϑ̄a
αβ
∂βϕ

√
ady

+ 4

∫

ω

αTµ(3λ+ 2µ)

λ+ 2µ
ϕa

αβ
γαβ( ˙̄u)

√
ady =

∫

ω

Qϕ
√
ady ∀ϕ ∈ H

1
0(ω), (78)

hence obtaining (58), with ζ identified with ϑ̄.

(v) The weak convergences are, in fact, strong.

For this step we first consider a case without tractions, that is, we take h = 0.
Then we will show the changes to be made for the case with tractions. In
both cases we are using a monotonicity argument. We define the quantity:

Λ(ε) :=

∫

Ω

ρ
(

(üα(ε)− üα)g
αβ(ε)(u̇β(ε)− u̇β) + (ü3(ε)− ü3)(u̇3(ε)− u̇3)

)

√

g(ε)dx

+

∫

Ω

A
ijkl(ε)(ek||l(ε)− ek||l)(ėi||j(ε)− ėi||j)

√

g(ε)dx

+

∫

Ω

β(ϑ̇(ε)− ϑ̇)(ϑ(ε)− ϑ)
√

g(ε)dx

+

∫

Ω

k{∂α(ϑ(ε)− ϑ)gαβ(ε)∂β(ϑ(ε)− ϑ) +
1

ε2
(∂3(ϑ(ε)− ϑ))2}

√

g(ε)dx.
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On one hand, we integrate with respect to the time variable in [0, t] and take
into account (69) and the initial conditions in Problem 6 to obtain

2

∫ t

0

Λ(ε)dr =

∫

Ω

ρ
(

(u̇α(ε)− u̇α)g
αβ(ε)(u̇β(ε)− u̇β) + (u̇3(ε)− u̇3)

2
)

√

g(ε)dx

+

∫

Ω

A
ijkl(ε)(ek||l(ε)− ek||l)(ei||j(ε)− ei||j)

√

g(ε)dx

+

∫

Ω

β(ϑ(ε)− ϑ)2
√

g(ε)dx

+ 2

∫ t

0

∫

Ω

k{∂α(ϑ(ε)− ϑ)gαβ(ε)∂β(ϑ(ε)− ϑ) +
1

ε2
(∂3(ϑ(ε)− ϑ))2}

√

g(ε)dxdr,

(79)

and as consequence of (42) and (46), we find

∫ t

0

Λ(ε)ds ≥ C(|u̇(ε)− u̇|20,Ω + |ei||j(ε)− ei||j |20,Ω + |ϑ(ε)− ϑ|20,Ω

+

∫ t

0

|∂αϑ(ε)− ∂αϑ|20,Ωds+
1

ε2

∫ t

0

|∂3ϑ(ε)− ∂3ϑ|20,Ωds. (80)

On the other hand, from the expression of Λ(ε) and making use of (50)–(51)
for v = u̇(ε) and ϕ = ϑ(ε), we deduce that

Λ(ε) =

∫

Ω

f
i
u̇i(ε)

√

g(ε)dx− d

dt

∫

Ω

A
ijkl(ε)ek||l(ε)ei||j

√

g(ε)dx+

∫

Ω

A
ijkl(ε)ek||lėi||j

√

g(ε)dx

− d

dt

∫

Ω

ρu̇α(ε)g
αβ(ε)u̇β

√

g(ε)dx+

∫

Ω

ρüαg
αβ(ε)u̇β

√

g(ε)dx

− d

dt

∫

Ω

ρu̇3(ε)u̇3
√

g(ε)dx+

∫

Ω

ρü3u̇3
√

g(ε)dx

+

∫

Ω

qϑ(ε)
√

g(ε)dx− d

dt

∫

Ω

βϑ(ε)ϑ
√

g(ε)dx+

∫

Ω

βϑ̇ϑ
√

g(ε)dx

−
∫

Ω

k∂αϑg
αβ(ε)∂β(ϑ(ε)− ϑ)

√

g(ε)dx−
∫

Ω

k∂αϑ(ε)g
αβ(ε)∂βϑ

√

g(ε)dx

− 1

ε2

∫

Ω

k∂3ϑ∂3(ϑ(ε)− ϑ)
√

g(ε)dx− 1

ε2

∫

Ω

k∂3ϑ(ε)∂3ϑ
√

g(ε)dx. (81)
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Integrating with respect to the time variable in [0, t] and taking into account
the initial conditions given in Problem 6 and (69), we obtain
∫ t

0

Λ(ε)dr =

∫ t

0

∫

Ω

f
i
u̇i(ε)

√

g(ε)dxdr −
∫

Ω

A
ijkl(ε)ek||l(ε)ei||j

√

g(ε)dx+

∫ t

0

∫

Ω

A
ijkl(ε)ek||lėi||j

√

g(ε)dxdr

−
∫

Ω

ρu̇α(ε)g
αβ(ε)u̇β

√

g(ε)dx+

∫ t

0

∫

Ω

ρüαg
αβ(ε)u̇β

√

g(ε)dxdr

−
∫

Ω

ρu̇3(ε)u̇3
√

g(ε)dx+

∫ t

0

∫

Ω

ρü3u̇3
√

g(ε)dxdr

+

∫ t

0

∫

Ω

qϑ(ε)
√

g(ε)dxdr −
∫

Ω

βϑ(ε)ϑ
√

g(ε)dx+

∫ t

0

∫

Ω

βϑ̇ϑ
√

g(ε)dxdr

−
∫ t

0

∫

Ω

k∂αϑg
αβ(ε)∂β(ϑ(ε)− ϑ)

√

g(ε)dxdr −
∫ t

0

∫

Ω

k∂αϑ(ε)g
αβ(ε)∂βϑ

√

g(ε)dxdr

− 1

ε2

∫ t

0

∫

Ω

k∂3ϑ∂3(ϑ(ε)− ϑ)
√

g(ε)dxdr − 1

ε2

∫ t

0

∫

Ω

k∂3ϑ∂3ϑ
√

g(ε)dxdr.

Take into account that ∂3ϑ = 0, and let ε → 0. Using the weak conver-
gences studied in steps (i) and (iv), the asymptotic behaviour of the func-
tions Aijkl(ε) and g(ε) (see (40)–(41) and (46)) and the Lebesgue dominated
convergence theorem, we find that

lim
ε→0

∫ t

0

Λ(ε)dr =

∫ t

0

∫

Ω

f
i
u̇i
√
adxdr −

∫ t

0

∫

Ω

ρüαa
αβ
u̇β

√
adxdr −

∫ t

0

∫

Ω

ρü3u̇3
√
adxdr

−
∫ t

0

∫

Ω

A
ijkl(0)ek||lėi||j

√
adxdr+

∫ t

0

∫

Ω

qϑ
√
adxdr

−
∫ t

0

∫

Ω

βϑ̇ϑ
√
adxdr −

∫ t

0

∫

Ω

k∂αϑa
αβ
∂βϑ

√
adxdr. (82)

Moreover, by the expressions of Aijkl(0) (see (40)–(41)) and using (71) we
have
∫

Ω

A
ijkl(0)ek||lėi||j

√
adx =

∫

Ω

(

λa
αβ
a
στ + µ(aασaβτ + a

ατ
a
βσ)
)

eσ||τ ėα||β
√
adx

+

∫

Ω

λa
αβ
e3||3ėα||β

√
adx+

∫

Ω

(

λa
στ
eσ||τ + (λ+ 2µ)e3||3

)

ė3||3
√
adx.

Then, using (72), we find that (82) is actually null, since its expression above
coincides with the result of adding (77) for v̄ = u̇ to (78) for ϕ = ϑ (both
integrated in [0, t]). Indeed,

lim
ε→0

∫ t

0

Λ(ε)dr =

∫ t

0

(

∫

Ω

f
i
u̇i
√
adx−

∫

Ω

ρüαa
αβ
u̇β

√
adx−

∫

Ω

ρü3u̇3
√
adx− 1

2

∫

Ω

a
αβστ

eσ||τ ėα||β
√
adx

+

∫

Ω

qϑ
√
adx−

∫

Ω

(

β +
α2
T (3λ+ 2µ)2

λ+ 2µ

)

ϑ̇ϑ
√
adx−

∫

Ω

k∂αϑa
αβ
∂βϑ

√
adx
)

dr = 0.

(83)

Now, for the case where tractions are not null, in (81) we have an additonal
term

∫

ΓN

h
i
u̇i(ε)

√

g(ε)dΓ.
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We integrate (81) in [0, t] and integrate by parts the terms with tractions
corresponding to the first two components, which can be displayed as

−
∫ t

0

∫

ΓN

ḣ
α(r)uα(ε)(r)

√

g(ε)dΓ dr +

∫

ΓN

h
α(t)uα(ε)(t)

√

g(ε)dΓ

+

∫ t

0

∫

ΓN

h
3(r)u̇3(ε)(r)

√

g(ε)dΓ dr. (84)

When passing to the limit ε → 0, the terms with uα(ε) above converge by
using compactness arguments, since uα(ε) ∈ H1(Ω × (0, T )) and the trace
into L2(Γ × (0, T )) is a compact operator (see [16, p. 416]). For the term with
u̇3(ε) we first recall that u̇(ε) ∈ V (Ω) and ϑ̇(ε) ∈ S(Ω) (see Remark 8).

Next, we use the technique of incremental coefficients in the time variable
to justify additional regularity and boundedness for u̇(ε) independently of
ε. Indeed, take the sum of both equations in Problem 6 for m = 0. Then
consider the case for time t + h and subtract the case for time t. Next, use
v = u̇(ε)(t+ h)− u̇(ε)(t) and ϕ = ϑ(ε)(t+ h)− ϑ(ε)(t). We find

∫

Ω

ρ((üα(ε)(t+ h)− üα(ε)(t))g
αβ(ε)(u̇β(ε)(t+ h)− u̇β(ε)(t))

+ (ü3(ε)(t+ h)− ü3(ε)(t))(u̇3(ε)(t+ h)− u̇3(ε)(t)))
√

g(ε)dx

+

∫

Ω

A
ijkl(ε)(ek||l(ε;u(ε))(t+ h)− ek||l(ε;u(ε))(t))(ei||j(ε; u̇(t+ h))− ei||j(ε; u̇(t)))

√

g(ε)dx

+

∫

Ω

β(ϑ̇(ε)(t+ h)− ϑ̇(ε)(t))(ϑ(ε)(t+ h)− ϑ(ε)(t))
√

g(ε)dx

+

∫

Ω

k((∂αϑ(ε)(t+ h)− ∂αϑ(ε)(t))g
αβ(ε)(∂βϑ(ε)(t+ h)− ∂βϑ(ε)(t)) +

1

ε2
(∂3ϑ(ε)(t+ h)− ∂3ϑ(ε)(t))

2)
√

g(ε)dx

=

∫

Ω

(f i(t+ h)− f
i(t))(u̇i(ε)(t+ h)− u̇i(ε)(t))

√

g(ε)dx+

∫

ΓN

(hi(t+ h)− h
i(t))(u̇i(ε)(t+ h)− u̇i(ε)(t))

√

g(ε)dΓ

+

∫

Ω

(q(t+ h)− q(t))(ϑ(ε)(t+ h)− ϑ(ε)(t))
√

g(ε)dx a.e. in (0, T − h).

Equivalently,

ρ
1

2

d

dt
|u̇(ε)(t+ h)− u̇(ε)(t)|2g(ε),Ω +

1

2

d

dt
‖ek||l(ε;u(ε)(t+ h)− u(ε)(t))‖2A(ε),Ω

+ β
1

2

d

dt
|ϑ(ε)(t+ h)− ϑ(ε)(t)|20,Ω + k|∂αϑ(ε)(t+ h)− ∂αϑ(ε)(t)|2g(ε),Ω

+
k

ε2
|∂3ϑ(ε)(t+ h)− ∂3ϑ(ε)(t)|20,Ω

≤
∫

Ω

(f i(t+ h)− f
i(t))(u̇i(ε)(t+ h)− u̇i(ε)(t))

√

g(ε)dx+

∫

ΓN

(hi(t+ h)− h
i(t))(u̇i(ε)(t+ h)− u̇i(ε)(t))

√

g(ε)dΓ

+

∫

Ω

(q(t+ h)− q(t))(ϑ(ε)(t+ h)− ϑ(ε)(t))
√

g(ε)dx a.e. in (0, T − h).
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Now, integrate in [0, t] and use integration by parts to find

ρ
1

2
|u̇(ε)(t+ h)− u̇(ε)(t)|2g(ε),Ω − ρ

1

2
|u̇(ε)(h)− u̇(ε)(0)|2g(ε),Ω

+
1

2
‖ek||l(ε;u(ε)(t+ h)− u(ε)(t))‖2A(ε),Ω − 1

2
‖ek||l(ε;u(ε)(h)− u(ε)(0))‖2A(ε),Ω

+ β
1

2
|ϑ(ε)(t+ h)− ϑ(ε)(t)|20,Ω − β

1

2
|ϑ(ε)(h)− ϑ(ε)(0)|20,Ω

+

∫ t

0

{

k|∂αϑ(ε)(r+ h)− ∂αϑ(ε)(r)|2g(ε),Ω +
k

ε2
|∂3ϑ(ε)(r+ h)− ∂3ϑ(ε)(r)|20,Ω

}

dr

≤
∫ t

0

∫

Ω

(f i(r + h)− f
i(r))(u̇i(ε)(r+ h)− u̇i(ε)(r))

√

g(ε)dxdr

+

∫ t

0

∫

Ω

(q(r+ h)− q(r))(ϑ(ε)(r+ h)− ϑ(ε)(r))
√

g(ε)dxdr

−
∫ t

0

∫

ΓN

(ḣi(r + h)− ḣ
i(r))(ui(ε)(r+ h)− ui(ε)(r))

√

g(ε)dΓdr

+

∫

ΓN

(hi(r+ h)− h
i(r))(ui(ε)(r+ h)− ui(ε)(r))

√

g(ε)dΓ |t0.

Divide by h2 and take limits when h→ 0. Then,

1

2
ρ |ü(ε)(t)|2g(ε),Ω +

1

2
‖ek||l(ε; u̇(ε)(t)‖2A(ε),Ω + β

1

2

∣

∣ϑ̇(ε)(t)
∣

∣

2

0,Ω

≤ 1

2
ρ |ü(ε)(0)|2g(ε),Ω +

1

2
‖ek||l(ε;u(ε)(0)‖2A(ε),Ω + β

1

2

∣

∣ϑ̇(ε)(0)
∣

∣

2

0,Ω

+

∫ t

0

∫

Ω

ḟ
i(r)ü(ε)i(r)

√

g(ε)dxdr+

∫ t

0

∫

Ω

q̇(r)ϑ̇(ε)(r)
√

g(ε)dxdr

−
∫ t

0

∫

ΓN

ḧ
i(r)ü(ε)i(r)

√

g(ε)dΓdr+

∫

ΓN

(ḣi(t))(u̇i(ε)(t))
√

g(ε)dΓ. (85)

Notice that, from the left hand side we get

‖ek||l(ε; u̇(ε)(t)‖2A(ε),Ω ≥ 1

2
‖ek||l(ε; u̇(ε)(t)‖2A(ε),Ω+C1|u̇(ε)(t)|20,Ω+C2‖u̇α(ε)(t)‖21,Ω.

On the right hand side,

∫

ΓN

(ḣα(t))(u̇α(ε)(t))
√

g(ε)dΓ ≤ 1

δ
‖ḣα(t)‖20,ΓN

+ δ‖u̇α(ε)(t)‖21,Ω,

and, since u̇(ε) ∈ V (Ω), que can use Theorem 3 to find

∫

ΓN

(ḣ3(t))(u̇3(ε)(t))
√

g(ε)dΓ ≤ 1

δ
‖ḣ3(t)‖20,ΓN

+ δ|ek||l(ε; u̇(ε)(t)|20,Ω.

Also,

∫ t

0

∫

ΓN

ḧ
α(r)ü(ε)α(r)

√

g(ε)dΓdr ≤ C(ḧ) + C

∫ t

0

|u̇α(ε)(r)|20,Ωdr,
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and
∫ t

0

∫

ΓN

ḧ
3(r)ü(ε)3(r)

√

g(ε)dΓdr ≤ C(ḧ) + C

∫ t

0

|ek||l(ε; u̇)(ε)(t)|20,Ωdr,

where C(ḧ) is a constant depending on data.
In addition to that, we can obtain estimates for ü(ε)(0) and ϑ̇(ε)(0) in L2

equivalent norms. Indeed, take the problem for time t = 0. Use v = u̇(ε)(h)−
u̇(ε)(0) and ϕ = ϑ(ε)(h)− ϑ(ε)(0) and the initial conditions. We also assume
that hi(0) = 0. We find
∫

Ω

ρ(üα(ε)(0)g
αβ(ε)(u̇β(ε)(h)− u̇β(ε)(0)) + ü3(ε)(0)(u̇3(ε)(h)− u̇3(ε)(0)))

√

g(ε)dx

+

∫

Ω

βϑ̇(ε)(0)(ϑ(ε)(h)− ϑ(ε)(0))
√

g(ε)dx

=

∫

Ω

f
i(0)(u̇i(ε)(h)− u̇i(ε)(0))

√

g(ε)dx+

∫

Ω

(q(0))(ϑ(ε)(h)− ϑ(ε)(0))
√

g(ε)dx.

Divide by h2 and take limits when h→ 0. Then,

1

2
ρ |ü(ε)(0)|2g(ε),Ω + β

1

2

∣

∣ϑ̇(ε)(0)
∣

∣

2

0,Ω

≤
∫

Ω

ḟ
i(0)ü(ε)i(0)

√

g(ε)dx+

∫

Ω

q̇(0)ϑ̇(ε)(0)
√

g(ε)dx

Now using Young’s inequality we can obtain

|ü(ε)(0)|2g(ε),Ω +
∣

∣ϑ̇(ε)(0)
∣

∣

2

0,Ω
≤ C(f i, q).

Thus, by using Gronwall’s inequality in (85), we get to obtain that |ei||j(u̇)(ε)|20,Ω
is bounded independently of ε.
As a consequence of Step (i) and (49), for v = u̇3(ε) we find that

|u̇3(ε)|0,ΓN
≤ C|ei||j(u̇)(ε)|0,Ω a.e. in (0, T ).

Then, there exists ψ ∈ L∞(0, T ;L2(ΓN )) such that for a subsequence keeping

the same notation, it holds u̇3(ε)
∗
⇀ ψ in L∞(0, T ;L2(ΓN )). Since we are in

the conditions of [20, Theorem 3.6], we can identify ψ = u̇3.
Besides, we use Lebesgue Theorem where needed, as well. Thus, the limit of
the terms with traction (84) is

−
∫ t

0

∫

ΓN

ḣ
α(r)uα(r)

√
adΓ dr +

∫

ΓN

h
α(t)uα(t)

√
adΓ

+

∫ t

0

∫

ΓN

h
3(r)u̇3(r)

√
adΓ dr.

We can undo the integration by parts, then reason like in (83).
Finally, the strong convergences ei||j(ε) → ei||j in L∞(0, T ;L2(Ω)) also imply
the strong convergences for ui(ε), by following arguments not depending on
the particular set of equations, but on arguments of differential geometry and
functional analysis which do not differ from those used in [8, Theorem 4.4-1].
Therefore, we just omit them and refer the interested reader to the book.

⊔⊓
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6 Back to the physical framework

It remains to be proved an analogous result to the previous theorem but in terms
of de-scaled unknowns. We shall present the limit problem in a de-scaled form.
The scalings in Section 3 suggest the de-scalings ξεi (y) = ξi(y) and ζε(y) = ζ(y)
for all y ∈ ω̄. This way, from Problem 8 we can derive

Problem 10 Find a pair t 7→ (ξε(y, t), ζε(y, t)) of [0, T ] → VM (ω)×H1
0(ω) verifying

2ε

∫

ω

ρ(ξ̈εαa
αβ
ηβ + ξ̈

ε
3η3)

√
ady + ε

∫

ω

a
αβστ,ε

γστ (ξ
ε)γαβ(η)

√
ady

− 4ε

∫

ω

αTµ(3λ+ 2µ)

λ+ 2µ
ζ
ε
a
αβ
γαβ(η)

√
ady =

∫

ω

F
i,ε
ηi
√
ady ∀η = (ηi) ∈ VM (ω),

2ε

∫

ω

(

β +
α2
T (3λ+ 2µ)2

λ+ 2µ

)

ζ̇εϕ
√
ady + 2ε

∫

ω

k∂
ε
αζ

ε
a
αβ
∂
ε
βϕ

√
ady

+ 4ε

∫

ω

αTµ(3λ+ 2µ)

λ+ 2µ
ϕa

αβ
γαβ(ξ̇

ε)
√
ady =

∫

ω

Q
ε
ϕ
√
ady ∀ϕ ∈ H

1
0(ω),

with ξ̇ε(·, 0) = ξε(·, 0) = 0 and ζε(·, 0) = 0.

Above, we have used F i,ε :=
∫ ε
−ε f

i,εdxε3 + h
i,ε
N , with h

i,ε
+ (·) = hi,ε(·, ε), and Qε =

∫ ε
−ε q

εdxε3. Moreover, the convergences uα(ε) → uα in H1(Ω) and u3(ε) → u3 in

L2(Ω) from the Theorem 5 and [8, Theorem 4.2-1] together lead to the following
convergences:

1

2ε

∫ ε

−ε

u
ε
αdx

ε
3 → ξα inH1(Ω),

1

2ε

∫ ε

−ε

u
ε
3dx

ε
3 → ξ3 in L

2(Ω),
1

2ε

∫ ε

−ε

ζ
ε
dx

ε
3 → ζ in L2(Ω) a.e. in (0, T ).

Furthermore, we can prove the convergences of the averages of the tangential and
normal components of the three-dimensional displacement vector field. To this
end, we can use the same arguments as in [8, Theorem 4.6-1].

7 Conclusions and Outlook

We have found and mathematically justified a two-dimensional limit model for
thermoelastic shells, in the particular case of the so-called elliptic membranes. To
this end we used the insight provided by the asymptotic expansion method and we
have justified this approach by obtaining a convergence theorem. Future work will
be devoted to the asymptotic analysis of contact models, possibly thermoelastic
elliptic membrane and also flexural shells, which would be found under different
sets of hypotheses for the order of the functions involved or the geometry of the
middle surface. We are also interested in cases when contact takes friction into
account and it is coupled with other effects like wear, adhesion or damage.
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